
J. Inverse Ill-Posed Probl. ? (????), 1–31
DOI 10.1515/ jip-????-??? © de Gruyter ????

Identification of an unknown spatial load
distribution in a vibrating beam or plate from the

final state

Karel Van Bockstal

Abstract. The theoretical and numerical determination of a space-dependent load distri-
bution in a simply supported non-homogeneous Euler-Bernoulli beam and Kirchhoff-Love
plate is investigated. The uniqueness of a solution to this inverse source problem is proved,
whilst counterexamples are constructed to discuss the conditions under which uniqueness
holds. A convergent and stable iterative algorithm is proposed for the recovery of the
unknown load source and a stopping criterion is also given. Several one-dimensional nu-
merical experiments are considered to investigate the properties of the proposed iterative
procedure.
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1 Introduction

In the presented work, the problem of identifying a spatial load distribution in a
vibrating beam or plate from the deflection u in z direction at final time t = T is
studied. The additional information is given by

u(·, T ) = ξT (·). (1.1)

This problem belongs to the class of inverse source problems (ISPs). The domain
Ω ⊂ Rd is a thin beam (1d elastic structure in the 3d space) or a rectangular
thin plate (2d elastic structure in the 3d space) with boundary Γ. The dynamic
vibration of a simply supported non-homogeneous Euler-Bernoulli beam (d = 1)
and Kirchhoff-Love plate (d = 2) is governed by the following forward problem
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(for small deflection):

∂tt(ρu) + µ∂tu+ ∆(k∆u)− T r∆u = f(x)h(t) in QT ,
u = 0 on ΣT ,

k∆u = 0 on ΣT ,

u(x, 0) = ũ0(x) x ∈ Ω,

∂tu(x, 0) = ṽ0(x) x ∈ Ω,

(1.2)

where QT := Ω × (0, T ) and ΣT := Γ × (0, T ). Here, u is the displacement
function from the equilibrium position u ≡ 0, ũ0 is the initial deflection, ṽ0 is the
initial velocity, f(x) (unknown) and h(t) (given) are the spatial and temporal load
distributions. Further, ρ(x, t) is the mass density, µ(x, t) is the damping coefficient
and Tr(x, t) is the traction force. If d = 1, then k(x, t) = EI(x, t) where E is the
elasticity modulus and I is the moment of inertia, whilst k is the bending stiffness
of the plate if d = 2, e.g. k(x, t) = h3E(x,t)

12(1−ν(x,t)2)
for a rectangular uniform plate of

thickness h where E is the Young modulus and ν is the Poisson ratio.

1.1 Literature overview

Vibration problems related to the static and dynamic response of beams and plates
have applications in building science, mechanical and aircraft engineering, in earth
science and engineering [8]. For the simplest Euler-Bernoulli and Kirchhoff equa-
tions, the coefficient identification problems have attracted a great deal of attention
in inverse problems, cf. [3–5, 11, 16, 21, 23, 28–30, 37]. In these papers, the deter-
mination of spatial coefficients based on additional measured data is studied using
methods based on spectral theory and on observations (input-output mappings).

This contribution focuses on the determination of a unknown spatial load dis-
tribution f(x) from the final in time deflection in the nonhomogeneous Euler-
Bernoulli beam and Kirchhoff-Love plate equations with arbitrary but separable
source term. Other source identification problems for Euler-Bernoulli equations
from boundary or final in time observations can be found in [12–15,20,24,32] and
for the Kirchhoff-Love equation in [10]. In [32], using spectral theory, the point
source a(x) is uniquely determined in the constant coefficient dynamic Euler-
Bernoulli equation ü + u′′′′ = λ(t)a(x) where λ ∈ C1([0, T ]) is given and
x ∈ (0, 1). The missing information is compensated by the following boundary
measurements: respectively u′(0, t) or u′′(0, t) for all t ∈ (0, T ). This source iden-
tification problem has been reconsidered in [20] for more general Euler-Bernoulli
equation, which includes a constant damping and a constant traction force. An ef-
fective combination of the Lie-group adaptive method and the differential quadra-
ture method is proposed in [24] to recover an unknown space and time dependent
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load in a constant coefficient Euler-Bernoulli beam vibration equation. For the
variable coefficient Euler-Bernoulli equation ρ(x)ü + (k(x)u′′)′′ = F (x, t) with
(x, t) ∈ (0, L)×(0, T ), using the least-square method (or quasi-solution approach)
combined with the adjoint problem approach, Hasanov [12] considered the inverse
problems of determining the unknown source term F (x, t) from the measured data
u(x, T ) or ut(x, T ). Uniqueness of the solution can be obtained when a positivity
condition holds on the solution [12, Lemma 7.2] . The theory developed in this
article is then applied in [13] to the problem of determining the unknown spatial
load f(x) from the final displacement observation in a cantilever beam of the form
ρ(x)ü + (k(x)u′′)′′ = f(x)h(t). In [15], two inverse source problems of iden-
tifying asynchronously distributed spatial loads governed in the Euler-Bernoulli
beam equation ρ(x)ü + µ(x)u̇ + (k(x)u′′)′′ − Tru′′ =

∑M
m=1 hm(t)fm(x) with

hinged-clamped ends are studied. In the first identification problem, (f1, . . . , fM )
is determined from the measured deflection in a neighborhood of a finite set of
points. In the second identification problem, (f1, . . . , fM ) is determined from the
measured slope in a neighborhood of the same set of points. Solution to the ISPs
are obtained by using Tikhonov regularization (thus by minimizing a cost func-
tional). In [14], the problem of identifying the temporal load distribution h(t) and
the problem of identifying the spatial load distribution f(x) in a vibrating beam
ρ(x)ü + (k(x)u′′)′′ = f(x)h(t) from the boundary observation u′(0, t) (i.e. the
slope at x = 0) is investigated. The approach in that article is based on the weak
solution theory of PDEs and the quasi-solution method for inverse problems. Fi-
nally, in [10], an inverse source problem for the Kirchhoff-Love plate equation
∂ttu + k∆2u = h(t)f(x) is studied. The load source f(x) is determined from a
measurement of the displacement at one or more discrete points over a time inter-
val under the assumption that h(t) is a harmonic load. The uniqueness theorem
for this problem is stated, and the fundamental solution to the plate equation is
derived. The fundamental solution method and the Tikhonov regularization tech-
nique are used to calculate the source term.

1.2 Discussion and outline

In this contribution, the recovery of the unknown source f(x) is not achieved by
minimizing a cost functional or by using a spectral method or an adjoint prob-
lem. First, a variational approach is used to obtain the uniqueness of a solution
to the ISP, which is a new result. The conditions under which uniqueness holds
are examined by explicitly constructing counterexamples, that is by constructing
more than one solution in the case when the conditions for uniqueness are vi-
olated. Moreover, a Landweber-Fridman type iterative regularization method is
developed to obtain an approximation of the unknown load source. This approach
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is already successfully applied for the heat conduction equation [6, 18] and for
thermoelastic systems [35,36]. Note that the coefficients in problem (2.1) are also
time-dependent, which is not the case in the other papers referenced before.

The paper is organized as follows. First, the corresponding forward problem is
studied in Section 2. Then, the uniqueness of a solution to the inverse problem
under consideration is established in Section 3. Also counterexamples are given.
Afterwards, in Section 4, an algorithm for the recovery of the unknown spatial load
function is proposed. This method is based on a sequence of well-posed direct
problems, which can be numerically solved at each iteration step by using the
finite element method. The instability of this inverse source problem is overcome
by stopping the iterations using the discrepancy principle. Finally, some numerical
experiments are developed in Section 5 and some concluding remarks and ideas
for future work are presented in Section 6.

