
Handling imperfect information in practical
applications.

Robin De Mol

August 20, 2019

ii

Contents

1 Introduction 1
1.1 About data . 1
1.2 Measurements and information 2
1.3 The precision problem . 2
1.4 In a digital world . 3

1.4.1 Computer language: a binary code 3
1.4.2 Database systems for the handling of imperfect data . . . 4

1.5 Challenges and research topics 7

2 Preliminaries 11
2.1 Databases and entity-relationship modelling 11

2.1.1 Entity types . 11
2.1.2 Relationship types . 13
2.1.3 Data organisation . 14
2.1.4 Querying . 14

2.2 Fuzzy set theory . 15
2.2.1 Applicability for describing (uncertain) values 16
2.2.2 Possibility Theory . 17

2.3 Aggregation of individual criteria 24
2.4 Summary . 27

3 Querying Uncertain Data 31
3.1 Evaluating flexible criteria on uncertain data 33
3.2 Suitability Distributions . 34

3.2.1 Definition . 35
3.2.2 Construction . 36
3.2.3 Special cases . 40

3.3 Properties of Suitability Distributions 41
3.4 Interpretation and ranking of Suitability Distributions 43

3.4.1 Semantics of the suitability distribution 43
3.4.2 Ranking using suitability distributions 44
3.4.3 Defuzzification strategies 45

3.5 Towards broader applications . 52
3.5.1 Discrete Probabilistic Uncertainty 53

iii

iv CONTENTS

3.5.2 Continuous Probabilistic Uncertainty 54
3.5.3 Qualitative preference and uncertainty 59

3.6 Summary and future research opportunities 60

4 Aggregation and Suitability Distributions 65
4.1 Introduction . 65
4.2 Aggregation: Structure and Quantifiers 66

4.2.1 Properties of aggregation structures 66
4.2.2 Boolean aggregators . 67
4.2.3 Advanced aggregators . 68
4.2.4 Partial absorption operators 77

4.3 Conjunctive Partial Absorption using Fuzzy Integrals 80
4.3.1 Challenge . 80
4.3.2 Solution . 81
4.3.3 Interpretation . 82
4.3.4 Reflection . 84
4.3.5 Usability in hierarchical compositions 86
4.3.6 Example . 87

4.4 Aggregating suitability distributions 89
4.4.1 Defuzzification before aggregation 89
4.4.2 Direct aggregation of suitability distributions 97

4.5 Conclusions . 106

5 Indexing (Uncertain) Data 113
5.1 Indexing . 114

5.1.1 Composite indices . 116
5.1.2 Multi-level indexing . 117
5.1.3 Disadvantages of indexing 118
5.1.4 Indices using balanced trees 119
5.1.5 Alternative techniques . 125
5.1.6 Balanced tree-based indices for fuzzy data 127

5.2 Preselection . 128
5.3 Interval B+-trees . 129

5.3.1 IBPT Structure . 130
5.3.2 Impact on Insert and Delete Procedures 131
5.3.3 Applying Preselection . 134
5.3.4 Example . 136

5.4 IBPT Analysis . 139
5.4.1 On the Data Set Generation 140
5.4.2 Index applicability . 141
5.4.3 Influence of the Fuzziness of the Query 143
5.4.4 Influence of the Position of the Query 143
5.4.5 Influence of the Data Set Fuzziness 145
5.4.6 Discussion . 147

5.5 Conclusions . 151

CONTENTS v

6 Conclusions 155
6.1 Flexible evaluation of uncertain data 156
6.2 Dealing with uncertainty in aggregation 157
6.3 Indexing of uncertain attribute values 159
6.4 Final remarks . 160
6.5 List of publications . 160

vi CONTENTS

Korte samenvatting

We zitten momenteel midden in een heuse revolutie waarin de computer zijn
opmars maakt. Op steeds meer plaatsen zien we dat computers en robots voor-
gaande systemen vervangen, gaande van gebieden op vlak van fysieke arbeid tot
archivering in de vorm van dataopslag en dataverwerking. Het is dankzij de com-
puter dat we vandaag grotere hoeveelheden informatie kunnen verwerken aan
hogere snelheden dan ooit tevoren. Toch merken we dat computers nog steeds
niet in staat zijn om zelfstandig intelligent te werken. Ondanks hun enorme
rekenkracht, opslagcapaciteit, verwerkingssnelheid en verbondenheid zijn com-
puters slechts werktuigen.

Het valt op dat computers op een volkomen andere manier omgaan met
informatie dan mensen. Voor een computer bestaat informatie uit duidelijk
gestructureerde, exacte datapunten. Mensen, daarentegen, zijn het gewoon om
te werken met imperfecte gegevens. Dit is grotendeels te wijten aan het vermo-
gen van de mens om te communiceren, denken en redeneren in natuurlijke taal.
Men moet bij het autorijden niet exact weten hoe snel men rijdt en hoe ver men
zich van een rood licht bevindt om op tijd tot stilstand te komen. Het volstaat
dat men kan inschatten dat men “snel” gaat en zich “dichtbij” bevindt om te
weten dat men “hard” moet remmen. Het imperfect zijn van gegevens belet de
mens dus niet om te functioneren. In tegendeel, het is dankzij de flexibiliteit
van het menselijk redeneervermogen om te redeneren en handelen basis van im-
perfecte informatie dat men in staat is om complexe taken, zoals autorijden,
veilig uit te voeren.

Op dit vlak verschilt de computer duidelijk van de mens. Voor een computer
bestaat informatie uit een verzameling datapunten. Elk datapunt is in essentie
een sequentie van bits, die geïnterpreteerd kan worden als een getal of als een
letter. Het is mede te danken aan de focus van de exacte wetenschappen op
precieze en zekere resultaten dat men zich ook bij de ontwikkeling van de com-
puter geconcentreerd heeft op systemen die uitgaan van perfecte informatie uit
een ideale wereld.

De ideale wereld is echter niet de reële wereld. Bijgevolg is men nu op zoek
naar manieren om computers verder te laten evolueren zodat deze in staat wor-
den gesteld om imperfecte informatie op een meer natuurgetrouwe manier te
beheren en verwerken. Computers volledig zelfstandig laten redeneren blijkt
bijzonder moeilijk te zijn. Zelfs al zou een computer kunnen redeneren, dan
nog is de manier waarop deze data opslaat fundamenteel verschillend van de

vii

viii CONTENTS

manier waarop mensen met data omspringen. Zo slaat een computer bijvoor-
beeld geen context op waarin de informatie wordt verkregen. Computers houden
ook geen rekening met eenheden. Hierdoor is het perfect denkbaar om met een
computer analyses uit te voeren die absoluut geen steek houden. Men kan bi-
jvoorbeeld leeftijden en gewichten bij elkaar optellen. Terwijl een redelijk mens
dit nooit zou doen, zal een computer hier niet moeilijk over doen. Het is dus
nog steeds aan de mens om bedachtzaam en verantwoordelijk om te springen
met het gebruik van de computer. Bijgevolg is de brug tussen de computer en
de menselijke gebruiker van groot belang, want deze bepaalt namelijk de mate
waarin de resultaten van analyses zinvol zijn.

De vaagverzamelingenleer introduceert een theoretisch, wiskundig raamw-
erk dat aan de basis ligt van vaaglogica en possibiliteitstheorie. Vaaglogica
vormt een formele basis om om te gaan met vage en onnauwkeurige informatie,
terwijl possibiliteitstheorie kan worden gebruikt om om te gaan met onzekere
informatie. Dit werk situeert zich in het onderzoeksgebied dat deze theorie
probeert te integreren in computersystemen. Hierbij zijn er nog steeds ver-
scheidene uitdagingen, waarvan we er een aantal in detail bestuderen in deze
thesis:

• Hoewel het duidelijk is hoe we kunnen omgaan met vage informatie enerzi-
jds en onzekere informatie anderzijds, is het nog niet volledig duidelijk hoe
we kunnen omgaan met de combinatie van de twee. We beschouwen dit in
de context van flexibele, vage bevraging op databanken die onzekere data
bevatten. Het onderzoek uit dit doctoraat heeft geleid tot de introductie
van een nieuwe modelling van de resultaten van een dergelijke bevrag-
ing, waarmee zowel vaagheid als onzekerheid samen voorgesteld kunnen
worden. Dit deel van het werk is eerder theoretisch van aard, aangezien
men in feite de fundamentele manier waarop computers data opslaan zou
moeten aanpassen. Er wordt echter ook een brug gelegd naar de realiteit
door een aantal restricties op te leggen, waardoor het mogelijk wordt om
een vereenvoudigd model te realiseren dat bruikbaar is met de computers
van vandaag.

• Hoewel het een mooi resultaat is om een manier te hebben om het resultaat
van een vage bevraging op onzekere data voor te stellen, zijn praktische
beslissingen typisch niet gebaseerd op één enkel criterium. Er is een hele
onderzoekstak gewijd aan beslissinsondersteuningssystemen, de studie van
hoe men, uit een aantal alternatieven, besluit om een bepaalde keuze te
maken. Hierbij wordt gekeken naar hoe men een algemeen besluit kan
vormen over een alternatief op basis van verschillende eigenschappen. Dit
wordt typisch gedaan door criteria op te stellen, te evalueren en de re-
sultaten van individuele criteria te aggregeren met elkaar tot één geheel.
Ook dit proces moet worden herzien in het kader van het werken met
imperfecte gegevens. Het zal blijken dat de introductie van de nieuwe
modellering nieuwe opties met zich meebrengt. We bestuderen onder an-
dere de mogelijkheid om ons nieuw model rechtstreeks te gebruiken, maar
ook de keuze om ze om te zetten in een ander formaat dat compatibel

CONTENTS ix

is met huidige technieken. We stellen ook een nieuwe aggregatietechniek
voor en onderzoeken hoe deze praktisch gebruikt kan worden.

• Computers maken gebruik van indices om efficiënt te kunnen zoeken naar
gevraagde gegevens. Klassieke technieken om dit te verwezenlijken steunen
op het exact gekend zijn van gegevens. Wanneer we toestaan dat infor-
matie onzeker is, kunnen deze technieken niet langer worden toegepast.
We moeten dus op zoek gaan naar manieren om indices te bouwen voor
onzekere informatie. In dit werk introduceren we een nieuwe uitbreiding
van een klassieke B+-tree indexeringstechniek, specifiek om onzekere in-
formatie te kunnen indexeren. Het zal blijken dat het mogelijk is om een
efficiënte index aan te maken, maar dit onderzoek leidt ook tot een aantal
interessante observaties die een verband constateren tussen de mate van
onzekerheid en performantie. We bestuderen deze verbanden, bespreken
waar het eventueel nog mogelijk is om verder te optimaliseren, en posi-
tioneren onze resultaten ten opzichte van andere onderzoeksresultaten in
hetzelfde domein.

Dit werk draagt bij tot het onderzoek naar het verwerken van imperfecte
gegevens met computers. Dit heeft tal val mogelijke toepassingsgebieden, zoals
onder andere beslissingsondersteuningssystemen, sorteersystemen, ruimtelijke
modellering, aanradingssystemen, geautomatiseerd dataherstel, data kwaliteit,
regelsystemen, en zo voort. De focus ligt hierbij vooral op het waarheidsgetrouw
voorstellen van informatie, met zo min mogelijk verlies van informatie door te
aanvaarden dat deze imperfect kan zijn.

x CONTENTS

Short summary

We are currently in the middle of a serious revolution in which the computer is
slowly invading every corner of the world. In increasingly more areas, computers
are replacing previous systems, going from physical labor to data storage and
processing. Thanks to computers, we are now able to process larger amounts
of information at higher speeds than ever before. Still, we notice that com-
puters are not yet capable of independent, intelligent thinking. Despite their
enormous computing power, storage capacity, processing speed and intercon-
nectivity, computers are only tools.

It is noticeable that computers treat information in a completely different
way than humans do. For a computer, information consists of precisely struc-
tured, exact points of data. Humans, however, are used to dealing with imper-
fect information. This is largely because of the human capability of commu-
nicating, thinking and reasoning in natural languages. One does not need to
know exactly how fast they are travelling and how far away from a stopping
light they are in order to come to a standstill in time. It suffices to know that
one is going “fast” and that one is “close” to the crossroads in order to decide
that one should brake “hard”. Data imperfections do not hinder people from
functioning. On the contrary, it is due to the flexibility of being able to process
imperfect information, that people are capable of performing complex tasks, like
driving a car, in a safe manner.

Computers are very different from people in this regard. For a computer,
information is stored as a collection of points of data. Each point of data
is essentially just a sequence of bits that can be interpreted as a number or a
character. This is partly due to the focus of exact science research on precise and
certain results. During the development of computers, this has lead to a focus
on systems that assume perfect working conditions, i.e., perfect information in
an ideal world.

The real world is, however, far from ideal. This is why researchers are
working on ways to evolve computers in such a way that they become capable
of working with realistic, imperfect information. Enabling computers to reason
independently turns out to be extremely difficult. Even if computers were able
to reason autonomously, the way they store information remains fundamentally
different from the way people do. A computer, for example, is not aware of
the context in which it receives information. They also do not store the units

xi

xii CONTENTS

in which data are expressed. Because of this, it is perfectly possible to use
computers to perform analyses that produce nonsensical results. One could add
up ages and weights, for instance. Though a human would never do this, a
computer would not complain when tasked to do so. It is the responsibility
of the user to act responsibly and to reinvent the context that was lost when
information was digitized. Consequently, the bridge between the computer and
the user is of great importance, as it plays an important role in the degree
to which the user is able to model their behavior and obtain results that are
intuitive.

Fuzzy set theory introduces a theoretical, mathematical framework that
forms the foundation of both fuzzy logic and possibility theory. Fuzzy logic
is a formal base for dealing with fuzzy and imprecise information, while possi-
bility theory can be used to deal with uncertainty. This work is situated in the
research area that focusses on trying to implement this theory on computers.
There are plenty of challenges in this area, from which we will study a few in
detail:

• Though it is clear how we can deal with fuzzy information on the one hand
and with uncertain information on the other, it is not yet obvious how both
can be combined. We study this problem in the context of flexible querying
on uncertain databases. This research has lead to the introduction of a
new representation of the results of such an evaluation, which is capable of
representing both fuzziness and uncertainty simultaneously. This work is
mostly of a theoretic nature, since the fundamental way of how computers
store data would have to be changed for the theory to be applicable in
practice. However, a connection to today’s reality is made by working
under certain restrictions, simplifying the problem sufficiently such that
it becomes realizable with discrete, numerical machines.

• Though it is nice to have a way to represent the result of a flexible query
on uncertain data, practical decisions are typically based on more than
a single criterion. An entire branch of research is dedicated to decision
theory, the study in which it is investigated how and why people choose
for particular solutions from a set of alternatives. This includes how a
conclusion is made regarding a single alternative based on multiple dif-
ferent attributes. This is typically done by evaluting different attributes
individually and aggregating the results thereof. This process needs to
be revisited when dealing with imperfect information. As it turns out,
introducing the new representation for query evaluation results raises new
questions. We will investigate the option to aggregate these new repre-
sentations directly, but also the option to transform them into a different
format that is more compatible with current techniques. We will even
take a short side step and reimplement an existing aggregation operator
in a different aggregation framework.

• Computers use indices in order to be able to look up information efficiently.
Classical indexing techniques rely heavily on the fact that attribute val-

CONTENTS xiii

ues are precisely known. When imperfect information is considered, these
techniques can obviously no longer be applied. We need to find new ways
to create indices for uncertain information. In this work, we introduce
a novel adaptation to a classical technique, specifically for indexing un-
certain information. It turns out that it is possible to make an efficient
index. However, this research also raises new questions regarding the im-
pact of uncertainty on the performance of this technique. We discuss
which properties have which influence and describe which areas can be
further optimized.

This work contributes to the research area regarding the processing of im-
perfect information using computers. There are plenty of application areas,
among which decision support systems, ranking systems, spacial modelling, rec-
ommender systems, automated data healing, data quality, controllers, and so
on. The focus is mostly on representing information truthfully, minimizing any
loss of information by not making the assumption that data are perfect.

xiv CONTENTS

Chapter 1

Introduction

As suggested by the title, this thesis will discuss some of the challenges regarding
data quality in the ever-growing world of digital applications. More precisely,
we will take a look at techniques for storing and querying uncertain data. Our
focus will be on digital data, a fairly modern research area that has been growing
at an incredible rate since the start of the digital revolution.

1.1 About data
In today’s reports, you will often hear about “big data”. This (perhaps mis-
leading) umbrella term covers the many actual challenges in the digital data
world. A rough classification in four categories (the four V’s) provides a clearer
understanding:

1. Volume With the explosion of devices that flood the market, more and
more data are generated each day. Efficient handling of huge data volumes,
often called “big” data, poses new challenges.

2. Velocity Not only the rate at which data are generated, but also the
speed with which they can be analyzed. Being able to process “fast” data
in due time (often real time) is another main challenge.

3. Variety Different sources of data do not necessarily (or likely) use the
same representation or format. It is difficult to store “varied” data using
fixed database schemes that require complex data transformations.

4. Veracity The results of data analytics can only be as good as the quality
of the underlying data. Assuming that not all data are perfect, proper
handling and reflecting the veracity of “bad” data is another challenge.

Of these categories, this thesis concentrates on problems related to veracity.
Scrutinizing data quality is gaining popularity and the effects of negligence are
becoming more and more tangible with the big data shift, but the subject is

1

2 CHAPTER 1. INTRODUCTION

a difficult one to approach. Data quality is an active research area but as a
fairly broad and complicated topic, it is plagued by a lack of consensus, re-
flected by the many different published approaches for quantizing and dealing
with uncertainty. Most approaches originate from a practical use case and for-
mulate a solution that fits specific needs. Our research takes a more theoretical
approach, focussing heavily on semantics and driven by questions like “What
is data quality?”, “How can it be measured?” and “What implications does
uncertainty have on interpretability and usability?”. Before we dive into math-
ematical definitions and formulas, we will have a short philosophical discourse
on the definitions underlying data quality.

1.2 Measurements and information
Our senses continuously measure our surroundings, providing information to our
brains. Arguably, one of the reasons why mankind has already evolved so far is
because we share information with each other. Furthermore, we derive knowl-
edge from our own experiences and pass it on to next generations. Evidently,
we do so by communicating. Cave art is testament to the fact that expressing
our thoughts is one of the first skills humans naturally developed. Our ways of
communicating have matured from images to words, but also numbers play a
fundamental role in exchanging information, particularly when describing mea-
surements. Let us say a datum is the registration of a measurement, in essence a
translation of information to symbols. A datum is typically represented by the
combination of a value and a unit. For instance, if we are describing an object,
it does not suffice to provide these values: 5, 20, 7, 1.5, 0, 0, 255. However, if
we say its height is 5 cm, its width is 7 cm, its length is 20 cm, its weigth is 1.5
kg and its color is red, we can start to imagine this object: it could be a brick.

Besides our natural senses, people have developed many artificial “sensors”
to measure a plethora of phenomena at varying levels of detail, some extremely
accurate. In what follows, we will use the word “sensor” to denote a mecha-
nism, natural or artificial, for measuring information. Take for example a clock.
Essentially, it just shows numbers (data), but we know that these should be in-
terpreted as indicators of time. To us, these numbers convey information. Note
that this is so common that often the units are typically omitted, as they are
implied to be understood.

1.3 The precision problem
Let us briefly reflect on the observation that sensors (natural or otherwise) al-
ways have an innate precision. Though discrete quantities can be measured with
absolute precision, many physical quantities (such as time, temperature, length,
weight, force, and so on) are typically treated as being continuous. Trying to
state precisely what time it is, is impossible, because by the time your thought is
finished, more time has passed. Even discrete quantities can be imprecisely spec-

1.4. IN A DIGITAL WORLD 3

ified, for numerous different reasons: an address may be only partially specified,
a property can be described with a subjective term (e.g. movie-genre comedy)
or there can be uncertainty regarding which particular discrete value was actual
(e.g. a witness remembers a car but is unsure whether its color was black or
blue).

Typically, sensors of higher precision are harder to construct and are more
expensive as a result. Generally, however, we don’t need high precision in our
day to day lives: we don’t need an atom clock in order to arrive at work in
time, we don’t need to know the exact temperature outside in order to dress
accordingly, and so on. In fact, we often don’t even need numerical data and
have coded particular ranges of values into natural languages in the form of
words such as “morning”, “afternoon”, “small”, “heavy”, “cheap”, and so on.
In his paper titled ‘Computing with words’ [10], Zadeh illustrates this by giving
the example of driving a car: people can perform advanced tasks like performing
a parallel parking manoeuvre, without any exact information and based purely
on fuzzy readings of their environments such as estimated distances and speed.
Though imprecise information does not allow (precise) calculations, it is often
sufficient in order to be able to be useful in practice.

When using words to describe values, however, this hinges on the fact that
there exists a common background knowledge, shared by everyone involved in
the conversation, regarding the subject being discussed. Clearly, “cheap” will
have different interpretations in the sentences “the new car I bought was cheap”
and “we went to a cheap restaurant to celebrate my mother-in-law’s birthday”.
“Cheap” is thus not defined as a single representation of a numeric range; its
definition depends on the context in which it is used.

The take-away is that using sensors to measure things always implies a cer-
tain precision of information and that the application dictates which precision
is required. As such, typically the measuring equipment is chosen in function of
the application.

1.4 In a digital world
It is hard to imagine today’s world without computers. From their broad spec-
trum of applications, we will focus on their capability to store, manage and
process data. This bring us to the theory of databases: digital, persistent data
stores. The question we want to answer is “how accurately can we store a piece
of information in a database”.

1.4.1 Computer language: a binary code
Databases come in different flavors, but how different they may be, at the lowest
level they all express data in the same binary representation. Because this
representation consists only of two symbols, 0 and 1, it is infeasible to rely
solely on symbol sequences (bitstrings) in order to represent all possible values.
Instead, a different approach which allows the re-use of bitstrings with different

4 CHAPTER 1. INTRODUCTION

semantics was devised. The result was the introduction of data types, such as
integer and character. A data type essentially describes how a bitstring
translates to a representation using other symbols.

The integer data type is used to translate between bitstrings and integer
numbers. The translation process is in fact just a translation from a base 10 to a
base 2 representation of a numeric value, but the first digit is treated differently
from the rest in order to be able to represent the signum (positive or negative).

Bitstrings can also be mapped to the characters of the different alphabets
of the world with the corresponding encodings, like ISO 8859-1 for Western
European, GB 2312 for Chinese, KS X 1001 for Korean, and so on. Essentially,
these encodings are standardized, fixed look-up tables.

The digital representation of a datum thus consists of two parts: a bitstring
and a data type. For example, the bitstring 01101100 can be used to represent
the integer value 108, but also to represent the UTF-8 character ‘k’. Note that
there is no indication of precision. There is, however, in all cases, support for
annotating data with a text-based label (e.g. age, name...). Chosen wisely,
database designers can employ this to convey semantics and context but this
does not change the fact that the database system does not fully understand this
information. As such, the responsibility of using the data correctly is placed with
both the creators and the users of the database. Though this is not necessarily
an issue in an ideal world, the real world has proven that people do not always
practice the expected discipline (like when a Mars lander crashed due to a mix
up between the metric and the imperial system).

Despite their flaws, databases are used in almost every modern computer
application.

1.4.2 Database systems for the handling of imperfect data
Many researchers have spent many hours thinking about how databases could
be adapted such that these issues could be overcome. The many solutions can
be roughly summarized under the umbrella term fuzzy databases, describing
database systems for the handling of imperfect data.

A fuzzy database is a persistent data store that offers some degree of support
for translating data to more than a bitstring and a data type. The most well-
known solution is that of NULL (also ω or ⊥) [1, 2, 5]. First proposed by E.
Codd, the inventor of the relational database model, NULL is a unique symbol
to represent that a certain piece of data is missing. NULL was introduced in
the context of relational databases and is special because it has no data type yet
can be used everywhere. Though it is a step in the right direction, NULL is not
without controversy [6, 4, 3], as its addition forces users to employ three-valued
logic.

NULL and three-valued logic

According to Boolean logic, statements are either true or false. In reality,
however, we are sometimes faced with a situation wherein it is not possible to

1.4. IN A DIGITAL WORLD 5

evaluate which case is actual. There are several reasons why this can occur [7]:

• A measurement is of a lower level of precision than is required to plot a
course of action. It is said to be imprecise. Vagueness is a special form of
imprecision caused by communicating information using natural language
(it’s “hot” outside).

• No measurement has been performed (yet). It is said to be missing.

• It can not be measured because it does not exist (e.g. color of car for
someone who does not own a car). It is said to be inapplicable.

• Different measurements contradict each other. They are said to be incon-
sistent.

These cases describe situations of data imperfections which make it impossible
to say whether specific statements are true or false. It is said that the data are
uncertain, though this is actually not strictly correct. It would be more accurate
to say that there is uncertainty regarding the truthfulness of statements about
the data, which may very well be perfectly known but simply not accurate
enough to evaluate particular statements.

Three-valued logic adds unknown to the set of valid evaluation results re-
garding statements. This has far-reaching consequences, because it plunges us
into a framework of three-valued logic. Consequently, the truth tables used to
evaluate composite expressions must be extended, as shown in Table 1.1. As a
result of doing so, expressions like P ∨¬P (P or not P) do not always evaluate
to true [6], which is untuitive.

A NOT(A)
F T
U U
T F

AND F U T
F F F F
U F U U
T F U T

OR F U T
F F U T
U U U T
T F T T

Table 1.1: Extended truth tables for three-valued logic

A final remark on NULL that should not go unsaid is that it is simply not
expressive enough: it does not yield sufficient flexibility to distinguish between
inapplicable, missing or imprecise data. Nevertheless, NULL is widely used in
databases due to its simplicity and added benefits outweighing its complications.

Set-based logic

A more general approach to accurately modelling data imperfections is based
on set mathematics. The idea here is to represent information regarding an
attribute by a set of values rather than a single, precise value. This adds more
flexibility than NULL:

1. precise information is denoted by a singleton set

6 CHAPTER 1. INTRODUCTION

2. lack of information is reflected by the domain set (the set containing all
possible values)

3. imprecise knowledge is represented by any other set (a strict subset of the
domain set)

Though it is not a common convention, inapplicability could be represented
by an empty set. Doing so would imply that the knowledge of the domain is
complete (i.e. there are no possible values that are simply not known yet) so that
the empty set can not be interpreted as “there could exist another, unknown but
possible value”. A more common solution is to extend each attribute’s domain
with a special NULL value, which should be interpreted as “inapplicable”. This
solution, though less practical as it re-introduces NULL with all of its down-
sides, is usually preferred because it offers more flexibility, making it possible
to represent uncertainty about inapplicability itself (e.g.: “John’s car is either
black or John does not have a car”).

This representation might seem bloated, but it is particularly interesting
for numeric attributes (or more generally attributes which can be measured on
an ordinal scale) because in those cases, sets of “adjacent” values correspond to
intervals, which are well understood and which can be concisely described by its
bounds. As it turns out, it is common to find sets of adjacent values, especially
when representing imprecise information.

Recall that intervals also correspond to the natural way we use to deal with
the precision problems regarding continuous quantities.

Indeed, by storing an interval for an attribute, we can reflect that our actual
information is of a lower precision than that assumed by the user who provided
the data. Regardless, “the precision assumed by the data provider” is likely
undefined in which case it must be inferred by the data consumer.

For attributes measured on interval scales and beyond, we can even perform
meaningful operations on multiple values, like comparing their length (not to
be confused with size) and expressing the distance between them. We must,
however, remain vigilant not to apply these operations on ordinal attributes, as
in those cases the interval notation is merely a shorthand for a set, as is clear
for nominal data.

Fuzzy set-based models

There are forms of information that can not be represented by mere sets. This
is particularly true in areas concerning stochastic modelling, where there is
evidence to suggest that certain values are more (or less) likely than others. In
order to reflect this, each domain value should be mapped to a degree indicative
of the amount of evidence for this value. Fuzzy set theory [8] is a generic
framework for introducing grades in traditional systems. As such, the previously
described set-based approach becomes a fuzzy set-based approach, where each
domain value belongs to the fuzzy set to a certain degree, called the grade of
membership. Typically, grades of membership are limited to the unit interval.
A membership grade of 0 implies that the associated domain value is not part of

1.5. CHALLENGES AND RESEARCH TOPICS 7

the set (as in the traditional definition) and that 1 implies maixmal membership.
The closer a value’s membership grade to 1, the more evidence there should be
to believe that that value is the true value. Values can be compared to each
other in the sense that a value with a higher membership grade is considered
more believable. Note that fuzzy sets are a strict superset of regular sets, as a
regular set can be implemented by mapping each value to a degree of either 0
or 1.

One of the several applications of fuzzy set theory is possibility theory [9],
which is useful for modelling data imperfections.

The added richness of fuzzy sets comes at the price of another increase in
complexity. Having to store a membership degree for each value could impose
enormous storage requirements, and we can not use an interval to summarize a
fuzzy set. Under the right circumstances, however, there is a way to summarize
a fuzzy set with as little as four domain values. It will be shown that these
circumstances are actually not that restrictive and that real-world problems
often do not contradict the made assumptions. This and because it can be
shown that cases where these circumstances do not apply can be decomposed
into subcases where they do, motivates a strong focus on these interesting special
fuzzy sets, sometimes referred to as fuzzy intervals.

1.5 Challenges and research topics
In this introduction, we have discussed the semantics of data and information.
We have shown that possible improvements can still be made regarding how data
are stored in and processed by existing database systems. This defines the main
research question that has fueled our research: how to deal with uncertainty in
the results of evaluating flexible queries on uncertain data?

It is not hard to argue that existing database systems could be improved
upon, but it’s a lot harder to actually implement changes. This is probably
largely due to the fact that there are still too many unanswered questions re-
garding fuzzy set-based solutions. Additionally, existing solutions for concrete
problems might have to be re-examined and possibly partially reinvented in a
fuzzy way in order to be able to migrate existing systems to a new generation
of computer intelligence, implying a certain amount of unavoidable downtime,
which is undesirable for competing businesses. Examples of such solutions that
must be revisited include fundamental operations such as indexing, query eval-
uation and query result interpretation (decision support), visualization, sorting
and aggregation. In this thesis, we will go over some of these topics, give an
overview of what has already been researched and introduce some novel contri-
butions. More precisely, we will try to find an answer to the following research
questions:

1. How should the evaluation results of a flexible query on uncertain data be
represented truthfully?

2. What is the impact of incorporating uncertain data and flexible querying

8 CHAPTER 1. INTRODUCTION

on multi-criteria decision making (more precisely: on aggregation tech-
niques)?

3. Today’s systems are fast, and this is partly due to indexing techniques that
rely on precise data. Working with uncertain data prevents the application
of traditional indexing techniques. How can we adapt traditional indexing
techniques so that they can be applied on uncertain data?

The remainder of this thesis is structured as follows. Chapter 2 contains some
preliminaries regarding data modelling, database systems, fuzzy set theory and
decision support that form the bedrock of the chapters that follow.

In Chapter 3, the impact of using fuzzy sets in both querying and data
modelling is studied and the concept of a suitability distribution is introduced.
In this chapter, the evaluation of flexible (or fuzzy) criteria on uncertain data
is investigated.

Chapter 4 deals with decision support, a common application built on the
added value of using fuzzy sets in querying. More precisely, it is examined
how suitability distributions, which should be used when evaluating uncertain
data, can be employed by extending existing techniques. Whereas Chapter 3
covers the evaluation of a single fuzzy criterion on a single uncertain datum,
this chapter describes how the evaluation results of multiple criteria can be
aggregated, especially when working with suitability distributions.

Chapter 5 covers the indexing of uncertain attribute values and defines a
new data structure, the interval B+-tree. This data structure is particularly fit
for indexing interval-based values, and as such, uncertain data.

Finally, Chapter 6 summarizes the contributions that were presented in this
dissertation and reflects on where further research is required.

Bibliography

[1] Edgar F Codd. “A relational model of data for large shared data banks”.
In: Communications of the ACM 13.6 (1970), pp. 377–387.

[2] Edgar F Codd. “Extending the database relational model to capture more
meaning”. In: ACM Transactions on Database Systems (TODS) 4.4 (1979),
pp. 397–434.

[3] Chris J Date. Relational Database Writings, 1994-1997. Vol. 4. Addison-
Wesley Longman, 1998.

[4] Christopher John Date and CJ Date. Relational database writings, 1991-
1994. Vol. 4. Addison-Wesley Reading, MA, 1995.

[5] CJ Date. “Null Values in Database Management.” In: BNCOD. 1982,
pp. 147–166.

[6] CJ Date. Relational database writings, 1985-1989, Volume 1. Addison-
Wesley, 1990, 1990.

[7] A Motro. Modern database systems: the object model, interoperability, and
beyond. ACM Press/Addison-Wesley Publishing Co., 1995.

