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Islandinium pacificum sp. nov., a new dinoflagellate cyst from the upper
Quaternary of the northeast Pacific

Pieter R. Gurdebekea, Kenneth Neil Mertensb, Vera Pospelovac, Nicolas Van Nieuwenhoved and
Stephen Louwyea

aDepartment of Geology, Ghent University, Ghent, Belgium; bIfremer, LER BO, Station de Biologie Marine, Concarneau CEDEX, France;
cSchool of Earth and Ocean Sciences, University of Victoria, Victoria, Canada; dDepartment of Earth Sciences, University of New Brunswick,
Fredericton, Canada

ABSTRACT
Round brown process-bearing cysts (RBPC) produced by dinoflagellates (Dinophyceae) occur as an
important part of assemblage diversities in seafloor sediments worldwide. Here a new species,
Islandinium pacificum, is described from surface sediment samples from coastal waters of British
Columbia (Canada). Additional observations are made on material from the Holocene of Kyuquot
Sound (Vancouver Island, Canada) and the Eemian of the Vøring Plateau (North Atlantic). The cysts
have a smooth wall and bear acuminate processes with barbs. Incubation experiments reveal an
affinity with the motile stage Protoperidinium mutsuense. The ecology of the new species is specified.
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1. Introduction

More than 2000 species of dinoflagellates are recognized
(G�omez 2012), and more than 200 of them are known to
form a resting cyst as part of their life cycle (Head 1996).
Some of these dinoflagellate cysts are highly resistant
to physical and chemical degradation, which provides an
excellent fossilization potential. Fossil dinoflagellate cysts
have been applied in a wide range of geological studies,
mainly involving biostratigraphy and paleoenvironmental
reconstructions (e.g. Dale 1996; de Vernal et al. 2001; Marret
et al. 2001; Louwye and Laga 2008; Van Nieuwenhove et al.
2008; Holzwarth et al. 2010; Riding et al. 2010; Limoges et al.
2018; Pospelova et al. 2015). The cyst stages differ morpho-
logically from the motile stages and a dual taxonomy exists
in which cyst stages and motile stages are given names in
parallel. This practice grew historically from the fact that the
dinoflagellate origin of cysts recovered from sedimentary
records did not become obvious until the 1960s (e.g. Evitt
and Davidson 1964; Wall 1965) and that the motile affinity of
a cyst is usually unknown at the moment of discovery of the
latter. Both incubation experiments and molecular analysis
can establish the relation between motile and cyst stages
for a dinoflagellate species. Dual taxonomy is still often
poorly resolved, however, and in order to fully understand
the information confined in dinoflagellate cyst records,
taxonomic issues need to be resolved first.

Round brown process-bearing cysts (RBPCs) is a collective
term for dinoflagellate cysts with a (sub)spherical central
body bearing processes, and is a more correct name for what
has been previously called round brown spiny cysts (RBSCs;

e.g. Potvin et al. 2017), as spines are defined as acuminate
processes (i.e. tapering to a pointed distal end) (e.g. Fensome
et al. 1993). RBPCs constitute an important morphological
group in many dinoflagellate cyst assemblages in surface
sediments from the northern Pacific and Atlantic oceans (e.g.
Rochon et al. 1999; Pospelova et al. 2008; Richerol et al. 2012;
Radi et al. 2013; Zonneveld et al. 2013; Heikkil€a et al. 2014;
Gurdebeke et al. 2018; Limoges et al. 2018), and in Holocene
records (e.g. Bonnet et al. 2010; Ouellet-Bernier et al. 2014;
Richerol et al. 2014; Gibb et al. 2015; Bringu�e et al. 2016;
Li et al. 2017). RBPCs generally constitute minor parts of cyst
assemblages in temperate zones (e.g. Pospelova et al. 2008;
Gurdebeke et al. 2018), but they may dominate assemblages
at higher latitudes (e.g. Head et al. 2001; Richerol et al. 2012;
Limoges et al. 2018).