Remark 1.1 (Other boundary conditions). The approach given in this article is
also applicable in the case of other boundary conditions arising in engineering
applications. More specifically, the results above remain valid, when instead of
the hinged-hinged end conditions u = k∆u = 0 on ΣT in (2.1), the following
conditions are given [8]: clamped-clamped ends u = ∇u · ν = 0 on ΣT (ν is
the unit normal outward vector); hinged-clamped ends u(0, t) = u′′(0, t) = 0,
u(L, t) = u′(L, t) = 0 (d = 1); sliding-clamped ends u(0, t) = (ku′′)′(0, t) = 0,
u(L, t) = u′(L, t) = 0 (d = 1); clamped-free ends (cantilever beam) u(0, t) =
u′(0, t) = 0, u′′(L, t) = (ku′′)′(L, t) = 0 (d = 1); hinged-free ends u(0, t) =
u′′(0, t) = 0, u′′(L, t) = (ku′′)′(L, t) = 0 (d = 1).

Remark 1.2 (Notations). Denote by (·, ·) the standard inner product in L2(Ω) and
by ‖·‖ its induced norm. The norm |·|e is the Euclidean norm. Consider an abstract
Banach space X with norm ‖·‖X . Let p > 1. The space Lp ((0, T ), X) consists of
functions u : [0, T ]→ X such that

‖u‖Lp((0,T ),X) =

(∫ T

0
‖u(t)‖pX dt

)1/p

<∞.

The space C ([0, T ], X) consists of continuous functions u : [0, T ]→ X satisfying

‖u‖C([0,T ],X) = max
[0,T ]
‖u(t)‖X <∞.

The space L∞ ((0, T ), X) consists of all measurable functions u : (0, T ) → X
that are essentially bounded. The space H1((0, T ), X) consists of functions u :
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[0, T ]→ X such that

‖u‖H1((0,T ),X) =

(∫ T

0
‖u(t)‖2

X +
∥∥u′(t)∥∥2

X
dt
) 1

2

<∞.

The symbol X∗ stands for the dual space of X . Moreover, the values C, ε and Cε
are generic and positive constants independent of the discretization parameter τ .
The value ε is small and Cε 6 C(ε−1).

Remark 1.3. The analysis made in this contribution is valid for a Lipschitz domain
Ω ⊂ Rd with d ∈ N.

2 The forward problem

Let V := H2(Ω) ∩ H1
0(Ω). The norms

∑
|α|62 ‖Dαu‖2 and ‖∆u‖2 are equivalent

in V , see [9, Theorem 1]. In the left-hand side (LHS) of the governing PDE, an
additional term λu is added, and moreover a not necessarily separable source in
the right-hand side (RHS) is considered, i.e.

ρ∂ttu+ µ∂tu+ λu+ ∆(k∆u)− T r∆u = f in QT ,
u = 0 on ΣT ,

k∆u = 0 on ΣT ,

u(x, 0) = ũ0(x) x ∈ Ω,

∂tu(x, 0) = ṽ0(x) x ∈ Ω.

(2.1)

Remark 2.1. This problem is equivalent with (1.2) when the following replace-
ments are made:

µ→ µ+ 2∂tρ and λ→ ∂ttρ. (2.2)

Further one, the reader needs to keep these replacements in mind when interpreting
the assumptions on the data µ and ρ in problem (1.2).

After two times application of Green’s theorem, the variational formulation of
problem (2.1) reads as follows:

Find u(t) ∈ V with ∂tu(t) ∈ V and ∂ttu(t) ∈ L2(Ω) such that

(ρ(t)∂ttu(t), ϕ) + (µ(t)∂tu(t), ϕ) + (λ(t)u(t), ϕ) + (k(t)∆u(t),∆ϕ)

− (T r(t)∆u(t), ϕ) = (f(t), ϕ) , (2.3)

for all ϕ ∈ V and a.a. t ∈ (0, T ].
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Remark 2.2. The variational formulation is well-defined when ∂tu(t) ∈ L2(Ω)
and ρ(t)∂ttu(t) ∈ V ∗ for a.a. t ∈ (0, T ]. However, the requirement ∂tu(t) ∈ V
is necessary to be able to prove the uniqueness of a solution to the inverse source
problem, see Theorem 3.1. This also implies that ∂tu can be used as test function
in the proof of uniqueness of a solution to the direct problem, see Theorem 2.3.

To obtain the existence of a weak solution to problem (2.1) for given f :
[0, T ]→ L2(Ω) in the required function spaces, it is assumed that the functions ρ,
µ, λ, k, Tr, ũ0, ṽ0 and f satisfy the following conditions:

0 < ρ̃0 6 ρ(x, t) 6 ρ̃1, (x, t) ∈ Ω× [0, T ],

|∂tρ(x, t)| 6 ρ̃2,

|µ(x, t)| 6 µ̃1,

|∂tµ(x, t)| 6 µ̃2,

|λ(x, t)| 6 λ̃1,

|∂tλ(x, t)| 6 λ̃2,

0 < k̃0 6 k(x, t) 6 k̃1,

|∂tk(x, t)| 6 k̃2,

|∂ttk(x, t)| 6 k̃3,

|∇k(x, 0)|e 6 k̃4,

|∆k(x, 0)| 6 k̃5,

|T r(x, t)| 6 T̃1,

|∂tT r(x, t)| 6 T̃2,

f ∈ H1 ((0, T ),L2(Ω)
)
,

ũ0 ∈ H4(Ω) ∩ H1
0(Ω),

k(x, 0)∆ũ0(x) = 0, x ∈ Γ,

ṽ0 ∈ V.

(2.4)

Theorem 2.3 (Uniqueness of solution to the direct problem). Let the conditions
(2.4) be fulfilled. Then, there exists at most one solution satisfying problem (2.3).

Proof. Problem (2.3) has a unique weak solution when ũ0 = ṽ0 = f = 0 results
in u = 0. In (2.3), we put for a.a. t ∈ (0, T ) the testfunction equal to ∂tu(t) ∈ V
and then we integrate the sequence of problems in time over (0, η) ⊂ (0, T ) to



Identification spatial load distribution 7

arrive at∫ η

0
(ρ(t)∂ttu(t), ∂tu(t)) dt+

∫ η

0
(µ(t)∂tu(t), ∂tu(t)) dt

+

∫ η

0
(λ(t)u(t), ∂tu(t)) dt+

∫ η

0
(k(t)∆u(t),∆∂tu(t)) dt

−
∫ η

0
(Tr(t)∆u(t), ∂tu(t)) dt = 0.

Using integration by parts, we readily obtain that∫ η

0
(ρ(t)∂ttu(t), ∂tu(t)) dt

=
1
2

∥∥∥√ρ(η)∂tu(η)∥∥∥2
− 1

2

∫ η

0

(
∂tρ(t), (∂tu(t))

2
)

dt,

and∫ η

0
(k(t)∆u(t),∆∂tu(t)) dt

=
1
2

∥∥∥√k(η)∆u(η)∥∥∥2
− 1

2

∫ η

0

(
∂tk(t), (∆u(t))

2
)

dt.

We derive the following estimates∣∣∣∣∫ η

0

(
∂tρ(t), (∂tu(t))

2
)

dt
∣∣∣∣ 6 ρ̃2

∫ η

0
‖∂tu(t)‖2 dt,∣∣∣∣∫ η

0

(
∂tk(t), (∆u(t))

2
)

dt
∣∣∣∣ 6 k̃2

∫ η

0
‖∆u(t)‖2 dt.