[8] L.a. Zadeh. “Fuzzy sets”. In: Information and Control 8.3 (1965), pp. 338–
353. issn: 00199958. doi: 10.1016/S0019-9958(65)90241-X.

[9] Lotfi Zadeh. “Fuzzy Sets as a Basis for Possibility”. In: Fuzzy Sets and
Systems 1 (1978), pp. 3–28.

[10] Lotfi A Zadeh. “Fuzzy logic= computing with words”. In: Computing with
Words in Information/Intelligent Systems 1. Springer, 1999, pp. 3–23.

9

10 BIBLIOGRAPHY

Chapter 2

Preliminaries

In this chapter, we will briefly cover the technologies that are fundamental to
the remaining chapters and introduce symbols for frequently recurring terms.
The topics that will be covered are databases and data modelling (2.1), fuzzy
set theory (2.2) and aggregation (2.3).

2.1 Databases and entity-relationship modelling
Databases are first and foremost digital data stores. Practically every applica-
tion uses a database, but as different applications have different needs, different
database models have been devised. While database models differ in how they
logically organize data, they are similar at a conceptual level.

When setting up a new database, it is good practice to start by making an
entity-relationship (ER) model. This data modelling technique translates the
description of the information that has to be stored into a collection of entities
and relationships. In fact, the term ‘entity’ is poorly chosen, as ER models
actually describe entity types instead of particular entities, which represent the
data.

2.1.1 Entity types

An entity type can be treated as a signature R that defines a specific, finite
set of attributes (or properties, characteristics, dimensions). Each attribute is
denoted by a name a and its domain A, which specifies all legal values a can
take. Usually, a domain is directly represented by a data type (Boolean, integer
number, real number, text value, enumeration). Any restrictions on domains
that can be derived from data types must be specified. Entities r themselves are
instances of a signature, essentially corresponding to an assignment of attribute
values v for each attribute from their respective domains. The collection of all
entities of the same entity type with signature R is referred to as the body R∗

11

12 CHAPTER 2. PRELIMINARIES

of the signature. In summary, we have that:

R = {(ai, Ai)|i ∈ N[1,n]}

and for every r ∈ R∗:

r = {(ai, vi ∈ Ai)|i ∈ N[1,n]}

Note that an entity does not have to instantiate every attribute of its en-
tity type; the attributes without value assigment are simply omitted from the
specification.

Uniqueness is an important property for entities in a database. It is of-
ten a hard requirement enforced by the database system that entities must be
uniquely identifiable by some combination of their attribute values. If this were
not the case, it would be possible to enter two different entities that become in-
distinguishable after being stored, representing an immediate loss of information
and usability in general. For a given entity type, each irreducible subset of its
attributes that can be used to uniquely identify entities from its body is called
a key. In some cases, depending on which attributes are available (measured)
and which are stored, it is possible that an entity type has no key. In such
cases, to enforce uniqueness, an additional attribute (an artifical or surrogate
key) is added to the entity type. An artificial key usually takes the form of an
incremental integer number. Many database systems support this out-of-the-
box. Using artificial keys is not without downsides: they introduce complexity
(in the sense that a counter or some other value generator must be managed,
either manually or by the database system) and metadata is explicitly injected
and bound to each entity, strongly tying the entity to the particular database
in which is it stored. If an entity is stored in multiple databases, its natural at-
tributes are likely identical (or at least they should be) whereas its artificial key
will be different. Moreover, the addition of surrogate keys do not have semantic
value, and make the database harder to understand [1, 2, 25]. Nonetheless, a
surrogate key also has significant benefits which some find so attractive that
they introduce surrogate keys for all entity types, regardless of whether or not
a natural key exists.

Person Author
1

Book
N

Last name

First name Title

Figure 2.1: An example of an entity-relationship model, showing two entity
types (“person” and “book”) with a few attributes, and the relationship “au-
thor” between them. A book must have exactly one author, but a person can
be the author of none or more books.

2.1. DATABASES AND ENTITY-RELATIONSHIP MODELLING 13

2.1.2 Relationship types

The second important component of ER modelling is a relationship. Similarly,
ER-diagrams are actually display relationship types. Relationship types are
used to express semantic links that would or should exist between entities of
the connecting entity types. The relationships themselves exist only between
particular entities. For example, there could be an entity type ‘Person’ and
an entity type ‘Book’, with the relationship type ‘Author’ connecting them
to establish the authorship of a person for a given book. We can categorize
relationship types in several ways. A first way of doing this is by considering
cardinality restrictions. Such a cardinality restriction states, for each entity type
involved, whether either one or multiple entities can be involved in an instance
of the relationship type in a body R∗ of R. For example, in the relationship
type ‘Author’ as specified above, we want that a person can be the author of
multiple books and a book can have multiple authors. As such, the cardinality
restriction on both entity types is ‘multiple’. If a relationship type involves
precisely two entity types, we call this relationship type a binary relationship
type. With respect to cardinality restrictions, there are exactly three types of
binary relationship types: one-to-one, one-to-many and many-to-many.

A second way of categorizing relationship types, is by the participation of
the involved entity types. More specifically, the participation degree of each
involved entity type can be specified to be either mandatory (total participation)
or optional (partial participation). If an entity type has total participation in
a relationship type, then it is implied that each entity must participate in the
corresponding relationship type. For example, if we want to enforce that each
book must have an author, we can model this by stating that the entity type
‘Book’ has a total participation in the relationship type ‘Author’. Conversely,
when an entity type has partial participation in a relationship type, then it is
implied that there can be entities that do not participate in the corresponding
relationship type. In our example, we would want to model that not every
person is the author of a book and thus model that entity type ‘Person’ has
partial participation in the relationship type ‘Author’.

Though a relationship type can connect to more than two entity types, binary
relationship types are the norm. In fact, more-than-binary relationship types
can always be translated to a semantically equivalent entity type and a set of
binary relationship types. This is demonstrated for a ternary relationship type
(i.e., involving three entity types) in Figure 2.2

Relationship types can have attributes themselves, which can be useful to
store properties that are related to neither of the entity types in particular but
rather to their combination. For example, the price of a product depends not
only on the product but also on the store.

Not every requirement can be modelled in ER. Things like domain restric-
tions, optional values and consistency constraints are examples of extra infor-
mation that can not be enforced purely in an ER model. Such requirements are
typically included in the form of a functional description.

14 CHAPTER 2. PRELIMINARIES

Performance

Reservation

N

Person
1

SeatN

(a) An implementation of an ER model
for reservations using a ternary rela-
tion.

Performance
1

Reservation
N

N

Person
1

N

Seat
1

(b) An implementation of an ER model
for reservations using only binary rela-
tions.

Figure 2.2

2.1.3 Data organisation
Data are stored on persistent media, such as hard disks, in locations referencable
by an address. These hard disk addresses can be absolute addresses or logical
addresses (in which case a translation table is used to map the logical addresses
to absolute addresses) but, in any case, always point to a region (disk block)
on the hard disk. These regions are an important concept because they form
the basic unit of operation when interacting with hard disks: read and write
operations happen on entire regions simultaneously. It is no trivial task to or-
ganise data efficiently, as deletions tend to cause fragmentation (i.e. there are
“gaps” on the hard disk). Database systems are essentially just highly special-
ized software that excel at managing data. Nonetheless, database systems can
only ensure that data are grouped if they are manipulated in a single operation.
As such, the attribute values that describe a single entity are usually stored as a
contiguous unit, as these data are manipulated in single operations (a new entity
is inserted, deleted and updated as a whole rather than a sequence of separate
attribute value insertions), but different entities are usually scattered across
different hard disk addresses as they are manipulated separately and gradually
over time. Database systems are software that specializes in managing (large)
collections of addresses.

2.1.4 Querying
Database systems can be interacted with through a query protocol. After con-
necting to the database, a client can send a query to select, update or delete
existing data, insert new data or to modify the configuration parameters of the
database system itself.

Select queries are used to search for entities that satisfy a filter predicate.
This filter predicate is used to describe preferred property values and the query

2.2. FUZZY SET THEORY 15

is evaluated in order to identify which (if any) entities have these preferred
property values. Such a filter predicate can be simple (attribute a should take
value v) but it can also be highly advanced, existing of a hierarchical composition
of elementary criteria and logical connectives (prevalent in decision support
systems). Regardless, a filter can be seen as a (Boolean) function that can
be applied to an entity in order to test whether or not that entity should be
returned as part of the query result.

In order to compute the result set of an arbitrary select query, a database
system has to subject each entity to the test, a process that scales linearly
with the amount of entities. Furthermore, in order to be able to apply the
filter predicate on an entity, its data must be copied from the hard disk into
memory, which is an expensive operation to perform. Nevertheless, the data
from all entities that make up the result set must unavoidably be loaded. The
challenge in optimizing query performance lies in avoiding as many evaluations
as possible of entities that do not belong in the result set. This is especially
interesting for select queries where one is searching for a small set of particular
entities (perhaps just one entity), in which case linearly evaluating all entities
would imply a vast majority of unnecessary load operations.

2.2 Fuzzy set theory
In 1965, Lotfi Zadeh introduced the concept of fuzzy sets as an extension to reg-
ular sets [26]. For a universe of discourse U , a regular set V ⊆ U is characterized
by a membership function µV : U → {0, 1}, such that:

∀u ∈ U : µV (u) =

{
1 u ∈ V

0 u /∈ V
(2.1)

Hereby, 1 is interpreted as ‘is element of the set’ and 0 as ‘is not element of
the set’.

A fuzzy set Ṽ over U is characterized by an (extended) membership function
µṼ : U → [0, 1], which differs from a regular membership function in the sense
that the discrete set {0, 1} is extended to the unit interval [0, 1]. The value
associated to an element u ∈ U , µṼ (u) ∈ [0, 1] is called the membership grade
and is interpreted as follows:

1. 0 implies ‘is not an element of the set’

2. 1 implies ‘is fully element of the set’

3. i ∈]0, 1[implies ‘is partially element of the set to degree i’

It is clear that a regular set is a special case of a fuzzy set where each element
that is element of the set, is fully element of the set.

A fuzzy set Ṽ can be described by

Ṽ = {(x, µṼ (x)) | x ∈ U ∧ µṼ (x) > 0}

16 CHAPTER 2. PRELIMINARIES

The elements with membership grade 0 are not included in the enumeration.
A fuzzy set Ṽ is further said to be normalized, if and only if it contains at

least one element fully:
∃u1 ∈ U : µṼ (u1) = 1

2.2.1 Applicability for describing (uncertain) values
In the previous discussion on precision and digital data representations, we have
already motivated the value of a representation with degrees of belief. Given
the definition of fuzzy sets, it is clear that they are a natural fit for dealing with
data imperfections.

In what follows, we will assume we are dealing with singular attributes (i.e.,
each attribute can only take one single true value at any given time). For
brevity, we will just refer to these as ‘attributes’, which should be assumed
singular unless otherwise stated. The goal is to find a way to translate any form
of information regarding an attribute value to a mathematical model in such a
way that as little information as possible is lost.

Applicability regarding uncertainty

When the information regarding an attribute value is uncertain in the sense that
we can not say which value is the true value but we can rule out some values, we
have incomplete information. In modal logic, each possible value corresponds
to a possible world and is consistent with reality if the true world is one of the
possible worlds [19]. Fuzzy sets can be used to represent possible worlds by
mapping each possible value to a non-zero degree of possibility. Note that the
interpretation of possible worlds is disjunctive (i.e. the true value corresponds to
exactly one possible world, but not to multiple possible worlds simultaneously).
In other words, the fuzzy set should be interpreted as a model for uncertainty
regarding a single, true world.

Consider, for example, the statement “John is between 30 and 35 years old”.
If we’re satisfied with year-precision, we can say

µage(John) = {(30, 1), (31, 1), (32, 1), (33, 1), (34, 1), (35, 1)}

The correct interpretation of this fuzzy set is that the available information
describes six, equally possible worlds and that John’s true age is described by
one of these. The membership grade that is associated to each world (here: 1)
is not important, what matters is that each value is equally possible.

Applicability regarding imprecision

Fuzzy sets can be used to express imprecision. For example, when querying
a real-estate data set, an example user preference regarding the price could
be “not too expensive”. Rather than specifying a hard boundary cut-off, one
could construct a fuzzy set to represent the desired relation that more expensive
implies less preferrable. It is tricky to specify a (normalized) fuzzy set when no

2.2. FUZZY SET THEORY 17

information is given regarding the maximal real-estate price but this need not
be a problem, because one can still use a hard boundary cut-off as a threshold
beyond which real-estate no longer needs to be ranked because they can all be
rejected as being “too expensive”. The added value of fuzzy sets lies in the fact
that all real-estate with a price below this threshold will be sorted according to
the preference function rather than just returned in an unordered result set.

(image of example fuzzy set)
Note how in this example, the fuzzy set does not express uncertainty. Here,

the membership degrees should be interpreted as indicators of how strongly
each value is preferrable (also: degrees of truth[28], satisfaction, preference[6] or
suitability)[11]. The fuzzy set is said to be conjunctive as it is a construct for
describing a whole collection of values and an order relation over all of them.

It should already be mentioned here that fuzzy sets are subjective in the sense
that different users might have a different interpretation of the same concept.
This is intentional and the flexibility of fuzzy sets is regarded as one of its
strengths. However, it also implies that the results of an evaluation using fuzzy
sets to express vagueness are most meaningful to the user who constructed the
query.

2.2.2 Possibility Theory
The reader should be aware of the significant difference between using fuzzy
sets to express “too expensive” when formulating a preference on the one hand
and using a fuzzy set to describe the price of a particular real-estate as “too
expensive” on the other hand: the former is conjunctive and certain (a precise
model for vagueness), the latter disjunctive and uncertain. Fuzzy sets that de-
note uncertainty are examples of possibility distributions. It was first introduced
by Lotfi Zadeh in [27] as an application of his theory of fuzzy sets. The theory
of possibilities was further pioneered by Didier Dubois, Henri Prade and Gert
De Cooman [9, 8, 12, 13, 14].

Central to possibility theory are possibility measures. A possibility measure
Π is a formal model for describing uncertainty regarding the true value of an
attribute with domain U . Let P(U) be the powerset of U and B a belief space.
Let further infB denote the minimal degree of belief, signifying ‘impossibility’,
and supB the maximal degree of belief, signifying ‘certainty’. Any possible
world-based uncertainty model G : P(U)→ B is essentially a fuzzy measure [16,
24] and must adhere to three axioms:

1. G(∅) = infB

2. G(U) = supB

3. ∀U1, U2 ⊆ U , U1 ⊆ U2 : G(U1) ≤ G(U2)

The first axiom states that a true value must exist (it is impossible that the
attribute takes no value). The second axiom implies that the domain is complete
and that it contains the true value (the attribute must take some value from the

18 CHAPTER 2. PRELIMINARIES

domain). The third axiom entails monotonicity, meaning that adding possible
values to a set can not result in a decrease in belief.

A possibility measure satisfies these axioms by implementing the monotonic-
ity constraint by means of maxitivity in the belief space [0, 1]:

1. Π(∅) = 0

2. Π(U) = 1

3. ∀U1, U2 ⊆ U : Π(U1 ∪ U2) = max(Π(U1),Π(U2))

For some event U , Π(U) is called the possibility that event U occurs. Pos-
sibility measures are special in the sense that they are the largest measures
satisfying the three axioms stated above. This means they are the least restric-
tive in combining uncertainty of two subevents. Conversely, we can also consider
the smallest measures satisfying the axioms. These measures are called necessity
measures and denoted by N. For necessity measures, monotonicity is obtained
by minitivity:

1. N(∅) = 0

2. N(U) = 1

3. ∀U1, U2 ⊆ U : N(U1 ∩ U2) = min(N(U1),N(U2))

Possibility and necessity measures are closely related in several ways. First, we
have that:

N(U) = 1−Π(Ū) (2.2)

where Ū denotes the opposite event of U , i.e. U \ U . Moreover, from axioms 2
and 3 of both measures, it follows that either Π(U) = 1 or Π(Ū) = 1. In other
words, for any U , if Π(U) < 1, then N(U) = 0. It follows that N(U) ≤ Π(U).

Combined, necessity and possibility form a total order relation on the pow-
erset of the universe of discourse. This order introduces a clear interpretation
of necessity and possibility, and is specified as follows:

• if N(U) = 1, U is certainly true.

• if Π(U) = 1, U is possible - it would not be surprising if U were true.

• if N(U) = 0, U is unnecessary - it would be surprising if U were true.

• if Π(U) = 0, U is certainly not true.

The distance between the possibility and necessity of an event U (i.e.: Π(U)−
N(U)) conveys information regarding the certainty about whether or not U is
true. If there is no information about U , this distance should be maximal, so
we have that N(U) = 0 ∧ Π(U) = 1.

For universes that are finite or countably infinite, a possibility measure can
be expressed in terms of its behavior on singletons:

2.2. FUZZY SET THEORY 19

Π(U) = max
u∈U

Π({u}) (2.3)

The collection of possibilities for all singletons is called the possibility distri-
bution Π:

π(u) , Π({u}),∀u ∈ U (2.4)
Through axiom 3 it is straightforward to reconstruct an entire possibility

measure from a possibility distribution. From axioms 2 and 3, it follows that
there must be at least one single value in U that is fully possible:

∃u1 ∈ U : π(u1) = Π({u1}) = 1 (2.5)
Note that this immediately implies that the necessity of all values other than

u1 must equal 0, because:

∀u ∈ U \ {u1} : N({u}) = 1−Π(U \ {u}) (2.6)
= 1− max

x∈U\{u}
Π(x) (2.7)

= 1−Π({u1}) (2.8)
= 0 (2.9)

In other words, only u1 can have a non-zero necessity. Furthermore, u1

only has a non-zero necessity if and only if there exists no other value u2 ∈
U , u2 6= u1 that is also fully possible. Namely, if u1 6= u2 and Π({u2}) = 1, then
u2 ∈ U \ {u1} and thus Π(U \ {u1}) = 1 which implies N({u2}) = 0 (and vice
versa for u1).

Clearly, a projection of the necessity measure over the singletons of a uni-
verse of discourse would not be very useful, as either only one value has a
non-zero necessity, or all values are unnecessary. Moreover, because necessity
is defined in terms of intersections, no further information can be derived from
the necessities of singletons. As such, unlike a possibility distribution, a “neces-
sity distribution” could not be used to reconstruct the necessity (or possibility)
measure.

One could, however, construct a (mathematically) informative distribution
based on the necessity measure by associating each singleton u to the necessity of
U\{u}. This could be considered useful because it contains sufficient information
to reconstruct the entire necessity measure (and consequently also the possibility
measure) using intersections. However, from the relation between necessity and
possibility it is easy to show that this distribution is essentially equal to the
1-complement of the possibility distribution, which, despite capturing the same
amount of information, is harder to interpret than the possibility distribution
itself, without adding extra information.

For infinite universes (continuous quantities), the possibility measure is typ-
ically approximated by a shape function. For such quantities, this implies that
the domain can be represented by a one-dimensional axis.

20 CHAPTER 2. PRELIMINARIES

Perhaps the most frequently used shape function is the trapezoidal shape
function Π, characterized by a four-tuple of domain values (a, b, c, d) such that
a ≤ b ≤ c ≤ d, which is defined as follows:

Π(.; a, b, c, d) : U → [0, 1] (2.10)

u→

0 ifu < a
u−a
b−a ifa ≤ u < b

1 ifb ≤ u ≤ c
d−u
d−c ifc < u ≤ d

0 ifd < u

(2.11)

Plotting this function (Figure 2.3) quickly reveals why it is called the trape-
zoidal shape function. When b = c, the shape function becomes triangular
and when a = b ∧ b < c ∧ c = d, it becomes rectangular. The case wherein
a = b = c = d incidates there is no uncertainty. It is easy to see that changing
the specificity of the domain has an influence on the difference between b and
c, and how a trapezoidal shape function can be collapsed to a triangular one by
zooming out and vice versa by zooming in.

domT

1

0
a b c d domT

1

0
a b = c d domT

1

0
a = b = c = d

Figure 2.3: Examples of trapezoidal possibility distributions. From left to right:
an uncertain value that is most likely between b and c, an uncertain value that
is most likely b (= c), and a certain value.

Similarities to Probability Theory

Probability theory [4, 22] is the most established mathematical framework for
representing uncertainty as a belief model. In this framework, the belief measure
is called the probability measure Pr and degrees of belief are called probabilities.
Probability theory was mathematically formalized by Kolmogorov [18] in a set
of axioms:

1. ∀U ⊆ U : Pr(U) ≥ 0

2. Pr(U) = 1

3. Pr

(∞⋃
i=1

Ei

)
=

∞∑
i=1

Pr(Ei)

2.2. FUZZY SET THEORY 21

It is easy to show that these satisfy the three axioms of a generic belief model
stipulated above, where this time σ-additivity implements the monotonicity ax-
iom.

Similar to a possibility distribution, probability theory has the concept of
a probability mass function (pmf) which shows how probability is distributed
across a finite (or countably infinite) amount of possible worlds. For a continuous
quantity, an alternative distribution called a probability density function (pdf)
must be used because it is impossible to select the exact world that corresponds
to the real world due to the precision problem. As such, pdf(u1) represents the
density of world u1, and the probability of an approximate value (i.e. a region
U1 in the domain) can be found by integrating this curve:∫

U1

pdf(u1)dU1

Interpretations of Probability

Given probability theory, which is well understood and widely accepted, why do
we need possibility theory? For starters, it is no secret that there are different
interpretations to what exactly probability degrees represent. There are two
broad categories: objective, frequency-based, physical probability and subjec-
tive, Bayesian, evidential probability.

One of the historically earliest interpretations relies on the assumption that
possible outcomes can be grouped in classes that are equally likely. Examples are
coin flips and tosses with a fair die. Under these assumptions, the probability
of a specific set of outcomes is exactly defined as the ratio of the amount of
favorable outcomes over the total amount of outcomes.

According to frequentists, probability is an indicator of how frequently a
possible world was observed after repeating a stochastic experiment a large
amount of times. There is no presumption that each outcome is equally likely up
front, the likelihood of each outcome is determined through observation. If the
experiment would be repeated an infinite amount of times (which is impossible
in practice), the observed frequency of each possible world would converge to its
probability of occurring the next time the experiment is carried out. Criticism
on this approach includes that it can not be applied in situations where the
experiment can not be repeated, and even if it could, it is debatable whether or
not it is actually possible to repeat the experiment under identical circumstances
and how many times it should be repeated in order for the conclusions to be
representative.

In the Bayesian interpretation (based on Bayes’ theory of Bayesian inference
but actually pioneered by Laplace), probability is a subjective indicator of be-
lief. Different agents might assign different probabilities to different outcomes
and there is no reason for someone to believe one agent over the other. Bayesian
probabilities further also rely on the assumption that agents are perfectly ra-
tional [3, 21], though evidence has shown that this claim is doubtful [17]. This
interpretation is often applied in the context of betting games, to set payout

22 CHAPTER 2. PRELIMINARIES

rates for outcomes in correspondence to their perceived probability of occurring,
which is immediate evidence that perceived probabilities can be used to turn a
profit and are not necessarily fair. Au contraire, this interpretation relies on the
idea that the true likeliness of the outcomes can be hidden behind slightly ma-
nipulated probabilities in order to trick gamblers into entering an unfair game,
the lottery being a prime example thereof.

Differences with Probability Theory

While probability theory is ideal for dealing with stochasticity, it can lead to
the fabrication of false information when applied to epistemic uncertainty stem-
ming from a lack of information. There is in fact a large difference between
the outcome of the roll of a die and the incomplete knowledge regarding the
true color of John’s car given that it is only known to be a “dark” color. For
the former, the outcome is inherently random though the experiment itself is
perfectly known. For the latter, the experiment of measuring the color of the
car is not stochastic and the uncertainty stems purely from the fact the color
of the car simply hasn’t been accurately measured yet. The following example
serves to illustrate how applying probability theory in a setting of incomplete
information can lead to false knowledge.

Example. Assume there is a wooden cube of which nothing is known except
that the length of its edges is between 3 and 5 centimeters. According to the
principle of symmetry (or the principle of indifference, named by Boole but in-
troduced earlier by Bernoulli joined by Laplace, who deemed it to be intuitively
obvious), one should model the lack of information by a uniform distribution,
in order to reflect that each possible outcome is considered equally believable.
This concept also appears in Bayesian terms in the form of the least informative
prior. For frequentists, this step is already meaningless because there are no
previous iterations to obtain these relative frequencies from.

A similar reasoning can be applied to the knowledge regarding the volume of
the cube, besides that it must be somewhere in between 33 and 53. Consistently,
our lack of knowledge should here also yield a uniform distribution over all
possible volumes in this range. However, due to the physical relation between
the edge of a cube and its volume, it can easily be calculated that if the length
of the edge is assumed to be uniformly distributed, the volume can not be
uniformly distributed; it would be biased towards lower volumes. This should
lead us to believe that there is some form of information, of evidence, that
suggests that it is more likely that the volume of the cube is closer to 33 than
to 53, yet this contradicts the prior assumption that nothing is known about
the cube’s volume. Dually, assuming a uniform distribution over the possible
volumes would imply evidence that the length of the sides of the cube is closer
to 5 than to 3.

The devil lies in the additivity, which makes it impossible to simultaneously
impose a uniform distribution on two related attributes: if the length of the edge

2.2. FUZZY SET THEORY 23

of the cube is uniformly distributed, it is implied that its volume is not, and
vice versa. Additivity and dependencies between variables appear frequently
throughout probability theory and always introduce cases that must be treated
separately, often also mathematically more complex. It is not atypical for novice
statisticians and scholars to work under the safe umbrella where it is assumed
that variables are considered independent. Obviously, this is not always the case
in reality. Regardless, the example above shows why probability theory can and
should not be used to represent a simultaneous lack of information regarding
two or more related properties of an entity.

The scenario is different for possibility theory. The principle of indifference
can be applied for here as well and states that a possibilistic uniform distribu-
tion should be used, assigning all possible values to the same possibility degree.
Because of the use of maxitivity, the possibilistic uniform distribution can assign
a possibility degree of 1 to each world rather than some normalized probability
or density degree. An additional advantage is that the possibilistic approach
is identical for both the discrete and continuous cases, whereas in probability
theory one would have to differentiate between a mass function and a density
function, both of which have to be handled differently in order to obtain informa-
tion from them. Because of the maxitivity implementation of the monotonicity
axiom, it is possible to specify a possibilistic uniform distribution for both the
edge and the volume of the cube. Moreover, it can easily be verified that start-
ing from a possibilistic uniform distribution for either and applying the physical
relation to deduce the distribution for the other again results in the possibilistic
uniform distribution, proving that it is not only possible but even implied by
possibility theory that starting without information can not lead to the (false)
deduction of knowledge.

There are plenty of examples of paradoxes based on these observations, like
the rising sun paradox, the doomsday paradox, the Bertrand paradox, and so
on. This does not mean that we should stop using probability theory but simply
implies that it is not correct to use additivity when using a subjective model for
uncertainty.

Construction of Possibility Distributions

One thing probability theory does have that possibility theory lacks, is a strong
foundation for specifying how possibility degrees for events can be calculated.
Regardless of the interpretation you prefer, there is plenty of material to help you
compute the probability measure of an experiment (attribute) over its outcomes
(domain). It is not so clear, however, how possibility distributions should be
constructed. It can be expected, though, that when modelling a term that
implies a monotonic relation with the natural order over the domain (e.g. “old
age”), the possibility distribution is also monotonic [12, 15, 23].

In such circumstances, a possibility distribution is no longer necessarily sub-
jective but should be interpreted as a total order relation over its domain. For
infinite domains, however, specifying a total order relation implies a = −∞ and
b = +∞, which is not practical towards computations. Indeed, in doing so it

24 CHAPTER 2. PRELIMINARIES

becomes impossible to derive the precise possibility degree for a particular do-
main value, and only comparisons remain. In order to avoid this, the possibility
distribution is instead usually defined with a clear minimum and maximum.
When specified with care, these bounds do not need to limit the usability of
the possibility distribution. In fact, good bounds can often be derived naturally
from the context in which the modelled term is used. When using “old” to
describe people’s age in years, for example, acceptable bounds could be 0 for
the minimum and 120 for the maximum, assuming that people do not typically
become 120 years old.

Non-monotonic terms (e.g.: “middle-aged”) do not align with a certain order,
but rather with a particular range of values. Such terms are best expressed
using fuzzy intervals: fuzzy sets whose membership function is trapezoidal and
for which a 6= b ∧ c 6= d. The question is then which values to choose to define
the fuzzy interval to describe “middle-aged”. This is clearly subjective: what
one person considers “middle-aged”, someone else might find “young”.

In any case, the possibility degree of some value is most informative when it
is not interpreted individually but rather in comparison to the possibility degrees
of other values. In other words, possibility distributions are best treated as a
whole, which supports our fundamental conviction that attribute values should
be denoted with fuzzy sets rather than single values. For a more thorough
discussion, we would like to refer to [10].

2.3 Aggregation of individual criteria
We have already briefly introduced how fuzzy sets can be applied to model
imprecision, for example in querying, and that this application of fuzzy sets is
in no way related to uncertainty.

Recall the real-estate example where we specified a user preference regarding
price as “not too expensive”. Intuitively, this would correspond to a monotoni-
cally decreasing relation between price and its corresponding preference. Eval-
uating the query essentially comes down to sorting the data according to the
(weak) order that is imposed by the fuzzy set representing the preference.

It might seem unnecessary to work with fuzzy sets when all it accomplishes
is a simple sort operation, but the benefits of encorporating fuzzy sets in query
evaluation become more apparent as soon as more than one attribute is taken
into account in the evaluation process. Indeed, as soon as there are as little
as two attributes under consideration, sorting is no longer trivial. Consider for
example the products catalogue of a retailer. There are many different ways
to sort products: by price, by release date, by amount in stock, by vendor,
by model, by review score... Though it is possible to sort the products by a
preference on any of these properties individually (increasing price, good review
score, recent release), the order will almost always be different for each. And
what if we want to sort things by a combination of these properties, rather than
by only one at a time (e.g. low price and good review score)?

There are different strategies for forcing a sort order on a multidimensional

2.3. AGGREGATION OF INDIVIDUAL CRITERIA 25

data. One of them is to choose an attribute priority and to sort according to
the natural order of the attribute with highest priority first, only relying on
the next attribute in the priority list to distinguish between entities with an
identical value for the first attribute, and so on. This is called lexicograhical
order, and despite its simplicity and advantage that the resulting ranking is
very straightforward to understand, it only has limited flexibility in the possible
rankings that it can produce. It also requires some discretization when it is
applied to continuous quantities in order to determine when two attribute values
can be considered equal, because otherwise no further distinctions could be
made. Applying this to the real-estate example, one could consider ascending
price as the first priority and distance to work as the second. Perhaps it can be
said that price is more important than distance, though it is harder to justify
that one would not be willing to pay as little as 1 cent more for a house that
is 100 kilometers closer to work. Clearly, there is a need for a more nuanced
approach.

A broad spectrum of alternatives can be found in the category of (weighted)
aggregation techniques, where different attributes are considered simultaneously
instead of independently. For example, the price may be assigned an importance
of 60 and the distance an importance of 40 to indicate price is 1.5 times more
important than distance, meaning that a change of 1 price unit is canceled out
by an opposite change of 1.5 units in distance, nullifying the previous situation
wherein the lexicographical order makes no balance between price and distance,
which led to an unintuitive result. One other effect of using aggregation tech-
niques, however, is that the overall sorting is no longer trivial to reverse engineer,
as different entities might receive a similar (mediocre) score despite having very
different attribute values.

Adding weights to attributes makes it possible to express relative importance
between attributes, but only regarding (strictly) monotonic preferences over
their domains (lower price, smaller distance). On top of this limitation, there is
also no real frame of reference regarding how good the best solution is: is some
solution the best solution because it strongly satisfies the preferences or because
it is simply better than all other alternatives?

Fuzzy sets alleviate these problems by forcing users to specify preference
mappings that effectively translate attribute values from different domains to
the same preference space, making it easy to compare them. Working with
standard, normalized fuzzy sets, one would specify preferences such that values
are associated to a score of 0 in case they are undesirable and 1 in case they
are ideal. Though it is common to do so, it is not strictly necessary to assign
the preference space to the unit interval. Alternatively, one might choose a
bipolar approach, specifying undesirable values by associating them to degrees
< 0 and preferrable values to degrees > 0, reserving 0 for values that the user is
indifferent about [7, 29, 20, 5]. However, it can easily be shown that such spaces
are bijective to the unit interval. As we will come back to later, the default
choice for the unit interval has proven to be a dangerous one, as it has been the
reason for quite some nonsensical research results due to applying calculus to
values with completely different semantics, a mathematical trick that was made

26 CHAPTER 2. PRELIMINARIES

possible by there being different quantities that are all expressed in the unit
interval.