RBPCs are a polyphyletic group and belong to several
motile-based genera. They have been primarily related to
the order Peridiniales, and at the subfamily level to the
Protoperidiniadeae and Diplopsalioideae (Table 1). More
specifically, the Monovela clade of the Protoperidinioideae
contains RBPCs in the subclades Monovelum, Archaeperidinium
and Americanum (e.g. Potvin et al. 2017). Within the
Diplopsalioideae, a number of RBPC species are associated
with several genera (e.g. Niea, Qia). Finally, RBPCs have also
been observed within another order, the Gymnodiniales,
notably cysts produced by Polykrikos hartmannii (e.g. Matsuoka
and Fukuyo 1986) and by Gyrodinium resplendens, though the
latter do not consistently bear processes (Skovgaard 2000).

Two cyst-based genera of RBPCs were erected,
Echinidinium (Zonneveld 1997) and Islandinium (Head et al.
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2001), differing mainly by their archeopyle type. The genus
Echinidinium was erected by Zonneveld (1997) for spiny
round brown cysts with a chasmic archeopyle (i.e. a split),
while Head et al. (2001) defined the genus Islandinium for
RBPCs with a saphopylic archeopyle reflecting three apical
plates (20, 30 and 40). Potvin et al. (2013) emended the
definition of Islandinium to include species with a theropylic
archeopyle which ruptures along the same three apical
plates, such as cysts of Protoperidinium tricingulatum, albeit
in doing so Potvin et al. (2013) invalidly transferred the
cyst of P. tricingulatum to Islandinium. Subsequent molecular
research found a placement for both cyst-based genera in
the Monovela clade of the genus Protoperidinium (Mertens
et al. 2013; Potvin et al. 2013, 2017) (Table 1).

Here, a new dinoflagellate cyst species is described which
was first recorded in Ocean Drilling Program (ODP) Hole 893A
from the Santa Barbara Basin (southern California) as
Echinidinium spp. indet and illustrated in auxiliary material by
Pospelova et al. (2006, S3, figure 4). Shortly after, it was docu-
mented from the Eemian (MIS 5e) of the Norwegian Sea as
Protoperidinioid cyst type A by Van Nieuwenhove et al. (2008,
supplementary data) and illustrated as Protoperidinioid indet.
cyst type A (Van Nieuwenhove 2008, plate 9, figure 7–12 and
plate 10, figure 1–12). This species was also illustrated as
Echinidinium? sp. A, by Radi et al. (2013). The conservation of
this cyst type in the Eemian deposits was unfavorable because
of dirt clogging of the processes and folding of the cysts. Here,
well-preserved and fresh new specimens of this cyst type were
observed in modern and Holocene sediments from the
northeast Pacific Ocean, allowing further detailed examination,
incubation experiments, and the erection of a new species.

2. Materials and methods

The cysts were extracted from surface sediments from
Saanich Inlet (SE Vancouver Island; Figure 1A, sites 1–3; see
Mertens et al. (2012a) for sampling details for sites 1 and 2),
Oak Bay (Figure 1A, site 4) and the Strait of Georgia (British
Columbia, Canada; Figure 1A, site 5) (Table S1). Holocene
sediments were collected in a core (2012002PCG133;
Figure 1A, site 6) from Kyuquot Sound (NW Vancouver
Island; Gurdebeke et al. unpub. data).

The sediment samples were treated following a palyno-
logical preparation method (e.g. Pospelova et al. 2010).
Sediment subsamples were dried for approximately 1 week
at �40 �C and weighed. A known number of exotic marker
grains (Lycopodium clavatum spores) was added (1 tablet of
batch #177745) for absolute abundance estimations (e.g.
Mertens et al. 2009, 2012a). The samples were treated with
10% hydrochloric acid (HCl) at room temperature for the
removal of carbonates (Price et al. 2016). After rinsing with
demineralized water, samples were sieved through a 120 mm
mesh and captured on a 15mm mesh to separate from
coarse and fine fractions. Next, the samples were treated for
a couple of days with �50% hydrofluoric acid at room tem-
perature for the removal of silicates. Possible newly formed
fluorosilicates were removed by using a second round of HCl
treatment. After repeated rinsing with demineralized water
and sonication, the residue was collected on a screen with a

15 mm mesh size. One or two drops of the residue were
mounted in glycerine jelly and covered with a cover slip.