Applying the Cauchy and Young inequalities (remember ũ0 = 0), it holds that∣∣∣∣∫ η

0
(µ(t)∂tu(t), ∂tu(t)) dt

∣∣∣∣ 6 µ̃1

∫ η

0
‖∂tu(t)‖2 dt,∣∣∣∣∫ η

0
(λ(t)u(t), ∂tu(t)) dt

∣∣∣∣ 6 λ̃2
1

2

∫ η

0

∥∥∥∥∫ t

0
∂tu(s) ds

∥∥∥∥2

dt+
1
2

∫ η

0
‖∂tu(t)‖2 dt

6

(
1 + λ̃2

1T
2

2

)∫ η

0
‖∂tu(t)‖2 dt

and∣∣∣∣∫ η

0
(Tr(t)∆u(t), ∂tu(t)) dt

∣∣∣∣ 6 T̃ 2
1

2

∫ η

0
‖∆u(t)‖2 dt+

1
2

∫ η

0
‖∂tu(t)‖2 dt.
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After collecting all estimates above, we arrive at

ρ̃0

2
‖∂tu(η)‖2 +

k̃0

2
‖∆u(η)‖2

6

(
1 + µ̃1 +

ρ̃2

2
+
λ̃2

1T
2

2

)∫ η

0
‖∂tu(t)‖2 dt+

(
T̃ 2

1
2

+
k̃2

2

)∫ η

0
‖∆u(t)‖2 dt.

An application of Grönwall’s lemma [2] gives ∂tu = 0 a.e. in QT . Due to ũ0 = 0,
it holds that u = 0 a.e. in QT .

Theorem 2.4 (Well-posedness of the direct problem). Let the conditions (2.4) be
fulfilled. Then, there exists a unique weak solution to problem (2.3) satisfying

u ∈ C ([0, T ], V )

with
∂tu ∈ C

(
[0, T ],L2(Ω)

)
∩ L2 ((0, T ), V )

and
∂ttu ∈ L2 ((0, T ),L2(Ω)

)
.

In the special situation that ũ0 = 0, ṽ0 = 0 and f = f(x), there exists a positive
constant C such that the following estimate is valid

max
t∈[0,T ]

‖∂tu(t)‖2 + max
t∈[0,T ]

‖∆u(t)‖2 6 C ‖f‖2 . (2.5)

Proof. The derivation of the estimate follows the same lines as the proof of unique-
ness of a solution except that f 6= 0. In the case that f = f(x), the corresponding
term can be handled as follows∣∣∣∣∫ η

0
(f, ∂tu(t)) dt

∣∣∣∣ 6 T

2
‖f‖2 +

1
2

∫ η

0
‖∂tu(t)‖2 dt.

To address the existence of a solution to the variational problem (2.3), the semidis-
cretization in time is employed [19]. First, the interval [0, T ] is divided into

n ∈ N equidistant subintervals [ti−1, ti] with the time step τ =
T

n
< 1, thus

ti = iτ, i = 0, . . . , n. With the standard notation for the discretized fields, for any
function z

zi ≈ z(ti), ∂tz(t) ≈ δzi =
zi − zi−1

τ

and
∂ttz(t) ≈ δ2zi =

zi − zi−1

τ 2 − δzi−1

τ
,
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the following linear recurrent scheme is proposed to approximate the original prob-
lem (2.3) for i = 1, . . . , n (for all ϕ ∈ V ):(
ρiδ

2ui, ϕ
)
+(µiδui, ϕ)+(λiui, ϕ)+(ki∆ui,∆ϕ)−(T ri ∆ui, ϕ) = (fi, ϕ) , (2.6)

with u0 = ũ0 and δu0 = ṽ0, which is equivalent to solving

(( ρi
τ 2 +

µi
τ

+ λi

)
ui, ϕ

)
+ (ki∆ui,∆ϕ)− (T ri ∆ui, ϕ)

= (fi, ϕ) +
(( ρi

τ 2 +
µi
τ

)
ui−1, ϕ

)
+
(µi
τ
δui−1, ϕ

)
. (2.7)

The Lax-Milgram lemma gives the existence and uniqueness of a solution ui ∈ V
to (2.7) if ũ0, ṽ0 ∈ L2(Ω).

Next, a priori estimates are derived, which serve as uniform bounds to prove the
convergence of the semidiscrete scheme (2.6). The following version of Abel’s
summation rule will be frequently used: for any sequences of real numbers {zi}ni=1
and {wi}ni=1, it holds that

n∑
i=1

ziωi(ωi − ωi−1)

= znω
2
n − z0ω

2
0 −

n∑
i=1

(ziωi − zi−1ωi−1)ωi−1

=
1
2
znω

2
n −

1
2
z0ω

2
0 −

1
2

n∑
i=1

(zi − zi−1)ω
2
i−1 +

1
2

n∑
i=1

zi(ωi − ωi−1)
2. (2.8)

We set ϕ = δuiτ in (2.6) and sum up these equations for 1 ≤ i ≤ j, with
1 6 j 6 n. We obtain that

j∑
i=1

(
ρiδ

2ui, δui
)
τ +

j∑
i=1

(µiδui, δui) τ +

j∑
i=1

(λiui, δui) τ

+

j∑
i=1

(ki∆ui,∆δui) τ −
j∑
i=1

(T ri ∆ui, δui) τ =

j∑
i=1

(fi, δui) τ. (2.9)

Using (2.8), the first and fourth term on the LHS can be estimated from below as
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follows

j∑
i=1

(
ρiδ

2ui, δui
)
τ

=
1
2

∥∥√ρjδuj∥∥2 − 1
2
‖√ρ0ṽ0‖2

− 1
2

j∑
i=1

∫
Ω

δρi(δui−1)
2τ +

1
2

j∑
i=1

∫
Ω

ρi (δui − δui−1)
2

>
ρ̃0

2
‖δuj‖2 − ρ̃1

2
‖ṽ0‖2 − 1

2

j∑
i=1

∫
Ω

δρi(δui−1)
2τ +

ρ̃0

2

j∑
i=1

‖δui − δui−1‖2 ,

j∑
i=1

(ki∆ui,∆δui) τ

>
k̃0

2
‖∆uj‖2 − k̃1

2
‖∆ũ0‖2 − 1

2

j∑
i=1

∫
Ω

δki(∆ui−1)
2τ +

k̃0

2

j∑
i=1

‖∆ui − ∆ui−1‖2 .

We have that

∣∣∣∣∣
j∑
i=1

∫
Ω

δρi(δui−1)
2τ

∣∣∣∣∣ 6 ρ̃2

j∑
i=1

‖δui−1‖2 τ 6 ρ̃2 ‖ṽ0‖2 + ρ̃2

j−1∑
i=1

‖δui‖2 τ,

∣∣∣∣∣
j∑
i=1

∫
Ω

δki(∆ui−1)
2τ

∣∣∣∣∣ 6 k̃2

j∑
i=1

‖∆ui−1‖2 τ 6 k̃2 ‖∆ũ0‖2 + k̃2

j−1∑
i=1

‖∆ui‖2 τ.



Identification spatial load distribution 11

The other terms in (2.9) are estimated by Cauchy’s and Young’s inequality, i.e.∣∣∣∣∣
j∑
i=1

(µiδui, δui) τ

∣∣∣∣∣ 6 µ̃1

j∑
i=1

‖δui‖2 τ,

∣∣∣∣∣
j∑
i=1

(λiui, δui) τ

∣∣∣∣∣ 6 λ̃2
1

2

j∑
i=1

∥∥∥∥∥ũ0 +
i∑

k=1

δukτ

∥∥∥∥∥
2

τ +
1
2

j∑
i=1

‖δui‖2 τ

6
λ̃2

1
2
‖ũ0‖2 +

(
1 + λ̃2

1T
2

2

) j∑
i=1

‖δui‖2 τ,

∣∣∣∣∣
j∑
i=1

(T ri ∆ui, δui) τ

∣∣∣∣∣ 6 T̃ 2
1

2

j∑
i=1

‖∆ui‖2 τ +
1
2

j∑
i=1

‖δui‖2 τ,

∣∣∣∣∣
j∑
i=1

(fi, δui) τ

∣∣∣∣∣ 6 1
2

j∑
i=1

‖fi‖2 τ +
1
2

j∑
i=1

‖δui‖2 τ.