By introducing fuzzy sets in the query evaluation process, it is immediately
clear that a result with a score of 1 exemplifies the ideal solution. Not only are
the results comparable, but the overal score also has an absolute meaning.

Commercial platforms typically offer some tailored formula for creating a
custom sorting1, but in industrial applications, it makes sense that data analysts
have full control over which evaluation function is used to create an overall
ranking that takes all dimensions into account and that can be well explained
to decision makers. Though small problems may be tackled heads-on, large
problems can have tens or even hundreds of properties to be considered, clearly
underlining the usefulness of automating the evaluation process to be done by a
computer. This research area is called decision support. Not only do computers
help when problems grow in size, but also when the set of alternatives to compare
becomes large. Deciding between a handful of options (which movie to see
with friends at the theatre) can be done manually but evaluating millions of
alternatives in an objective manner in order to obtain a global ranking without
computerized aid is challenging to say the least.

However, in order to be able to employ computers to do the heavy lifting for
us, we need to find a way to encode our (fuzzy) evaluation logic in an algorithm.
Under the assumption that, for a particular user, a specific (weak) order among
a set of systems reflects how well these systems satisfy their preferences, the
challenge is thus to provide tools that allow that user to express their preferences
in the form of an evaluation function in such a way that applying that function
sorts the systems according to the aforementioned (weak) order.

Such frameworks are designed with two large goals: the intuitiveness when
translating human evaluation logic on the one hand and the degree to which the
results are (not) surprising to the user modelling their preferences.

The intuitiveness of an approach is largely perceived as the notion of how
well inter-criteria relations can be specified. In logic, the term quantifier is used
to denote a relation between criteria. Examples of commonly known quantifiers
are the existential and universal ones, denoting that respectively any and all
criteria must be satisfied, which can be translated to the logical connectives ‘or’
and ‘and’.

For practical problems, however, it is rarely the case that we strictly want
that exactly any or all criteria are met. Some examples of other quantifiers are
‘at least X’, ‘most’ and ‘about X’. An example of a more advanced connective
is ‘X is mandatory, Y is desired and Z is optional’.

There are several aggregation frameworks that incorporate fuzzy set theory
in order to support such connectives. Despite their differences, they all use some
form of weighted average to aggregate the preference degrees that correpond to
elementary criteria. In this thesis, we will investigate what changes when values
are allowed to be uncertain.

1It is well known that Google uses a highly advanced algorithm to personally tailor search
results to each of its users.

2.4. SUMMARY 27

2.4 Summary
From these preliminaries, the fundamentals of how data is stored on and re-
trieved from digital system should be clear. Data are typically structured as
entities with relationships between them. In order to be able to retrieve specific
entities rapidly, indices (which essentially are just storage-optimized copies of
subsets of the entire data set) are used.

In order to make computers capable of dealing the fuzzy way people natu-
rally employ to decribe and process information, a mathematical framework for
translating vagueness into a precise, numerical domain is necessary. Fuzzy set
theory describes an essential way of doing so. Not only can fuzzy sets be used
to represent states of perfect, incomplete or total lack of knowledge regarding
data, it is also useful for flexible querying. Flexible querying allows people to
also express preferences using concepts from natural language, which are, unlike
classical predicates, fuzzy by nature. Not only does this make it trivial to rank
query results from best to worst, but it avoids the possibility that an almost
perfect entity is rejected because it falls just outside of some arbitrarily defined
threshold, an effect that is most painfully noticeable when entities are rejected
due to a miniscule measuring error. Furthermore, flexible querying opens the
door to flexible aggregation, a technique to combine the evaluation results of
multiple criteria.

The largest remaining issues are how to translate indexing and flexible query-
ing to uncertain data. These topics will be covered in the next chapters.

28 CHAPTER 2. PRELIMINARIES

Bibliography

[1] Chris J Date. An introduction to database systems. Vol. 1. Pearson Edu-
cation India, 1977.

[2] Chris J Date. Relational Database Writings, 1994-1997. Vol. 4. Addison-
Wesley Longman, 1998.

[3] Bruno De Finetti. “Foresight: Its logical laws, its subjective sources (1937)”.
In: Studies in subjective probability (1980), pp. 55–118.

[4] Bruno De Finetti. Theory of probability: A critical introductory treatment.
Vol. 6. John Wiley & Sons, 2017.

[5] Guy De Tré. “Extended possibilistic truth values”. In: International Jour-
nal of Intelligent Systems 17.4 (2002), pp. 427–446.

[6] Didier J Dubois. Fuzzy sets and systems: theory and applications. Vol. 144.
Academic press, 1980.

[7] Didier Dubois and Henri Prade. “Bipolarity in flexible querying”. In: Flex-
ible query answering systems (2002), pp. 174–182.

[8] Didier Dubois and Henri Prade. Possibility theory: an approach to com-
puterized processing of uncertainty. Springer Science & Business Media,
2012.

[9] Didier Dubois and Henri Prade. “Possibility theory: qualitative and quan-
titative aspects”. In: Quantified representation of uncertainty and impre-
cision. Springer, 1998, pp. 169–226.

[10] Didier Dubois and Henri Prade. “Practical Methods for Constructing Pos-
sibility Distributions”. In: International Journal of Intelligent Systems 31.2
(2015), pp. 215–239. issn: 08848173. doi: 10.1002/int.

[11] Didier Dubois and Henri Prade. “The three semantics of fuzzy sets”. In:
Fuzzy sets and systems 90.2 (1997), pp. 141–150.

[12] Gert De Cooman. “Possibility theory 1: The measure- and integral-theoretic
groundwork”. In: International Journal of General Systems 25.4 (1997),
pp. 291–323.

[13] Gert De Cooman. “Possibility theory 2: Conditional possibility”. In: In-
ternational Journal of General Systems 25.4 (1997), pp. 325–351.

29

30 BIBLIOGRAPHY

[14] Gert De Cooman. “Possibility theory 3: Possibilistic independence”. In:
International Journal of General Systems 25.4 (1997), pp. 353–371.

[15] Gert De Cooman. Towards a possibilistic logic. 1995.
[16] Michel Grabisch. “K-order additive discrete fuzzy measures and their rep-

resentation”. In: Fuzzy sets and systems 92.2 (1997), pp. 167–189.
[17] Daniel Kahneman and Patrick Egan. Thinking, fast and slow. Vol. 1. Far-

rar, Straus and Giroux New York, 2011.
[18] Andreı̆ Nikolaevich Kolmogorov and Albert T Bharucha-Reid. Founda-

tions of the theory of probability: Second English Edition. Courier Dover
Publications, 2018.

[19] Saul A Kripke. “A completeness theorem in modal logic”. In: The journal
of symbolic logic 24.1 (1959), pp. 1–14.

[20] Tom Matthé and Guy De Tré. “Bipolar query satisfaction using satisfac-
tion and dissatisfaction degrees: bipolar satisfaction degrees”. In: Proceed-
ings of the 2009 ACM symposium on Applied Computing. ACM. 2009,
pp. 1699–1703.

[21] Frank P Ramsey. “Truth and probability”. In: Readings in Formal Epis-
temology. Springer, 2016, pp. 21–45.

[22] Cedric AB Smith. “Consistency in statistical inference and decision”. In:
Journal of the Royal Statistical Society: Series B (Methodological) 23.1
(1961), pp. 1–25.

[23] Peter Walley and Gert De Cooman. “A behavioral model for linguistic
uncertainty”. In: Information Sciences 134.1-4 (2001), pp. 1–37.

[24] Zhenyuan Wang and George J Klir. Fuzzy measure theory. Springer Sci-
ence & Business Media, 2013.

[25] R Wueringa and W de Jonge. The identification of objects and roles-
Object identifiers revisited. Tech. rep. Technical Report IR-267, Faculty of
Mathematics and Computer Science, 1991.

[26] L.a. Zadeh. “Fuzzy sets”. In: Information and Control 8.3 (1965), pp. 338–
353. issn: 00199958. doi: 10.1016/S0019-9958(65)90241-X.

[27] Lotfi Zadeh. “Fuzzy Sets as a Basis for Possibility”. In: Fuzzy Sets and
Systems 1 (1978), pp. 3–28.

[28] Lotfi A Zadeh. “The concept of a linguistic variable and its application to
approximate reasoning”. In: Information sciences 8.3 (1975), pp. 199–249.

[29] Slawomir Zadrożny and Janusz Kacprzyk. “Bipolar queries and queries
with preferences”. In: Database and Expert Systems Applications, 2006.
DEXA’06. 17th International Workshop on. IEEE. 2006, pp. 415–419.

Chapter 3

Querying Uncertain Data

When evaluating a query that consists of one or more criteria on a database,
the result consists of all entities that satify the specified criteria. Regular query
evaluation relies on two presumptions. On the one hand it is assumed that the
data are perfectly known and accurately represent reality. On the other hand it
is also assumed that the user does not only know exactly what they are looking
for, but also that they are capable of describing it perfectly. Both presumptions
are often not true in practice.

Databases capable of handling imperfect information attempt to alleviate the
former presumption. As a result, either the user has to specify their stance on
uncertainty such that the result set can remain a regular set, or any uncertainty
regarding attribute values must be propagated to the result set (requiring that
it be replaced by a representation of uncertainty, e.g. a fuzzy set).

Specifying a stance on uncertainty in the traditional sense implies choosing
for a particular set of operators that extend classical operators so they can be
applied to uncertain values. For instance, one can extend the classical operators
such that their application on uncertain values (e.g. is “about 40” larger than
40?) still evaluates to a Boolean value. Naturally, each operator necessarily
has multiple extensions that each reflect a different degree of tolerance towards
uncertainty. For the larger than operator (>), for example, >1 could denote
“certainly larger than” and >2 “possibly larger than”, providing two alternative
ways to generalize the operator >. Obviously, the result set of a query depends
on which generalization is used: for a person whose age is described by “around
40”, the evaluation of the query >1 40 would be false, whereas the evaluation
of the query >2 40 would be true. In other words, this approach requires that
the user submitting the query must rephrase their question in a way that is
resilient to uncertainty.

Alternatively, in order to exempt the user from having to actively choose a
strategy, a more-than-binary evaluation logic that is able to cope with uncer-
tainty about truth can be employed, such that the uncertainty regarding cases
where there is insufficient information to determine the truth-value of a given
statement is reflected in the result. By replacing the implementation of query

31

32 CHAPTER 3. QUERYING UNCERTAIN DATA

criteria as predicates by functions that map to a three-valued space ({true,
false and maybe}), for example, the result of the query “around 40 > 40” can
be evaluated to a value that reflects uncertainty (in this case maybe). To mini-
mize information loss, cases where there are different degrees of belief regarding
certain attribute values require a many-valued logic that maps each entity to
a degree of confidence that it should be part of the result set. Generally, the
result set of a query on uncertain data can be decribed by a fuzzy set where
the membership degrees of the entities denote indicators of confidence, belief or
possibility.

The second presumption, that users are capable of expressing their prefer-
ences with perfect accuracy, can be tackled by allowing users to be imprecise
in their criteria. Any imprecision in the query criteria is reflected in the results
by mapping each entity to a degree of suitability. As such, the result set can
be seen as a fuzzy set where the membership degrees are interpreted as degrees
of compatibility. An immediate advantage of using flexible criteria is that the
entities in the database are ranked (rather than filtered) by their satisfaction
degree, and that near-perfect solutions (that would typically be rejected) are
not omitted from the result set and can still be consulted. For example, for a
set of bottles, one could evaluate the flexible criterion expressing a desire for full
bottles. Evaluating the flexible query would associate each bottle to a numerical
degree in the unit interval indicative of the extent to which it is full (i.e. a full
bottle will have degree 1, a half-empty bottle would lead to satisfaction degree
0.5, an empty bottle would have degree 0 and so on). Flexible criteria have been
widely employed [29, 3, 25, 30, 20, 5] and are an essential basic component of
many systems (including multi-criteria decision support [21]) for their ranking
properties and their intuitive nature.

Ideally, both approaches can be combined so that both presumptions can
be foregone and we can evaluate flexible criteria on uncertain data. This is
challenging, however, as both solutions transform the result set into a fuzzy set,
but each with a different interpretation. For example, if the content of a bottle
is unknown and the answer to the query for “full bottles” returns 0.5, does that
mean that the bottle is half full or that it is possible to degree 0.5 that it is
completely full?

In this chapter, we will look at ways to evaluate flexible criteria on uncertain
data, more precisely on how the results of such evaluations can be represented
in a meaningful and useful way. First, we will give an overview of existing
approaches in section 3.1. Then, we will propose a new approach in section
3.2, based on possibility theory. Its advantages, properties and semantics are
discussed in sections 3.3 and 3.4. Afterwards, it is discussed how the concepts of
the approach can be extended beyond possibility theory in section 3.5. Essential
parts of this chapter have been published in [8].

3.1. EVALUATING FLEXIBLE CRITERIA ON UNCERTAIN DATA 33

3.1 Evaluating flexible criteria on uncertain data
Some fundamental contributions on the topic of evaluating flexible criteria on
uncertain data include [4, 23, 30, 28, 10]. Dubois and Prade mention in [10] that
“the complete answer to a query evaluating to what extent an agent believes
a fuzzy proposition” (or else: to what extent an uncertain property satisfies a
flexible criterion) is described by “a possibility distribution over truth values”
(or thus a distribution of uncertainty over degrees of suitability). However, this
is not further researched under the assumption such distributions are “possibly
hard-to-interpret”. They instead suggest the concept of extended possibility
and necessity degrees. A similar idea can be found in an early study by Cayrol
et al. regarding standard fuzzy pattern matching indices for fuzzy information
systems [6]. Prade et al. [23] represent the evaluation of a flexible criterion c
(modeled as a fuzzy set characterized by µc) on an uncertain property a (with
domain A and represented by possibility distribution π) using a possibility Π
and necessity N given by:

Π(a IS c) = sup
v∈A

(min(π(v), µc(v))) (3.1)

N(a IS c) = inf
v∈A

(max(1− π(v), µc(v))) (3.2)

These numbers semantically express respectively the possibility and the neces-
sity that a is compatible with c (denoted by the IS operator). One should be
cautious when interpreting these degrees because, as mentioned by Prade et al.,
some of the properties for possibility and necessity measures no longer hold.
More precisely (let C denote the predicate a IS c), the following are no longer
true:

max(Π(C),Π(C̄)) = 1 (3.3)

min(N(C),N(C̄)) = 0 (3.4)

An important consequence thereof is that the evaluation of a criterion can lead
to possibility and necessity degrees that are simultaneously strictly between
0 and 1, e.g. Π = 0.7, N = 0.4. This implies “it is not fully possible c is
compatible, but it is also not fully possible c is not compatible” [10].

The interpretation of the degrees Π and N generated through these formulas
is ambiguous: they are not strictly indicators of uncertainty nor are they bounds
for a degree of satisfaction, though they seem to have properties of both. It can
be argued that these muddled semantics are the consequence of combining and
comparing degrees of satisfaction with degrees of possibility during their com-
putation. The mathematics only seem sensible because it was chosen to express
both degrees of satisfaction and possibility in the unit interval, though it should
be clear that such degrees should not be compared. Indeed, using different nu-
merical scales, which is perfectly allowed, would make the proposed formulas
nonsensical. Imagine for example that degrees of satisfaction are expressed over
the range [−1, 1] and degrees of possibility over the range [0, 100]. Compar-
ing degrees of satisfaction and degrees of possibility is the figurative equivalent

34 CHAPTER 3. QUERYING UNCERTAIN DATA

of comparing apples and oranges, and should not be done under any circum-
stances. This conclusion is in fact discussed at length and supported by Dubois
and Prade in [10].

So what information is conveyed in Π and N? As was already established,
Π and N converge to a degree of suitability when evaluating a datum that is
certain. Dually, a fully uncertain datum will always result in Π = 1, N = 0.
It thus seems that the difference Π−N is an indicator of how uncertain the
underlying datum is rather than to which degree it satisfies c.

The possibility-necessity couple form a (weak) total order over the results,
sorting them by descending necessity first and descending possibility second.
This order is sound for regular (Boolean) queries, but whether this is still true
for the unclear semantics of the extension towards the evaluation of flexible
queries is yet to be validated. In other words, does the same sorting strategy
produce meaningful results? Perhaps the reason that the answer to this question
is unclear is because of an underlying, fundamental challenge: how should one
compare a certainly mediocre property to an uncertain but possibly very good
one? The only correct answer to this question is: “it depends”. In critical
applications, one might prefer a suboptimal yet predictable solution over one
that is maybe better but also possibly worse. In other cases, one might choose
to rely on the most plausible outcome to compare alternatives or be specifically
hunting for objects that are uncertain. Thus really the question we should be
answering is: can we achieve such semantically rich ranking strategies using
these possibility-necessity degrees?

Let us investigate this by using an example. Imagine a set of entities and a
query regarding one attribute that aims to achieve a ranking such that entities
whose attribute value certainly satisfies the criterion (to some degree) are always
ranked above those with an attribute value that possibly satisfies the criterion
to a lesser degree (or not at all). In other words, the entities should be sorted
according to their minimal degree of suitability, which could be considered a
pessimistic evaluation because the worst case is used to compare them. Consider
two example entities, as displayed in Figure 3.1. By computing Π and N for
both, it is immediately clear that the desired ranking can not be derived. Option
(b) seems better in every way (equal Π, higher N and smaller difference Π−N),
despite the fact that option (a) is certain to take a value that at least satisfies
c somewhat while option (b) can take an infinite amount of values that do not
satisfy c at all.

3.2 Suitability Distributions
The suggested approach of using possibility and necessity degrees to represent
the evaluation of a flexible criterion on possibilistic data is too limited. The
semantics of these degrees are not clear and some desirable rankings of under-
lying data can not be attained from just these indicators. Furthermore, it can
only be applied on possibilistic uncertainty models. Our objective is to find an
alternative representation of the evaluation of a flexible criterion on uncertain

3.2. SUITABILITY DISTRIBUTIONS 35

1

0

Π

N

(a) Π = 1, N = 0.5

1

0

Π

N

(b) Π = 1, N = 0.6

Figure 3.1: Two possiblistic properties and their computed possibility/necessity
degrees. The properties (denoted by π) are drawn in blue (1−π in dashed blue),
the criterion (denoted by µ) in red.

data. This representation should have unambiguous semantics that are easy to
interpret and should enable us to rank entities in intuitively meaningful ways.
We will start our argument on possibilistic uncertainty, but it will be shown
that our proposed approach can also be applied on other uncertainty models.

We start by revisiting the proposition that the correct representation is a
possibility distribution over degrees of satisfaction. In what follows we will give
a step-by-step procedure to construct these distributions and then present some
of their properties. Next, we will discuss their semantics and show how they
can be used to rank data in different ways rather than presuming that there
is a single, true order. It is up to the user to define their tolerance towards
uncertainty, which results in a specific order for their use case.

3.2.1 Definition
We will briefly repeat the nomenclature that will be used frequently in the
coming sections. Recall that π : A→ [0, 1] is a possibility distribution reflecting
the uncertainty regarding the value that attribute a takes. Hereby, for any
v ∈ A, π(v) represents the possibility that a takes v as value. Assume further
that c : A → [0, 1] is a criterion over a. Hereby, for any v ∈ A, c(v) ∈ [0, 1]
denotes the degree to which v satisfies c (or else: to which v is preferable or
suitable). The higher c(v), the more preferable v. With these concepts at
hand, we wish to derive a belief function sa,c : [0, 1]→ [0, 1] that expresses the
uncertainty regarding the degree to which a satisfies c. Such a belief function
will be called a suitability distribution.

Definition 1. A suitability distribution is defined by a possibility distribution
sa,c : [0, 1] → [0, 1] that models the uncertainty regarding the degree to which a

36 CHAPTER 3. QUERYING UNCERTAIN DATA

specific entity’s value for a satisfies c. For each degree of satisfaction σ ∈ [0, 1],
sa,c(σ) denotes the possibility that a takes a value vi ∈ A that satisfies c to
degree σ (i.e. c(vi) = σ).

In essence, Definition 1 states that a suitability distribution is a mapping
that associates each possible degree γ to which a can satisfy c with a degree of
possibility. This degree of possibility can be obtained as follows. On the one
hand, the uncertainty over a is given by a possibility distribution π over A. On
the other hand, the criterion c expresses a functional relation between values
in A and degrees of satisfaction. In order to construct a functional connection
between degrees of satisfaction and degrees of belief, we intend to use (the
inverse of) c to derive which values satisfy the criterion to a specific degree, to
then determine how possible these values are by testing them in π. We will
then aggregate those degrees of possibility to arrive at the overall possibility
that a takes any domain value such that it satisfies c to that specific degree.
Doing this for every possible degree of satisfaction, we obtain the full relation
between degrees of satisfaction and degrees of belief. This procedure is shown
schematically in Figure 3.2 and is explained and discussed in detail in what
follows.

For each possible degree
of satisfaction σ...

...which values v have c(v) = σ?
Let Zσ = {v|v ∈ A ∧ c(v) = σ}

(derived from criterion c)

How possible is it that
a takes a value from Zσ?

Π(Zσ) = max
v∈Zσ

π(v)

Poss that a satisfies c to degree σ
= poss that a takes any v ∈ Zσ

⇒ sa,c(σ) = Π(Zσ)

Figure 3.2: Schematic approach of constructing a suitability distribution.

3.2.2 Construction
Because it is uncertain which value a takes, it is uncertain to what degree c is
satisfied. The idea is to perform a case-by-case analysis of each possible degree
σ to which c might be satisfied, depending on what value a takes. For each
σ, we use c to find all values that satisfy c to degree σ. Consider therefore a
partitioning of A into classes Zσ imposed by c such that all values from a single
class are equally preferable:

Zσ = {v ∈ A|c(v) = σ}

Note that if the range of c is not finite, computing each Zσ explicitly is impossible
as there would be an infinite amount of partition classes corresponding to the

3.2. SUITABILITY DISTRIBUTIONS 37

infinite variations in graded preference. However, it will be shown that they can
be expressed analytically. For each Zσ, we can compute the possibility that a
takes any value from Zσ. This can be viewed as the possibility that c is satisfied
to the degree σ. Taking into account the definition of a possibility measure (and
by extension a possibility distribution), this possibility is equal to the maximum
of possibilities assigned to values in Zσ. As such, we have found that:

sa,c(σ) = max
v∈Zσ

(π(v))

This expression holds for every σ ∈ [0, 1] and as such describes the analytical
relation of the possibility that a satisfies c for any σ. Note further that, by
construction, sa,c(σ) is a possibility degree. Because this is true for every σ,
sa,c is a possibility distribution. The entire process is exemplified in Figures 3.3
and 3.4.

value satisfaction

v1 0

v2 0

v3 0.5

v4 1

v5 1

Criterion

satisfaction value(s)

0 v1, v2

0.5 v3

1 v4, v5

Inverted criterion

value possibility

v1 0.3

v2 0.5

v3 1

v4 0.9

v5 0.8

Uncertain property

satisfaction possibility

0 0.5

0. 1

1 0.9

Uncertain satisfaction

Figure 3.3: Example construction of a suitability distribution over a possibilis-
tically uncertain attribute.

A suitability distribution as defined in Definition 1 denotes the possibility
for each degree of satisfaction. However, it should be noted that the framework
in which uncertainty is expressed, is not bound to be possibility theory. For in-
stance, it is possible to infer a suitability distribution that models the necessity
for each degree of satisfaction. Consider therefore the dual suitability distribu-
tion s∗π,c : [0, 1]→ [0, 1] that reflects the necessity of a satisfying c to degree σ.

38 CHAPTER 3. QUERYING UNCERTAIN DATA

A

1
2

1

sa
tis

fa
ct

io
n

0 v1 v2 v3 v4 v5

Criterion

A

1
2

1

po
ss

ib
ili

ty

0 v1 v2 v3 v4 v5

Uncertain property

satisfaction

1
2

1

po
ss

ib
ili

ty

0 1
2

1

Suitability distribution

Figure 3.4: Graphical visualization of the construction of a suitability distribu-
tion.

The construction of s∗π,c is similar to that of sa,c. We start by defining:

s∗π,c(σ) = N(Zσ)

Unlike with possibility, we can not easily compute the necessity that a takes a
value from Zσ. Recall that, by definition, a necessity measure is a confidence
measure that satisfies N(∅) = 0, N(A) = 1 and N(A ∩ B) = min(N(A),N(B)),
but there is no rule to determine N(A ∪ B) from N(A) and N(B) However, we
can fall back on the relation between N and Π:

N(A) = 1−Π(Ā)

Here, Ā is the complement of A (i.e. A \A) denoting the event “a takes a value
that is not in Zσ”. From this we find:

s∗π,c(σ) = 1−Π(Z̄σ)

= 1− max
v/∈Zσ

(π(v))

As expected, s∗π,c(σ) denotes the complement to 1 of the possibility that a takes
a value that is not in Zσ. From this, it follows that only when sa,c is unimodal
(i.e. ∃!σ1 ∈ [0, 1], sa,c(σ1) = 1), s∗π,c is not zero everywhere. Indeed, only if there
is but a single fully possible degree of satisfaction, it has a certain necessity, but
as soon as there are multiple different fully possible degrees of satisfaction,
every degree of satisfaction has zero necessity. This corresponds to the findings
of Dubois and Prade in [14]. As s∗π,c is only circumstantially non-zero for (at

3.2. SUITABILITY DISTRIBUTIONS 39

most) a single degree of satisfaction, we argue that s∗π,c is less informative than
sa,c. Going forth, we will not study it further.

Regardless of the framework in which uncertainty is expressed, a suitability
distribution is a representation of how the uncertainty about the value of a
property a affects the outcome of a criterion defined over a. From this compact
representation, we can derive a lot of valuable information. For instance, in
a setting of risk analysis, we typically want to account for the worst (resp.
best) possible degree of satisfaction. This information is obtained by min{γ ∈
[0, 1] | sa,c(γ) > 0} (resp. max{γ ∈ [0, 1] | sa,c(γ) > 0}). Alternatively,
in an optimistic setting, we might want to know the lowest (resp. highest)
degree of satisfaction that is fully plausible. Again, this information is easily
obtained by min{γ ∈ [0, 1] | sa,c(γ) = 1} (resp. max{γ ∈ [0, 1] | sa,c(γ) = 1}).
Suitability distributions also allow us to answer a lot of interesting questions
regarding the property and the criterion it was subjected to. For example, we
can compute the answer to questions like: “Can a satisfy c fully?” and “What
is the possibility that c is at least κ satisfied?”. These questions are answered by
respectively “sa,c(1) > 0” and “maxγ>κ sa,c(γ)”. Note that these questions can
be considered as regular criteria on the uncertain property “satisfaction”, which
can be expressed using a possibility and a necessity, which can both be computed
directly from sa,c. For example, the necessity that c is at least κ satisfied
equals 1 − maxγ≤κ sa,c(γ). One could even evaluate a suitability distribution
using a flexible criterion, e.g. “Which properties likely have a high degree of
satisfaction?”. The result thereof would again be a suitability distribution.

Let us revisit the example from Figure 3.1 to see what rankings we can derive
using suitability distributions. Figure 3.5 shows the suitability distributions for
both properties. These clearly reflect that property (b) might not satisfy c at
all, whereas option (a) satisfies c at least 1/3.

satisfaction

1

po
ss

ib
ili

ty

0 1

(a) sa,c

satisfaction

1

po
ss

ib
ili

ty

0 1

(b) sb,c

Figure 3.5: The suitability distributions for the two properties from the first
example.

40 CHAPTER 3. QUERYING UNCERTAIN DATA

3.2.3 Special cases

We will now show how suitability distributions do in fact generalize the results
of both flexible querying on certain data and regular querying on uncertain data.

satisfaction

1

po
ss

ib
ili

ty

0 1

(a) Boolean query on uncertain data.

satisfaction

1

po
ss

ib
ili

ty

0 1

(b) Flexible query on certain data.

Figure 3.6: Visualization of special cases.

Let us examine how using a Boolean criterion b to evaluate a impacts the
suitability distribution. A Boolean criterion partitions the domain into two
classes: satisfactory (i.e., γ = 1) and not satisfactory (i.e., γ = 0). Conse-
quently sa,b(γ) = 0,∀γ ∈]0, 1[. Figure 3.6a illustrates an example thereof. Such
suitability distributions can be summarized by two numbers: the possibility
for satisfaction and the possibility for non-satisfaction. While not so surprising,
this result reveals that a suitability distribution collapses to a Possibilistic Truth
Value (PTV)[15, 16, 17] in the Boolean case. In addition, this also means that a
suitability distribution for Boolean criteria collapses to possibility and necessity
degrees in the sense of Prade et al. [23]. This can be shown as follows:

Π(b) = max min
v

(π(v), µb(v))

= max(min
v∈Z0

(π(v), 0), min
v∈Z1

(π(v), 1))

= max
v∈Z1

(0, π(v))

= max
v∈Z1

π(v)

= sa,c(1)

This shows that the possibility for satisfaction (i.e. sa,c(1)) is equal to the
possibility degree that the property satisfies the criterion (i.e. Π(b)). Similarly,
the possibility for non-satisfaction (i.e. sa,c(0)) can be seen as the complement

3.3. PROPERTIES OF SUITABILITY DISTRIBUTIONS 41

to 1 of the necessity degree that the property satisfies the criterion (i.e. N(b)):

Π(b̄) = max min
v

(π(v), µb̄(v))

= max min
v

(π(v), 1− µb(v))

= max(min
v∈Z0

(π(v), 1), min
v∈Z1

(π(v), 0))

= max
v∈Z0

(π(v), 0)

= max
v∈Z0

π(v)

= sa,c(0)

= 1−N(b)

From this it should be clear that suitability distributions are in essence a gener-
alization of the concepts of possibility and necessity degrees, which coincide with
the generalized concepts introduced by Dubois and Prade for regular queries.
Note that, in this case, these indicators are true possibility and necessity de-
grees and also satisfy all of their properties. In other words, either sa,c(1) = 1
or sa,c(0) = 1.

As a second special case, consider the suitability distribution resulting from
the evaluation of a flexible criterion on a certain property. Assume a is certain
to take value v1. As this is certain, the degree to which a satisfies the criterion c
is certain. Namely, it is equal to c(v1). Thus sa,c(c(v1)) = 1 ∧ sa,c(ν) = 0,∀ν ∈
[0, 1]\{c(v1)}. As expected, the certainty regarding the value of a is reflected by
the certainty of the suitability distribution. The suitability distribution is shown
in Figure 3.6b. In this case, computing the suitability distribution is basically
computing the degree of satisfaction of the property’s value. This illustrates that
suitability distributions not only generalize possibility and necessity degrees but
also flexible querying on certain data, effectively generalizing both.

3.3 Properties of Suitability Distributions
Probably the most important property of suitability distributions is that they
maintain the belief model of the underlying uncertain attribute. That is to
say, if the uncertainty regarding an attribute value is modelled using possibility
theory, the suitability distributions obtained by evaluating flexible criteria will
be possibility distributions. Consequently, suitability distributions immediately
inherit a lot of interesting properties. Moreover, there are certain correlations
between the properties of the distribution of the uncertain value and those of
their resulting suitability distributions. In what follows, we will discuss the most
important of these properties and provide a proof for their correctness. For the
remainder of this section, let πX denote the possibility distribution of uncertain
property X (the identifier X may be omitted if it is clear which property is
being referred to) and a criterion regarding that property be denoted by cX .
Let the suitability distribution resulting from the evaluation of πX under cX be

42 CHAPTER 3. QUERYING UNCERTAIN DATA

noted as sX . Furthermore, let suppπ and coreπ denote the support and core of
the fuzzy set that corresponds to the possibility distribution π.

Property 1. The suitability distribution of a property represented by a normal-
ized possibility distribution is also normalized.

Proof. If π is normalized, ∃v1 ∈ A : π(v1) = 1. Furthermore, the degree
of satisfaction for v1 can be found from c and equals c(v1). We then have
sa,c(cv1) = Π(Zcv1) = 1, which shows that sa,c is indeed normalized.

Regarding to information conveyed by a possibility distributions, one can
consider the following ordering. A possibility distribution πX is said to be at
least as specific as πY if ∀v ∈ A : πX(v) ≤ πY (v) [11]. This leads to the
presentation of property 2.

Property 2. If πX is at least as specific as πY , then sX is at least as specific
as sY , regardless of c.

Proof. Given ∀v ∈ A : πX(v) ≤ πY (v), then:

∀κ ∈ [0, 1] : sX(κ) = max
v∈Zκ

πX(v)

≤ max
v∈Zκ

πY (v)

≤ sY (κ)

Property 2 implies that the order induced by specificity about attribute a is
transferred to a specificity order on the satisfaction of a. The same transfer is
observed for unimodality.

Property 3. The suitability distribution for a criterion evaluated over a uni-
modal possibility distribution is again unimodal.