Morphological (light microscopy, LM; and scanning elec-
tron microscope, SEM) observations were made on cysts
retrieved from residues prepared palynologically from Eemian
sediments in core M23323-1 from the Vøring Plateau
(Norwegian Sea, Figure 1B, site 7), as described in Van
Nieuwenhove et al. (2011). Photomicrographs of Holocene
cysts from Kyuquot Sound were made on a Zeiss Axioskop 2
plus transmitting light microscope (Department of Geology,
Ghent University) with 1000� magnification and equipped
with an MRc 5 camera. Photomicrographs of modern cysts
from Saanich Inlet and the Strait of Georgia were taken on a
Nikon Eclipse 80i transmitting light microscope with a Nikon
digital sight DS camera head and control unit (Nikon, Tokyo,
Japan) at 1000� magnification (University of Victoria, Canada),
and on an Olympus BX51 with a digital sight DS-1L 1 module
(Nikon, Tokyo, Japan). Photomicrographs of the Eemian speci-
mens were taken on a Zeiss Axiophot microscope and
Axiocam camera at 1000� magnification (Geomar Helmholtz
Centre for Ocean Research Kiel, Germany). For SEM observa-
tion of cysts from modern sediments, residue was used from
Saanich Inlet, Stn. 2 (Figure 1A) (UVic 09-659) sampled on 19
May 2009 at a depth of 215m. The residue was washed with
distilled water and dehydrated in a graded ethanol series
(30 to 100% in six steps), critical-point-dried with carbon diox-
ide (CO2, CPDBal-Tec 030), glued onto a stub, sputter-coated
with platinum/palladium for 90 s using a JFC-2300HR (JEOL,
Tokyo, Japan) and examined using a SEM JEOL 6330F.

For field-emission SEM imaging of cysts from the Eemian
of the Vøring Plateau, cysts were picked from the residue
and mounted on polycarbonate membrane filters (Millipore,
Billerica, MA, USA, GTTP Isopore, 0.22 lm pore size) and
sputter-coated with gold. The images were made with a
Zeiss SIGMA300 Gemini field emission SEM at the Station de
Biologie Marine (Concarneau, France).

To obtain cysts of Islandinium pacificum sp. nov. for incu-
bation studies, surface sediment samples containing RBPCs
were collected at two locations around southern Vancouver
Island, British Columbia, Canada, in October 2011: (i) Oak Bay
(Figure 1A, site 4) and (ii) the VENUS site in Patricia Bay,
Saanich Inlet (Figure 1A, Stn. 3). All samples were temporarily
stored in plastic containers in a refrigerator at 4 �C. In situ
sea-surface salinities (SSSs) and sea-surface temperatures
(SSTs) were measured when collecting samples (Table S1).

A volume of �0.5–1.0 cm3 of wet sediment was immersed
in filtered seawater and, after 1min of ultrasonication using an
As OneTM (As One Corp., Osaka, Japan) US2R ultrasonic bath,
the sediment was rinsed through a metallic 20mm mesh cali-
brated SanpoTM (Sanpo, Tokyo, Japan) sieve using filtered sea-
water. From this residue, the cyst fraction was separated using
the heavy liquid sodium polytungstate at a density of 1.3 g
cm�3 (Bolch 1997). Single cysts were then transferred to
Nunclon (Thermo Fisher Scientific, Hannover, Germany) 0.5mL
microwells subjected to an irradiance of 100mmol photons
m�2 s�1 and 24h light, and filled with Erd-Schreiber medium
(ESM) medium (Watanabe et al. 2000) at temperatures and sal-
inities comparable to their respective natural environments

82 P. GURDEBEKE ET AL.
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Plate 1. 1–12. Islandinium pacificum sp. nov. 1–6. holotype, Saanich Inlet, slide UVic 2009-661-1, EF V43/2 (label to the left), incrementally lowered focus; arrows
indicate barbs on the processes (2), cavate process base (3) and circular cross section of process base. Interpreted tabulation of archeopyle is indicated (6). 7–12.
Kuyquot Sound, Holocene, UVic 2015–643, incrementally lowering focus; arrows indicate barbs (7) and cavate process base (10).
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Plate 2. 1–12. Islandinium pacificum sp. nov. 1–3. Central Strait of Georgia, modern. 1. optical section, with endospore clearly visible; 2. intermediate focus, with
archeopyle visible; 3. upper focus. 4–12. Eemian, Vøring Plateau. 4–5. 794.5 I 01e. 6–7. 810.5 II 07d. 8–9. 796.5 I 04b. 10–12. 794.5 I 06.
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(Table S1). Cysts were regularly checked for germination, and
observations were performed under an Olympus IX70
(Olympus, Tokyo, Japan) inverted light microscope. Encysted
and excysted cysts and motile cells were photographed and
measured using an Olympus BX51 (Olympus) light microscope
with a Nikon digital sight DS-1L 1 module (Nikon, Tokyo,
Japan) with 100� oil immersion objectives. For each motile
cell, the length and width were measured. For each cyst, the
longest and shortest body diameter and at least the three lon-
gest processes were measured. The theca was stained with cal-
cofluor to improve tabulation visibility (Fritz and Triemer 1985).