Collecting all the results above and applying Grönwall’s lemma give for suffi-
ciently small τ that

max
06i6n

{
‖δui‖2 + ‖∆ui‖2

}
+

n∑
i=1

(
‖δui − δui−1‖2 + ‖∆ui − ∆ui−1‖2

)
6 C1, (2.10)

with C1 = C1

(
T, ‖f‖L2((0,T ),L2(Ω)) , ‖ũ0‖V , ‖ṽ0‖L2(Ω)

)
. From

ui = ũ0 + τ

i∑
j=1

δuj

and (2.10), it follows that

max
06i6n

‖ui‖ 6 ‖ũ0‖+
√
C1T =: C2. (2.11)

For the following a priori estimate, we need that the discrete variational formu-
lation (2.6) is well-defined for i = 0. We can define

δ2u0(x) := ∂ttu(x, 0)

=
1

ρ(x, 0)
(f(x, 0)− µṽ0(x)− λũ0(x)− ∆(k(x, 0)∆ũ0(x)) + T r(x, 0)∆ũ0(x))

∈ L2(Ω),
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if the following compatibility conditions are satisfied
ũ0 ∈ H4(Ω) ∩ H1

0(Ω),

k(x, 0)∆ũ0(x) = 0, x ∈ Γ,

|∇k(x, 0)|e 6 k̃4, x ∈ Ω,

|∆k(x, 0)| 6 k̃5, x ∈ Ω.

Then, we are able to replace i by i− 1 in (2.6) and to subtract it from (2.6). Next,
we put ϕ = δ2ui and we sum the result up for i = 1, 2, . . . , j with 1 6 j 6 n.
Using the rule

δ(aibi) = biδai + ai−1δbi,

we obtain that

j∑
i=1

(
ρiδ

3ui + δρiδ
2ui−1, δ

2ui
)
τ +

j∑
i=1

(
µiδ

2ui + δµiδui−1, δ
2ui
)
τ

+

j∑
i=1

(
λiδui + δλiui−1, δ

2ui
)
τ +

j∑
i=1

(
ki∆δui + δki∆ui−1,∆δ

2ui
)
τ

−
j∑
i=1

(
T ri ∆δui + δT ri ∆ui−1, δ

2ui
)
τ =

j∑
i=1

(
δfi, δ

2ui
)
τ. (2.12)

The crucial estimates in the LHS are (using (2.8))

j∑
i=1

(
ρiδ

3ui, δ
2ui
)
τ

>
ρ̃0

2

∥∥δ2uj
∥∥2− ρ̃1

2

∥∥δ2u0
∥∥2−1

2

j∑
i=1

∫
Ω

δρi(δ
2ui−1)

2τ+
ρ̃0

2

j∑
i=1

∥∥δ2ui − δ2ui−1
∥∥2
,

j∑
i=1

(
ki∆δui,∆δ

2ui
)
τ

>
k̃0

2
‖∆δuj‖2− k̃1

2
‖∆ṽ0‖2−1

2

j∑
i=1

∫
Ω

δki(∆δui−1)
2τ+

k̃0

2

j∑
i=1

‖∆δui − ∆δui−1‖2 .
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We have that

∣∣∣∣∣
j∑
i=1

∫
Ω

δρi(δ
2ui−1)

2τ

∣∣∣∣∣ 6 ρ̃2
∥∥δ2u0

∥∥2
+ ρ̃2

j−1∑
i=1

∥∥δ2ui
∥∥2
τ,

∣∣∣∣∣
j∑
i=1

∫
Ω

δki(∆δui−1)
2τ

∣∣∣∣∣ 6 k̃2 ‖∆ṽ0‖2 + k̃2

j−1∑
i=1

‖∆δui‖2 τ.

Using

j∑
i=1

biδai = ajbj − a0b0 −
j∑
i=1

ai−1δbi, u−1 = ũ0 − τ ṽ0,

we obtain that

j∑
i=1

(
δki∆ui−1,∆δ

2ui
)
τ

= (δkj∆uj−1,∆δuj) τ − (δk0∆u−1,∆ṽ0) τ −
j∑
i=1

(δ (δki∆ui−1) ,∆δui−1) τ.

We separately estimate each term on the RHS of the previous equality as follows

|(δkj∆uj−1,∆δuj) τ | 6 Cεk̃
2
2C1 + ε ‖∆δuj‖2 ,

|(δk0∆u−1,∆ṽ0) τ | 6 k̃2 ‖∆(ũ0 − τ ṽ0)‖ ‖∆ṽ0‖ ,

and

∣∣∣∣∣
j∑
i=1

(
δ2ki∆ui−1 + δki−1∆δui−1,∆δui−1

)
τ

∣∣∣∣∣
6
k̃2

3
2
‖∆ũ0‖2+

k̃2
3

2

j−1∑
i=1

‖∆ui‖2 τ+

(
1
2
+ k̃2

)
‖∆ṽ0‖2+

(
1
2
+ k̃2

) j−1∑
i=1

‖∆δui‖2 τ.
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The other terms in (2.12) are handled as follows∣∣∣∣∣
j∑
i=1

(
δρiδ

2ui−1, δ
2ui
)
τ

∣∣∣∣∣ 6 ρ̃2
2

2

∥∥δ2u0
∥∥2

+

(
ρ̃2

2
2

+
1
2

) j∑
i=1

∥∥δ2ui
∥∥2
τ,

∣∣∣∣∣
j∑
i=1

(
µiδ

2ui + δµiδui−1, δ
2ui
)
τ

∣∣∣∣∣ 6 µ̃2
2C1T

2
+

(
1
2
+ µ̃1

) j∑
i=1

∥∥δ2ui
∥∥2
τ,

∣∣∣∣∣
j∑
i=1

(
λiδui + δλiui−1, δ

2ui
)
τ

∣∣∣∣∣ 6 λ̃2
1C1T + λ̃2

2C
2
2T

2
+

j∑
i=1

∥∥δ2ui
∥∥2
τ,

∣∣∣∣∣
j∑
i=1

(
T ri ∆δui, δ

2ui
)
τ

∣∣∣∣∣ 6 T̃ 2
1

2

j∑
i=1

‖∆δui‖2 τ +
1
2

j∑
i=1

∥∥δ2ui
∥∥2
τ,

∣∣∣∣∣
j∑
i=1

(
δT ri ∆ui−1, δ

2ui
)
τ

∣∣∣∣∣ 6 T̃ 2
2C1T

2
+

1
2

j∑
i=1

∥∥δ2ui
∥∥2
τ,

∣∣∣∣∣
j∑
i=1

(
δfi, δ

2ui
)
τ

∣∣∣∣∣ 6 1
2

j∑
i=1

‖δfi‖2 τ +
1
2

j∑
i=1

∥∥δ2ui
∥∥2
τ.

Collecting all the results above, fixing ε sufficiently small and applying Grönwall’s
lemma give for sufficiently small τ that

max
06i6n

{∥∥δ2ui
∥∥2

+ ‖∆δui‖2
}

+

n∑
i=1

(∥∥δ2ui − δ2ui−1
∥∥2

+ ‖∆δui − ∆δui−1‖2
)
6 C3, (2.13)

with C3 = C3

(
T, ‖f‖H1((0,T ),L2(Ω)) , ‖ũ0‖H4(Ω)∩H1

0(Ω) , ‖ṽ0‖V ,
∥∥δ2u0

∥∥).