Proof. By contradiction: assume π is unimodal (i.e. ∃!vp ∈ A : π(vp) = 1) and
s is not unimodal (i.e. ∃ρ1, ρ2 ∈ C : ρ1 6= ρ2, such that s(ρ1) = s(ρ2) = 1).
Recall that s(ρ) = maxv∈Zρ

v. Thus, s(ρ1) = 1 ⇒ ∃v1 ∈ Zρ1
: π(v1) = 1

and s(ρ2) = 1 ⇒ ∃v2 ∈ Zρ2
: π(v2) = 1. Because Zρ1

∩ Zρ2
= ∅ (they are

subsets generated by a partition), it follows that v1 6= v2. This would imply the
existence of two different values that are fully possible, which is in contradiction
to our assumption that π is unimodal.

Note that a non-unimodal possibility distribution can lead to a unimodal
suitability distribution if coreπ ⊂ Zρ for some degree of suitability ρ. How-
ever, if a suitability distribution is not unimodal, then the original possibility
distribution of the property π is not unimodal.

Property 4. For a single criterion c, two properties can only result in identical
suitability distributions if ∀Zκ : maxv∈Zκ

πX(v) = maxv∈Zκ
πY (v). We say they

are c-equivalent.

3.4. INTERPRETATION AND RANKING OF SUITABILITY DISTRIBUTIONS43

Proof. Given that, under c, sX(κ) = sY (κ) : ∀κ ∈ [0, 1], then:

sX(κ) = max
v∈Zκ

πX(v)

= max
v∈Zκ

πY (v)

= sY (κ)

Indeed, sX and sY can only be identical if every subset Zκ from the partitioning
on A imposed by c is equally possible for X and Y .

Property 5. If at least one unpreferable value is possible (i.e., c(v) = 0∧π(v) >
0), there is a non-zero possibility for non-satisfaction.

Proof.

∃v0 ∈ Z0 ⊆ A : π(v0) > 0

⇒ s(0) = max
v∈Z0

π(v)

≥ π(v0)

> 0

Property 6. If at least one preferable value is possible, there is a non-zero
possibility for full satisfaction.

Proof. Analogue to the proof of Property 5 but with Z1 instead of Z0.

3.4 Interpretation and ranking of Suitability Dis-
tributions

Now that we have introduced suitability distributions as a concept, we will
discuss their usability. More specifically, we will take a look at what information
can be derived from a suitability distribution and how they, as generalizations
of degrees of suitability, can be used to rank query evaluation results. We will
limit this discussion to possibilistic suitability distributions, because they have
properties that are particularly useful when it comes to ranking.

3.4.1 Semantics of the suitability distribution
A suitability distribution models uncertainty about the suitability of a value
against a given criterion. Any uncertainty regarding the suitability degree
stems from uncertainty regarding the underlying attribute value being evalu-
ated, though even uncertain values can lead to certain suitability degrees in
the event that the user is indifferent towards the region containing all possible
values. For example, it does not matter if John’s age is specified as “between 6

44 CHAPTER 3. QUERYING UNCERTAIN DATA

and 10” when the user is only interested in mature subjects: John is definitely
not suitable. Suitability distributions with a convex membership function are
most interesting, as they can usually be translated back to a linguistic term
that is indicative of the represented vague suitability degree (“good”, “bad”,
“mediocre”...).

A suitability distribution contains information regarding uncertainty. More
precisely, the area of the suitability surface can be used to quantify the amount
of uncertainty, akin to standard deviation and variance in a probabilistic setting.
This area will practically (i.e. when using the unit interval to denote both the
possibility domain and the suitability domain) be quantifiable by a numerical
value between 0 and 1. Even if different domains are used, it is certain that
the uncertainty that is present in a suitability distribution will always be bound
between 0 and a certain upper bound that is straightforward to compute.

This information regarding uncertainty is extremely valuable. Based on
such a quantification of uncertainty, one is able to express a preference for
entities with particular attribute values and moreover with a limited amount
of uncertainty. Otherwise, uncertainty quantification can be valuable when the
goal is to uncover which entities are potentially very suitable, but too uncertain
to trust in analyses, meriting further investigation or data collection.

3.4.2 Ranking using suitability distributions
Though typical suitability distributions are fuzzy intervals, other forms of un-
certainty (e.g. John is either around 18 or at least 42 years old) also exists.
Suitability distributions from such uncertain values will usually correspond to a
fuzzy set with a non-convex shape function. Nonetheless, we will limit ourselves
to studying fuzzy intervals as non-convex shape functions can be broken down
into either a disjunction of convex parts or covered by a convex hull.

Several studies have already been devoted to the comparison of fuzzy num-
bers [12, 2, 22], but there is no real consensus in this area of research because
the semantics of fuzzy sets play a fundamental role when it comes down to how
they should be interpreted and, consequently, compared [13]. As we are dealing
with uncertain suitability degrees, we need to find a way to compare them in
a way that is meaningful. Regular suitability degrees have a clear interpreta-
tion in the sense that a higher value means a more suitable entity. Similarly,
the worst possible entity corresponds to a suitability distribution that only has
mass on 0 and the best possible entity to a distribution that only has mass on
1. Generic suitability distributions describe an area of suitability between these
bounds, indicating some form of graded suitability.

Under the assumption that we construct a flexible preference that is a flaw-
less representation of our preferences, then, when comparing two entities, a
strictly larger suitability degree, however small, would imply that the corres-
ponding entity is strictly more suitable to our needs than the other. We consider
this a meaningful ranking strategy for suitability degrees. Suitability distribu-
tions represent a set of possible suitability degrees for a possibly uncertain value
and, as such, imply a range of suitability for the corresponding entity.

3.4. INTERPRETATION AND RANKING OF SUITABILITY DISTRIBUTIONS45

In some cases, suitability distributions can be ranked unambiguously, despite
being uncertain. Consider for example the three entities (a), (b) and (c) rep-
resented by their respective suitability distributions shown in Figure 3.7. Here,
the fact that there is uncertainty regarding their precise degrees of suitability
is irrelevant as in any case the order is clear: (a) is strictly better than (c)
(regardless which values they both take), which is always strictly better than
(b) (it is certainly worse than the worst possible case for (c)).

In essence, these distributions can be ranked unambiguously because no
matter which attribute values the underlying entities actually take, they would
always be put in the same order according to the resulting suitability degrees.

Unfortunately, there are also many situations wherein the order is not clear:
as soon as the intersection of the supports of at least two suitability distributions
contains more than a single value, it is no longer guaranteed that one entity is
always better than the other. If we were to compute all possible rankings, we
would notice that they are not all equivalent. One could try to quantify the
possibility associated to each possible ranking and though this is, according to
the authors, the only truly correct solution, such an approach quickly becomes
unfeasible for large problems as the complexity of this solution grows exponen-
tially with both the amount of distributions and the degree to which they are
uncertain. Some of the research on this particular topic is described in [7, 18,
19].

Instead, we suggest a few heuristical approaches that allow us to compare
suitability distributions by translating them to a single, representative number.

3.4.3 Defuzzification strategies
As the name implies, defuzzification aims to turn a fuzzy value into an un-fuzzy
value. Defuzzification can be applied to suitability distributions in order to
make it easier to compare them to each other so as to obtain a global ranking
of a set of entities.

There are different ways to perform defuzzification, and different approaches
can (and typically will) result in different rankings. Regardless of which ap-
proach is used, defuzzification will come with a loss of information, not only

1

0 1
4

1
2

3
4

1

(a) sa,c

1

0 1
4

1
2

3
4

1

(b) sb,c

1

0 1
4

1
2

3
4

1

(c) sc,c

Figure 3.7: Example suitability distributions that are straightforward to com-
pare.

46 CHAPTER 3. QUERYING UNCERTAIN DATA

due to the fact that we are mapping an entire function to a single number,
but also due to so-called collisions. A collision describes the event where two
different suitability distributions are defuzzified onto the same numerical value.
When distributions collide, they can no longer be distinguished from one an-
other. However, collisions are somewhat predictable in the sense that certain
defuzzification strategies will always result in collisions of the same types of
distributions. Keeping this in mind will help us predict the impact of collisions,
which will in turn help us choose between stategies in particular situations.

In what follows, we will discuss several defuzzification strategies, broadly
categorized into two types: those that quantify uncertainty and those that result
in an indicator of overall suitability.

Defuzzifying with the intent to quantify uncertainty

Suitability distributions convey information about the amount of uncertainty
regarding the suitability of an entity regarding a specific query. There are sev-
eral ways to quantify this information, and we will discuss some of them here.
Typically, we want to quantify uncertainty with the purpose of comparing enti-
ties, though it can be a goal in an of itself to rank entities based on their overall
uncertainty. Technically, it is possible to rank entities according to uncertainty
by simply rephrasing the query criteria to map uncertainty rather than domain
values to suitability. As a result, one would obtain a suitability degree per en-
tity that is representative of uncertainty, which can then be used for sorting
purposes. However, suitability distributions make it possible to obtain simi-
lar rankings even when the original query was constructed towards suitability
without even considering that attribute values can be uncertain up front.

Quantification using the suitability area Perhaps the most intuitive way
to quantify the uncertainty of a suitability distribution is to compute the area
underneath the curve. This surface is an indicator of uncertainty for fuzzy sets
in general, but because suitability distributions are expressed over the suitability
domain, it is guaranteed that the area underneath any suitability distribution
will be between 0 and a fixed upper bound (1 in case the unit interval is used as
suitability domain). This does not just allow us to rank entities based on this
quantification, but also gives insight into the absolute amount of uncertainty of
each entity regarding a specific query. This way of defuzzifying suitability dis-
tributions will result in collisions between all distributions that have the same
surface. This can be counter-intuitive as the shape of the suitability distribu-
tion plays a large part in its surface calculation, and a triangular suitability
distribution will have to span a lot more possible values in the suitability do-
main than a rectangular (uniform) suitability distribution in order to result in
the same quantified degree of uncertainty. Arguably, the former distribution is
more uncertain, as it spans a wider range of possible suitability degrees. In addi-
tion, it should be noted that this approach should only be applied to uncertain
suitability intervals (i.e. uncertain suitability degrees whose distribution is a
convex membership function), as otherwise it can happen that certain and par-

3.4. INTERPRETATION AND RANKING OF SUITABILITY DISTRIBUTIONS47

ticular uncertain suitability distributions collide by being mapped to 0 (like, for
example, suitability distributions that result from the evaluation of a Boolean
criterion on an uncertain attribute value).

Quantification using the support of the distribution As an alternative
approach to quantify uncertainty, one could compute the difference between the
minimal and maximal possible suitability degree from the distribution. Again
due to the nature of the domain of suitability distributions, this defuzzification
strategy is guaranteed to result in a number between 0 and 1. In the absence
of uncertainty, minimal and maximal suitability are identical, resulting in a
quantification of 0. However, a whole family of suitability distributions can
result in the maximal uncertainty quantification of 1, even if there is only a
single fully possible suitability degree. This defuzzification strategy will result
in collisions between distributions with a similar core, but this time will not
distinguish between triangular and rectangular distributions, as they span the
same range of possible values.

Quantification using the support and core As a final strategy, a combi-
nation of the previous approaches can be used, thereby trying to strike a balance
between the area underneath the suitability distribution and the amount of pos-
sible suitability degrees it spans. As such, we propose to compute not only the
width of the support of the suitability distribution, but also that of the core of
the suitability distribution, and averaging both. As a result, rectangular suit-
ability distributions will have a maximal amount of uncertainty with respect
to their support, and triangular distributions a minimal amount (in case of a
regular average: half the width of the support). Using this approach, uncertain
values will still be the only ones that map to 0, but the uniform distribution is
again the only one that will result in a quantification of 1.

Suitability-focussed defuzzification

Suitability-focussed defuzzification strategies are those that translate a suitabil-
ity distribution to a suitability degree. These are “traditional” in the sense that
they follow the definition that defuzzification is the process of mapping a fuzzy
number to a regular number from the same domain. Intuitively, the number
resulting form defuzzifying a fuzzy number should be part of its support (i.e.
the chosen value should be a possible value).

Center of mass defuzzification A first defuzzification strategy that satisfies
this intuition is projection onto the abscissa of the center of mass xg [26] of the
suitability area. This can be viewed as a sort of weighted average of all possible
outcomes, where the graded possibility of each value is used as its weight:

xg =

∫ 1

0
xf(x)dx∫ 1

0
f(x)dx

48 CHAPTER 3. QUERYING UNCERTAIN DATA

Semantically, the center of mass can be viewed as an indicator of the “expected”
degree of suitability, taking into account all possible outcomes. As such, it por-
trays an attitude towards uncertainty which is generally robust to outliers that
have little possibility. This approach will reliably map unsuitable entities to
0 and perfect entities to 1. The more uncertain, the closer to 0.5 the defuzzi-
fied value will be. Indeed, a maximally uncertain value (the uniform suitability
distribution) maps to exactly 0.5. Note that the region near 0.5 is also where
mediocre entities will be mapped to. As such, the collisions for this defuzzifi-
cation strategy are typically between (highly) uncertain and mediocre entities.
One could argue that this behavior is a feature, as it will guarantee that the
almost certainly good and bad attributes will be mapped to respectively high
and low degrees of suitability, and that the middle zone is purposefully used to
collect the remaining (rather uncertain and certainly mediocre) results. From
that point of view, the center of mass approach can be chosen purposefully in
order to reliably separate the best and worst entities from the mediocre and un-
certain ones. This is not unusual because users are typically looking for reliable
and good entities. We say that this strategy denotes an attitude that exhibits
caution, as it acts as a kind of filter for uncertain entities.

Optimistic defuzzification Another way to defuzzify suitability distribu-
tions is by taking the maximal possible degree of suitability that is associated
with a degree of possibility larger than 0. In this case, the result of the defuzzi-
fication corresponds to the event that the attribute takes the best possible value
regarding the specified preferences, however unlikely that is. Choosing for this
approach illustrates an optimistic attitude by believing in the best possible case.
Alternatively, it could be seen as a greedy attitude, aggressively assuming the
best possible case while neglecting the fact that reality may very well be less op-
timal. It would be less aggressive to limit oneself to the suitability distribution’s
core instead, and to take the best fully possible value. In fact, one can use any
particular α-cut to place a limit on minimal required possibility. The closer α
lies to 0, the greedier the approach. Choosing for a specific α-cut is comparable
(though also different) to relying on confidence intervals in statistics. However,
suitability distributions allow one to specify both a confidence interval and an
α-cut, granting more flexibility.

Optimistic attitudes are typical for prediction systems which assume “nor-
mal conditions”, such as GPS-based routing software that predict time in the
assumption that no sudden accidents happen which could influence travel time.
Note that this defuzzification strategy always produces a suitability degree from
the support of the suitability distribution, even for those with a non-convex
membership function. Collisions caused by this approach make it impossible
to distinguish between one the one hand certainly good and on the other hand
uncertain but possibly good entities. In order to ensure that certain entities
are placed before uncertain entities that can reach the exact same degree of
suitability, one could break ties based on a quantification of uncertainty. For
example, the area underneath the suitability distribution could, in this context,

3.4. INTERPRETATION AND RANKING OF SUITABILITY DISTRIBUTIONS49

be considered as an indication of “how much worse” the entity could technically
be, essentially quantifying the possible risk of choosing this entity. As such,
one would rank by the defuzzified suitability first, and break ties by ascending
risk. One could argue that this defuzzification strategy is not in line with the
philosophy behind fuzzy logic, as it can lead to large distances between defuzzi-
fied values that are considerably close to each other. For example, two entities
whose suitabilities are certain and known to be equal to x and x + δ (where
δ can be any arbitrarily small but strictly positive number), will be separated
by all entities whose suitability is uncertain but maximally equal to x + δ. In
order to avoid this “crisp”, un-fuzzy behavior, we propose a different strategy.
The idea is to compute the optimistically estimated suitability degree and to
quantify the amount of uncertainty, and to combine both values in a sort of
weighted average. Hereby it is assumed that the quantified uncertainty is first
mapped to a degree of suitability y. Usually, y will be maximal for entities with
no uncertainty and minimal for maximally uncertain suitability distributions.
In any case, the quantified amount of uncertainty under optimistic defuzzifica-
tion depends on the maximal suitability degree x itself, and should be bound
between [0, x]. As such, y is always maximally 1 (there is no uncertainty) and
the higher x, the lower y can be. Only fully uncertain suitability distributions
(uniform across the entire suitability domain) can lead to y = 0. We propose
the following formula to compute the final value xf :

xf = x− γ(1− y) (3.5)

where γ ∈ [0, 1] can be used to tune the impact of uncertainty (0 implying indif-
ference and 1 implying most severe). Indeed, when γ = 0, the outcome is always
x, regardless of how uncertain x is. When there is no uncertainty (y = 1), the
final score xf is equal to x, regardless of γ. In all other cases, the optimistic
estimate x is lowered by an indication of the amount of uncertainty (1−y), mul-
tiplied by the impact factor. If γ = 1, a fully uncertain suitability distribution
is mapped to 0 (x = 1, y = 0). A γ-value of 0.5 will result in a balance with
equal weight for both optimism and uncertainty, somewhat approximating the
center of mass defuzzification. Lowering γ increases the impact of the optimistic
assumption.

Pessimistic defuzzification Dually, one could also defuzzify by taking the
minimal possible value that is associated with a degree of possibility larger than
0, assuming the worst possible case. Consequently, this defuzzification strategy
denotes a pessimistic attitude. This might be valuable when the outcome of
the decision is of critical importance and there is no room for error. As such,
it can be seen as an attitude of risk aversion. Again, one might also choose a
slightly less pessimistic attitude by choosing the minimal fully possible value,
e.g. the lowest suitability degree with degree of possibility equal to 1. As such,
very unlikely bad outcomes are purposefully ignored, again assuming “normal
circumstances”. Also here, collisions hide uncertainty, but again this can be
mitigated similarly to the previous approach. However, in this case, ties should

50 CHAPTER 3. QUERYING UNCERTAIN DATA

be broken by descending (rather than ascending) risk, as uncertainty from a
pessimistic point of view would imply that the entity could actually be better
than estimated. Similarly to the optimistic case, this approach is not very
fuzzy, and we can introduce a more fuzzy alternative. In this case, minimal
uncertainty would be mapped to minimal suitability. Indeed, from a pessimistic
angle, uncertainty is a good thing as it can only improve the suitability of an
entity, so more uncertainty is better. Letting z denote the suitability derived
from the quantified uncertainty of the suitability distribution, we have:

xf = x+ γz (3.6)

where, again, γ ∈ [0, 1] is the impact factor balancing suitability versus uncer-
tainty. Note that, if x = 1 under pessimistic defuzzification, there can be no
uncertainty and hence z = 0 and xf = 1, regardless of γ. Again, a γ-value of 0.5
will map the uniform distribution (in which case z = 1 to indicate a maximal
possible improvement in suitability) to a score of 0.5. More generally, a higher
value for γ will result in a higher impact of the uncertainty on the defuzzified
suitability value.

Reflection

We have discussed how to defuzzify a suitability distribution to either a suit-
ability degree or a quantification of uncertainty, but it certainly seems most
informative to have both indicators. This is not a new idea, it is very similar
to how parameters are used to describe entire probability mass functions. For
example, a Gaussian distribution is fully defined by merely its expected value
and its standard deviation, two indicators that are very closely related to the
center of mass on the one hand and the width of the (α0.05 cut) support of the
suitability distribution on the other. However, we should question the reliability
of the estimated suitability grade when the quantified uncertainty is very high,
just like we would be (rightfully) skeptical about the computed expected value
of a uniform distribution. Indeed, if a suitability distribution is in fact uniform,
then we can turn it into any result we want by choosing a specific defuzzification
strategy and tuning its parameters, though the uncertainty will always be max-
imal. This would seem to imply that the suitability degree is of no importance
when the uncertainty is maximal, so why bother with defuzzifying to a specific
value anyway? This extends beyond uniform distributions; the significance of a
specific suitability grade diminishes as the uncertainty increases.

However, there actually exist situations where the available information leads
to an exact suitability degree and a simultaneous overall degree of uncertainty.
One such situation can be found in the context of time-sensitive measurements.
Consider that, at a given time, a certain time-sensitive attribute is recorded,
for example the address of a friend. As time passes, you grow out of touch,
but after some years you decide to invite your friend to your wedding party.
However, you are not certain about whether or not the address on record is still
correct. Theoretically, we could digitize this scenario using a couple of values:
the original address, the moment at which you wrote it down and a parameter

3.4. INTERPRETATION AND RANKING OF SUITABILITY DISTRIBUTIONS51

that estimates the rate at which people move (the rate of “decay”), a process
that could probably be approximated by an exponential ditribution. Note that
this is similar to how arrival rates are modelled in queueing theory. In the
context of evaluating uncertain data, these could lead to a specific suitability
degree (based on the recorded value) and a quantified uncertainty (based on the
rate of decay and the time that has passed since the initial measurement).

This example is a bit artificial, as in the digital age that we live in, it is
very easy to keep connected through social media and you can reach out to
your friend at any time to verify their address (in other words: remeasuring
the data is fast, cheap and easy). However, it is just an example to show how
information that is stored in databases can become outdated as the actual value
changes from the one that was once recorded. Unlike the address of a friend, a
value that is stored in a database might not be so easy to measure, for obvious
reasons. In fact, many data are actually time-sensitive (more generally, they
are context-sensitive, but for this discussion, we will limit ourselves to changes
that occur due to the passing of time), though this is usually ignored and what
is stored in the database is considered correct. Off of this observation, we base
our motivation for an approach with a couple of grades that denote suitability
and uncertainty. Nonetheless, if an entire suitability distribution is given, then
a defuzzification to a suitability grade, a quantification of uncertainty and even
a combination of both still comes at a rather large loss of information.

Bipolar defuzzification

We have discussed how the semantics of quantified uncertainty depends on the
defuzzification strategy that is used (pessimistic, optimistic, ...). This is partic-
ularly undesirable for aggregation purposes, as we will see in the next chapter.
In order to mitigate this, we propose a final defuzzification strategy that can be
considered an extension that can be applied to all of the previously introduced
strategies.

Rather than defuzzifying to a suitability grade and a single indicator of
uncertainty, we will instead use two indicators of uncertainty: one indicative
of the amount of possible suitabilities lower than the defuzzified suitability
grade and one indicative of the amount of possible suitability higher than the
defuzzified suitability grade. The resulting couple of uncertainty grades could be
seen as a bipolar uncertainty indicator, with one of the grades having a negative
and the other having a positive connotation. The fact that these indicators have
fixed semantics is the driving force behind this approach.

Note that this extension can be applied for any combination of strategy for
calculating a suitability grade and method to quantify uncertainty from the
distribution. Essentially, rather than quantifying the entire distribution, the
distribution is split in two parts by the defuzzified suitability grade, and both
parts are quantified separately.

Example Consider defuzzifying the trapezoidal suitability distribution given
in Figure 3.8 using the center of mass strategy. This results in the defuzzified

52 CHAPTER 3. QUERYING UNCERTAIN DATA

1

0

Figure 3.8

suitability grade of 0.5. Quantifying the uncertainty as the area under the
distribution, we find 0.4 If we apply the extension, we would find (0.2, 0.2) to
be the bipolar uncertainty grade, as there is an equal amount of uncertainty
mass to the left of the defuzzified suitability grade as there is to the right.
If we, alternatively, use a soft pessimistic defuzzification (based on the core),
we find that the defuzzified suitability grade of the distribution is equal to 0.4
instead and that, though the area under the distribution is still 0.4, the bipolar
uncertainty grade now equals (0.1, 0.3). This reflects that the center of mass
defuzzification leads to a suitability grade that could be worse but also better,
whereas the pessimistic defuzzification leads to a suitability grade that could
actually be much better and not much worse.

3.5 Towards broader applications
In the above, we have introduced the concept of suitability distributions under
the initial assumption that information about a was given in the form of a
possibility distribution. In addition, we have assumed that both degrees of
satisfaction and degrees of possibility are expressed using a real number in the
unit interval.

In this section, we further develop the use of other theories of uncertainty
and at the same time introduce more general scales of preference. This leads to
the following, more general, definition of a suitability distribution:

su,c : S → B, σ → su,c(σ) = G
v∈Zσ

(u(v))

where S is a bounded lattice denoting a range of degrees of satisfaction, B is a
bounded lattice (not necessarily equal to S) denoting a range of degrees of belief,

3.5. TOWARDS BROADER APPLICATIONS 53

u : A→ B is a distribution of uncertainty, associating each value v ∈ A with a
degree of belief u(v) that v is the actual value of a and finally G the operator
to meaningfully aggregate degrees of belief from B. Consider for example S =
[−1, 1] (where −1 denotes dissatisfaction, 0 neutrality and 1 satisfaction), B =
[0, 1] and u a probability distribution, e.g. a Gaussian distribution. In that
case, G is replaced by a summation for discrete properties and an integration
for continuous properties. Alternatively, B could be an ordinal scale used to
express levels of confidence, u an ordinal possibility distribution [9, 11] and S
an ordinal scale of degrees of satisfaction. In what follows, we will demonstrate
that suitability distributions can be used in all these cases.

3.5.1 Discrete Probabilistic Uncertainty
Consider the case where the uncertainty over a is given by a discrete probability
distribution p. In this case, the belief assigned to Zσ must reflect the probability
that a takes a value v in Zσ. The additivity of a probability measure allows us
to replace G by the

∑
operator. Substituting this in the definition of sp,c, we

get:
sp,c(σ) =

∑
v∈Zσ

(p(v))

Example. Consider a fair 6-sided die. The outcome of throwing the die can be
predicted using a uniform distribution, where each outcome is equally probable:

∀i ∈ {1, 6} : p(i) = 1

6

Assume the following (discrete) preference for “high” outcomes (i.e. high out-
comes are more satisfying than low ones):

c(1) = 0

c(2) = 0

c(3) = 0

c(4) = 0.5

c(5) = 1

c(6) = 1

Then the resulting suitability distribution would be:

sp,c(0) = p(1) + p(2) + p(3) = 3

6

sp,c(0.5) = p(4) = 1

6

sp,c(1) = p(5) + p(6) = 2

6

54 CHAPTER 3. QUERYING UNCERTAIN DATA

Note that sp,c is again a probability distribution as the sum of all outcomes
equals 1. It can easily be seen that this will always be true as the suitability
distribution is by construction nothing more than a summation of all probabil-
ities according to a specific partitioning into satisfaction classes imposed by c.
This illustrates that suitability distributions preserve the framework of uncer-
tainty.

3.5.2 Continuous Probabilistic Uncertainty
Consider the case where the uncertainty over a is given by a continuous prob-
ability distribution p, called a density. So far, we have been able to use the
criterion to find all values resulting in a specific degrees of satisfaction. For
discrete properties, this is done exhaustively case-by-case by considering all val-
ues. However, this is impossible for continuous properties as the mapping is
infinite. Instead, we must rely on analytical expressions describing all rela-
tions. Considering c is the analytical expression associating values with degrees
of satisfaction, we can use its inverse c−1 to find all values corresponding to a
degree of satisfaction. Of course this requires that c−1 exists, which implies c
must be invertible. However, because a criterion might (and most likely will)
reflect that some values are equally satisfactory, c might not always be analyt-
ically invertible as a whole. To mitigate this, we require that c can be written
as a piecewise function that consists of either strictly monotonic or constant
sub-functions. Though this might seem restrictive, it is almost always true in
practice, as criteria are commonly expressed using linear correlations between
values and degrees of satisfaction due to their simplicity and intuitiveness. In-
deed, the most commonly used shape for membership functions, used to model
criteria, are trapezoids.

The key to approaching c as explained above is that each sub-function can
be treated separately, leading to a collection of partial suitability distributions.
The entire suitability distribution is the function sum of all partial suitability
distributions. Assume by convention that all values of the domain not covered
by a sub-function are considered to be mapped to inf(S), denoting they are
undesirable.

Constant sub-functions. Let us first examine constant sub-functions. Any
such criterion denotes a range of values [x, y] ⊆ A that are all equally preferable:
∀v ∈ [x, y] : c(v) = κ, reflecting indifference towards specific values from [x, y].
Thus, the statements “a takes a value from [x, y]” and “c is satisfied to degree
κ” are interchangeable. From probability theory we know that the probability
that the attribute takes any value from [x, y] equals the mass of the density
function in that range, thus:

Prob[c is satisfied to degree κ] =

∫ y

x

p(t)dt

Because all values in [x, y] lead to satisfaction degree κ, there is no way a can
satisfy c to a degree other than κ. As such, the partial suitability distribution

3.5. TOWARDS BROADER APPLICATIONS 55

s
(i)
a,c is 0 everywhere, except in κ. We express this using the Dirac-impulse, which

leads to:
s(i)p,c(τ) = k ∗ δ(τ − κ)

where k =
∫ b

a
p(x)dx is a scaling factor which safeguards that the mass of the

partial suitability distribution is equal to the mass of p over [x, y].

Strictly monotonic sub-functions. Let us now look at strictly monotonic
sub-functions. Let f : [x, y]→ [α, β] be a strictly monotonic function reflecting
an ordering of values in [x, y] ⊆ A according to degrees of satisfaction in [α, β] ⊆
S. If f is increasing then f(a) = α and f(b) = β, and ∀s, t ∈ [x, y], s < t : f(s) <
f(t). The probability that a then takes a value vk from [x, y] so that the criterion
is satisfied to degree at most κ = f(vk) ∈ [α, β] equals:

U(vk) =

∫ vk

x

p(t)dt

where U is the cumulative probability function of p. Because f is strictly mono-
tonic, it is invertible, so f−1 : [α, β]→ [x, y] exists and f−1(α) = a, f−1(β) = b
and f−1(γ) = vk. Substituting this connection between attribute values and
degrees of satisfaction gives:

U(f−1(γ)) =

∫ f−1(γ)

f−1(α)

p(x)dx

from which it can be seen that U can be written as a function of degrees of
satisfaction. Moreover, U(f−1(γ)) can be interpreted as the probability that the
attribute takes any value so c is satisfied to a degree of at most γ. Differentiating
this expression leads to the partial suitability density s

(i)
p,c:

d
dγ

U(f−1(γ)) =
d

dγ

∫ f−1(γ)

f−1(α)

p(x)dx

= p(v)

which, due to the invertibility of f and given τ = f(v), can be written as

p(v) = p(f−1(τ))

= s(i)p,c(τ)

This reflects that the unit probability that the criterion is satisfied to degree τ
equals the unit probability that the attribute takes the value v that corresponds
to that particular degree of satisfaction. It also shows that the suitability distri-
bution can be analytically expressed as a simple combination of the uncertainty
model (i.e., p) and the inverse of the preference model (i.e., f−1). Its domain
is [f−1(a), f−1(b)] = [α, β] and its range is B. An identical reasoning can be
applied to strictly monotonically decreasing sub-functions.

56 CHAPTER 3. QUERYING UNCERTAIN DATA

Combined. In the above, we have chosen to take a step-by-step approach
based on the decomposition of c into sub-functions. From each sub-function, a
resulting partial suitability distribution si can be found as described, effective
in the range of the sub-function. The total suitability distribution can be found
by summing all these partial suitability distributions:

sp,c(σ) =
∑
i

s(i)p,c(σ)

Note that this requires that all partial suitability distributions share the same
domain (S), which is not necessarily true: constant sub-functions only have
mass for a single degree of satisfaction and strictly monotonic sub-functions are
only defined on [α, β] ⊆ S. However, any partial suitability distribution si can
easily be expanded:

s′(i)p,c (σ) =

{
s
(i)
p,c(σ) σ ∈ [α, β]

0 σ ∈ S \ [α, β]

Note that a partial suitability distribution in general only covers a portion
of the total probability mass of the density p. This is true as soon as c consists
of more than one sub-function. As such, a partial suitability distribution is
not a density function. The entire suitability distribution however, as the sum
of all partial suitability distributions which form a complete partition of the
probability mass, is a density function, in analogy to the discrete case.

Temperature

1

Sa
tis

fa
ct

io
n

(“
w

or
ry

”)

34 35 36 37 38 39 40 41 42

Figure 3.9: Example of a suitability distribution over a probabilistically uncer-
tain property.

Example. Consider an example where a temperature is measured using mea-
suring equipment which is known to be error-prone according to a Gaussian
distribution with a standard deviation of 2 degrees Celsius. Assume further
we are trying to identify if we should be worried concerning a subject’s body
temperature, using a flexible criterion reflecting the degree to which we find
certain temperatures worrying, modeled by the membership function visualized
in figure 3.9. A measurement has resulted in a reading of 36.5 degrees Celsius.

3.5. TOWARDS BROADER APPLICATIONS 57

Thus, the uncertainty regarding the subject’s real temperature can be written
as:

T (t) = N (t|36.5, 2) = 1

2
φ

(
t− 36.5

2

)
with φ the standard normal distribution, N (x|0, 1). To conclude if there is
reason to worry about the subject given this reading, we construct the suitability
distribution of the measurement according to the criterion. To that end, we
decompose the criterion into three sub-functions:

• f0 = any temperature below 36: no reason for worrying.