3. Results

3.1. Systematic paleontology

Division DINOFLAGELLATA

Class DINOPHYCEAE (B€utschli, 1885) Fensome et al., 1993

Subclass PERIDINIPHYCIDAE Fensome et al., 1993

Order PERIDINIALES Haeckel, 1894

Family PROTOPERIDINIACEAE Balech, 1988

Subfamily PROTOPERIDINIOIDEAE Balech, 1988

Genus Islandinium Head et al., 2001 emend. Potvin
et al., 2013

Type species. Islandinium minutum (Harland et al. 1980)
Head et al., 2001 emend. Potvin et al. 2013.
Other species in this genus. Islandinium brevispinosum
(Pospelova & Head 2002), Islandinium? cezare (Head et al.
2001). The species Protoperidinium tricingulatum was
transferred to Islandinium by Potvin et al. (2013), but this is
invalid (Williams et al. 2017).

Islandinium pacificum sp. nov.

Plates 1–4
Synonyms.
2008 Protoperidinoid cyst type A: Van Nieuwenhove et al.
2008 Protoperidinioid indet. cyst type A: Van Nieuwenhove,
pl. 9, figs 7–12, pl. 10, figs 1–12.
2013 ‘Echinidinium? sp. A’: Radi et al., p. 50, pl. 3, figs 9–12.
Holotype. Plate 1, figure 1–6; cyst from surface sediments in
a palynological slide (UVic 2009-661-1, England Finder V43/2
(label to the left).
Type locality. Saanich Inlet (48�35.4750N, 123�30.2110W;
water depth 228m; station C of Mertens et al. 2012a).
Repository. The holotype is deposited in the Royal Belgian
Institute of Natural Sciences (RBINS, Brussels, Belgium), entry
IRSNB b7154.
Material examined. Modern sediments from Saanich Inlet,
the Strait of Georgia and Oak Bay (Saalish Sea); Holocene
sediments from Kyuquot Sound (western Vancouver Island);
Eemian sediments from the Vøring Plateau (North Atlantic).

Diagnosis. Light brown spherical spiny cyst; proximochorate
to chorate; spherical smooth central body. Cyst wall shows
no visible separation, except at the processes, which are
numerous, long (�10 mm) and with random and non-tabular
arrangement; erect or recurved; slender, acuminate and
unbranched; circular cross-section over its length and
apiculocavate. Process surface smooth, harpoon-like, bearing
fine barbs directed toward the cyst center. Archeopyle apical
and saphopylic, corresponding to three apical plates (20, 30

and 40; type A3). Operculum adnate. No other traces of
tabulation are reflected on the cyst.
Description. Cyst is light brown and often strongly folded
when empty (Plate 1, figure 7–12). There is no visible separ-
ation of the thin (< 0.2 mm), smooth wall, except at the
hollow process bases. The wall is smooth only, not smooth
to scabrate as suggested by Radi et al. (2013). The central
body is ornamented with numerous erect (e.g. Plate 2,
figure 3) or curved (e.g. Plate 1, figure 7–12) processes of 7.4
to 12.7mm long (22 to 43% of central body diameter). The
base of the processes is circular with a diameter of 0.7 mm
(N¼ 9). The cross-sections are circular along the length of a
process. The processes taper distally to acuminate tips. The
base of the process is hollow, with the length of the cavity
being 1–2 mm, corresponding to about 15% of the total
process length (Plate 1, Plate 2). SEM observations reveal the
processes bear fine barbs that point in a proximal direction
(Plate 3). In LM, the barbs are mostly observed as simple
granules. Apart from the barbs, the processes are smooth
(Plate 3). The distal barbs may be joined and give the
appearance of a slight expansion of the process tips
(Plate 3), which are in reality acuminate. The processes
appear to be irregularly distributed and show no evidence of
tabulation. Process bases are spaced 2.1 (2.8) 4.4 mm (N¼ 19)
apart for Eemian specimens, and 2.3 (3.4) 4.0mm (N¼ 6)
apart for Holocene specimens. Density of processes is �11
per 10� 10 mm2.