Finally, the existence of a solution can be proven. Now, we further introduce
the following piecewise linear in time functions un : [0, T ] → L2(Ω) and vn :
[0, T ]→ L2(Ω)

un(0) = ũ0

un(t) = ui−1 + (t− ti−1)δui, t ∈ (ti−1, ti], 1 ≤ i ≤ n;

vn(0) = ṽ0

vn(t) = δui−1 + (t− ti−1)δ
2ui t ∈ (ti−1, ti], 1 ≤ i ≤ n,
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and the piecewise constant in time functions un : [0, T ] → L2(Ω) and vn :
[0, T ]→ L2(Ω)

un(0) = ũ0, un(t) = ui, t ∈ (ti−1, ti], 1 ≤ i ≤ n;

vn(0) = ṽ0, vn(t) = δui, t ∈ (ti−1, ti], 1 ≤ i ≤ n.

Using these so-called Rothe’s functions, the variational formulation (2.6) can be
rewritten, for all ϕ ∈ V and a.a. t ∈ [0, T ], as

(ρn(t)∂tvn(t), ϕ) + (µn(t)∂tun(t), ϕ) +
(
λn(t)un(t), ϕ

)
+
(
kn(t)∆un(t),∆ϕ

)
−
(
T rn(t)∆un(t), ϕ

)
=
(
fn(t), ϕ

)
. (2.14)

From ũ0 ∈ V and (2.10), it follows that

max
t∈[0,T ]

{
‖un(t)‖2

V + ‖∂tun(t)‖2
}
6 C.

Moreover, it holds that V ↪→↪→ L2(Ω). The conditions of [19, Lemma 1.3.13] are
satisfied and, therefore, there exist a function u ∈ C

(
[0, T ],L2(Ω)

)
∩L∞ ((0, T ), V )

and a subsequence {unk
}k∈N of {un}n∈N (denoted by the same symbol yet again)

such that 

un → u in C
(
[0, T ],L2(Ω)

)
,

un(t)⇀ u(t) in V, for all t ∈ [0, T ],

un(t)⇀ u(t) in V, for all t ∈ [0, T ],

∂tun ⇀ ∂tu in L2 ((0, T ),L2(Ω)
)
.

The a priori estimate (2.10) implies that∫ T

0
‖un(t)− un(t)‖2 dt =

n∑
i=1

∫ ti

ti−1

‖(t− ti)δui‖2 dt 6 τ 2C1T,

i.e. {un} and {un} have the same limit in L2 ((0, T ),L2(Ω)
)
. Moreover, estimate

(2.13) implies that
∂tun ⇀ ∂tu in L2 ((0, T ), V )

and
∂tvn ⇀ ∂ttu in L2 ((0, T ),L2(Ω)

)
by the reflexivity of these spaces. Therefore,

u ∈ C ([0, T ], V ) and ∂tu ∈ C
(
[0, T ],L2(Ω)

)
,
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cf. [33, Lemma 7.3]. It holds that ρn → ρ, µn → µ, λn → λ, kn → k and
T rn → T r in L2 ((0, T ),L2(Ω)

)
as n→∞. Now, we integrate (2.14) in time and

pass to the limit for τ → 0 using the preceding convergence results. Afterwards,
we differentiate the result with respect to the time variable to arrive at (2.3). The
convergence of Rothe’s functions towards the weak solution has been shown for a
subsequence. However, taking into account the uniqueness of a solution, the entire
Rothe’s sequence converges towards the solution.

Remark 2.5. As already noted in Remark 2.2, the well-posedness of the forward
problem can also be obtained under lower regularity assumptions on the data.
When

0 < ρ̃0 6 ρ(x, t) 6 ρ̃1, |∂tρ(x, t)| 6 ρ̃2, |µ(x, t)| 6 µ̃1, |λ(x, t)| 6 λ̃1,

0 < k̃0 6 k(x, t) 6 k̃1, |∂tk(x, t)| 6 k̃2, |T r(x, t)| 6 T̃1,

f ∈ L2 ((0, T ), V ∗) , ũ0 ∈ V, ṽ0 ∈ L2(Ω),

then a priori estimates (2.10) and (2.11) are satisfied. Moreover,

n∑
i=1

∥∥δ2ui
∥∥2
V ∗ τ 6 C,

when |∇ρ(x, t)|e 6 ρ̃3 and |∆ρ(x, t)| 6 ρ̃4. These additional estimate is suffi-
cient to do the convergence analysis and to obtain the existence of a weak solution
satisfying

u ∈ C
(
[0, T ],L2(Ω)

)
∩ L2 ((0, T ), V )

with

∂tu ∈ L2 ((0, T ),L2(Ω)
)

and

∂ttu ∈ L2 ((0, T ), V ∗) .

When |∂ttρ(x, t)| 6 ρ̃5 (note that this is already satisfied if λ = ∂ttρ), then the
solution is also unique. Remember that problem (2.3) has a unique weak solution
when ũ0 = ṽ0 = f = 0 results in u = 0. Now, we first integrate (2.3) in time
over t ∈ (0, ξ) ⊂ (0, T ), then we put for a.a. ξ ∈ (0, T ) the testfunction equal to
u(ξ) ∈ V and afterwards we integrate again in time over ξ ∈ (0, η) ⊂ (0, T ) to
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obtain that∫ η

0

(∫ ξ

0
ρ(t)∂ttu(t) dt, u(ξ)

)
dξ +

∫ η

0

(∫ ξ

0
µ(t)∂tu(t) dt, u(ξ)

)
dξ

+

∫ η

0

(∫ ξ

0
λ(t)u(t) dt, u(ξ)

)
dξ +

∫ η

0

(∫ ξ

0
k(t)∆u(t) dt,∆u(ξ)

)
dξ

−
∫ η

0

(∫ ξ

0
Tr(t)∆u(t) dt, u(ξ)

)
dξ = 0.

A careful handling of all the terms (especially multiple times partial integration)
is needed to get that

‖u(η)‖2 +

∥∥∥∥∫ η

0
∆u(t) dt

∥∥∥∥2

= 0.

3 Uniqueness of a solution to the ISP

In this section, the uniqueness of a solution to the ISP (determining f(x) from
ψT ) is discussed. First, the governing partial differential equation (PDE) in (2.1) is
divided by the known (given) function h ∈ C1([0, T ]). In doing this, it is assumed
that h 6= 0, i.e. h(t) > 0 (or h(t) < 0) for all t ∈ [0, T ]. Let

v(x, t) =
u(x, t)

h(t)
and α(t) =

h′(t)

h(t)
,

then
∂tu

h
= ∂tv + vα,

∂ttu

h
= ∂ttv + (2∂tv + vα)α+ vα′.

It follows that the PDE in (2.1) can be rewritten in terms of the unknown v as
follows

ρ∂ttv + (µ+ 2ρα) ∂tv +
(
λ+ µα+ ρα2 + ρα′

)
v + ∆(k∆v)− Tr∆v = f(x),

(3.1)
with 

v = 0 on ΣT ,

k∆v = 0 on ΣT ,

v(x, 0) = ũ0(x)
h(0) x ∈ Ω,

∂tv(x, 0) = ṽ0(x)
h(0) −

ũ0(x)
h(0) α(0) x ∈ Ω,

v(x, T ) = ξT (x)
h(T ) x ∈ Ω.