• f1 = all temperatures above 39: extremely alarming.

• f2 = a temperature between 36 and 39: a linear increase in worry with
increasing temperature.

The first sub-function is constant, and as a result its corresponding partial
suitability distribution will be a Dirac impulse (assume here we denote satisfac-
tion with variable w, interpretable as a degree of worry):

s(0)(w) = δ(w)

∫ 36

−∞
T (t)dt

= δ(w)

∫ −1/4

−∞
φ(x)dx

The second sub-function is also constant, and analogously will lead to the
following partial suitability distribution:

s(1)(w) = δ(w − 1)

∫ +∞

5/4

φ(x)dx

The last sub-function is linear, and as the range of the criterion in this
interval is the entire unit interval [0, 1], the domain of the resulting partial
suitability distribution will also be [0, 1]. From f2 we know how temperature t
and satisfaction/worry w are correlated:

w =
t− 36

3
⇔ t = 3w + 36

Substituting this in T , the distribution expressing the uncertainty over the tem-
perature, we find the partial suitability distribution:

s(2)(w) = T (3w + 36)

= N
(
w|1

6
,
2

3

)
=

3

2
φ

(
3w − 1/2

2

)
, w ∈ [0, 1]

58 CHAPTER 3. QUERYING UNCERTAIN DATA

The total suitability distribution can now be found by summing the partial
suitability distributions. It is shown visually in Figure 3.10. It immediately
reflects our uncertainty, though it shows it is more likely there is no reason
to worry than there is. However, the nonzero probability for maximal worry
(indicated by the scaled Dirac impulse, denoted by an upwards arrow) might be
sufficient reason to perform further examinations of the subject. We can also see
that, apart from the probability mass that was aggregated into Dirac impulses,
the remaining density function is indeed part of a (rescaled and translated)
Gaussian distribution.

It can easily be verified that the result is normalized. Indeed, the total
probability equals 1 (Φ being the cumulative distribution function of φ):∫ +∞

−∞
s(0)(w) + s(1)(w) + s(2)(w)dw

=

∫ −1/4

−∞
φ(x)dx+

∫ +∞

5/4

φ(x)dx+

∫ 1

0

s2(w)dw

= Φ(−0.25) + [1− Φ(1.25)] +

∫ 1

0

3

2
φ

(
3w − 1/2

2

)
dw

= Φ(−0.25) + [1− Φ(1.25)] +

∫ 5/4

−1/4

φ(x)dx

= Φ(−0.25) + [1− Φ(1.25)] + [Φ(1.25)− Φ(−0.25)]
= 1

Satisfaction (“worry”)

D
en

sit
y

10

Figure 3.10: The resulting suitability distribution of the example illustrating
continuous probabilistic uncertainty.

Discretization. In practice, continuous variables often are discretized as the
concept of probability is much more comprehensible than that of density. Typ-
ically, this is done by splitting the domain into equal-width buckets. This form
of intuitive discretization is very common and relies on the definition of a unit,
denoting the width of the buckets. Consider for example the discretization of
time into seconds, temperature into degrees, age into years, mass into grams,

3.5. TOWARDS BROADER APPLICATIONS 59

and so on. Even distributions are often discretized (think of confidence intervals
and α-cuts). Of course, the unit of discretization depends on the application
and the measuring equipment used, which is often referred to as the granularity
of discretization. Regardless, it is safe to assume that it will often be acceptable
to use the far simpler discrete approach than the continuous approach.

3.5.3 Qualitative preference and uncertainty
Due to the maxitivity instead of additivity of possibility measures, one can use
possibility distributions in an ordinal fashion. As a final scenario in which we
develop the concept of suitability distributions, we consider the case where both
uncertainty and preference are expressed in a purely qualitative manner. More
specifically, it is assumed that both uncertainty and preference are expressed on
an ordinal scale. Consider a discrete property for which A = {a, b, c, d}. Let

B = {impossible, unlikely, plausible, likely}

be an ordinal scale of belief and � be a strict order denoting “more plausible
than”. Assume likely � plausible � unlikely � impossible. Let there be a
mapping m : B → R such that ∀bi, bj ∈ B : bi � bj ⇒ m(bi) > m(bj) Using m
we may derive max(bi, bj) from max(m(bi),m(bj)). Note that the precise image
of m is not important as long as the aforementioned holds. Let the uncertainty
regarding a be represented by an ordinal possibility distribution π:

π(a) = unlikely

π(b) = plausible

π(c) = impossible

π(d) = likely

Furthermore, let

S = {unacceptable, acceptable, preferable}

be an ordinal scale of satisfaction. Completely analoguous to the above, assume
there is a strict order relation on these degrees of satisfaction (in the order
in which they are defined) and that there exists a mapping to a numerical
representation such that this order is translated to the greater-than relation.
Let our preferences towards the values the property can take be modeled by c:

c(a) = acceptable

c(b) = preferable

c(c) = preferable

c(d) = unacceptable

The resulting suitability distribution s is then equal to:

s(unacceptable) = likely

s(acceptable) = unlikely

s(preferable) = plausible

60 CHAPTER 3. QUERYING UNCERTAIN DATA

whose interpretation is immediately clear. This example highlights that suit-
ability distributions can be applied in combination with ordinal frameworks for
uncertainty and satisfaction. Note that this can also be applied to continuous
properties.

3.6 Summary and future research opportunities
In this chapter, we have shown the intricacies of applying flexible criteria on
uncertain data and we have subsequently introduced a technique that produces
semantically rich results under circumstances for which we have argued they
pose few constraints in realistic situations. Moreover, the proposed approach is
a true generalization of both flexible querying on traditional data and traditional
querying on uncertain data, and can thus be applied in all combinations, unlike
other current solutions. The result of the approach yields a suitability distribu-
tion, a model for the uncertainty regarding the degree to which the attribute
value in question is suitable for the specified flexible criterion. We have shown
how suitability distributions can be computed for two common frameworks for
uncertainty modeling: possibility and probability theory, both for discrete and
continuous cases. We have given an overview of interesting properties these dis-
tributions have. Furthermore, we have shown how they can be compared and
how they might be aggregated. Towards automated ranking, we argue that one
must choose a strategy expressing a subjective attitude towards uncertainty,
similar to how a criterion expresses a preference towards specific domain values.
However, it is possible to perform the evaluation without loss of information
and without the need to specify such an attitude, if ranking is not the purpose.
Essentially, the act of ranking is decoupled from the evaluation process, which
is also different from existing approaches, wherein the user must be aware of
uncertainty before specifying their initial preferences.

Towards future research, it would be interesting to investigate the applicabil-
ity of suitability distributions on other, more extended models for uncertainty,
including type-2 fuzzy sets, interval-valued fuzzy sets, Atanassov’s intuitionistic
fuzzy sets [1] and hesitant fuzzy sets [27, 24].

Bibliography

[1] Krassimir T Atanassov. “Intuitionistic fuzzy sets”. In: Fuzzy sets and Sys-
tems 20.1 (1986), pp. 87–96.

[2] Christophe Billiet, Antoon Bronselaer, and Guy De Tré. “A Compari-
son Technique for Ill-known Time Intervals”. In: Proceedings of the IEEE
International Conference on Fuzzy Systems. Vancouver, Canada, 2016,
pp. 1963–1969.

[3] P. Bosc, M. Galibourg, and G. Hamon. “Fuzzy querying with SQL: Exten-
sions and implementation aspects”. In: Fuzzy Sets and Systems 28.3 (1988),
pp. 333–349. issn: 01650114. doi: 10.1016/0165-0114(88)90039-5.

[4] Patrick Bosc and Olivier Pivert. “Fuzzy queries against regular and fuzzy
databases”. In: Flexible query answering systems. Springer, 1997, pp. 187–
208.

[5] Patrick Bosc and Olivier Pivert. “SQLf: a relational database language
for fuzzy querying”. In: IEEE transactions on Fuzzy Systems 3.1 (1995),
pp. 1–17.

[6] M Cayrol, H Farreny, and H Prade. “Fuzzy pattern matching”. In: Kyber-
netes 11.2 (1982), pp. 103–116.

[7] Graham Cormode, Feifei Li, and Ke Yi. “Semantics of ranking queries
for probabilistic data and expected ranks”. In: Data Engineering, 2009.
ICDE’09. IEEE 25th International Conference on. IEEE. 2009, pp. 305–
316.

[8] Robin De Mol, Antoon Bronselaer, and Guy De Tré. “Evaluating flexible
criteria on uncertain data”. In: Fuzzy Sets and Systems (2017).

[9] Didier Dubois and Henri Prade. “Formal Representations of Uncertainty”.
In: Decision-Making Process: Concepts and Methods (2009), pp. 85–156.

[10] Didier Dubois and Henri Prade. “Possibility theory , probability theory
and multiple- valued logics : A clarification”. In: Annals of Mathematics
and Artificial Intelligence 32 (2001), pp. 35–66. issn: 1012–2443. doi:
10.1023/A:1016740830286.

[11] Didier Dubois and Henri Prade. “Practical Methods for Constructing Pos-
sibility Distributions”. In: International Journal of Intelligent Systems 31.2
(2015), pp. 215–239. issn: 08848173. doi: 10.1002/int.

61

62 BIBLIOGRAPHY

[12] Didier Dubois and Henri Prade. “Ranking fuzzy numbers in the setting of
possibility theory”. In: Information sciences 30.3 (1983), pp. 183–224.

[13] Didier Dubois and Henri Prade. “The three semantics of fuzzy sets”. In:
Fuzzy sets and systems 90.2 (1997), pp. 141–150.

[14] Didier Dubois and Henri Prade. “Unfair coins and necessity measures:
Towards a possibilistic interpretation of histograms”. In: Fuzzy Sets and
Systems 10.1-3 (1983), pp. 15–20. issn: 01650114. doi: 10.1016/S0165-
0114(83)80099-2.

[15] Gert De Cooman. “Possibility theory 1: The measure- and integral-theoretic
groundwork”. In: International Journal of General Systems 25.4 (1997),
pp. 291–323.

[16] Gert De Cooman. “Possibility theory 2: Conditional possibility”. In: In-
ternational Journal of General Systems 25.4 (1997), pp. 325–351.

[17] Gert De Cooman. “Possibility theory 3: Possibilistic independence”. In:
International Journal of General Systems 25.4 (1997), pp. 353–371.

[18] Ihab F Ilyas, George Beskales, and Mohamed A Soliman. “A survey of top-
k query processing techniques in relational database systems”. In: ACM
Computing Surveys (CSUR) 40.4 (2008), p. 11.

[19] Jeffrey Jestes et al. “Semantics of ranking queries for probabilistic data”.
In: IEEE Transactions on Knowledge and Data Engineering 23.12 (2011),
pp. 1903–1917.

[20] Janusz Kacprzyk and Andrzej Ziolkowski. “Database queries with fuzzy
linguistic quantifiers”. In: IEEE transactions on systems, man, and cyber-
netics 3.16 (1986), pp. 474–479.

[21] Cengiz Kahraman. Fuzzy multi-criteria decision making: theory and ap-
plications with recent developments. Vol. 16. Springer Science & Business
Media, 2008.

[22] “Possibilistic evaluation of sets”. In: International Journal of Uncertainty,
Fuzziness and Knowledge-Based Systems 21.3 (2013), pp. 325–346. doi:
10.1142/S0218488513500177.

[23] Henri Prade and Claudette Testemale. “Generalizing Database Relational
Algebra for the Treatment of Incomplete or Uncertain Information and
Vague Queries”. In: Information Sciences 143 (1984), pp. 115–143.

[24] Rosa M Rodrı́guez et al. “Hesitant fuzzy sets: state of the art and future
directions”. In: International Journal of Intelligent Systems 29.6 (2014),
pp. 495–524.

[25] Valiollah Tahani. “A conceptual framework for fuzzy query processing: a
step toward very intelligent database systems”. In: Information Processing
& Management 13.5 (1977), pp. 289–303.

[26] Tomohiro Takagi and Michio Sugeno. “Fuzzy identification of systems
and its applications to modeling and control”. In: IEEE transactions on
systems, man, and cybernetics 1 (1985), pp. 116–132.

BIBLIOGRAPHY 63

[27] Vicenç Torra. “Hesitant fuzzy sets”. In: International Journal of Intelligent
Systems 25.6 (2010), pp. 529–539.

[28] Zeshui Xu. Uncertain multi-attribute decision making: Methods and appli-
cations. Springer, 2015.

[29] Lotfi A Zadeh. “The concept of a linguistic variable and its application to
approximate reasoning”. In: Information sciences 8.3 (1975), pp. 199–249.

[30] Sławomir Zadrożny et al. “An overview of fuzzy approaches to flexible
database querying”. In: Database Technologies: Concepts, Methodologies,
Tools, and Applications: Concepts, Methodologies, Tools, and Applications
1 (2009).

64 BIBLIOGRAPHY

Chapter 4

Aggregation and Suitability
Distributions

4.1 Introduction
So far, we have introduced the suitability distribution as a way to represent
the (uncertain) degree to which an (uncertain) attribute value satisfies a given
criterion, discussed its semantics and shown how it can be defuzzified in differ-
ent ways in the interest of sorting a set of entities. In order to obtain a single,
objective and consistent ranking, it is required that the user not only formulates
a suitability function over the domains of the attributes, but also an attitude
towards uncertainty. We have shown how suitability distributions are not only
flexible in the sense that they can reflect how different attitudes result in dif-
ferent rankings, but also that they can be used to answer questions regarding
uncertainty in itself.

However, many systems rely on more than a single criterion when evaluating
and comparing alternatives. Typically, there is a so-called multi-criteria deci-
sion making process or a multi-criteria query evaluation process, which involves
different criteria and inter-criteria relations. Whereas the criteria denote pref-
erences towards specific attributes’ domain values, the inter-criteria relations
represent logical connectives between the criteria. Specific platforms, called de-
cision support systems, rely on fuzzy logic in order to be able to translate the
decision logic of decision makers in a way that adequately reflects human rea-
soning. This is then used to compute a global suitability grade per entity. The
overall purpose is to make it easier for the decision maker to get an overview of
which entities satisfy their combined preferences.

Multi-criteria decision support is usually a two-step process: first a set of
elementary criteria (i.e. criteria on particular attributes) are defined and evalu-
ated, and second an aggregation structure is used to compute a single suitability
grade per entity. The aggregation structure models an inter-criteria synergy,
which corresponds to particular logic connectives. Examples of such connec-

65

66 CHAPTER 4. AGGREGATION AND SUITABILITY DISTRIBUTIONS

tives are all, any, most, some and so on.
We will study if and how suitability distributions can be used in decision

support systems. Our approach is to replace the elementary suitability grades
with suitability distributions. The question we need to answer is how this will
impact the mathematical backbone of the aggregation structure.

The remainder of this chapter is structured as follows. In section 4.2, we will
first give detailed information on how aggregation is done traditionally. This
overview will introduce basic aggregation operators but also more advanced,
fuzzy aggregators, that are capable of modelling linguistic connectives such as
“most”, “some”, “few”... and different ways to implement them. Then, in
section 4.3, we show how fuzzy integration (one such implementation) can be
adapted so that it can be used to implement partial absorption operators (a
subset of these flexible aggregation operators). Afterwards, section 4.4 discusses
the aggregation of suitability distributions. This discussion first explores the
option to defuzzify before aggregating, and the advantages and disadvantages
that come with it. Second, the focus is on aggregating suitability distributions
directly, ranging from basic operators to fuzzy operators. Remaining research
opportunities are summarized in section 4.5, which concludes the chapter.

4.2 Aggregation: Structure and Quantifiers
So far, we have focussed on evaluating a set of entities using a flexible criterion,
with the intention to rank the entities from best to worst. As soon as at least
two criteria are included in an evaluation process, ranking entities stops being
a trivial task. Indeed, for each criterion, an entity is evaluated to a suitabil-
ity grade representative of how well it satisfies the corresponding criterion, but
according to which should the entities then be sorted? Similar to the case of
sorting suitability distributions, there are some situations which are unambigu-
ous and in which a total order is unarguably clear. For example, if entity r1
has a suitability grade vector (0.8, 1, 0.6) for three corresponding elementary
criteria c1, c2 and c3, then compared to entity r2, which scores (0.3, 0.5, 0.1) for
the same criteria, it is better in every aspect. Unambiguously, r1 is a better
candidate than r2. However, how does r1 compare to r3, defined by suitability
grade vector (1, 0.7, 0.8)? Without specifying the relative importance of the cri-
teria and their logical connectives, it is impossible to say which entity is better.
In order to make a decision, however, we need to select one. Decision support
systems try to be of assistance in this regard by using an aggregation structure
to compute a single, global (suitability) suitability grade per entity.

4.2.1 Properties of aggregation structures
It is usually assumed that the result of aggregating several (elementary) suit-
ability grades should be a suitability grade that lies between the minimum and
maximum of its inputs. Moreover, if all inputs are equal, then the output should
be equal to the inputs, too. As such, aggregation is typically implemented math-

4.2. AGGREGATION: STRUCTURE AND QUANTIFIERS 67

ematically using a mean. The closer the outcome of an aggregator lies to the
minimum, the more “conjunctive” it is said to be (dually “disjunctive” with re-
spect to the maximum). The arithmetic mean is special because it is exactly as
conjunctive as it is disjunctive and thus depicts a neutral form of aggregation.
Aggregators that have a result between the arithmetic mean and the minimum
(full conjunction) are said to be partial conjunctions. These embed the se-
mantics of simultaneity, meaning that lower elementary suitability grades will
have a larger negative impact on the outcome than higher elementary suitability
grades will have a positive impact. An entity that satisfies only “most” criteria
well will, through partial conjunction, be mapped to a mediocre global suitabil-
ity grade. Similarly, aggregators whose result falls between the arithmetic mean
and the maximum (full disjunction) are called partial disjunctions, which model
replaceability. As the term suggests, replaceability implies that criteria can, to
some grade, replace each other, representing a sort of redundancy. Under par-
tial disjunction, it suffices that an entity satisfies no more than “some” of the
criteria well in order to obtain a good suitability grade. Though aggregators can
be categorized purely on how conjunctive (or disjunctive) they are, it is more
meaningful to approach them from a semantic point of view [12]. For example,
it is easier to understand that “at least 3 of the 5 criteria should be satisfied”
than it is to interpret what it means when an aggregator is conjunctive to degee
0.8. The different frameworks that implement fuzzy aggregators differ mainly
in the semantics that they support, and how precisely they can be fine-tuned
[16].

In its simplest form, an aggregation structure corresponds to a single ag-
gregator that expresses the inter-criteria synergy connecting all elementary cri-
teria. However, aggregation structures can also be constructed hierarchically,
first combining certain elementary criteria into an intermediate suitability grade,
then aggregating these intemediary grades further with a separate aggregator.
This nesting process can be repeated as many times as necessary until a single,
global suitability grade is obtained. This makes it possible to model compound
logic, like “either this criterion should be satisfied, or at least 2 of those 3 criteria
should be”.

4.2.2 Boolean aggregators
Commonly known are the existential and universal quantifiers, which denote
that respectively any and all criteria must be satisfied. These also represent
the Boolean inter-criteria connectives ‘or’ and ‘and’, respectively representing
the full disjunction and the full conjunction.

In multi-valued logic, the conjunction is implemented using a triangular
norm (t-norm) [23, 19]. A t-norm > must satisfy the following properties:

• >(a, b) ≤ >(c, d) if a ≤ c and b ≤ d (monotonicity)

• >(a, b) = >(b, a) (commutativity)

• >(a,>(b, c)) = >(>(a, b), c) (associativity)

68 CHAPTER 4. AGGREGATION AND SUITABILITY DISTRIBUTIONS

• >(a, 1) = a (1 is the identity element)

Though there are different variations that realize the t-norm, the Gödel t-norm
(also the minimum t-norm) is considered the standard for conjunction in fuzzy
logic because it is the only one that satisfies the properties of an aggregation
operator. In addition, it is also the strictest of the t-norms, which corresponds
to full conjunction. The Gödel t-norm >min essentially selects the minimum of
its inputs:

>min(s1, s2, . . . , sn) = min
i

si =

n∧
i=1

si

It can quickly be verified that the Gödel t-norm confirms classical logic by de-
coding true to 1 and false to 0, in which case the outcome indeed corresponds
to that of the traditional, Boolean conjunction.

Some of the other t-norms (like the product and Łukasiewicz t-norms) for-
malize even stronger conjunctions. For example, for two identical elementary
suitability grades 0.5 and 0.5 (reprensenting two semi-satisfied criteria), the
conjunction under the different t-norms is computed as follows:

>min(0.5, 0.5) = min(0.5, 0.5) = 0.5 (4.1)
>prod(0.5, 0.5) = 0.5.0.5 = 0.25 (4.2)
>Luk(0.5, 0.5) = max(0, 0.5 + 0.5− 1) = 0 (4.3)

Though these t-norms could all be used to compute a global suitability grade,
they will not be considered further as they do not respect the desired properties
of aggregators. In addition, it can be seen that the final ranking that would be
obtained by applying these alternative t-norms would largely be similar to that
under the Gödel t-norm, albeit slightly rescaled (i.e. the distance between two
outputs may be different depending on the t-norm that is used).

The classical disjunction can be realized by a triangular conorm ⊥ (t-conorm
or s-norm). T-conorms must satisfy the same four properties as t-norms with
the exception that the identity element is 0, rather than 1. Similarly to the
Gödel t-norm, the Gödel t-conorm (or maximum t-conorm) is considered the
standard in fuzzy logic:

⊥max(s1, s2, . . . , sn) = max si =
∨

i = 1nsi

4.2.3 Advanced aggregators
For most practical problems, it is rarely the case that precisely all or only one
of the criteria should be satisfied, especially when the amount of criteria is
large. Hence, we will need other aggregators than just t-norms and t-conorms.
Another aggregator that is well known is the arithmetic mean:

sg =

∑n
i=1 si
n

4.2. AGGREGATION: STRUCTURE AND QUANTIFIERS 69

In order to be able to distinguish which criteria are more important than others,
relative weights can be added to each of the criteria:

sg =

∑n
i=1 wisi∑n
i=1 wi

These weights express relative importance, i.e. w1 = 2w2 implies that s1 is
twice as important as s2. The weights are often normalized such that their sum
equals 1, which makes it easier to derive the absolute impact of a certain weight
and generally simplifies the formula (the denominator disappears). With these
weights, it is possible to filter certain inputs by setting their weight to 0. The
corresponding input will then have no impact on the outcome of the aggregator
and the outcome would be the same as if that particular input has not included
in the aggregation in the first place.

Simplified to the Boolean case, the arithmetic mean boils down to the frac-
tion of criteria that are satisfied. In the fuzzy case, it gives an overview of the
average elementary suitability grades. Unfortunately, when using the arithmetic
mean in fuzzy situations, it is impossible to distinguish between entities that
fully satisfy half of the criteria and entities that partially satisfy all criteria to
grade 0.5. In situations where we need to do just that, we need to use a different
aggregator (which will turn out to be a partial conjunction).

Partial aggregators (partial conjunctions and disjunctions) have been imple-
mented through different mathematical approaches. In the following, the three
leading approaches are summarized.

The Generalized Conjunction/Disjunction

Quantifiers such as ‘at least X’, ‘about Y’, ‘most’, ‘few’,... are too complicated to
represent mathematically with a traditional weighted average. Dujmović studied
the use of the power mean and found that he was able to link its outcome
to different degrees of “andness” (simultaneity) by changing the value of the
exponent p [15]:

sg =

(
1

n

n∑
i=1

spi

)(1/p)

As with a traditional average, there is also a weighted variant of the generalized
mean:

sg =

(
n∑

i=1

wis
p
i

)(1/p)

In this form, it is assumed that the weights are already normalized such that they
sum up to 1. Similarly to the traditional weighted average, the weights dictate
the importance of the inputs, and assigning a weight of 0 to an input can be done
in order to exclude that input from the calculations. Based on his definition
of the generalized conjunction/disjunction (GCD), Dujmović implemented his
own decision support system called Logic Scoring of Preferences (LSP) [12].

70 CHAPTER 4. AGGREGATION AND SUITABILITY DISTRIBUTIONS

Dujmović categorizes aggregators into five classes: full conjunction (∧), par-
tial conjunction (4), arithmetic mean, partial disjunction (5) and full disjunc-
tion (∨).

y = x1♦ . . .♦xm =

x1 ∨ . . . ∨ xm, α = 0, ω = 1
x1 5 . . .5 xm, 0 < α < 0.5, 0.5 < ω < 1
(x1 + . . .+ xm)/m, α = ω = 0.5
x14 . . .4xm, 0.5 < α < 1, 0 < ω < 0.5
x1 ∧ . . . ∧ xm, α = 1, ω = 0

In the above, α denotes “andness” and ω denotes “orness”. Note that α
and ω are tightly coupled and technically only of them is needed in order to
be able to express all degrees of generalized conjunction/disjunction. Using the
(weighted) power mean, α (and dually ω) is tied to the value of the exponent
p. Particular values of p correspond to particular degrees of andness. A sum-
mary of 17 concrete levels, proposed by Dujmović in [13], is given in Table 4.1.
This table also shows the output that is obtained by aggregating a fully satis-

Gradient Symbol p α GCD(1, 0)
Strongest Conjunction C −∞ 1 0.000
Very Strong Conjunction C++ −9.060 15/16 0.000
Strong Conjunction C+ −3.510 7/8 0.000
Medium Strong Conjunction C+− −1.655 13/16 0.000
Medium Conjunction CA −0.720 3/4 0.000
Medium Weak Conjunction C−+ −0.148 11/16 0.000
Weak Conjunction C− 0.261 5/8 0.070
Very Weak Conjunction C−− 0.619 9/16 0.326
Neutrality A 1 1/2 0.500
Very Weak Disjunction D−− 1.449 7/16 0.620
Weak Disjunction D− 2.018 3/8 0.709
Medium Weak Disjunction D−+ 2.792 5/16 0.780
Medium Disjunction DA 3.929 1/4 0.838
Medium Strong Disjunction D+− 5.802 3/16 0.887
Strong Disjunction D+ 9.521 1/8 0.930
Very Strong Disjunction D++ 20.63 1/16 0.967
Strongest Disjunction D +∞ 0 1.000

Table 4.1: Gradients of the partial conjunction/disjunction and an example of
a GCD aggregator.

fied and a fully unsatisfied criterion. We can see that the partial conjunction
produces a 0 output up to the “medium weak conjunction”, despite the value
of p changing. This range signifies a “hard” partial conjunction. We say any
requirements combined by those aggregators are mandatory. Other variants of
the partial conjunction (the weak partial conjunction and the very weak partial
conjunction) are considered to combine inputs in a non-mandatory way, while

4.2. AGGREGATION: STRUCTURE AND QUANTIFIERS 71

still rewarding situations where all inputs are high. The more we lean towards
the full disjunction, the more orness plays a role and the more the global suit-
ability grade increases up to the highest degree of satisfaction among the inputs,
which is finally reached at the full, pure disjunction.

Note that there is no symmetry regarding a “hard” disjunction, only the
most extreme value for p yields a true, full disjunction.

(Weighted) Ordered Weighted Averaging

Yager takes a different point of view with his ordered weighted averaging (OWA)
approach [31, 30], in which a weight-generating function is used to model dif-
ferent degrees of conjunctivity.

To evaluate an OWA operator with a weight-generating function f : [0, 1]→
[0, 1], one must first evaluate all criteria and sort them descendingly. Let x
denote the sorted elementary suitability grades resulting from this first step,
then the global suitability is calculated as follows:

sg
OWA
=

n∑
i=1

xi

[
f

(
i

n

)
− f

(
i− 1

n

)]
(4.4)

A function f can be used as a weight-generating function if it satisfies the
following constraints:

f(0) = 0 (4.5)
f(1) = 1 (4.6)
∀x, y ∈ [0, 1], x ≤ y : f(x) ≤ f(y) (4.7)

In words, the weight-generating function must be monotonically increasing and
be translated and scaled so it passes through both the origin and (1, 1).

The weight-generating function defines the behavior of the OWA operator.
It is possible to construct functions such that the OWA operator implements
the disjunction, arithmetic mean and conjunction. These functions are shown in
Figure 4.1. Consider, for example, the function depicted in Figure 4.1a. When
used in formula 4.4, it is clear that x1 will have weight 1 and that all remaining
xi will subsequently have weight 0. In other words, only the most satisfied
criterion determines the output, and even defines it directly. Indeed, this is the
behavior of the disjunction. Similarly, Figure 4.1c shows the conjunction and
Figure 4.1b the arithmetic mean.

As mentioned earlier, partial conjunctions lie between the arithmetic mean
and the (full) conjunction. An example of a weight-generating function that
realizes a partial conjunction is shown in Figure 4.2a. It is easily verified visually
that this function strikes a middle ground between the arithmetic mean and
the conjunction, but let us examine an example to prove it is truly a partial
conjunction.

72 CHAPTER 4. AGGREGATION AND SUITABILITY DISTRIBUTIONS

1

0

(a) Disjunction

1

0

(b) Arithmetic mean

1

0

(c) Conjunction

Figure 4.1: Examples of functions that can be used to define the behavior of an
OWA operator.

Example. Consider that, for some entity, the evaluation of three criteria leads
to the following three elementary suitability grades: (0.3, 1.0, 0.8). Using a
conjunction, these values would aggregate to 0.3, whereas the arithmetic mean
equals (0.3+1.0+0.8)/3 = 0.7. We will use the function f(x) = x2 to represent
a partial conjunction. First, x =< 1.0, 0.8, 0.3 > is constructed by sorting the
elementary suitability grades. Then, we can compute sg:

sg = 1

(
f

(
1

3

)
− 0

)
+ 0.8

(
f

(
2

3

)
− f

(
1

3

))
+ 0.3

(
1− f

(
2

3

))
=

1

9
+

3

9
0.8 +

5

9
0.3

=
49

90

We indeed find that the result (roughly 0.54) lies between the full conjunction
and the arithmetic mean. The weight generating function associated the lowest
weight (1/9th) to the fully satisfied criterion and the highest weight (5/9th,
more than half) to the least satisfied criterion.

It can easily be verified that increasing the power to which x is raised in f
increases the “conjunctivity” of f . The more conjunctive f is, the more weight
it will assign to the worst criterion. Other examples of fuzzy quantifiers are
shown in Figure 4.2.

The OWA operators have received several points of criticism. For starters,
OWA operators do not discriminate between individual criteria. This means
that the same weight may be distributed to a different criterion for different
entities. In addition and related to this is that the weight of an input can
not be set directly. To address these issues, Yager proposed an extension to
OWA which adds the option to define a weight for each attribute. The resulting
technique is called weighted OWA (WOWA). In WOWA, the user is required to
define a weight vector w with as many elements as there are criteria, such that
wi ∈ [0, 1] is the weight for criterion ci and that

n∑
i=1

wi = 1

4.2. AGGREGATION: STRUCTURE AND QUANTIFIERS 73

1

0

(a) Most

1

0

(b) Some

1

0

(c) At least half

Figure 4.2: Examples of functions that can be used to achieve linguistic “fuzzy”
quantifiers with an OWA operator.

In other words, the weights should be normalized so they sum up to 1.
The procedure for computing the global suitability grade is slightly altered.

When sorting the criteria according to the elementary suitability grades, the
weights are sorted in the same order. Assume that the sorted weight vector is
called y. The global suitability grade is computed as:

sg
WOWA

=
n∑

i=1

[zixi]

where the weight zi of the ith best criterion xi is defined as:

zi = f

 i∑
j=1

yj

− f

i−1∑
j=1

yj

with z0 , 0.

Example. Consider that evaluating three criteria c1, c2 and c3 with respec-
tive weights 0.5, 0.3 and 0.2 on some arbitrary entity lead to the following
respective elementary suitability grades: (1.0, 0.2, 0.4). We will use the arith-
metic mean f(x) = x as weight-generating function to compute the global
suitability grade using OWA. First, we sort the suitability grades and their
associated weights according to their descending elementary suitability grade:
x =< (1.0, 0.5), (0.4, 0.2), (0.2, 0.3) >. Second, the global suitability grade is
calculated:

sg = 1 (f (0.5)− 0) + 0.4 (f (0.5 + 0.2)− f (0.5)) + 0.2 (1− f (0.5 + 0.2))

= 0.5 + 0.08 + 0.06

= 0.64

As expected, the result 0.64 corresponds to the weighted average of the elemen-
tary suitability grades according to the specified weight vector.