The archeopyle suture is the only evidence of tabulation
and is often not visible due to folding of the cyst. The
archeopyle is saphopylic and is formed by the loss of three
apical plates (type A3): 20, 30 and 40 (Plate 1, figure 6).
The first apical plate projects into the archeopyle and the
X-Po plates may remain attached (Plate 1, figure 5). Plate 40

forms the largest (right) part of the archeopyle, with
plates 30 and 40 forming the smaller left side of the
archeopyle (Plate 1, figure 5 and 6). Living cysts contain a
thick endospore (Plate 2, figure 1).
Dimensions. The morphometry of Islandinium pacificum
from the northeast Pacific and northeast Atlantic oceans
is summarized in Table 2. Holotype: central body diameter
41.5 mm, process length 11.9mm. Overall range: central body
diameter 25.0 (35.6) 46.0mm (N¼ 51), process length 6.0
(10.5) 14.0mm (N¼ 43). Holocene and modern sediments
from the northeast Pacific: central body diameter 28.9 (35.6)
42.2 mm, process length 7.4 (10.3) 12.7mm (N¼ 17). Eemian

3

Plate 3. 1–10: Islandinium pacificum sp. nov., scanning electron microscope images. 1–2, 7 and 3–6, 10. two specimens from the Eemian, Vøring Plateau
(�823.5 m); 8–9. surface sediment, Saanich Inlet, Stn. 2. 3. Arrows show that process is hollow at basis (left) and solid more distally (right). 5. Arrow shows trace of
archeopyle. 6. Arrow shows process torn off at the basis.
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Plate 4. Protoperidinium mutsuense (1–11), after germination of an Islandinium pacificum cyst (12) from Saanich Inlet, Stn. 3. Theca stained with calcofluor (1–10)
and LM (11–12). Interpreted tabulation is indicated. Scale bars: 10mm.
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of the Vøring Plateau: central body diameter 25.0 (35.9)
46.0mm (N¼ 35), process length 9.0 (10.8) 14.0mm (N¼ 27).
Remarks. The cyst described as ‘Cyst type M1’ in Bringu�e
et al. (2013, pl. 2, fig. 4) may be Islandinium pacificum, but
barbs are not described or visible in the illustrations so this
identification cannot be confirmed here.
Derivation of name. From the Pacific Ocean, where it occurs
in modern sediments, and Holocene and uppermost
Pleistocene sediments.

Motile stage. Cysts from Saanich Inlet hatched and the
motile stage was identified as Protoperidinium mutsuense
(Ab�e) Balech (Plate 4; see below).
Distribution and stratigraphic range. Eemian of the North
Atlantic and uppermost Pleistocene and Holocene and
modern sediments of the northeast Pacific.

3.2. Incubation experiments

3.2.1. Germination
Motile cells, here assigned to Protoperidinium mutsuense,
emerged from Islandinium pacificum isolated from surface
sediments of Oak Bay (Figure 1, station 4; four specimens
identified), and the central part of Saanich Inlet (Figure 1,
station 3; one specimen identified). After 1 or 2 days of
incubation, motile cells germinated from the cysts. These
cells died a few days after germination and never divided.