(3.2)
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Thus, problem (1.1)-(1.2) is transformed in problem (3.1)-(3.2) wherein the right-
hand side solely depends on the space variable. The variational formulation of
the forward problem corresponding with (3.1) is given by: find v(t) ∈ V with

∂tv(t) ∈ V and ∂ttv(t) ∈ L2(Ω) such that

(ρ(t)∂ttv(t), ϕ) + ((µ(t) + 2ρ(t)α(t)) ∂tv(t), ϕ)

+
((
λ(t) + µ(t)α(t) + ρ(t)α(t)2 + ρ(t)α′(t)

)
v(t), ϕ

)
+ (k(t)∆v(t),∆ϕ)− (Tr(t)∆v(t), ϕ) = (f, ϕ) , (3.3)

for all ϕ ∈ V and a.a. t ∈ (0, T ]. Following Theorem 2.4, this formulation is

well-posed for given f ∈ L2(Ω) if the conditions (2.4) are satisfied and

|α(t)| 6 α1,
∣∣α′(t)∣∣ 6 α2,

∣∣α′′(t)∣∣ 6 α3, t ∈ [0, T ], (3.4)

which is satisfied if next to h ∈ C1([0, T ]) also holds that∣∣h′′(t)∣∣ 6 h2,
∣∣h′′′(t)∣∣ 6 h3, t ∈ [0, T ].

In the following theorem, the uniqueness of a solution to the ISP is investigated.

Theorem 3.1 (Uniqueness). Let the conditions (2.4) and (3.4) be satisfied. More-
over, assume that Tr is solely time dependent with

T ′r(t) 6 0, t ∈ [0, T ],

and
ξT ∈ L2(Ω), ∂tρ 6 0, µ > µ0 > 0, ∂tk 6 0,

and
α(t) > 0, ∂t

(
λ+ µα+ ρα2 + ρα′

)
6 0.

Then, there exists at most one f ∈ L2(Ω) such that problem (2.1) together with
condition (1.1) holds.

Proof. A classical variational approach is used to establish the uniqueness of a
solution. The proof is by contradiction. Suppose that there are two solutions
〈u1, f1〉 and 〈u2, f2〉 to (1.1)-(1.2). Set u = u1−u2, v = v1− v2 and f = f1− f2.
Then u(x, 0) = 0, u(x, T ) = 0 and ∂tu(x, 0) = 0. Therefore, also v(x, 0) = 0,
v(x, T ) = 0 and ∂tv(x, 0) = 0. First, we prove that v = 0 (thus u = 0) and
then we show that f = 0. In doing this, we subtract the variational formulation
(3.3) for the corresponding solution 〈v2, f2〉 from the variational formulation for
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〈v1, f1〉. We choose ϕ = ∂tv(t) as testfunction and integrate in time over (0, T )
to obtain that∫ T

0
(ρ(t)∂ttv(t), ∂tv(t)) dt+

∫ T

0
((µ(t) + 2ρ(t)α(t)) ∂tv(t), ∂tv(t)) dt

+

∫ T

0

((
λ(t) + µ(t)α(t) + ρ(t)α2(t) + ρ(t)α′(t)

)
v(t), ∂tv(t)

)
dt

+

∫ T

0
(k(t)∆v(t),∆∂tv(t)) dt−

∫ T

0
(Tr(t)∆v(t), ∂tv(t)) dt

=

∫ T

0
(f, ∂tv(t)) dt = (f, v(T )− v(0)) = 0.

The first four terms in the LHS can be handled as follows:∫ T

0
(ρ(t)∂ttv(t), ∂tv(t)) dt =

1
2

∥∥∥√ρ(T )∂tv(T )∥∥∥2
−1

2

∫ T

0

(
∂tρ, (∂tv)

2
)

dt > 0,∫ T

0
((µ+ 2ρα) ∂tv(t), ∂tv(t)) dt

α>0
> µ0

∫ T

0
‖∂tv(t)‖2 dt,

∫ T

0

((
λ+ µα+ ρα2 + ρα′

)
v(t), ∂tv(t)

)
dt

=
1
2

∫ T

0

(
λ+ µα+ ρα2 + ρα′, ∂t

(
v2)) dt

= −1
2

∫ T

0

(
∂t(λ+ µα+ ρα2 + ρα′), v2) dt > 0,

∫ T

0
(k(t)∆v(t),∆∂tv(t)) dt

= −1
2

∫ T

0

(
∂tk(t), (∆v)

2(t)
)

dt+
1
2

∥∥∥√k(T )∆v(T )∥∥∥2
> 0.

The traction term is the most difficult term to handle. If Tr is solely time depen-
dent, then (using ∂tv = 0 on ΣT and ∇v(·, T ) = ∇v(·, 0) = 0 in Ω)

−
∫ T

0
Tr(t) (∆v(t), ∂tv(t)) dt =

1
2

∫ T

0
Tr(t)

∫
Ω

∂t |∇v(x, t)|2 dx dt

= −1
2

∫ T

0
T ′r(t) ‖∇v(t)‖

2 dt > 0.
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From this, we get that

µ0

∫ T

0
‖∂tv(t)‖2 dt 6 0.

Therefore, v = 0 a.e. in QT . Substituting v = 0 in (3.3) gives

(f, ϕ) = 0, ∀ϕ ∈ V.

We conclude by [38, Proposition 18.2] that f = 0 in L2(Ω).

Remark 3.2. Note that in terms of the original problem (1.2), the assumption µ >
µ0 > 0 means that µ + 2∂tρ > µ0 > 0, see the replacements (2.2). Moreover,
∂t
(
λ+ µα+ ρα2 + ρα′

)
6 0 is equivalent with ∂t

(
∂ttρ+ µα+ ρα2 + ρα′

)
6

0.

Remark 3.3. The assumption α(t) > 0 is equivalent with h′(t) > 0 if h(t) > 0
for all t ∈ [0, T ] and with h′(t) 6 0 if h(t) < 0 for all t ∈ [0, T ].

In the following subsection, the ‘changing sign’ assumptions made in the proof
to guarantee the uniqueness of a solution are examined.

3.1 Counterexamples uniqueness

Example 3.4 (h(t) is changing sign). Consider the following one-dimensional ISP
for x, t ∈ (0, π) with zero final time data

utt + ut + uxxxx − uxx = h(t)f(x) (x, t) ∈ QT ,
u(0, t) = u(π, t) = 0 t ∈ (0, π),

uxx(0, t) = uxx(π, t) = 0 t ∈ (0, π),
u(x, 0) = 0 x ∈ (0, π),
ut(x, 0) = 0 x ∈ (0, π),

(3.5)

where h(t) = (t + 1) sin(t) + (t + 2) cos(t) in [0, π]. Besides the trivial solution
(u, f) = (0, 0) to (3.5), also the following non-trivial one exists

u(x, t) = sin(x) sin(t)t,

f(x) = sin(x).
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Example 3.5 (α(t) is changing sign). Consider the following one-dimensional ISP
for x ∈ (0, π), t ∈ (0, 4) with zero final time data

utt + ut + uxxxx − uxx = h(t)f(x) (x, t) ∈ QT ,
u(0, t) = u(π, t) = 0 t ∈ (0, 4),

uxx(0, t) = uxx(π, t) = 0 t ∈ (0, 4),
u(x, 0) = 0 x ∈ (0, π),
ut(x, 0) = 0 x ∈ (0, π),

(3.6)

where h(t) = A+ t cos(t) > 0 in [0, 4] with

A :=
2 exp(−2) sin

(
2
√

7
)√

7 + 14 exp(−2) cos
(
2
√

7
)
+ 14 cos (4) + 21 sin (4)

−7 + exp(−2) sin
(
2
√

7
)√

7 + 7 exp(−2) cos
(
2
√

7
) .