74 CHAPTER 4. AGGREGATION AND SUITABILITY DISTRIBUTIONS

Choquet/Sugeno integration

Though not invented by Choquet for the purpose of decision making [2], fuzzy
integrals were adopted as aggregators for use in DSS [20, 22, 24] shortly after
Sugeno independently defined a similar core concept (ordinal integration) [26].
A fuzzy integral is a computational method that is applied on a fuzzy measure
defined on the powerset of all criteria. The fuzzy measure G is used to associate
a weight to each possible subset of criteria. The weight of a particular set of
criteria C is given by G(C). Hereby, the axioms of a fuzzy measure must be
satisfied. For convenience, they are briefly repeated here:

G(∅) = 0

G(U) = 1

∀C1, C2 ∈ U : C1 ⊆ C2 ⇒ G(C1) ≤ G(C2)

Recall that U denotes the universe of discourse, here representing the set con-
taining all criteria.

Choquet’s discovery of the fuzzy integral can be applied on ratio scales,
whereas Sugeno’s version is better suited for ordinal scales. Choquet’s version
of the fuzzy integral can be applied in the context of decision making as an
aggregator as follows:

1. Evaluate every criterion ci. Let thereby sr,ci represent the degree to which
r satisfies ci.

2. Sort the criteria according to these degrees from best to worst (highest to
lowest value). Let x be this vector.

3. Add the elements of x to a solution set one by one, in order, each time
raising the intermediary output (starting at 0) by the product of xi with
the increase in weight of the solution sets before and after adding this
criterion. Hereby the weight of a solution set C is given by the fuzzy
measure as G(C).

Let O : N≤n → [0, 1] (N≤n being the n first natural numbers: 1, 2, . . . , n) be a
weight-defining function such that O(i) = G(

⋃i
j=1 xj) corresponds to the weight

of the solution set that contains the best i criteria (i.e. the first i elements of
x). Then, for the given entity, the resulting aggregated suitability sg using the
Choquet integral, computed under the fuzzy measure G whose weight-defining
function is O, equals:

sg
FI
=

n∑
i=1

[xi[O(i)−O(i− 1)]]

By convention, O(0) , 0. Indeed, sg is a weighted average of all sr,ci , and,
under the assumption that all criteria and the fuzzy measure G are normalised,
will always be bound between 0 and 1.

4.2. AGGREGATION: STRUCTURE AND QUANTIFIERS 75

Consider a universe of two attributes, a1 and a2. On these attributes, two
criteria c1 and c2 are respectively defined. A fuzzy integral to evaluate entity r
will be based on a fuzzy measure of the form:

G(∅) = 0

G(c1) = wc1

G(c2) = wc2

G(c1 ∪ c2) = 1

First, the criteria are evaluated and sorted. Because there are 2 criteria, there
are only 2 possible scenarios:

sr,c1 ≥ sr,c2 =⇒ sg = wc1sr,c1 + (1− wc1)sr,c2

sr,c1 < sr,c2 =⇒ sg = wc2sr,c2 + (1− wc2)sr,c1
(4.8)

Note that if sr,c1 = sr,c2 , both scenarios lead to the same output, namely sg =
sr,c1 = sr,c2 , so it does not matter which of both scenarios includes the equality
case.

In the first scenario, the behavior of the aggregator depends on wc1 , but not
on wc2 . In the second scenario, the opposite is true. If wc1 = wc2 = 0.5, the
aggregator calculates the average of sr,c1 and sr,c2 in both scenarios.

Recall that fuzzy measures are not necessarily additive, they only need to
be monotonic. Herein lies the mechanism by which fuzzy integrals are able to
achieve partial conjunctions and disjunctions. Consider the interpretations of
super- and subadditivity for any two criteria c1 and c2:

• If wc1 + wc2 > wc1∪c2 (superadditivity), it follows that c1 is to a certain
extent replaceable by c2 (= partially disjunctive).

• If wc1 + wc2 < wc1∪c2 (subadditivity), it follows that c1 should be, to a
certain degree, simultaneously satisfied with c2 (= partially conjunctive).

Indeed, if c1 and c2 are superadditive, this means that 1 − wc2 < wc1 (and
also 1− wc1 < wc2) and weight is shifted to the best of both criteria while the
other’s influence on the output is lowered. Per direct consequence, it is sufficient
that either has a high value for the aggregated result to have a high value too.

Dually it can be seen that subadditivity semantically represents the prefer-
ence to see both c1 and c2 satisfied simultaneously as more impact is given to
the lowest of both, meaning it will have a larger impact on the result than the
other, better criterion. It follows that both must be high for the output to be
high.

There is a strong similarity between fuzzy integrals and OWA. Namely, when
the capacity assigns the same weight to every set with the same cardinality, the
fuzzy integral results in the same outcome as OWA. Indeed, OWA is a particular
case of fuzzy integration where the criteria are indistinguishable: it only matters
how many criteria are in each intermediate solution set, not which criteria.

76 CHAPTER 4. AGGREGATION AND SUITABILITY DISTRIBUTIONS

Student Mathematics Physics Literature
A 18 16 10
B 10 12 18
C 14 15 15

Table 4.2: Fictive grades for students A, B and C for courses mathematics,
physics and literature. The grades are given on a 0 to 20 scale.

Student Mathematics Physics Literature Weighted average
A 18 16 10 15.25
B 10 12 18 12.75
C 14 15 15 14.62

Table 4.3: Overall grades for students A, B and C computed through a simple
weighted average.

Example. A textbook example for explaining the power of sub- and superad-
ditivity, borrowed from Grabisch [20], has to do with grading students. Assume
we have to compute an overall suitability grade to grade students based on their
performance in three subjects: mathematics, physics and literature. Three stu-
dents’ grades for these courses are given in Table 4.2.

The examinator deems scientific courses more important and as such comes
up with a weight of 3 for maths, 3 for physics and 2 for literature. The results
of using a simple weighted average to compute the overall grade are shown
in Table 4.3. One could argue that these results are not satisfying, because
student C, who is equally good in all fields, should be preferrable to student
A, who excels at the scientific subjects though is weak at literature. It is not
possible to achieve this by changing the weights, but it is possible by using
Choquet integration.

We distinguish the following properties:

1. Scientific subjects (mathematics and physics) are more important than
literature.

2. Scientific subjects are somewhat related, so it is expected that generally,
students that are good at either will be good at the other, too. Hence,
students that perform well at both should not be favored strongly.

3. Students that are good at both science and literature are special and
should be favored strongly.

These can be translated into a fuzzy measure as follows:

1. G({maths}) = G({physics}) = 0.45, G({literature}) = 0.3 (scientific sub-
jects are more important).

2. G({maths,physics}) = 0.5 < G({maths}) + G({physics}) (subadditivity
between mathematics and physics to indicate their inherent similarity).

4.2. AGGREGATION: STRUCTURE AND QUANTIFIERS 77

Student Mathematics Physics Literature Weighted average
A 18 16 10 13.9
B 10 12 18 13.6
C 14 15 15 14.9

Table 4.4: Overall grades for students A, B and C computed through Choquet
integration.

3. G({maths, literature}) = G({physics, literature}) = 0.9 > 0.45 + 0.3 (su-
peradditivity to favor students good at both science and literature).

Evaluating the students with a Choquet integral using this fuzzy measure leads
to the grades shown in Table 4.4. Now, the students are ordered as desired:
student C is ranked highest due to his globally acceptable performance in all
fields, and student B is placed behind student A due to the higher importance
of scientific subjects.

4.2.4 Partial absorption operators
Partial absorption operators (PAOs) are a special case of advanced aggregation
operators that are only found in GCD. They are a vague extension to the con-
cept of regular absorption, like in x∧ (x∨ y) = x∨ (x∧ y) = x, where x absorbs
y. This is achieved by replacing the conjunction and disjunction by their partial
counterparts. As described by Dujmović in [14, 11], PAOs express an asymetric
relation between a dominant and an optional (typically referred to as “desired”)
criterion. The dominant plays a decisive role in the aggregation, while the de-
sired only serves as a modifier to the result of the dominant. The modification
by the desired can be either positive (reward) or negative (penalty). The domi-
nant criterion is said to partially absorb the desired criterion in the aggregation
process. We have studied two types of partial absorptions: the conjunctive
partial absorption and the disjunctive partial absorption.

Conjunctive Partial Absorption

The CPA operator cpa : [0, 1]2 → [0, 1] models the partial absorption of a desired
criterion cd by a mandatory criterion cm [14]. As the operator is conjunctive
and cm is mandatory (and absorbing), the output of the CPA for any entity with
sr,cm = 0 must be 0. Furthermore, low values of sr,cd must lower the output
below sr,cm to penalize systems where the desired criterion is not met, whereas
high sr,cd should raise the output above sr,cm as a form of reward.

Mathematically this translates into 3 requirements:

cpa(0, sr,cd) = 0, 0 ≤ sr,cd < 1 (4.9)
0 < cpa(sr,cm , 0) < sr,cm , 0 < sr,cm ≤ 1 (4.10)
sr,cm < cpa(sr,cm , 1) < 1, 0 < sr,cm < 1. (4.11)

78 CHAPTER 4. AGGREGATION AND SUITABILITY DISTRIBUTIONS

From these requirements, it is implied that cpa(1, 1) = 1.
In order to complete the definition of the CPA, two additional parameters P

and R are required, where P indicates the maximal penalty an entity can receive
when sr,cd = 0 and R indicates the maximal reward an entity can receive when
sr,cd = 1. Note that, for an entity with constant cm, this implies there exist
a value for cd such that 0 < sr,cd < 1, where cm fully absorbs cd and thus
sg = sr,cm .

There are several ways to implement a CPA operator. One option, which uses
GCD operators nesting the weakest partial disjunction (the average) in a strong
partial conjunction, is visualized in Figure 4.3. Here, weight parameters w1 and
w2 can be used in combination with the strength of the partial aggregators in
order to achieve the desired degree of penalty and reward. A comprehensive
look-up table for translating a desired amount of penalty and reward into the
connection with the weight parameters is given in [14].

mandatory m

desired d A
1− w1

w1

ω = 1/2

∆
1− w2

w2

α > 2/3

output sg

Figure 4.3: A schematic view of the CPA using GCD operators. An average is
used to combine the two inputs and a strong partial conjunction to combine the
intermediary output with the mandatory.

Table 4.5 shows the output of the CPA operator from Figure 4.3 with a
penalty of 20% and a reward of 15% (w1 = 0.8, w2 = 0.15 and α = 0.875, a
strong partial conjunction such that the WPM exponent p = −3.51 [14]) for 121
specifically generated systems of two attributes cm and cd so that both sr,cm
(rows) and sr,cd (columns) vary from 0 to 1 (inclusive) in steps of 0.1. The
same results are presented graphically in figure 4.4, where sr,cm is displayed on
the x-axis, sg on the y-axis and each data series represents a different constant
value for sr,cd .

Interestingly, the point where cm fully absorbs cd coincides with sr,cm = sr,cd ,
as indicated by the values on the table’s diagonal. Note that this respects both
edge cases where sg = sr,cm = sr,cd = 1 (ideal entity) and sg = sr,cm = sr,cd = 0
(fully unfit entity). Additionally it can be seen from the first row, sr,cm = 0,
that the CPA is indeed conjunctive and cm is indeed mandatory.

Disjunctive Partial Absorption

The disjunctive partial absorption (DPA) operator dpa : [0, 1]2 → [0, 1] imple-
ments the partial absorption of a desired criterion cd by a sufficient criterion cs

4.2. AGGREGATION: STRUCTURE AND QUANTIFIERS 79

Table 4.5: Output of the CPA using GCD operators with w1 = 0.8 and w2 =
0.15.

sr,cm\sr,cd 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00
0.00 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.10 0.0820 0.1000 0.1158 0.1288 0.1392 0.1471 0.1530 0.1574 0.1607 0.1631 0.1649
0.20 0.1639 0.1825 0.2000 0.2164 0.2315 0.2453 0.2577 0.2687 0.2784 0.2869 0.2942
0.30 0.2459 0.2646 0.2826 0.3000 0.3166 0.3324 0.3473 0.3613 0.3744 0.3865 0.3977
0.40 0.3278 0.3466 0.3649 0.3827 0.4000 0.4167 0.4328 0.4483 0.4631 0.4772 0.4906
0.50 0.4098 0.4286 0.4470 0.4651 0.4828 0.5000 0.5168 0.5330 0.5488 0.5641 0.5788
0.60 0.4918 0.5106 0.5291 0.5474 0.5653 0.5828 0.6000 0.6168 0.6332 0.6492 0.6648
0.70 0.5737 0.5926 0.6112 0.6295 0.6476 0.6654 0.6828 0.7000 0.7168 0.7333 0.7495
0.80 0.6557 0.6745 0.6932 0.7116 0.7298 0.7478 0.7654 0.7829 0.8000 0.8169 0.8334
0.90 0.7376 0.7565 0.7752 0.7937 0.8120 0.8300 0.8479 0.8655 0.8829 0.9000 0.9169
1.00 0.8196 0.8385 0.8572 0.8757 0.8941 0.9123 0.9302 0.9480 0.9655 0.9829 1.0000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

sr,cm

sg

sr,cd
0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

Figure 4.4: Output of the CPA using GCD operators.

[14]. If sr,cs = 1, sg should be 1 as cs is considered sufficient reason to accept
r, regardless of cd. Otherwise, if sr,cs < 1, cd should (similar to the case of the
CPA) modify the output by a prespecified penalty or reward depending on sr,cd .

Formally, this is summarized by the following constraints:

dpa(1, sr,cd) = 1, 0 ≤ sr,cd ≤ 1 (4.12)
0 < dpa(sr,cs , 0) < sr,cs , 0 < sr,cs < 1 (4.13)
sr,cs < dpa(sr,cs , 1) < 1, 0 ≤ sr,cs < 1. (4.14)

Similarly to the CPA, the DPA also has the concepts of penalty and reward.
A way of implementing the DPA with GCD operators by nesting a weak partial
conjunction with a disjunction is visualized in Figure 4.5.

80 CHAPTER 4. AGGREGATION AND SUITABILITY DISTRIBUTIONS

sufficient s

desired d ∆
1− w1

w1

α = 9/16

∨
1− w2

w2

ω = 1

output sg

Figure 4.5: A schematic view of the DPA using GCD operators. An average is
used to combine the two inputs and a strong partial conjunction to combine the
intermediary output with the sufficient.

Table 4.6: Output of the DPA using GCD operators with w1 = 0.8 and w2 =
0.15.

sr,cs\sr,cd 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00
0.00 0.0000 0.0143 0.0286 0.0429 0.0572 0.0715 0.0858 0.1001 0.1144 0.1287 0.1430
0.10 0.1000 0.1000 0.1272 0.1513 0.1737 0.1951 0.2157 0.2358 0.2554 0.2746 0.2936
0.20 0.2000 0.2000 0.2000 0.2284 0.2545 0.2791 0.3026 0.3254 0.3475 0.3691 0.3902
0.30 0.3000 0.3000 0.3000 0.3000 0.3288 0.3559 0.3817 0.4065 0.4305 0.4539 0.4768
0.40 0.4000 0.4000 0.4000 0.4000 0.4000 0.4291 0.4567 0.4833 0.5089 0.5338 0.5581
0.50 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5293 0.5573 0.5843 0.6106 0.6361
0.60 0.6000 0.6000 0.6000 0.6000 0.6000 0.6000 0.6000 0.6294 0.6577 0.6851 0.7118
0.70 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7295 0.7580 0.7857
0.80 0.8000 0.8000 0.8000 0.8000 0.8000 0.8000 0.8000 0.8000 0.8000 0.8295 0.8582
0.90 0.9000 0.9000 0.9000 0.9000 0.9000 0.9000 0.9000 0.9000 0.9000 0.9000 0.9296
1.00 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Table 4.6 shows the output of the aggregator applied on the same 121 com-
binations of inputs between the sufficient and desired inputs. The same results
are plotted in Figure 4.6 (using weighted power means with w1 = 0.8, w2 = 0.15
and α = 9/16, a weak partial conjunction resulting in exponent p = 0.619). It
is clear that the sufficient condition is respected (i.e. if sr,cs = 1, sg = 1). Like
with the CPA, the (average) degrees of penalty and reward (shaping the curve)
can be influenced by manipulating the weights and the stengths of the (partial)
aggregators.

4.3 Conjunctive Partial Absorption using Fuzzy
Integrals

4.3.1 Challenge
Fuzzy measures are capable of modelling mandatory requirements [2, 24, 22]. To
express that it is mandatory that condition cm is satisfied, one must construct
the fuzzy measure such that every set that does not contain cm is assigned a

4.3. CONJUNCTIVE PARTIAL ABSORPTION USING FUZZY INTEGRALS81

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

sr,cs

sg

sr,cd
0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

Figure 4.6: Output of the DPA using GCD operators.

weight of 0. This is required because otherwise it is not guaranteed that the
score for a system r is 0 if sr,cm = 0. Indeed, it can be seen from Eq. 4.8 that
when sr,cm = 0 and sr,cd > sr,cm , sg = 0 only if wd = 0.

If wd = 0, we have either:

sg =

{
wmsr,cm + (1− wm)sr,cd sr,cd < sr,cm
0sr,cd + (1− 0)sr,cm sr,cd ≥ sr,cm

It should be noted that in the second case, cd has no impact on the output, which
implies that whenever sr,cd > sr,cm , the result relies solely on cm. Consequently,
this fuzzy measure does not correspond with the formal definition of the CPA.
For cd to have an impact, wd must be larger than 0. This, however, conflicts
with the demand that wd must be 0 for cm to be mandatory.

In this section, a strategy to implement the CPA operator using fuzzy in-
tregration is proposed. An earlier version of the contents of this section were
presented at FUZZ-IEEE 2016 and subsequently published in the proceedings
of the conference.

4.3.2 Solution
To ensure that sg = 0 if sr,cm = 0 (wherein always sr,cm < sr,cd and thus
sg = wdsr,cd), it is absolutely necessary that wd = 0. If sr,cm > 0, however, it is
not necessarily required that sg must be 0, nor does it follow that its implication
(that wd must be 0) still holds. Hence, to reconcile the constraint that cm is
mandatory with the requirement that cd should have an impact on the output
if sr,cm > 0, we must redefine wd to be non-zero when cm is satisfied. As such,
we propose to redefine wd as a function that depends on cm, as follows:

82 CHAPTER 4. AGGREGATION AND SUITABILITY DISTRIBUTIONS

wd =

{
0 sr,cm = 0

r ∈]0, 1] sr,cm > 0

Hereby it is especially important to carefully study the range of this function
so that the monotonicity of the fuzzy measure is not violated. Because cd is a
singleton, wd must be bounded by the weight of the (maximal) 0-set and the
minimal 2-set containing cd. For the CPA, where there are just two inputs, cm
and cd, there is only one 0-set (which is the empty set and which always has
weight 0) and exactly one 2-set (which represents the universe and hence has
weight 1). This implies that the range of wd is equal to [0, 1], which was already
automatically implied by the normalization constraint.

Recall the example given in 4.2.4. Table 4.7 shows the output of a fuzzy
integral defined this way when applied on the same 121 systems. Here, wm = 0.8
and for the definition of wd, r was chosen to be 0.15. The same results are shown
graphically in figures 4.7 (2D) and 4.8 (3D).

Table 4.7: Output of the CPA (P = 20%, R = 15%) using a Fuzzy Measure

sr,cd

sr,cm 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00
0.00 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.10 0.08000 0.10000 0.11500 0.13000 0.14500 0.16000 0.17500 0.19000 0.20500 0.22000 0.23500
0.20 0.16000 0.18000 0.20000 0.21500 0.23000 0.24500 0.26000 0.27500 0.29000 0.30500 0.32000
0.30 0.24000 0.26000 0.28000 0.30000 0.31500 0.33000 0.34500 0.36000 0.37500 0.39000 0.40500
0.40 0.32000 0.34000 0.36000 0.38000 0.40000 0.41500 0.43000 0.44500 0.46000 0.47500 0.49000
0.50 0.40000 0.42000 0.44000 0.46000 0.48000 0.50000 0.51500 0.53000 0.54500 0.56000 0.57500
0.60 0.48000 0.50000 0.52000 0.54000 0.56000 0.58000 0.60000 0.61500 0.63000 0.64500 0.66000
0.70 0.56000 0.58000 0.60000 0.62000 0.64000 0.66000 0.68000 0.70000 0.71500 0.73000 0.74500
0.80 0.64000 0.66000 0.68000 0.70000 0.72000 0.74000 0.76000 0.78000 0.80000 0.81500 0.83000
0.90 0.72000 0.74000 0.76000 0.78000 0.80000 0.82000 0.84000 0.86000 0.88000 0.90000 0.91500
1.00 0.80000 0.82000 0.84000 0.86000 0.88000 0.90000 0.92000 0.94000 0.96000 0.98000 1.00000

4.3.3 Interpretation
Let us briefly analyze our approach. When sr,cm = sr,cd , there should be no
penalty nor reward. This requirement is automatically satisfied, as it is a prop-
erty of fuzzy integrals that when all inputs are equal, the output is equal to the
inputs, too. If, for some entity, the desired criterion is more satisfied than the
mandatory requirement (sr,cd > sr,cm), the output should be boosted so as to
reward that entity:

sg = wdsr,cd + (1− wd)sr,cm

Indeed, the overall sg contains a reward term wdsr,cd .
The amount of reward is maximal (equal to wd) when sr,cd = 1. In this case,

sg = wd + (1 − wd)sr,cm . Note that in the special case that sr,cm = 0, wd = 0
so that sg = 0. In all other cases, wd = r and it is clear from the definition
that sg can be directly influenced by choosing a value for r. It is easy to see

4.3. CONJUNCTIVE PARTIAL ABSORPTION USING FUZZY INTEGRALS83

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

sr,cm

sg

sr,cd
0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

Figure 4.7: Results of the fuzzy measure approach in 2D.

0

0.5

1

00.20.40.60.81
0

0.2

0.4

0.6

0.8

1

sr,cmsr,cd

s g

Figure 4.8: Results of the fuzzy measure approach in 3D.

84 CHAPTER 4. AGGREGATION AND SUITABILITY DISTRIBUTIONS

that sg ∼ r (increasing r increases sg), so increasing r effectively increases the
maximal reward that is given by the operator, regardless of cm and wm.

Dually, if the desired criterion is only weakly satisfied compared to the
mandatory requirement (sr,cm ≥ sr,cd), cd should lower sg to reflect that the
operator assigns a penalty to the entity under evaluation. When sr,cd = 0, this
penalty should be maximal. In that case, sg = wmsr,cm . As such, it follows
that sg is bounded from below by wmsr,cm . When sr,cm = 1, sg = wm, and the
maximal penalty is 1−wm. Clearly, wm acts as a modifier that can be used to
define the maximal amount of penalty an entity can receive.

In summary, the maximal penalty equals 1 − wm and the maximal reward
equals r. Note that these semantics override the regular interpretations of sub-
and superadditivity. If one would want to award a maximal reward of 20% and
a maximal penalty of 10%, one would set r = 0.2 and wm = 0.9.

4.3.4 Reflection
Visually, the output generated by the proposed solution very closely resembles
that of Dujmović’s original solution based on the GCD operator, but is different
in the region approaching (0, 0). From Figure 4.8 it can be seen that there is a
discontinuity in the suitability surface along the sr,cd -axis when sr,cm approaches
0. Indeed, sg should be 0 for all values of sr,cm , regardless of the value of sr,cd ,
whereas now, it is only 0 when sr,cd = 1. This is not in line with the results of
the original implementation using GCD operators, and it is undesirable because
it implies that even a tiny change in cm near sr,cm ≈ 0 has a non-negligable
impact on sg. This is especially troubling if the measuring of cm might be
(and, in practice, most likely will be) subject to noise or some other form of
uncertainty. Such undesirable “un-fuzzy” behavior is to be avoided.

In order to rectify this, wd must be continuous rather than piecewise contin-
uous and still produce 0 when sr,cm = 0. Any function of the form wd = γsr,cm
can be used as long as γ does not cause wd to exceed its allowed range.

As per illustration, consider the following, alternative definition of wd:

wd = rsr,cm (4.15)

This definition of wd is intentionally continuous. Moreover, wd = 0 when
sr,cm = 0. The results of applying this function on the same 121 entities is
plotted in figures 4.9 (2D) and 4.10 (3D). Where sr,cd = 1 (top-most pink trend
line), the output is parabolic and fills the entire spectrum between 0 and 1.
Where sr,cd = 0 (bottom-most red trend line), the aggregated score is linear
with cm and confined between 0 and 1− wm (maximal penalty). These results
match the geometric interpretation of reward and penalty as described in [14].
As intended, these modifications have made the aggregator resilient to minor
fluctuations of cm near 0.

However, note that the maximal reward is no longer equal to r. Let us try
to compute the maximal reward. In any case, we know that a reward is only
assigned if sr,cd > sr,cm . Recall that this means that the output is computed as

4.3. CONJUNCTIVE PARTIAL ABSORPTION USING FUZZY INTEGRALS85

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

sr,cm

sg

sr,cd
0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

Figure 4.9: Results using continuous definition of wd in 2D.

0

0.5

1

00.20.40.60.81
0

0.2

0.4

0.6

0.8

1

sr,cmsr,cd

s g

Figure 4.10: Results using continuous definition of wd in 3D.

86 CHAPTER 4. AGGREGATION AND SUITABILITY DISTRIBUTIONS

follows:
sg = rsr,cmsr,cd + (1− rsr,cm)sr,cm (4.16)

Obviously, the better cd is satisfied, the more reward is given. The maximal
reward is obtained when sr,cd = 1. In that case, the reward term becomes equal
to rsr,cm .

If there were no desired criterion, the overall suitability grade sg would be
exactly equal to the degree to which the (only remaining) mandatory criterion is
satisfied, i.e. sr,cm . Hence, the actual amount of reward, r∗, obtained by adding
the partial absorption of the desired criterion, is given by the difference between
eq. 4.16 (with sr,cd = 1) and sr,cm :

r∗ = rsr,cm + (1− rsr,cm)sr,cm − sr,cm

= rsr,cm(1− sr,cm)

In order to derive the maximal amount of reward from this equation, in
function of sr,cm , we must differentiate it to sr,cm and solve it for sr,cm . In
doing so, we find that r∗ is maximal for sr,cm = 1

2 . At this point, the maximal
amount of reward is found to be r∗ = r

4 . In other words, in order to again
obtain a maximal reward of 0.2, one would have to set r to 0.8. Indeed, one
would then find:

sg =
8

10
sr,cm +

(
1− 8

10
sr,cm

)
sr,cm

=
sr,cm(9− 4sr,cm)

5

For sr,cm = 1
2 , this yields 7

10 , which is indeed 0.2 higher than 0.5.
One could use other reward functions as long as they are continuous and 0

for sr,cm = 0, but then one would also have to re-examine the impact on the
maximal reward and adjust the parameters of the reward function accordingly
in order to achieve to desired behavior. Note that this discussion is irrelevant
for maximal penalty because there is no discontinuity for sg = 1. If absolutely
required, one could, however, also replace the maximal penalty by a function in
order to obtain symmetry between penalty and reward.

4.3.5 Usability in hierarchical compositions
The largest downside of fuzzy integrals is the complexity of defining the fuzzy
measure, as it is exponential in the amount of criteria. To overcome this, several
techniques such as the Sugeno λ-measure [29] and k-additivity [21] have been
proposed. Additionally, Sugeno studied the possibility of hierarchically decom-
posing a large set of criteria into smaller sets of strictly interdependent criteria
where possible to further reduce complexity by avoiding combinations of criteria
that make no sense from a semantic point of view [27, 25]. In line with this,
it is mentioned here that the proposed method for the CPA can be used as an
independent aggregation operator as part of a larger, hierarchical network of
aggregators.

4.3. CONJUNCTIVE PARTIAL ABSORPTION USING FUZZY INTEGRALS87

Table 4.8: 4 Fictive Hotels Near the Conference Site

Name Distance (km) Price (euro)
Hotel A 0.6 178
Hotel B 0.2 57
Hotel C 0.8 123
Hotel D 0.4 123

4.3.6 Example
Assume you are looking for a hotel to stay in for the duration of a conference.
For this simple example, only consider two selection criteria:

• c1 = price must be below threshold (mandatory)

• c2 = preferably in proximity to the conference venue (desired)

Additionally, to reflect your preference regarding proximity is not linearly cor-
related to the actual distance, you would like to assign a larger penalty to those
hotels further away than you would like to reward those close by. Further-
more, assuming all hotels are of equal quality, a very attractive price might
persuade you to walk a longer distance. As such, you choose to evaluate a set
of hotels using a CPA operator with a reward of 10% and a maximal penalty
of 25%. Using the proposed technique, you need only to assign r = 0.1 and
wm = 1− 0.25 = 0.75 to model your preferences.

Next we translate the criteria mathematically using membership functions.
For the first criterion, ideally the price per night should be between 80 and 120
euro. We feel this price is acceptable and is probably reliable as a reference for
a certain quality of service. Additionally, anything above 150 euro is consid-
ered unacceptable. Furthermore, the lower the price below 80 euro, the more
suspicious (and thus less preferable) we deem the hotel. As such, the following
criterion expresses the price is hard-bound from above by 150 euro, though that
a certain quality is expected, corresponding to the ideal price range between 80
and 120 euro.

For the second criterion, consider we are only interested in those hotels
within a 1km range of the conference venue. The closer to the conference, the
better.

These criteria are displayed graphically as membership functions in figures
4.11 and 4.12.

Finally, the operator is used to evaluate 4 fictive hotels, displayed in table
4.8, in order to score and rank them from best to worst. For simplicity, we
consider that the properties of the hotels are well-known.

From table 4.9 follows that the computed ranking from best to worst is D
- C - B - A. Analyzing these results, it is no surprise that A finishes last as its
price is too high. As this violates the mandatory criterion, its final score is 0 to
indicate that this hotel should be fully rejected.

88 CHAPTER 4. AGGREGATION AND SUITABILITY DISTRIBUTIONS

0 20 40 60 80 100 120 140 160
0

0.2

0.4

0.6

0.8

1

Price

Su
ita

bi
lit

y

Figure 4.11: Mandatory criterion represented by a membership function reflect-
ing preference regarding price.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Distance

Su
ita

bi
lit

y

Figure 4.12: Desired criterion represented by a membership function reflecting
preference regarding distance.

4.4. AGGREGATING SUITABILITY DISTRIBUTIONS 89

Table 4.9: Evaluation Results

Name c1(distance) c2(price) Score
Hotel A 0.4000 0.0000 0.00000
Hotel B 0.8000 0.7125 0.72125
Hotel C 0.2000 0.9000 0.72500
Hotel D 0.6000 0.9000 0.82500

Furthermore, hotels C and D have the same price, but as hotel D is closer
to the venue, it is attributed a higher reward and thus ranked before C.

Last, hotel B is in very close competition with hotel C. Despite its very close
proximity (which actually results in a slight bonus for hotel B), the (perhaps
suspiciously) low price has the largest impact on the overall score. However,
its final score is comparable to that of hotel C because the reward given by the
close proximity compensates for the strong penalty given to hotel C due to its
relatively large distance.

In any case, hotel D is the clear winner as it satisfies both requirements to
a good extent simultaneously, as was expected.

4.4 Aggregating suitability distributions
In this section, we will examine how aggregation operators can be applied on
suitability distributions.

The aggregation operators introduced above were designed to aggregate
grades of suitability. Suitability distributions, being uncertain grades of suitabil-
ity, fall into this broad category but, obviously, aggregation operators must be
extended in order to remain applicable. In order to aggregate suitability distri-
butions, we consider two options: defuzzifying the distributions and aggregating
the thus obtained suitability grades using unmodified, existing techniques, or ag-
gregating the distributions directly into a single, global suitability distribution.
In the following, we will discuss both approaches and motivate how to choose
between them. Some of the proposed defuzzification techniques are novel con-
tributions, as they are tightly coupled to the concept of suitability distributions,
while direct aggregation is mostly based on prior research on aggregating fuzzy
numbers. However, its application in a suitability context is also new.

4.4.1 Defuzzification before aggregation
Recall that the defuzzification of a suitability distribution onto a suitability
grade through the strategies introduced in section 3.4 corresponds to express-
ing a specific tolerance, or attitude, towards uncertainty. Besides the obvious
advantage that defuzzifying suitability distributions before aggregation makes
it possible to use the existing aggregation operators without needing to modify
them, it is also worth to consider this approach if there is a desire to express
a different attitude towards the uncertainty on different criteria. This can be

90 CHAPTER 4. AGGREGATION AND SUITABILITY DISTRIBUTIONS

especially useful in a decision support context, where certain attributes may be
more critical than others and where defuzzification would usually have to be
performed sooner or later anyway in order to arrive at the end-goal of obtaining
a single grade per entity so these can be used to rank the entities. It can be
shown that any result that can be produced by defuzzifying first should be a spe-
cific case that could otherwise be obtained by aggregating first and defuzzifying
second. Indeed, a combination of all possible values can not become impossible.
Nonetheless, it is yet to be investigated whether or not each particular outcome
that can be obtained by choosing arbitrary defuzzification techniques before ag-
gregating is also reachable using one of the mentioned defuzzification strategies
with known semantics.