Figure 1. A–B, Locations studied in this paper. A, waters around Vancouver Island (British Columbia, Canada): Stn. 1–3: Saanich Inlet, Stn. 1 is in the central part of
Saanich Inlet (station C from Mertens et al. 2012a), Stn. 3 is near Patricia Bay; Stn. 4 is in Oak Bay, Victoria; Stn. 5 is in the Strait of Georgia; Stn. 6 is in Kyuquot
Sound. B, Stn. 7, on the Vøring Plateau offshore Norway. At 1–3 and 5, surface sediments were collected; 4 and 6 are core locations. See Table S1 for location details.
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Figure 2. Schematic drawing of Protoperidinium mutsuense, after Ab�e (1936), with indication of epithecal tabulation (left), and of Islandinium pacificum sp. nov.,
with indication of the interpreted equivalent tabulation near the archeopyle (right). Nature of the processes is also illustrated. The drawing of I. pacificum was
mirrored with respect to the holotype specimen (Plate 1), as the holotype shows the internal view of the archeopyle. APC, apical pore complex.

Table 2. Morphometrics of Islandinium pacificum sp. nov. from (a) Recent and
Holocene sediments from the northeast Pacific Ocean, and (b) from the
Eemian (MIS5e) from the Vøring Plateau, northeast Atlantic Ocean.

Min. Max. Average Median SD N

(a) Recent and Holocene NE Pacific
Cyst body diameter (mm) 28.9 42.2 35.7 37.1 4.2 17
Process length (mm) 7.4 12.7 10.4 11.0 1.7 17
(b) Eemian N Atlantic
Cyst body diameter (mm) 25.0 46.0 35.6 36.0 4.9 35
Process length (mm) 6.0 14.0 10.6 10.0 1.6 27

SD, standard deviation.
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3.2.2. Morphology of the motile cell
The motile cells were subspherical, with a faintly pointed apex
and without antapical projections (Plate 4, figure 1). The size of
the motile cells was 33.5� 29.0mm on average (N¼ 3), with
the epi- and hypotheca of roughly similar size. The cingulum
shows no displacement, is very slightly excavated and is
bordered by inconspicuous lists. Cells were thecate with a
tabulation of Po, X, 40, 2a, 700, 2c?, 4–5s?, 5000, 20000 (Plate 4). On
the epitheca, an apical pore complex (APC; Po and X) is clearly
present and forms a short furrow (Plate 4, figure 4). The first
apical plate (10) is asymmetric and orthogonal, contacting four
major epithecal plates (20, 40, 100 and 700) and having minor
contacts with the APC’s X plate (Plate 4, figure 4 and 5) and
the anterior sulcal plate (Plate 4, figure 2). There are two inter-
calary plates, with the left one (1a) elongated (Plate 4, figure 5)
and the right one (2a) markedly smaller, equidimensional, and
pentagonal (Plate 4, figure 7). The first intercalary plate (1a)
has no contact with 100. The first four precingular plates (100, 200,
300 and 400) are relatively small compared to the three last (500,
600 and 700). The cingulum is probably formed by two cingular
plates, with no intracingular sutures observed dorsally. A transi-
tional plate is not observed (Plate 4, figure 10). The sulcal area
is short, not extending to the center of the antapex (Plate 4,
figure 8, 9), and is made up of four plates (or five, as the med-
ial plate is hard to observe; Plate 4, figures 8 and 9). The anter-
ior sulcal plate (as) is constricted in the middle, extends into
the epitheca and touches plates 10, 100 and 700 (Plate 4, fig-
ure 10). All other sulcal plates are confined to the hypotheca.
The left sulcal plate (ls) is J-shaped (Plate 4, figure 8) and
indents the first postcingular plate (1000; Plate 4, figure 9). The
irregular hexagonal posterior sulcal plate (ps) has a pointed
anterior end that is deflected to the right, in connection with
the extension of the flagellar pore (Plate 4, figure 8, 9). A small
flagellar fin on the left side of rs covers the pore (Plate 4,
figure 8, 9). The plates have small, sparsely distributed
pores (e.g. Plate 4, figure 8), except for the anterior sulcal plate
(Plate 4, figure 10). These characteristics conform with

the description of Protoperidinium mutsuense as described by
Ab�e (1936), except for the absence of a transitional plate.