Besides the trivial solution (u, f) = (0, 0) to (3.6), also the following non-trivial
one exists

f(x) = sin(x),

u(x, t) = f(x)Φ(t),

with

Φ(t) = − 1
14

exp
(
− t

2

)
sin

(√
7

2
t

)
(−2 +A)

√
7

+ exp
(
− t

2

)
cos

(√
7

2
t

)(
1− A

2

)
+

1
2
(t− 2) cos (t) +

1
2
(t− 1) sin (t) +

A

2
.

Example 3.6 (T ′r(t) is changing sign). Consider the following one-dimensional
ISP for x, t ∈ (0, π) with zero final time data

utt + ut + uxxxx −
50

sin(t)
uxx = h(t)f(x) (x, t) ∈ QT ,

u(0, t) = u(π, t) = 0 t ∈ (0, π),
uxx(0, t) = uxx(π, t) = 0 t ∈ (0, π),

u(x, 0) = 0 x ∈ (0, π),
ut(x, 0) = 0 x ∈ (0, π),

(3.7)
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where h(t) = 50t+(t+2) cos(t)+ sin(t) > 0, α(t) > 0 and
(
α+ α2 + α′

)′
6 0

in [0, π]. Besides the trivial solution (u, f) = (0, 0) to (3.7), also the following
non-trivial one exists

u(x, t) = sin(x) sin(t)t,

f(x) = sin(x).

These examples show that the ‘changing sign’ conditions in Theorem 3.1 cannot
be removed without violating uniqueness of the ISP (1.1)-(1.2).

4 Reconstruction of the spatial load distribution

In this section, an algorithm for finding the spatial load distribution f is described.
It is assumed that the assumptions (2.4), (3.4) and the assumptions of Theorem 3.1
are satisfied. The solution 〈u, f〉 to problem (1.1)-(1.2) is given by 〈hv∗+hv∗∗, f〉
where v∗∗ is the unique solution (see Theorem 2.4) to

ρ∂ttv∗∗ + (µ+ 2ρα) ∂tv∗∗ +
(
λ+ µα+ ρα2 + ρα′

)
v∗∗

+ ∆(k∆v∗∗)− Tr∆v∗∗ = 0, (4.1)

with 
v∗∗ = 0 on ΣT ,

k∆v∗∗ = 0 on ΣT ,

v∗∗(x, 0) = ũ0(x)
h(0) x ∈ Ω,

∂tv∗∗(x, 0) = ṽ0(x)
h(0) −

ũ0(x)
h(0) α(0) x ∈ Ω,

(4.2)

and 〈v∗, f〉 is the unique solution (see Theorem 3.1) to

ρ∂ttv∗ + (µ+ 2ρα) ∂tv∗ +
(
λ+ µα+ ρα2 + ρα′

)
v∗

+ ∆(k∆v∗)− Tr∆v∗ = f(x), (4.3)

with 
v∗ = 0 on ΣT ,

k∆v∗ = 0 on ΣT ,

v∗(x, 0) = 0 x ∈ Ω,

∂tv∗(x, 0) = 0 x ∈ Ω,

(4.4)
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and

v∗(·, T ) =
ξT (·)
h(T )

− v∗∗(·, T ) =: ξ̃T (·). (4.5)

Therefore, solving problem (1.1)-(1.2) is equivalent with solving problem (4.3)-
(4.4)-(4.5).

4.1 Algorithm for finding the source term

The algorithm for solving problem (1.1)-(1.2) is based on the Landweber-Fridman
iterative regularization method [7, 22]. Let v ∈ C ([0, T ], V ) the unique solu-
tion to (4.3)-(4.4) for given f . The corresponding input-output operator MT ∈
L
(
L2(Ω),L2(Ω)

)
is defined by

MT f = v(·, T ).

The boundedness of MT follows from (2.5). Finding a solution to the ISP is then
equivalent to solving the following operator equation

MT f = ξ̃T ,

or equivalent to solving the fixed point equation

f = f + ωMT

(
ξ̃T −MT f

)
, ω > 0,

due to the linearity of the operator MT . The parameter ω is called a relaxation
parameter. The method of successive approximations can be applied to this latter
equation as follows (k ∈ N)

fk := fk−1 − ωMT

(
MT fk−1 − ξ̃T

)
,

with an initial guess f0 ∈ L2(Ω). This all gives rise to the procedure presented
below for the reconstruction of the solution u and the source term f in problem
(1.1)-(1.2). The procedure is similar to the one presented in [6,17,18,36] and reads
as follows:

(i) Solve problem (4.1)-(4.2) and determine the transformed final overdetermi-
nation ξ̃T , cf. (4.5). Denote the solution by v∗∗;

(ii) Choose an initial guess f0 ∈ L2(Ω). Let v0 be the solution to (4.3)-(4.4) with
f = f0;

(iii) Assume that fk−1 and vk−1 have been constructed. Let wk−1 solve (4.3)-
(4.4) with f(x) = vk−1(x, T )− ξ̃T (x);
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(iv) Define
fk(x) = fk−1(x)− ωwk−1(x, T ), a.a. x ∈ Ω,

where ω > 0, and let vk solve (4.3)-(4.4) with f = fk;

(v) Repeat steps (iv) and (v) until a desired level of accuracy is achieved, see
Section 4.2;

(vi) Suppose that the algorithm is stopped after k̃ iterations. Denote the cor-
responding solution by 〈vk̃, fk̃〉. Then, the approximating solution to the
original problem (1.1)-(1.2) is given by 〈h(v∗∗ + vk̃), fk̃〉.

An application of [34, Theorem 3] gives the convergence of the proposed algo-
rithm.

Theorem 4.1. Assume that the assumptions of Theorem 3.1 are satisfied and sup-
pose that the relaxation parameter ω satisfies 0 < ω < ‖MT ‖2

L(L2(Ω),L2(Ω)). De-

note by (u, f) the unique solution to the original inverse problem (1.1)-(1.2). Let
(uk, fk) the kth approximation in the iterative algorithm of Subsection 4.1. Then

lim
k→∞

{
‖fk − f‖+ ‖uk − u‖C([0,T ],L2(Ω))

}
= 0,

for every f0 ∈ L2(Ω).

4.2 Stopping criteria

In order to simulate errors present in practical experiments, it is considered that
there is some error in the additional measurement (1.1), i.e.

‖ξT − ξeT ‖ 6 e,

with e > 0. This implies that also ξ̃T is perturbed, see (4.5). The perturbed
function is denoted by ξ̃eT . The functions fek and vek are obtained by using the
algorithm with no noise on the initial data. In this contribution, the discrepancy
principle by Morozov [31] is used to obtain a stopping criterion for the algorithm.
This principle suggests to finish the iterations at the smallest index k = k(e, ω)
for which

Ek :=
∥∥∥vek(·, T )− ξ̃eT∥∥∥ 6 τ0e. (4.6)

for some τ0 > 1 (typically between 1 and 1.2).
The following section discusses the results of numerical experiments. These

experiments indicate that the proposed scheme can be successfully applied on the
inverse problem studied in this contribution.
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5 Numerical experiments

5.1 Setting

In the experiments, a simply supported homogeneous steel beam (ASTM-A36) is
considered of length l, width b and height h such that l � b, h. It is assumed
that b = h = 0.01 m such that the vibrations of the beam can be described in a
one-dimensional setting. The governing equations in (1.1)-(1.2) can be rearranged
for constant coefficients in the following nondimensionalized form (it is assumed
that h ≡ 1 in the experiments)

Ü + U̇ + U (iv) −
√

ρ
k
Tr
µ U
′′ = F, in

(
0, l`
)
×
(
0, cT`

]
,

U (0, t̃) = U
(
l
` , t̃
)