In any case, opting to defuzzify first comes with a general loss of information.
The fact that the resulting aggregated global suitability grade has no remaining
indicators of uncertainty indicates this. By naively defuzzifying before aggre-
gating, it is no longer possible to distinguish an entity with uncertainty from
one without.

In section 3.4, we also mentioned ways to compare suitability distributions
after defuzzification based on not only a suitability grade but also on a quan-
tification of uncertainty that can be derived from the elementary suitability
distribution. We have already discussed some of the properties of such a quan-
tification of uncertainty, such as that it is bound between 0 (fully certain) and
1 (fully uncertain). In an attempt to not lose all indicators of uncertainty, we
will explore if we can aggregate defuzzified suitability-uncertainty quantification
representations. The outline of the approach is that we aggregate the defuzzified
suitability grades first, and then independently also the uncertainty grades in a
similar fashion. However, it will quickly become clear that the aggregation of
uncertainty grades can not be done completely independently. What follows is
a summary of the results found by studying this subject. These findings were
presented at IFSA 2015 and published in the proceedings of the conference [3].

Aggregating grades of uncertainty

In this section, we propose a novel strategy to incorporate uncertainty in the
aggregation process. We will do this by extending GCD aggregators. Tradi-
tionally, a GCD aggregator is defined as a function of the form F : [0, 1]n →
[0, 1]. Our extension, Extended GCD (EGCD), is defined as a vector function
F : ([0, 1], [0, 1])n → ([0, 1], [0, 1]), where the abscissa of an input maps to the
original suitability grade of GCD and the ordinate corresponds to a grade of
uncertainty. During this research, we pay close attention to the fact that the
global suitability calculations are not influenced. Hence, in the case that there
is no uncertainty on the inputs, the proposed technique is identical to regular
GCD.

Expected behaviour As elementary uncertainty reflects how much doubt
exists regarding the value of its corresponding input’s elementary suitability, it

4.4. AGGREGATING SUITABILITY DISTRIBUTIONS 91

follows that the aggregated global uncertainty expresses doubt on the system’s
global suitability.

To guard that uncertainty can not be lost or created through aggregation
we define the concept of preservation of uncertainty. Mathematically this trans-
lates to the property that the global uncertainty can not drop below the lowest
elementary uncertainty nor can it rise above the highest elementary uncertainty.
This is also true for aggregated suitability and is called “internality”[17, 9].

Regarding the calculation of the global uncertainty grade, it is easy to see
that this grade should not only depend on the initial elementary uncertainty
grades of the inputs, but also on their corresponding elementary suitability
grades and the way these are aggregated. Let us clarify why through an ex-
ample. Consider two elementary suitability-uncertainty couples: (0.3, 0.9) and
(0.8, 0.4). Though it makes sense that the logical conjunction of the elementary
suitability grades of these couples is equal to 0.3 (the lowest of the two suit-
ability grades), it would not make sense to say that the aggregated uncertainty
equals 0.4 (which one would find by also taking the lowest of the two uncertainty
grades), because that would imply that the conjunction did not select the un-
certainty that is associated to the worst suitability (as it should), but instead
chose the uncertainty of the other input. One should expect that the result of
the conjunction would be equal to (0.3, 0.9).

In what follows, we first study the conjunction and disjunction as they denote
the edge cases when it comes to aggregation. Afterwards, we take a look at the
other aggregators.

On strict aggregators Considering the full, pure disjunction and full, pure
conjunction as aggregators that select a certain input, we expect them to prop-
agate that input’s uncertainty to the output. As such, a strict aggregator’s
output should yield its dominant (i.e., highest for disjunction and lowest for
conjunction) input, for both suitability and uncertainty.

However, if multiple (or all) inputs have an equal elementary suitability
grade, then the selection of the dominant input is no longer trivial. In that
case, we must first determine the set of inputs that are equally dominant (all
inputs with the same elementary suitability) and then apply a tiebreaker to
select the most dominant one. In case of a disjunction, this set would contain
all inputs with the highest elementary suitability grade. Dually, in case of a
conjunction, the set would contain all inputs with the lowest elementary suit-
ability grade. To select the most dominant input from that set with respect
to the aggregator, we rely on the elementary uncertainty grades as tiebreaker.
In case of a disjunction, we are free to choose the “best” input, so we prefer
the one with the lowest uncertainty. Oppositely, in case of a conjunction, we
must select the “worst” input, and so we take the one with the highest uncer-
tainty. The aggregation logic for breaking ties follows the inverse aggregation
rules of the aggregator (lowest uncertainty for disjunction, highest uncertainty
for conjunction). Otherwise, it could be seen as a lexicographical ordering on
the suitability-uncertainty couples, but by descending order for suitability and

92 CHAPTER 4. AGGREGATION AND SUITABILITY DISTRIBUTIONS

ascending order for uncertainty. Note that if we would first translate the indi-
cators of uncertainty to indicators of certainty (e.g. by taking the complement
to 1), the regular aggregation rules would apply. However, to keep in line with
all of the above, we will keep using indicators of uncertainty.

On general aggregators Except for the strict ones, aggregators generally do
not simply select a single input but rather produce a weighted combination of all
inputs. Thus, in the general case, we propose to compute the global uncertainty
grade as a weighted combination of all elementary uncertainty grades, given a
set of suitability-uncertainty input couples. The idea is to use a weighted mean
to do this, but as we already showed in section 4.4.1, using the user-defined
weights associated to the inputs would lead to incorrect results. Rather than
using the user-defined weights, we instead propose that the importance of each
input is determined by how much “impact” that input has on the outcome of
the suitability aggregation. As such, we define the dominance of an input, in
the context of a given aggregator, as the difference between the aggregated
suitability grade and that input’s elementary suitability grade. If an input’s
elementary suitability is similar to the global suitability (both high or both
low), we say that the aggregator prefers this input and we assign a high weight
to that input’s uncertainty grade. Dually, if the input and the output are
dissimilar, we say the aggregator does not prefer that input and consequently
assign a low weight to that input’s elementary uncertainty grade. This implies
that for a partial disjunction, the elementary uncertainties of inputs with high
elementary suitability grades will be preferred, whereas for a partial conjunction,
the elementary uncertainties of inputs with low elementary suitability grades will
receive higher weights.

It is important that we validate that this approach does not violate the
special cases that comprise the strict aggregators. Furthermore, we want the
output of the aggregation operator to form a smooth gradient between the edge
cases, to avoid that a differential in one of the inputs has a large effect on the
output.

For binary aggregators (with exactly two inputs), we propose using a simple
weighted average. The weight for each input is based on its dominance, which
is normalised based on the dominances of both inputs. Some results are sum-
marized in Table 4.10. This table shows the output of the 17 degrees of GCD
operators (rows) applied on several combinations of suitability-uncertainty in-
put couples (columns). One can see that the trend of the global uncertainty
meets our expectations: in the case of a full conjunction, the uncertainty of the
input with lowest suitability is selected, whereas in the case of a full disjunc-
tion, the uncertainty of the input with highest suitability is propagated. For all
other cases (i.e. means), the aggregated uncertainty is a weighted combination of
the elementary uncertainties. We also observe that the uncertainty calculations
respect the mandatory behaviour of the forms of the hard partial conjunction.

Aggregators that work on more than two inputs, such as compound aggre-
gators [4, 18], have not yet been investigated.

4.4. AGGREGATING SUITABILITY DISTRIBUTIONS 93

r (1.0; 1.0), (0.0; 0.0) (1.0; 0.0), (0.0; 1.0) (0.2; 0.75), (0.7; 0.5)
C 0.000; 0.000 0.000; 1.000 0.200; 0.750
C++ 0.000; 0.000 0.000; 1.000 0.216; 0.742
C+ 0.000; 0.000 0.000; 1.000 0.243; 0.729
C+− 0.000; 0.000 0.000; 1.000 0.283; 0.708
CA 0.000; 0.000 0.000; 1.000 0.326; 0.687
C−+ 0.000; 0.000 0.000; 1.000 0.363; 0.668
C− 0.070; 0.070 0.070; 0.930 0.394; 0.653
C−− 0.326; 0.326 0.326; 0.674 0.421; 0.639
A 0.500; 0.500 0.500; 0.500 0.450; 0.625
D−− 0.620; 0.620 0.620; 0.380 0.481; 0.609
D− 0.709; 0.709 0.709; 0.291 0.516; 0.592
D−+ 0.780; 0.780 0.780; 0.220 0.552; 0.574
DD 0.838; 0.838 0.838; 0.161 0.588; 0.556
D+− 0.887; 0.887 0.887; 0.112 0.621; 0.539
D+ 0.930; 0.930 0.930; 0.070 0.651; 0.525
D++ 0.967; 0.967 0.967; 0.033 0.677; 0.512
D 1.000; 1.000 1.000; 0.000 0.700; 0.500

Table 4.10: The output of the EGCD function for several binary configurations
of inputs.

Example

We will demonstrate the proposed approach with an example. Imagine going on
a holiday to another country. There are multiple travel options, such as going
by car (system A), by train and public transportation in general (system B) or
by airplane (system C). We consider only two attributes for these travel options:

• estimated travel time to reach the destination, and

• perceived comfort of the transportation method.

There are many other attributes but for the example to remain easy to follow,
we limit ourselves to these two.

Assume the following about the travel options.
The car system shows slight uncertainty on travel time which stems from the

possibility of running into traffic jams or being rerouted due to road works. On
the other hand, the comfort of travelling by car is rated as “high” as it offers a
high level of freedom: it is not only possible to go exactly where you want when
you want, but you can pack a lot of luggage and keep it close to yourself, safe
and comfortable.

The train (and public transportation in general) system has a longer travel
time compared to the car system. Despite its higher cruise speed, the train
does not go door-to-door, often resulting in multiple transfers during transit,
which is especially true for longer voyages. In combination with this, public
transportation is scheduled according to time tables, and transferring typically
comes with added waiting time. There is also a wider degree of uncertainty

94 CHAPTER 4. AGGREGATION AND SUITABILITY DISTRIBUTIONS

System Attribute Suit. Uncert.

Car Travel time 0.833 0.2
Comfort 1.000 0.0

Train Travel time 0.333 0.3
Comfort 0.300 0.1

Airplane Travel time 1.000 0.0
Comfort 0.700 0.2

Table 4.11: Computed elementary suitability and uncertainty grades for the
three systems.

regarding travel time, as public transportation is victim to many circumstances,
mostly out of your own control, that might introduce delays. The comfort level
of the train system is considered to be “low”, as the hassle of carrying your
luggage around from one transport to the next and the fact that you are limited
in what you can take with you are both restricting factors to your freedom. On
top of this, public transportation rarely comes with privacy, which some value
highly.

In comparison to the others, airplane system is the fastest option. For this
attribute, we consider no uncertainty as airplanes are usually very punctual
(though this is certainly debatable, it serves more to illustrate a point in the
calculations that follow). The airplane system is rated between the car and
the train system for its comfort level as personal freedom is still restricted,
however a lot of work is done for you during departure, arrival and the flight
itself (mostly regarding luggage). There is a certain degree of uncertainty on
this value, however, as it does happen from time to time that luggage is lost or
your seat in the airplane is unfortunately close to a source of nuisance.

Before we can begin evaluating these systems, we need to define our pref-
erences in the form of an evaluation criterion. This criterion is a combination
(or superposition thereof) of elementary criteria on the attributes. Such an
elementary criterion has to accurately reflect our preferences with respect to
acceptable and unacceptable values from the domain of the corresponding at-
tribute. Because being acceptable or not is considered to be a matter of degree,
a regular fuzzy set that is defined over the set of valid domain values can be
used to represent the user preferences.

We identify the following set of elementary criteria:

• C1: Travel time is preferably short.

• C2: Comfort should be as high as possible.

Assume that evaluating the systems with concrete implementations of these
criteria leads to elementary suitability distributions which are defuzzified using
an optimistic strategy (assuming normal travel conditions). The results thereof
are shown in Table 4.11.

In the next step, the elementary suitability grades, with their corresponding
elementary uncertainty grades, are aggregated to a global suitability and global

4.4. AGGREGATING SUITABILITY DISTRIBUTIONS 95

System Suitability Uncertainty
Car 0.914 0.103

Train 0.316 0.198
Airplane 0.840 0.107

Table 4.12: Computed global suitability and uncertainty scores for three sample
systems.

uncertainty for each system. To combine these criteria, we use a linguistic tech-
nique proposed by Dujmović [10]. Therefore, we first need to determine if these
requirements are replaceable or not. As we want them to be true simultaneously,
they are not replaceable and we will compute the degree of andness to find the
correct degree of partial conjunction to combine them. Then, we add a linguis-
tic level of importance to each requirement. We say the comfort requirement
is of high importance whereas the travel time requirement is only considered to
be of medium importance. As such, we find the aggregator should be a Weak
Conjunction [28].

The resulting outcomes for the three alternatives are shown in Table 4.12.
Based on these results, we decide that the train is the worst option as its global
suitability is very poor compared to the other systems. Additionally, its global
uncertainty grade is the highest of all. Given we entered expected values for
the attributes and the interpretation of uncertainty is a margin for worse cases,
this implies the train system’s satisfaction might be more disappointing than
indicated by its global suitability indicator. As such, we reject the train sys-
tem. The car system scores better than the airplane system in both suitability
and uncertainty, and is hence likely the best option, though both are viable
alternatives.

Interpretation

Though we have now succeeded in aggregating suitability and confidence de-
grees using GCD operators, the interpretability of the results has not yet been
discussed. It was silently assumed that the elementary uncertainty grades could
be aggregated. This, of course, relies on the assumption that they all share the
same semantics. As we have discussed in section 3.4, the interpretation of an ele-
mentary uncertainty grade actually depends on which defuzzification strategy is
used. For an optimistic approach, a higher uncertainty grade is not a good sign,
as it indicates that the actual suitability of the input could potentially be a lot
lower than the estimated elementary suitability grade, whereas the opposite is
true for a pessimistic approach. Clearly, aggregating an elementary uncertainty
grade obtained by optimism with an elementary uncertainty grade obtained by
pessimism is nonsensical, because the conflicting semantics regarding high val-
ues make it impossible to interpret whether or not a high value for the global
uncertainty grade is actually good or bad.

The approach introduced in this sectino should really only be applied when

96 CHAPTER 4. AGGREGATION AND SUITABILITY DISTRIBUTIONS

System Attribute Suit. Negative Positive

Car Travel time 0.833 0.15 0.05
Comfort 1.000 0.0 0.0

Train Travel time 0.333 0.25 0.05
Comfort 0.300 0.05 0.05

Airplane Travel time 1.000 0.0 0.0
Comfort 0.700 0.2 0.0

Table 4.13: Computed elementary suitability and bipolar uncertainty grades for
the three systems.

System Suitability Negative Positive
Car 0.914 0.077 0.026

Train 0.316 0.147 0.05
Airplane 0.840 0.107 0.0

Table 4.14: Computed global suitability and bipolar uncertainty scores for three
sample systems.

all inputs are defuzzified using the same defuzzification strategy. However, this
is undesirable, as it undermines one of the fundamental reasons why one would
choose to defuzzify first, namely to have the freedom to express a different degree
of tolerance towards uncertainty on different inputs. This is actually why we
introduced the concept of bipolar uncertainty grades in section 3.4.3. By using
the bipolar extension, we can choose any defuzzification strategy yet always end
up with an elementary bipolar uncertainty grade for which the semantics are
clear, and so we can aggregate them in a meaningful way.

Consider for example a set of defuzzified bipolar uncertainty values as shown
in table 4.13. This table shows not only the defuzzified suitability of each
attribute for each of the systems, but also the “negative” amount of uncertainty
(area under the suitability distribution to the left of the estimated suitability,
indicative of the possibility of an actually worse suitability than estimated) and a
“positive” amount of uncertainty (area on the suitability distribution to the right
of the estimated suitability, indicative of the possibility of an actually better
suitability than estimated). The estimated suitability for the travel time of both
the car and train systems and for the comfort of the airplane system is optimistic
(there is more uncertainty attributed to the negative possible deviation than to
the positive possible deviation of the bipolar uncertainty grades). Alternatively,
the comfort of the train system was defuzzified with the center of mass approach.

The results of aggregating these bipolar uncertainty degrees, in a similar
fashion as described above and separately combining negative degrees and pos-
itive degrees, are summarized in table 4.14. As these results show, the airplane
system can really only underperform and disappoint, whereas the car system
might surprise us in a positive (though small) way. As such, these results affirm
our choice for the car system even more strongly.

4.4. AGGREGATING SUITABILITY DISTRIBUTIONS 97

Summary

We have shown how aggregation based on the GCD operator can be extended
quite easily to not only aggregate suitability grades but also uncertainty grades
into a single, global suitability-uncertainty duo.

All in all, we would nonetheless not recommend defuzzifying first if it can
be avoided. However, as will become clear in the following section, direct ag-
gregation is still rather unexplored and there are plenty of situations in which
direct aggregation can not be carried out. In those cases, it might be interesting
to defuzzify first, as it does provide a relatively simple solution for most prac-
tical cases. Yet, especially if the end-goal is not necessarily to create a global
ranking in a decision support context, we suggest first trying to aggregate the
distributions directly, in order to avoid losing information as much as possible.

4.4.2 Direct aggregation of suitability distributions

Now, let us cover how to aggregate suitability distributions directly. To that
end, we propose to extend classical aggregation operators so they can be used to
aggregate a collection of suitability distributions into a single, global suitability
distribution, minimizing information loss. Note that this approach might be
useful outside of a decision making context as well, because the result is not
directly a ranking of the entities, but rather a global model for the (uncertain)
suitability of an entity given the handling of (flexible) criteria. Though not
directly rankable without defuzzification, a global suitability distribution still
holds more information than any other aggregation result.

It is important to remember that a suitability distribution is essentially a
model for possible worlds. It is not a characteristic function of a fuzzy set
that describes the vague interpretation of a linguistic term. Whereas the latter
associates each value from its domain with a degree of suitability, the former
associates each value with a degree of possibility. As such, the operations for
suitability distributions should not be confused with those defined on fuzzy sets
given by Zadeh in [32]. This can easily be verified. For example, we want the
complement of “certainly fully satisfied” to be “certainly not satisfied”, not “fully
uncertain”. Hence, the operations for possibility distributions must be used [35].
These are devised to work on uncertain values and apply their operations on
the domain of the fuzzy set, not on the membership grades of the elements.

Zadeh’s Extension Principle

Operating in the interpretation of possibility distributions, it is possible to ag-
gregate suitability distributions directly by using Zadeh’s extension principle
[35]. The extension principle asserts that any function that can be applied on
elements of a universe of discourse (such as aggregators), can be extended in
such a way that it can be applied on fuzzy sets defined on that universe. Using
the following notation to express that Ṽ is a fuzzy set on elements u from the

98 CHAPTER 4. AGGREGATION AND SUITABILITY DISTRIBUTIONS

universe of discourse U

Ṽ = {(u1, µ(u1)), (u2, µ(u2)), . . . , (un, µ(un))}

then a function f : U → U∗, that transforms elements from one universe, U ,
to new elements from another (or possibly the same) universe, U∗, (e.g. the
squaring operator f : x 7→ x2), can be extended such that

f(Ṽ) = {(f(u1), µ(u1)), (f(u2), µ(u2)), . . . , (f(un), µ(un))}

Note that it might occur that some values ui and uj , i 6= j, collide under f (i.e.
f(ui) = f(uj). In that case, their corresponding membership grades µi and µj

should be combined using a t-conorm (typically: the maximum t-conorm) into
a single membership grade, for example: µij = min(µi, µj). In words, the grade
of membership of a value y in f(Ṽ) is computed as the maximal membership
grade of all values u in Ṽ that collide under f . If U is a continuum, i.e.,

Ṽ = {(u, µ(u)) | u ∈ U : µ(u) > 0}

the extended form of f is written as

f(Ṽ) = {(f(u), µ(u)) | u ∈ U : µ(u) > 0}

In words, the extension principle states that applying a function on fuzzy sets
results in a new fuzzy set whose elements can be derived from applying the
function on the original elements, u1, u2,

Example. Consider an uncertain number n that is given by the triangular
distribution (8, 10, 12) (around 10). In order to compute 2n, we consider the
doubling operator as a function of the form f(x) = 2x. Applying Zadeh’s
extension principle, we find that 2n is given by:

f(n) = (f(8), f(10), f(12))

= (16, 20, 24)

The outcome is described by a triangular distribution. This shows that dou-
bling the uncertain value “around 10” leads to the uncertain value “around 20”.
Interestingly, the uncertainty in the description of “around 10” is also amplified
by the doubling operator.

But what happens if f is n-ary (it takes multiple inputs, e.g. the addition
operator +)? It is not yet explained how the outcome of f(Ṽ1, Ṽ2) should be
constructed, more precisely: how is the membership grade of element f(u1, u2)

related to Ṽ1 and Ṽ2? Zadeh proposed that the membership grade is determined
by using a t-norm (i.e. the minimum t-norm) to combine the membership grades
from the corresponding inputs:

µṼ (f(u1, u2)) = min(µṼ1
(u1), µṼ2

(u2))

4.4. AGGREGATING SUITABILITY DISTRIBUTIONS 99

Example 2. Let Ṽ1 and Ṽ2 be fuzzy sets given by:

Ṽ1 = {(2, 0.5), (3, 1), (4, 0.5)}

(around 3) and
Ṽ2 = {(3, 0.8), (4, 1), (5, 0.3)}

(around 4) respectively. Applying Zadeh’s extension principle to the addition
operator, we find that Ṽ1 + Ṽ2 is equal to:

Ṽ1 + Ṽ2 = {(2 + 3,min(0.5, 0.8)), (2 + 4,min(0.5, 1)), (2 + 5,min(0.5, 0.3)),
(3 + 3,min(1, 0.8)), (3 + 4,min(1, 1)), (3 + 5,min(1, 0.3)),
(4 + 3,min(0.5, 0.8)), (4 + 4,min(0.5, 1)), (4 + 5,min(0.5, 0.5))}

= {(5, 0.5), (6, 0.5), (7, 0.3),
(6, 0.8), (7, 1), (8, 0.3),

(7, 0.5), (8, 0.5), (9, 0.3)}
= {(5,max(0.5)), (6,max(0.5, 0.8)), (7,max(0.3, 1, 0.5)),

(8,max(0.3, 0.5)), (9,max(0.3))}
= {(5, 0.5), (6, 0.8), (7, 1), (8, 0.5), (9, 0.3)}

which corresponds to “around 7”.
Though the extension principle provides us with theoretical evidence that it

is possible to aggregate suitability distributions, computing the actual analytical
expression turns out to be hard in practice. Initial research on the topic of
aggregating fuzzy sets in the context of decision making focusses on sampling
elements from the domains of the fuzzy sets [1, 6], so as to be able to apply
the aggregation on these sample points. Dong and Wong [5] were the first to
implement an alternative solution that is based on α-cuts. An α-cut of a fuzzy
set Ṽ is the strict set of all elements that have a membership grade of at least
α in Ṽ :

(Ṽ)α = {v | Ṽ (v) ≥ α}

Similarly, a strict α-cut is given by:

(Ṽ)α̂ = {v | Ṽ (v) > α}

Strict α-cuts are typically only used to define the support of a fuzzy set (i.e.
the strict 0-cut). Dong and Wong showed that their technique could provide a
much better approximation of the true solution with only a few α-cuts, if they
are chosen well. By using α-cuts, the computations are turned into interval
analysis. The aggregation is carried out per α-cut and the resulting intervals
are transformed back to a fuzzy set using the resolution identity [33, 34, 35]:

Ṽ =

∫ 1

0

α(Ṽ)α

100 CHAPTER 4. AGGREGATION AND SUITABILITY DISTRIBUTIONS

The remaining question is which α-cuts should be considered? For trapezoidal
functions, which is a fair limit to impose on ourselves given their practical
importance, we would be tempted to rely on only the strict 0-cut and the 1-cut,
which would correspond to performing element-wise aggregation. However, we
will show in the following that this would lead to incorrect results. We will now
give an overview of which results can be found by applying the technique of
Dong and Wong on suitability distributions for common aggregation operators.

Basic operators

For the remainder of this section, let a1 and a2 denote independent (non-
interactive) uncertain properties, ca1

and ca2
denote flexible criteria on these

properties, and sa1
, sa2

are the respective suitability distributions, obtained by
evaluating the criteria on the values for these properties of different entities.

Conjunction The conjunction of sa1
and sa2

, denoted by sa1∧a2
, expresses

the uncertainty over the degree to which a1 and a2 simultaneously satisfy re-
spectively ca1 and ca2 . If we implement the conjunction with the Zadeh t-norm,
then the least satisfied criterion is deciding in the aggregation. So, for each
degree of satisfaction γ, sa1∧a2

(γ) can be expressed as follows: a1 satisfies ca1

to degree γ and a2 satisfies ca2
to a larger or equal degree, or a2 satisfies ca2

to
degree γ and a1 satisfies ca1

to a larger or equal degree. The possibility that a1
satisfies ca1 to degree γ is given by sa1(γ). The possibility that a1 satisfies ca1

to a degree that is at least γ can also be found from its suitability distribution
as maxκ>γ sa1

(κ). As such, it follows that:

∀γ ∈ [0, 1] : sa1∧a2
(γ) = max

κ≥γ
(min(sa1

(γ), sa2
(κ)),min(sa1

(κ), sa2
(γ)))

For trapezoidal suitability distributions, we can construct a more practical
form. If sa1 and sa2 are trapezoidal suitability distributions, we can also write
the conjunction in terms of α-cuts. For trapezoidal membership functions, it
has been shown that each α-cut corresponds to exactly one interval [8]. As such,
we can write:

(sai)α = [pi, qi]

Applying Zadeh’s extension principle, we find that the conjunction takes the
following form:

(sa1∧a2)α = [min(p1, p2),min(q1, q2)]

Let the trapezoidal parameters specifying sai be given by (gi, hi, ki, li). Then
we can rewrite the resolution identity as:

(sai)α =

[0, 1] α = 0

[hi, ki] α = 1

[(1− α)gi + αhi, αki + (1− α)li] elsewhere

4.4. AGGREGATING SUITABILITY DISTRIBUTIONS 101

Using this form for the conjunction, we obtain:

(sa1∧a2
)α =

[0, 1] α = 0

[min(h1, h2),min(k1, k2)] α = 1

[f, n] elsewhere

where

f = min((1− α)g1 + αh1, (1− α)g2 + αh2)

n = min(αk1 + (1− α)l1, αk2 + (1− α)l2)

For α→ 0, we can derive that f = min(g1, g2) and n = min(l1, l2). It would be
ideal if f could generally be written in terms of α, min(g1, g2) and min(h1, h2),
because this would imply that the global suitability distribution is again trape-
zoidal. Unfortunately, the expression for f can not be reduced further, meaning
that the aggregated suitability distribution is not necessarily trapezoidal and
forcing us to investigate for possible breaking points.

We now know three things about the global suitability distribution:

1. Its support is given by [min(g1, g2),min(l1, l2)].

2. Its core is given by [min(h1, h2),min(k1, k2)].

3. It is not necessarily trapezoidal.

It is easy to find cases where the suitability distribution is not trapezoidal.
For example, let sa1 = (0.1, 0.4, 0.5, 0.8) and sa2 = (0.2, 0.3, 0.6, 0.7). For α =
0.25, f1 (the f component of a1) equals 7/40 and f2 (the f component of a2
equals 9/40, so f1 < f2. For α = 0.75, f1 = 13/40 and f2 = 11/40, so f2 < f1.
Due to the monotonic nature of the trapezoidal suitability distributions, there
must be a certain α for which f1 = f2:

g1 + α(h1 − g1) = g2 + α(h2 − g2)

⇔ α(h1 − g1 − h2 + g2) = g2 − g1

⇔ α =
g2 − g1

g2 − g1 + h1 − h2

(4.17)

Unless g2 − g1 = h1 − h2 (i.e. when the slopes of the trapezoids are parallel), α
exists. We are only interested in α-values from]0, 1[, because this would imply
that the slopes of the two trapezoids actually intersect and that consequently
the global suitability distribution has a breaking point in its slope. For our
example, we find that f1 = f2 for α = 0.5, so the global suitability distribution
must show a breaking point for this value of α. An entirely identical reasoning
applies to n. The entire example is visualized in Figure 4.13. This clearly
shows that the global suitability distribution is not a trapezoid, and that the
global suitability is furthermore not a point-wise minimum of the elementary

102 CHAPTER 4. AGGREGATION AND SUITABILITY DISTRIBUTIONS

suitability distributions. Instead, the global suitability distribution is defined
per α-cut and, per cut, traces the left-most elementary suitability distribution
(i.e. the element-wise minimal suitability grade of the α-cuts of the elementary
inputs).

s

1

0 1

sa1
sa2

Figure 4.13: Conjunction of two trapezoidal suitability distributions, sa1
and

sa2
, resulting in a non-trapezoidal global suitability distribution (in red).

Based on these observations, it is easy to verify that the conjunction of
“certainly fully satisfied” and “certainly not satisfied” equals “certainly not sat-
isfied”, that the conjunction of “certainly fully satisfied” and “completely un-
certain” is “completely uncertain”, and lastly that the conjunction of “certainly
not satisfied” and “completely uncertain” leads to “certainly not satisfied”.

Disjunction The disjunction of sa1
and sa2

, denoted by sa1∨a2
, expresses

the uncertainty over the degree to which either a1 or a2 satisfy respectively
ca1

or ca2
. If we implement the disjunction with the max t-norm, then the

most satisfied criterion is deciding in the aggregation. So, for each degree of
satisfaction γ, sa1∨a2(γ) can be expressed as follows: a1 satisfies ca1 to degree γ
and a2 satisfies ca2 to a smaller or equal degree, or a2 satisfies ca2 to degree γ
and a1 satisfies ca1

to a smaller or equal degree. The possibility that a1 satisfies
ca1

to degree γ is given by sa1
(γ). Alternatively, the possibility that a1 satisfies

ca1
to degree at least γ can also be found from its suitability distribution as

maxκ>γ sa1
(κ). Hence, similar to the case of the conjunction, we find that:

∀γ ∈ [0, 1] : sa1∨a2
(γ) = max

κ≤γ
(min(sa1

(γ), sa2
(κ)),min(sa1

(κ), sa2
(γ)))

Again, we can formulate a more practical form based on α-cuts if sa1
and

sa2
are trapezoidal suitability distributions. By applying Zadeh’s extension

4.4. AGGREGATING SUITABILITY DISTRIBUTIONS 103

principle, we find that the disjunction takes the form:

(sa1∨a2
)α = [max(p1, p2),max(q1, q2)]

By the resolution identity, we have that the disjunction corresponds to:

(sa1∨a2
)α =

[0, 1] α = 0

[max(h1, h2),max(k1, k2)] α = 1

[f, n] elsewhere

where

f = max((1− α)g1 + αh1, (1− α)g2 + αh2)

n = max(αk1 + (1− α)l1, αk2 + (1− α)l2)

For α → 0, we can derive that f = max(g1, g2) and n = max(l1, l2). Again, we
find that f and n can not be reduced further, meaning that the disjunction of the
trapezoidal suitability distributions sa1 and sa2 is not necessarily trapezoidal.
Interestingly, but not surprisingly, the breaking point (if any) is the same as
for the conjunction. For example, let again sa1

= (0.1, 0.4, 0.5, 0.8) and sa2
=

(0.2, 0.3, 0.6, 0.7). Again we find that the breaking point accurs for α = 0.5, but
this time the support is given by [max(g1, g2),max(l1, l2)]. The full results of
applying the disjunction on these distributions are visualized in Figure 4.14.

1

0 1

sa1 sa2

Figure 4.14: Disjunction of two trapezoidal suitability distributions, sa1
and

sa2
, resulting in a non-trapezoidal global suitability distribution (in red).

Here, we have similar properties: the disjunction of “certainly fully satisfied”
and “certainly not satisfied” is “certainly fully satisfied”. The disjunction of
“certainly fully satisfied” and “completely uncertain” is “fully satisfied”. The
disjunction of “certainly not satisfied” and “completely uncertain is “completely
uncertain”.