4. Discussion

4.1. Comparison with other round brown
process-bearing cyst species

The presence of barbs on the processes distinguishes
Islandinium pacificum from other RBPCs except Islandinium
minutum, specifically I. minutum subsp. barbatum. Islandinium
minutum has a similar size range both in central body
diameter and process length but can be distinguished from
I. pacificum by its granular central body wall. Furthermore,
the processes of I. minutum subsp. minutum have a microgra-
nular surface (visible with SEM, Potvin et al. 2017) but rarely
barbs. Processes of Islandinium minutum subsp. barbatum
(Potvin et al. 2017), however, have conspicuous barbs, and
distinction is to be made based on the faintly to prominently
granular surface texture of the central body wall. Islandinium
cezare differs by its characteristic expanded process termina-
tions and its finely granular central body wall surface, and
I. brevispinosum by its markedly shorter processes and the
relatively small central body diameter (Figure 3B).

The saphopylic, polyplacoid archeopyle in I. pacificum
distinguishes it from Echinidinium species, which have a
chasmic archeopyle. Since the archeopyle is often not well
visible in palynological preparations, size and process morph-
ology can also be used (see Radi et al. 2013). Echinidinium
granulatum differs from all Islandinium species in having a
granular wall and granular processes instead of recurved
barbs. Processes of Echinidinium delicatum are hollow over
the entire length, and Echinidinium aculeatum has aculeate
processes. Furthermore, these latter two Echinidinium species
are smaller than I. pacificum. Echinidinium karaense also
has a smooth central body wall surface and apiculocavate
processes, but the processes are conical to tapering, slightly
shorter and smooth, bearing no barbs.

(A) (B)

Figure 3. Graphical representation of Islandinium pacificum morphometrics: A, for the specimens from the Eemian of the North Atlantic and the Holocene of the
North Pacific. Black points indicate respective averages. B, comparison with related species, with data from Head et al. (2001) for Islandinium? cezare and
Islandinium minutum subsp. minutum; Pospelova and Head (2002) for Islandinium brevispinosum; and Potvin et al. (2017) for Islandinium minutum subsp. barbatum.

PALYNOLOGY 89



Cysts of Protoperidinium tricingulatum have a theropylic
archeopyle and capitate process terminations (Kawami et al.
2009). Cysts of Protoperidinium lewisiae, which also bear
apiculocavate processes (Mertens et al. 2015), differ from
Islandinium pacificum in having a theropylic archeopyle
and being generally smaller while having more densely
implanted processes. Furthermore, the tiny spinules on the
processes of cysts of P. lewisiae, which might resemble barbs,
are hard to observe using LM, whereas they are easily visible
for Islandinium pacificum under LM. While having similar
dimensions, cysts of Niea acanthocysta are different from
Islandinium pacificum in having a microgranular wall and
solid, often recurved processes (Mertens et al. 2015; Liu
et al. 2015b).

4.2. Comparison of Protoperidinium mutsuense to
other motile stages and classification

The tabulation of Protoperidinium mutsuense, identified here
as the motile stage of Islandinium pacificum, fits with the
definition of the genus Islandinium as described by Potvin
et al. (2013), except for the number of cingular plates. It
differs from the theca of Islandinium minutum (described by
Potvin et al. 2013), however, in several ways. First, the shapes
of the apical intercalary plates are different, and they are
of dissimilar size. Second, the sulcal plates are different, par-
ticularly the shape of the as and ls plates. A further compari-
son with other comparable species such as Archaeperidinium
minutum was made by Potvin et al. (2013).

Historically, Protoperidinium mutsuense has been classified
in several ways. Ab�e (1981) and Balech (1974) accentuated
different characters of the motile stage to classify the genus
Protoperidinium. Balech (1974) emphasized the number of
anterior intercalary plates, the shape of the second anterior
intercalary (2a) plate (quadra, penta or hexa), the number
of precingular plates and the shape of the first apical
plate (10 ortho, meta or para) and the number of cingular
plates. In contrast, Ab�e (1981) subdivided Peridinium
(Protoperidinium and related species) into three subgenera
(i.e. Protoperidinium, Mesoperidinium and Veroperidinium)
based on the configuration and shape of the posterior sulcal
(Sp) plate, and further subdivided these subgenera into
groups. Ab�e (1936, 1981) thus placed Protoperidinium
mutsuense in the Monovela group of the subgenus
Veroperidinium. On the other hand, mainly due to the fact
that there are two anterior intercalary plates, Balech (1974)
related P. mutsuense to Archaeperidinium.