= 0, t̃ ∈
(
0, cT`

]
,

U ′′ (0, t̃) = U ′′
(
l
` , t̃
)

= 0, t̃ ∈
(
0, cT`

]
,

U(x̃, 0) = U0(x̃), x̃ ∈ (0, l`),
U̇(x̃, 0) = V0(x̃), x̃ ∈ (0, l`),
U(x̃, T ) = Υ (x̃) x̃ ∈ (0, l`),

(5.1)

by using the following nondimensional variables:

x̃ =
1
`
x, t̃ =

c

`
t, U(x̃, t̃) =

1
ũ
u(x, t), F (x̃, t̃) =

1
f̃
f(x, t),

Υ (x̃) =
ξT (`x̃)

ũ
, U0(x̃) =

1
ũ
u0(`x̃), V0(x̃) =

`

cũ
v0(`x̃),

where c = k1/4µ1/2

ρ3/4 (SI unit: m/s), ` = ρc
µ (SI unit: m), ũ = ` and f̃ = ρc2

` (SI unit:
kg/s2). Now, F is rewritten as

F (x̃, t̃) = F(x̃) + G(x̃, t̃),

with F(x̃) unknown. The dimensionless variables are used in the following ex-
periments, however, in the sequel, the tilde is dropped in order to simplify the
notations employed.

In the numerical experiments, the exact displacement is prescribed as follows

U(x, t) = 0.01(1 + t)2x2(x− 4)4, x ∈ [0, 4], t ∈ [0, 1].

The moment of inertia (SI-unit: m4) of the rectangular solid cross section of the
beam is given by I = bh3

12 . The elasticity modulusE is 200×109 N/m2 such that the
flexural rigidity k approximately equals 167 Nm2. The other material coefficients
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are given by: ρ = 8 kg/m, Tr = 6 × 103 N and µ = 6 × 102 kg/s×m. This setting
corresponds with a beam of length l ≈ 1 m and with final time T ≈ 0.0133 s. The
exact sources used in the experiments are given by

F1(x) = 0.25× x(x− 4),

F2(x) = 0.1× x(x− 4)2,

F3(x) = sin
(πx

2

)
,

F4(x) = exp
(
−2(x− 2)2) ,

F5(x) =


0 0 6 x 6 1
x− 1 1 6 x 6 2
−x+ 3 2 6 x 6 3
0 3 6 x 6 4

and

F6(x) =


0 0 6 x < 1
1 1 6 x 6 3
0 3 < x 6 4.

This implies that a wide range of sources is considered, namely symmetric (F1,4)
and non-symmetric (F2,3) continuous piecewise smooth load sources and sym-
metric load fields with discontinuities (F5,6).

The solution to the inverse source problem is found by applying the algorithm
proposed in Subsection 4.1. The forward problems in this procedure are dis-
cretized in time according to the backward Euler method. It is assumed that the
time step for the equidistant time partitioning is chosen to be 0.001. To solve the
problem (2.1) using Lagrange finite element basis functions, the equation is split
into two second-order equations. Then, at each time step, the resulting elliptic
mixed problems are solved numerically by the finite element method using second
order (P2–FEM) Lagrange polynomials for the space discretization (the number
of finite elements is taken to be equal to 200). The finite element library DOLFIN
[26, 27] from the FEniCS project [1, 25] is used to solve the forward problems.

In the following subsection, the exact value for the source is compared with
its corresponding numerically retrieved value fk̃, obtained when the algorithm is
stopped after a finite number of k̃ iterations. The value for the relaxation parameter
ω equals 10 in the experiments. Next to the Morozov stopping criterion (with
τ0 = 1.1 in (4.6)), the algorithm has also the following stopping criteria:

• The maximum number of iterations is set equal to 10000;
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•

|Ek − Ek−1|
Ek

< 1× 10−4.

The initial guess f0 is chosen to be equal to 0. Moreover, a randomly generated
uncorrelated noise with magnitude ẽ is added to the additional condition in order
to simulate the errors present in real measurements.

5.2 Results

The numerical results for different noise levels ẽ are depicted in Figure 1 and 3.
The accurate approximations of the sources show the stability of the numerical
procedure. In Figure 2, the results for the experiments related to F4, F5 and F6

are presented when exact data is used such that the iterative process is continued
indefinitely. From these figures, it can be seen that the numerical solution con-
verges to its corresponding exact solution as k increases. However, this process
is time consuming as each numerical experiment requires about 50 (25) hours for
10000 (5000) iterations (Intel® CoreTM i7-4810MQ Processor). The CPU time
(in minutes) and the stopping iteration index k̃ for the experiments with noise can
be found in Table 1 and Table 2. As can be noticed from Table 2, a drawback of
this method is that the process is time consuming for F i, i = 4, 5, 6, which gives
a limitation of this method.

The obtained results are in accordance with the numerical experiments per-
formed for the heat conduction equation in [6, 18] and for thermoelasticity in
[35, 36]:

• The attainability of the stopping criteria becomes faster if ẽ increases (see
Table 1 and 2);

• Also for larger noise level for F1 and F3, an accurate approximation for the
sources is obtained (see Figure 1);

• The algorithm is sensitive to the amount of noise in the experiment (see Fig-
ure 3).

6 Conclusions and further research

In this paper, an ISP associated with the dynamic vibration of a simply supported
beam and rectangular plate was considered (nevertheless also other boundary con-
ditions can be considered). More precisely, the theoretical and numerical determi-
nation of a spatial load distribution was studied from the knowledge of a supple-
mentary measurement of the deflection at the final time. First, the well-posedness
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Table 1. The stopping iteration number k̃, the CPU time (mins) and the value of the
relaxation parameter at k̃ for F i, i = 1, 2, 3, with ẽ = 0.05%, 0.1% and ẽ = 1%.

ẽ = 0.05% k̃ time ẽ = 0.1% k̃ time ẽ = 1% k̃ time

F1 135 54 F1 2 1 F1 2 1
F2 362 163 F2 20 5 F2 9 3
F3 29 12 F3 25 10 F3 15 4

Table 2. The stopping iteration number k̃, the CPU time (mins) and the value of the
relaxation parameter at k̃ for F i, i = 4, 5, 6, with ẽ = 0.01% and ẽ = 0.1%.

ẽ = 0.01% k̃ time ẽ = 0.1% k̃ time

F4 5714 1888 F4 1642 421
F5 6693 2140 F5 1962 804
F6 7458 2321 F6 2247 918

of the corresponding forward problem is investigated. Afterwards, the unique-
ness of a solution to the inverse problem is proved. The conditions under which
uniqueness holds were examined by constructing counterexamples.

An iterative algorithm of Landweber-Fridman type was proposed for the re-
covery of the unknown load source and a stopping criterion was also given. The
one-dimensional numerical experiments carried out herein were implemented us-
ing the FEM and validated the stability of the proposed iterative procedure. In
these experiments, it was showed that the procedure proposed herein is applica-
ble to the reconstruction of symmetric and non-symmetric continuous piecewise
smooth load sources and symmetric load fields with discontinuities. The main dis-
advantage was that the process is time consuming for the symmetric load fields
with discontinuities and the exponential load field.

A direction for future research concerns the comparison of the results with faster
iterative methods such as the conjugate gradient method.
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Figure 1. The exact sources F1, F2 and F3 and its corresponding numerical solu-
tion, retrieved using various levels of noise in the additional measurement (a,b,c).
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Figure 2. The exact sources F4, F5 and F6 and its corresponding numerical solu-
tion, retrieved without noise on the measurement (a,b,c).
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Figure 3. The exact sources F4, F5 and F6 and its corresponding numerical solu-
tion, retrieved using various levels of noise in the additional measurement (a,b,c).