It is clear that Protoperidinium mutsuense does not belong
to the genus Archaeperidinium: Protoperidinium mutsuense
differs in morphology from the genus Archaeperidinium in
the thecate shape, the absence of a pronounced apical
horn, and the absence of a transitional plate and its cyst
morphology (Yamaguchi et al. 2011; Mertens et al. 2012b).
Protoperidinium mutsuense can be classified within the
Monovela group as defined by Matsuoka and Kawami (2013)
which is subdivided into several subclades. The Americanum
subclade includes, among others, Islandinium; the Minutum

subclade includes Archaeperidinium; the Monovelum subclade
includes, among others, Echinidinium (Potvin et al. 2017).

Similar to Islandinium minutum, I. pacificum, as described
here, belongs to the Americanum subclade, which
further includes Protoperidinium americanum, P. tricingulatum,
P. parthenopes, P. fusiforme, P. fukuyoi and P. haizhouense
(Matsuoka and Kawami 2013; Potvin et al. 2017). More specif-
ically, the tabulation pattern of Protoperidinium mutsuense
largely fits into the variability of the thecal arrangement of
these species in this subclade, which can be summarized as
Po, X, 2–4a, 6–700, 3–4c, 5–7 s, 5000, 20000 (Liu et al. 2013;
Matsuoka and Kawami 2013). The possible discrepancy in the
cingular plate number needs further investigation. The three-
plate apical archeopyle further justifies that Islandinium pacif-
icum (Protoperidinium mutsuense) belongs to the Americanum
subclade of the Monovela clade. Molecular (large and small
subunit rDNA) data of Protoperidinium mutsuense are needed
to reveal the exact phylogenetic relation with the available
sequences and the placement within the protoperidi-
nioid clade.

4.3. Occurrence and paleoecology

Islandinium pacificum sp. nov. is described here from surface
sediments from the northeast Pacific Ocean, mainly the
Vancouver Island fjords, Saanich Inlet and the Strait of Georgia
(Figure 1A). Average SSTs in the Strait of Georgia are 6–7 �C in
winter and 13–16 �C in summer (Pospelova et al. 2010), and
they are comparable in Saanich Inlet (Price and Pospelova
2011) and the Vancouver Island fjords (Gurdebeke et al. 2018).
SSS varies between 20 and 32 in these waters (Pospelova
et al. 2010; Price and Pospelova 2011; Gurdebeke et al. 2018).
The species was also frequently encountered in a Holocene
record from Kyuquot Sound (Vancouver Island), from 7.5 ka BP
onward (Gurdebeke et al. unpub. data). During this interval, I.
pacificum reaches concentrations up to �1500 cysts g�1 (475
cysts g�1 on average), corresponding to a maximum of 2.2%
of the assemblage. Farther south, in the Santa Barbara Basin
(off the California coast), Pospelova et al. (2006) documented
these cysts from �23ka BP onward and Bringu�e et al. (2013)
reported a similar form in a sediment trap samples from the
same basin. The species described here has been observed in
last interglacial (Eemian) deposits from the Vøring Plateau,
Norwegian Sea, reaching up to 3% of the assemblages (Van
Nieuwenhove et al. 2008, 2011), where its occurrence is pos-
sibly related to slightly freshened surface waters (salinity 33 to
34 based on transfer function reconstructions; Van
Nieuwenhove and Bauch 2008) and pronounced seasonality.
Though Head et al. (2001) characterized species in the genus
Islandinium as indicative of a low- temperature environment,
subsequent new species descriptions broadened the eco-
logical range of this genus to temperate waters (Pospelova
and Head 2002), which is in line with the results reported
here for I. pacificum sp. nov.

5. Conclusions

The new dinoflagellate cyst Islandinium pacificum sp. nov. is
described here from modern sediments from Saanich Inlet,
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with further observations from Holocene and surface
sediments from Vancouver Island and Eemian sediments from
the North Atlantic. Morphologically, Islandinium pacificum sp.
nov. is most similar to Islandinium minutum subsp. barbatum,
from which it is distinguished by its smooth wall. Incubation
experiments revealed that the motile stage for Islandinium
pacificum sp. nov. is Protoperidinium mutsuense. The species
occurs in the uppermost Pleistocene, Holocene and modern
sediments of the temperate zones of the northeast Pacific
Ocean, and during the last interglacial also in the northern
North Atlantic Ocean.
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