104 CHAPTER 4. AGGREGATION AND SUITABILITY DISTRIBUTIONS

Complementation The complementation is perhaps a bit of an outsider in
the discussion as it is not really an aggregator, yet we want to include the com-
plementation as it corresponds to the logical inversion, which is not uncommon
when constructing an aggregation structure. To define the complement of a
suitability distribution, we once again revisit its interpretation. If sa,c denotes
the uncertainty regarding the degree to which a satisfies c, its complement s̄a,c
should denote the uncertainty regarding the degree to which a does not satisfy
c. Because c denotes suitability, we will use 1 − c to denote unsuitability. If a
value v1 is fully suitable (i.e. c(v1) = 1), it should not be unsuitable. Letting c̄
be the complement to 1 [8, 7] of c, where c̄(v) denotes the unsuitability of the
value v, c̄(v1) should be equal to 0. In order to find s̄a,c, one could evaluate a
using c̄ (i.e. s̄a,c = sa,c̄) but this would require computing a second suitability
distribution. This is not necessary if sa,c has already been constructed, as s̄a,c
can also be derived directly from sa,c, as follows:

∀γ ∈ [0, 1] : s̄a,c(γ) = sa,c(1− γ) (4.18)

To see why this is true, consider how s̄a,c would be constructed. First, the
domain A would be partitioned by c̄ into classes of equal non-suitability, which
is semantically opposite but essentially identical to the partitioning into classes
of equal suitability (only in reversed order). Indeed, the degree of suitability of
each partition class is instead mapped to a degree of non-suitability by taking
its complement to 1. The possibility that a takes a value from any such class,
stays the same. As such, the possibility that a dissatisfies c to degree κ is equal
to the possibility that a satisfies c̄ to degree κ, which is equal to the possibility
that a satisfies c to degree 1− κ.

In terms of α-cuts, computing the complement of a trapezoidal suitability
distribution sa defined by (g, h, k, l) is given by:

s̄a = (1− l, 1− k, 1− h, 1− g)

Note that the order of the parameters is reversed in order to ensure that the
parameters remain in increasing order. Geometrically, this complementation
operator corresponds to a horizontal mirroring around the s = 0.5 line. An
example of the complement operator is shown in Figure 4.15.

This implementation satisfies the following properties: the complement of
“certainly fully satisfied” is “certainly not satisfied” (and vice versa) and the
complement of “completely uncertain” is still “completely uncertain”. This def-
inition respects the definition of the complementation for possibility/necessity
degrees.

Other operators

Technically, any operator can be extended so it can be used to aggregate suit-
ability distributions by applying Zadeh’s extension principle and using an α-cut
approach. However, we have already shown that, even for basic operators, the
global suitability distribution might show breaking points that were not present

4.4. AGGREGATING SUITABILITY DISTRIBUTIONS 105

s

1

0 1

Figure 4.15: A suitability distribution and its complement (in red).

in the elementary suitability distributions. This has manifested itself in the fact
that aggregating trapezoidal suitability distributions does not necessarily result
in a trapezoidal global suitability distribution. Luckily, equation 4.17 provides
a simple way to check for interesting α-cut values. If, given the parameters from
two trapezoidal distributions (g1, h1, k1, l1) and (g2, h2, k2, l2), α falls in]0, 1[,
then an interesting value for an α-cut is found. Note that this occurs when
g1 < g2 ∧ h1 > h2 or g1 > g2 ∧ h1 < h2.

If the aggregation operator has the properties of a linear transformation,
then the aggregation of only trapezoidal suitability distributions will result in a
trapezoidal global suitability distribution. An example of this is the arithmetic
mean.

Example. Let us take a look at what happens when we compute the arith-
metic mean of two triangular, uncertain values. For once, we will not present
them in their trapezoidal shortcut notation, because it is easier to transition
into α-cut representation if they are shown in their regular, piece-wise defini-
tion. Let:

s1(d) =

4d d ∈ [0, 1/4]

−4d+ 2 d ∈ [1/4, 1/2]

0 elsewhere

and

s2(d) =

4d− 2 d ∈ [1/2, 3/4]

−4d+ 4 d ∈ [3/4, 1]

0 elsewhere

106 CHAPTER 4. AGGREGATION AND SUITABILITY DISTRIBUTIONS

We can write these suitability distributions in terms of α-level sets:

(s1)α =

{
[α/4, (2− α)/4] α > 0

[0, 1] α = 0

and

(s2)α =

{
[(2 + α)/4, (4− α)/4] α > 0

[0, 1] α = 0

Now we can compute the α-level sets of the global suitability distribution:

(sg)α =

{[
α/4+(2+α)/4

2 , (2−α)/4+(4−α)/4
2

]
α > 0

[0, 1] α = 0

Besides the trivial case where α = 0, we find that

(sg)α =

[
2 + 2α

8
,
6− 2α

8

]
=

[
1 + α

4
,
3− α

4

]
From this, we can derive the global suitability distribution:

sg(d) =

4d− 1 d ∈ [1/4, 1/2]

3− 4d d ∈ [1/2, 3/4]

0 elsewhere

The proposed average global suitability distribution is uncertain but bound be-
tween 1/4 and 3/4. The only value that is fully possible is 1/2, which is the
arithmetic mean of the fully possible points from the elementary suitability dis-
tributions. The worst (i.e. lowest) possible global suitability grade, 1/4, occurs
when both elementary suitability distributions take their worst possible value
and as such corresponds to the average of 0 and 1/2. The dual is true for the
best (i.e. highest) possible global suitability grade. The example is visualised in
Figure 4.16.

4.5 Conclusions
In this chapter, we have covered the topic of aggregation with broad sweeps.
We have given an overview of existing aggregation techniques that are used in,
among others, multi-criteria decision support systems to combine the results of
elementary suitability grades into a single, global suitability grade, indicative
of not only how well the preferences are satisfied but also the specified synergy
between them. We have proposed and discussed two novel ways to aggregate
suitability suitability distributions: by defuzzifying them first or by aggregating

4.5. CONCLUSIONS 107

suitability

1

po
ss

ib
ili

ty

0 1

s1(d) s2(d)sg(d)

Figure 4.16: A visualisation of s1(d), s2(d) and their arithmetic average, sg(d).

them directly, through the extension principle. It is generally always best to
aggregate the distributions directly, as less information is lost this way.

There is still a lot of work to be done in this area. We have only studied di-
rect and suitability-uncertainty couple aggregation for binary operators, where
there are only two inputs. Whereas defuzzifying first (without uncertainty indi-
cators) provides a clear and easy path towards n-ary aggregation operators, the
extension towards direct aggregation is less obvious, because one would have
to check all combinations of suitability distributions for intersections. Even
for trapezoidal suitability distributions, finding all possible intersections of the
slopes is a problem of more-than-linear complexity.

Finally, we have so far always assumed that suitability distributions are pos-
sibilistic. However, as we have shown in section 3.5, suitability distributions can
be applied in other settings, such as a probabilistic one. Though topics such
as “defuzzification” and aggregation are better understood for those models (if
they are among the common probability distributions, such as the normal dis-
tribution, the exponential distribution, etc.), it is not so straightforward how
these different models of uncertainty can be harmonized into a single use-case.
This is unfortunate, because it would definitely be plausible for real-world sit-
uations to combine both models (and perhaps even more models) to treat both
stochasticity and the incompleteness of information.

108 CHAPTER 4. AGGREGATION AND SUITABILITY DISTRIBUTIONS

Bibliography

[1] Sjoerd M Baas and Huibert Kwakernaak. “Rating and ranking of multiple-
aspect alternatives using fuzzy sets”. In: Automatica 13.1 (1977), pp. 47–
58.

[2] Gustave Choquet. “Theory of capacities”. In: Annales de l’institut Fourier.
Vol. 5. Institut Fourier. 1954, pp. 131–295.

[3] Robin De Mol, Ana Tapia Rosero, and Guy De Tré. “An approach for
uncertainty aggregation using generalised conjunction/disjunction aggre-
gators”. In: 16th World Congress of the International Fuzzy Systems As-
sociation (IFSA); 9th Conference of the European Society for Fuzzy Logic
and Technology (EUSFLAT). Vol. 89. Atlantis Press. 2015, pp. 1499–1506.

[4] Guy De Tré, Jozo J. Dujmović, and Nico Van de Weghe. “Supporting
spatial decision making by means of suitability maps”. In: Uncertainty
approaches for spatial data modeling and processing : a decision support
perspective 281 (2010).

[5] W M Dong and F S Wong. “Fuzzy weighted averages and implementation
of the extension principle”. In: 21 (1987), pp. 183–199.

[6] Didier J Dubois. Fuzzy sets and systems: theory and applications. Vol. 144.
Academic press, 1980.

[7] Didier Dubois and Henri Prade. “A review of fuzzy set aggregation con-
nectives”. In: Information sciences 36.1-2 (1985), pp. 85–121.

[8] Didier Dubois and Henri Prade. Fundamentals of fuzzy sets. Vol. 1. Springer
Science & Business Media, 2000.

[9] Jozo Dujmović. “Aggregation Operators and Observable Properties of Hu-
man Reasoning”. In: Advances in Intelligent Systems and Computing. Ad-
vances in Intelligent Systems and Computing 228 (2013). Ed. by Humberto
Bustince et al., pp. 5–16. doi: 10.1007/978-3-642-39165-1.

[10] Jozo Dujmović. “Andness and orness as a mean of overall importance”.
In: IEEE International Conference on Fuzzy Systems (2012), pp. 10–15.
issn: 10987584. doi: 10.1109/FUZZ-IEEE.2012.6250777.

[11] Jozo Dujmović. Soft computing evaluation logic: the LSP decision method
and its applications. Wiley-IEEE Computer Society Press, 2018.

109

110 BIBLIOGRAPHY

[12] Jozo J Dujmovic. “Continuous preference logic for system evaluation”. In:
IEEE Transactions on Fuzzy Systems 15.6 (2007), pp. 1082–1099.

[13] Jozo J Dujmović. “Extended continuous logic and the theory of complex
criteria”. In: Publikacije Elektrotehničkog fakulteta. Serija Matematika i
fizika (1975), pp. 197–216.

[14] Jozo J Dujmović. “Partial absorption function”. In: Publikacije Elektrotehničkog
fakulteta. Serija Matematika i fizika (1979), pp. 156–163.

[15] Jozo J Dujmović. “Weighted conjunctive and disjunctive means and their
application in system evaluation”. In: Publikacije Elektrotehničkog fakul-
teta. Serija Matematika i fizika (1974), pp. 147–158.

[16] Jozo J Dujmovic, Guy De Tré, and Suzana Dragicevic. “Comparison of
Multicriteria Methods for Land-use Suitability Assessment.” In: IFSA/EUSFLAT
Conf. Citeseer. 2009, pp. 1404–1409.

[17] Jozo J Dujmović and Henrik Legind Larsen. “Generalized conjunction/dis-
junction”. In: International Journal of Approximate Reasoning 46.3 (2007),
pp. 423–446.

[18] Jozo Dujmović and Guy De Tré. “Multicriteria methods and logic aggrega-
tion in suitability maps”. In: International Journal of Intelligent Systems
26.10 (2011), pp. 971–1001.

[19] János Fodor. “Left-continuous t-norms in fuzzy logic: An overview”. In:
Acta Polytechnica Hungarica 1.2 (2004).

[20] Michel Grabisch. “Fuzzy integral in multicriteria decision making”. In:
Fuzzy sets and Systems 69.3 (1995), pp. 279–298.

[21] Michel Grabisch. “K-order additive discrete fuzzy measures and their rep-
resentation”. In: Fuzzy sets and systems 92.2 (1997), pp. 167–189.

[22] Michel Grabisch and Christophe Labreuche. “A decade of application of
the Choquet and Sugeno integrals in multi-criteria decision aid”. In: Annals
of Operations Research 175.1 (2010), pp. 247–286.

[23] Erich Peter Klement, Radko Mesiar, and Endre Pap. Triangular norms.
Vol. 8. Springer Science & Business Media, 2013.

[24] Christophe Labreuche and Michel Grabisch. “The Choquet integral for the
aggregation of interval scales in multicriteria decision making”. In: Fuzzy
Sets and Systems 137.1 (2003), pp. 11–26.

[25] Toshiaki Murofushi, Michio Sugeno, and Katsushige Fujimoto. “Sepa-
rated hierarchical decomposition of the Choquet integral”. In: Interna-
tional Journal of Uncertainty, Fuzziness and Knowledge-Based Systems
5.05 (1997), pp. 563–585.

[26] Michio Sugeno. “Theory of fuzzy integrals and its applications”. In: Theory
of Fuzzy Integrals and Its Applications (1975).

BIBLIOGRAPHY 111

[27] Michio Sugeno, Katsushige Fujimoto, and Toshiaki Murofushi. “A hierar-
chical decomposition of Choquet integral model”. In: International Jour-
nal of Uncertainty, Fuzziness and Knowledge-Based Systems 3.01 (1995),
pp. 1–15.

[28] Ana Tapia Rosero and Guy De Tré. “Evaluating relevant opinions within
a large group”. eng. In: 6th International Conference on Fuzzy Computa-
tion Theory and Applications, Proceedings. Ed. by António Dourado, José
Cadenas, and Joaquim Filipe. Rome, Italy: SciTePress, 2014, pp. 76–86.
isbn: 9789897580536.

[29] Zhenyuan Wang and George J Klir. Fuzzy measure theory. Springer Sci-
ence & Business Media, 2013.

[30] Ronald R Yager. “On ordered weighted averaging aggregation operators
in multicriteria decisionmaking”. In: IEEE Transactions on systems, Man,
and Cybernetics 18.1 (1988), pp. 183–190.

[31] Ronald R. Yager. “On a general class of fuzzy connectives”. In: Fuzzy Sets
and Systems 4 (1980), pp. 235–242. issn: 0300-0508. doi: 10.3138/ptc.
2009-09-s1.

[32] L A Zadeh. “Outline of a new approach to the analysis of complex systems
and decision processes”. In: IEEE Transactions, SMC- 3 1 (1973), pp. 28–
44. issn: 0018-9472. doi: 10.1109/TSMC.1973.5408575.

[33] Lot A Zadeh. “Fuzzy languages and their relation to human and machine
intelligence”. In: Fuzzy Sets, Fuzzy Logic, And Fuzzy Systems: Selected
Papers by Lotfi A Zadeh. World Scientific, 1996, pp. 148–179.

[34] Lotfi A Zadeh. “Similarity relations and fuzzy orderings”. In: Information
sciences 3.2 (1971), pp. 177–200.

[35] Lotfi A Zadeh. “The concept of a linguistic variable and its application to
approximate reasoning”. In: Information sciences 8.3 (1975), pp. 199–249.

112 BIBLIOGRAPHY

Chapter 5

Indexing (Uncertain) Data

From a pragmatic point of view, a database is a digitized persistent storage of
information and a query corresponds to a representation of a model solution to
a certain problem. Though the database might not contain an entity that is
identical to the model solution, evaluating the query comes down to asking a
question to the dataset in order to retrieve those entities that best resemble the
described model solution.

On a technical level, the data describing the entities are represented by
bitstrings that are scattered across the different sectors of a hard disk and a
query is an algebraic expression that is evaluated for each entity in the database.
In order to be able to evaluate the query expression for a certain entity, its data
must be accessible to the computer’s central processing unit (CPU). Therefore,
hard disk sectors containing database information must be copied (“loaded”)
into main memory, which is a costly (slow) operation. Database sectors that
are loaded into main memory are referred to as database buffers. The amount of
database buffers that is used depends on how much main memory is available.
Typically, there will always be at least two buffers in use, so that the CPU
can keep processing data from one buffer while the other is being loaded or
flushed (written back to the hard disk after being modified). Figure 5.1 gives a
schematic overview of the entire memory layout.

In order to be able to ensure that all entities that satisfy the criteria of a
query are found, a database system without extra facilities must load and pro-
cess all disk blocks containing entities. For some of these disk blocks, evaluating
the query expression will lead to the conclusion that no entities in that block
satisfy the query criteria. It would be better to avoid loading such disk blocks,
because loading them (and evaluating the entities that they contain) is nothing
but a waste of time. The smaller the fraction of the entities in the database
that are actually a good match for the query criteria, the more time is typically
wasted by exhaustively checking all sectors containing entities.

When evaluating a query, a database may use one or more indices in order
to avoid loading disk blocks that do not contain entities relevant to that query.
An index is essentially a data structure that serves as a way to look up entities

113

114 CHAPTER 5. INDEXING (UNCERTAIN) DATA

CPU

Fast access

Slow access

…
Hard disk

Main memory

Figure 5.1: A visual illustration of the memory layout of a computer. The
database is stored across different sectors of the hard disk and the buffered
parts are kept in main memory.

by one or more of its attribute values. When uncertainty is allowed in the
database, traditional indexing techniques can no longer be applied due to their
strong reliance on precise attribute values. Instead, new indices, specifically
designed to deal with fuzzy data, are required.

In this chapter, we propose a new index for this specific purpose called Inter-
val B+-tree (IBPT). The contents of this chapter are currently being reviewed
after being submitted for publication in Fuzzy Sets and Systems.

The structure is as follows: in section 5.1, the basic concepts of indexing
are explained. It also serves as a reference regarding common important in-
dexing techniques and provides some background regarding B+-trees and its
current adaptations. Section 5.2 describes the preselection principle, a common
methodology for creating indices for fuzzy data. In section 5.3, we introduce
the IBPT indexing technique. Section 5.4 describes a set of experiments that
were conducted. Finally, section 5.5 summarises our findings.

5.1 Indexing
A key concept in speeding up select query evaluation is indexing. A database
system may maintain one or more indices for the data it manages. A conven-
tional index is essentially nothing more than a minimized, highly structured and
typically ordered copy of a specific set of attribute values of a set of entities of
the same entity type, accompanied by pointers to the addresses of the hard disk
blocks where the corresponding full entity data can be found. Database systems
use indices to retrieve entity data by attribute values.

Indices are usually built with the values of a single attribute, but in some
cases it is warranted to create a so-called composite index that combines val-
ues from several attributes in a single data structure. Composite indices are
generally less flexible but can offer a performance boost over maintaining sev-

5.1. INDEXING 115

eral separate indices when it comes to evaluating queries that frequently impose
criteria on the same collection of attributes.

Adding indices requires additional storage space on top of that which is re-
quired to store the data itself. In adition, indices incur overhead when evaluating
a query (loading the index from the hard disk is (almost) always an unnecessary
load operation because the index does not contain actual entity data besides the
indexed attribute values that are copied). Nevertheless, these downsides are well
outweighed by the positive impact on select query evaluation.

Indices are (usually much) smaller than the original data set, not only be-
cause they only contain a fraction of the original data but also because the
database system can exploit spatial locality when manipulating the index. The
latter implies that database systems can guarantee that entire disk blocks are
efficiently packed with index data. We will illustrate this with an example.

Example. Consider a collection of 5000 entities, each consisting of 12 at-
tribute values and spread across different addressable hard disk blocks that can
each store 1024 bytes of data. Under the assumption that each entity takes
up exactly 48 bytes (4 per attribute), one block can theoretically contain up
to 21 entities. This would imply that one would need a bare minimum of 239
blocks to store all entities, but assume that, due to fragmentation, the entities
are instead scattered across 750 different bocks. Lastly, assume that at least
one of the 12 attributes is unique (i.e. each entity has a different value for this
attribute). Given a specific value for this attribute, the goal is to obtain the
data for the remaining attributes of the corresponding entity. Without index,
this would require reading 375 bocks on average, 1 at best and 750 at worst.
An index on this attribute would consist of copies of the 5000 unique values and
5000 block address locations, grouped in value-block address couples. Given
that a block address is 5 bytes long itself (and the value is 4 bytes large), a
block can contain up to 113 value-block address couples of each 9 bytes large.
Because the database knows all values and addresses at the time it builds the
index, it can guarantee that, when saving the index to disk blocks, each block
will in fact contain 113 of these value-block address couples. Doing so, the index
would require exactly 45 blocks to store. Retrieving the data of a single entity
given its unique value now only requires reading 24 blocks on average (23 from
scanning the index and 1 for loading the actual block containing the data), 2
at best and 46 at worst. In this example, the index takes up about 6% as much
space as the data set but speeds up query evaluation by a factor of 16.

Before going into the details of specific indices, it should be noted that we
assume that the values that need to be indexed contain no duplicates (i.e. no
two separate entities have the same value for the same attribute). Even if there
were duplicates, the structure of the indices we are about to discuss would be
identical. The only difference is that an additional indirection layer would have
to be added. This indirection layer works as follows: for each unique attribute
value, a disk block is constructed containing a list of pointers to all blocks
containing entities with this attribute value. Typically, a separate disk block

116 CHAPTER 5. INDEXING (UNCERTAIN) DATA

is used per attribute value. Should there be so many entities that all their
combined addresses exceed the size of a single disk block, a chaining mechanism
can be applied to link multiple blocks in sequence. Figure 5.2 visualizes the
indirection layer.

u1 u2 u1 u1 u3 u2 u3

u1 u2 u3

1 2 3 N

Duplicates

Unique values
(Indirection layer)

Disk blocks

Figure 5.2: Visualization of the effects of adding an indirection layer, necessary
when creating an index on datasets that contain duplicate values.

Any index is then built using only the unique attribute values, and instead
of pointers to associate the values to disk block addresses containing the entity
data, a pointer to block of the indirection layer containing the addresses of all
entities with that value is stored.

Creating an index on a non-unique attribute will thus unavoidably add (at
least) one extra disk block transfer. However, in comparison to an index on
a unique attribute for the same dataset, an index on a non-unique attribute
will typically be smaller due to the lower amount of distinct values, resulting in
fewer leaf nodes. If this would result in the tree having (at least) one fewer level,
then the cost of having to load the additional disk block from the indirection is
already mitigated.

5.1.1 Composite indices
Most practical indices are built using only values from a single attribute. This
promotes flexibility due to composability: if a query poses constraints on mul-
tiple attributes, the corresponding indices (if they exist) can be evaluated sepa-
rately and the final result set can be computed by combining the intermediary
results. For an entity type with n attributes, this would imply creating (at
most) n separate indices in order to be able to efficiently cope with any ad hoc
query. For conjunctive queries, combining the intermediary results comes down
to some form of intersection. However, intersection implies that the final result
can never be larger than any of the intermediary result sets. As such, construct-
ing the intermediary result sets only to eliminate parts of them later implies that
a portion of disk blocks are loaded unnecessarily. Recall that the entire point
of indexing is to avoid loading disk blocks that do not contain relevant entities.
In order to optimize the construction of the result set for queries that conjunc-
tive combine multiple criteria, one might construct a composite index that uses
values from multiple attributes.

5.1. INDEXING 117

For an entity type with n attributes, one could construct at least 2n compos-
ite indices (more if different orders are considered per attribute). This exponen-
tial relation indicates that exhaustively creating composite indices in order to
support ad hoc queries is not feasible. Instead, it is recommended to only create
composite indices for specific sets of attributes that are expected or known to
be used together frequently in query criteria.

5.1.2 Multi-level indexing
Indices based on sortable attributes can be further optimized by adding addi-
tional levels (or layers) to the index. The second layer of an index is actually
just another index which treats the first index as data. Sortability is important
here, because it is due to the fact that the data is sorted and efficiently packed
in disk blocks by a first index, that high levels of compression can be achieved.
The trick is namely to not include every indexed attribute value in the second
layer, but only the first value per block. The values that are included are some-
times called sentinel values. When a non-sentinel value is sought after in the
second level of the index, the sentinel values provide sufficient information to
deduce in what first level disk block the non-sentinel value can be found.

To continue the previous example, the second layer of the index would also
consist of value-block address couples but because the 5000 original values are
sorted across 45 first-level blocks by the index, only 45 sentinel values need to
be included in the second layer of the index. As such, the second layer must
store 45 entries of 9 bytes large, which luxuriously fits within a single block.
The final index is visualized in Figure 5.3

[1− 5000]

[1− 45] [46− 90] [4951− 5000]

1 2 3 NDisk blocks

Layer 1

Layer 2

Figure 5.3: Visualization of the logical structure of a layered index, showing a
two-layer index of 5000 values copied from entities that are fragmented across
N hard disk blocks.

Note that this layering process can be (and usually is) repeated until the
highest layer of the index fits within a single disk block. In order to retrieve the
data of a particular entity based on a given attribute value that uniquely identi-
fies the entity, the database system would start by loading the block containing
the highest layer of the index. Based on the sentinel values in this layer, the
database system can derive precisely which block from the next layer contains

118 CHAPTER 5. INDEXING (UNCERTAIN) DATA

the given value. That block is subsequently loaded into memory and the process
repeats iteratively until, finally, the block containing the actual value is found.
At that point, the disk block that is referenced by the address coupled to the
given value is loaded and the entity data is retrieved. In our example, fetching
the data of the entity would now take three load operations: one for loading
the root block of the index, containing the entire second layer, one for loading
the block of the first layer of the index that contains the value, and a final load
operation of the block containing the data.

5.1.3 Disadvantages of indexing
Indices can speed up query evaluation, but have drawbacks, too.

1. When evaluating a select query, a database can really only rely on indices
that are built on the attributes that are actually used in the filter predicate
of the query. Queryies that specify a filter on a non-indexed attribute do
not benefit from indices. In comparison, we can use a phone book to find
phone numbers by region and last name, but not by first name. Listing
the phone numbers for all people called Steve would require checking each
entry in the phone book.

2. Each index structure must be maintained in order to stay usable and use-
ful. Each time new data is inserted or existing data is updated or deleted,
all relevant indices must be updated. This overhead has a negative impact
on the rate at which database systems are able to process elementary op-
erations that modify data and scales with the amount of indices that are
created.

3. Most indices rely on some sort of order of the indexed attribute values and
as such are only applicable for select queries with a simple filter predicate.
In situations where the filter predicate expresses a conjunction of multiple
domain filters on different attributes, a database system will usually first
evaluate the different filters independently and then compute the intersec-
tion of the individual results, returning only those entities that occur in
each independent result set. Though some index structures can be created
on multiple attributes (typically the case for spatial data), this is generally
not the case.

4. Indices are generally geared towards speeding up queries whose result set
is small. It is usually assumed that small result sets are the result of filters
that represent equality tests. Consequently, equality tests frequently form
a fundamental part of the index lookup strategy. Though it is rather
uncommon, it can happen that a small result set does not necessarily
correspond to a particular (combination of) attribute value(s). However,
indices typically do not help in these cases. An example of simple select
queries that do not benefit from indices are those that use an inequality
filter, especially if the attribute values are (very) unevenly distributed.

5.1. INDEXING 119

Though it might seem so at first glance, creating a separate index for each
attribute (and each combination thereof) is no solution in most practical cases,
because the overhead per elementary operation scales with the amount of in-
dices. Besides, the amount of possible indices grows exponentially with the
amount of attributes per entity type, as opposed to the data set itself, which
grows only linearly in the amount of attributes, meaning that one rapidly could
require more space to store indices than the actual data itself. In conclusion,
indices should be created thoughtfully with the intention to support queries that
are expected to be submitted frequently.

5.1.4 Indices using balanced trees
The first family of indexing techniques that we will introduce is based on graphs.
A graph is a mathematical data structure that consists of nodes (or vertices)
and edges. Each edge connects exactly two nodes and can be unidirectional
(directed) or bidirectional (undirected). The nodes that are directly connected
to a certain node (by means of an edge) are called its neighbours. A path is
defined as a sequence of joining (i.e. sharing a common node) edges. The length
of a path is given by the amount of edges it contains. Typically, there can be
multiple paths connecting any pair of nodes A and B (or there could be none,
which is more typical for directed graphs). An example of a graph is given in
Figure 5.4.

A B

C

DE

Figure 5.4: An example of a graph consisting of five vertices (A, B, C, D and
E) and a few edges (including a loop at D).

Trees form a special subset of graphs in which any two nodes are connected
by one and only one path. When used in the context of indexing, the edges are
directed, and no loops are allowed (edges that connect a node to itself). With
the exception of the root node, each node must have exactly one incoming edge
(coming from its so-called parent node) and zero or more outgoing edges (going
to its so-called child nodes). The root is special in the sense that it is the only
node without parent. Nodes that have no outgoing edges are called leaf nodes.
An example of a tree is given in Figure 5.5.

Balanced trees are trees that are structured in such a way that all paths
from the root of the tree to the leaf nodes have the same length. Based on
what has already been said about multi-level indices in section 5.1.2, a balanced
tree is an ideal data structure to represent a multi-level index: its nodes are

120 CHAPTER 5. INDEXING (UNCERTAIN) DATA

A

A1 A2 A3

A31 A32

Figure 5.5: An example of a directed tree consisting of three levels (counting
the root, A). The leaf nodes are A1, A2, A31 and A32.

mapped to the logical representation of hard disk sectors and the highest level
of the index is stored in the root of the tree. In a tree-based index, the root is
typically referred to as the 0th level. All nodes that can be reached in one hop
from the root form the 1st level, and so on. An example of a balanced tree is
given in Figure 5.6.

A

A1

A11 A12

A2

A21 A22 A23

A3

A31

Figure 5.6: An example of a balanced tree.

Keeping the tree balanced ensures that, on average, only a minimal amount
of disk blocks must be read in order to retrieve an arbitrary value. Though
it would be possible to construct a more efficient index in case there is prior
knowledge regarding which values are queried more frequently than others (e.g.
by ensuring these values can be reached with fewer disk block reads than other
values), balanced trees are especially useful in the (often realistic) case when
there is no such prior knowledge. Balanced trees are also exceptionally resilient
to data being added or removed.

B+-trees

A B+-tree (BPT) is a special balanced tree which stores all its values in its leaf
nodes. Some values are duplicated to internal nodes to serve the purpose of

5.1. INDEXING 121

being able to navigate through the tree efficiently. Of all indexing techniques
for numerical values, the BPT is among the most efficient and widely used on
block-based data stores (such as hard disks) because they are balanced and their
structure matches block-based persistent data stores very well (i.e. each node
in the tree corresponds to a disk block) [1]. In addition, they have generally
good support for range queries by storing the values in an ordered fashion and
maintaining a linked list that traverses them in this order. The key to their
efficiency lies in how data are structured within nodes. Figure 5.7 illustrates
the general structure of BPT nodes.

P1 k1 P2 ... Pi ki Pi+1 ... Pq−1 kq−1 Pq

BPT internal node with q child nodes.

k1 D1 ... ki Di ... ks Ds Pnext

BPT leaf node containing s values.

Figure 5.7: Graphical examples of a BPT internal node (top) and a BPT leaf
node (bottom).

A BPT is defined by its order (or branching factor), b, which indicates the
maximal fan out (amount of children) that internal nodes can have. The order
of a BPT can theoretically be chosen but is practically determined by the size
of the disk blocks in such a way that each node of the index corresponds to a
disk block. The precise way to calculate b is given later.

An internal node of a BPT contains q−1 ordered key values ki, i = 1, ..., q−1
and q pointers Pi, i = 1, ..., q to q subtrees Si, i = 1, ..., q such that every search
key value k in Si satisfies ki−1 ≤ k < ki. Consequently, S1 contains the smallest
value in the entire index, whereas Sq contains the largest value. Keeping q
between db/2e and b (for all nodes except the root node) offers an efficient
trade-off between optimally using the available space in each disk block and yet
also reserving sufficient space in order to be able to perform insert and delete
operations without triggering many rebalancing operations. Many database
systems force this behavior and call it the fill factor constraint.

Each BPT leaf node contains s key values ki, i = 1, ..., s, k1 < k2 < ... < ks,
s data pointers Di, i = 1, ..., s (which point to the disk blocks containing the
entities corresponding to these keys) and a single tree pointer Pnext. The extra
tree pointer Pnext allows rapid sequential traversal of all leaf nodes in ascending
key order. Though this technically goes against the theoretical definition of a
tree (in the sense that, due to this linked list, there are now multiple possible
paths connecting the root and the leaf nodes), this extra tree pointer drastically
improves the evaluation speed of range queries (i.e., those queries that request
all entities with a value from a specified range). Because of the Pnext pointers,
one only needs to look up the lowest value from the range and then use the

122 CHAPTER 5. INDEXING (UNCERTAIN) DATA

linked list to retrieve leaf node after leaf node directly until the highest value
from the range is found (or surpassed). This way, the tree is only traversed once
from root to leaf, and only the values from the specified range that are actually
present in the leaf nodes are tested. For one leaf node (the one that terminates
the linked list), Pnext is a null-pointer. In a BPT, s is kept between dr/2e and
r (the maximum amount of keys that fit in a leaf node). The only exception to
this is when the tree consists of only one node (in which case the root node is a
leaf node). Other variants of balanced trees might use a different optimum, e.g.
B∗-trees try to keep s around 2/3.

Note that r is not necessarily equal to b. If ||B|| is the size (in bytes) of
a disk block, ||k|| is the size (in bytes) of a key value and ||P || is the size (in
bytes) of a tree pointer, b can be found as the largest integer value for which
the following equation holds:

||B|| ≥ b.||P ||+ (b− 1).||k|| (5.1)

Further assuming ||D|| is the size (in bytes) of a data pointer, r is the largest
integer value for which the following equation holds:

||B|| ≥ r.(||D||+ ||k||) + ||P || (5.2)

In practice, tree and data pointers typically take up the same amount of
space (||D|| = ||P ||), as they both represent a disk block address. Under these
assumptions, it follows that r = b − 1 and that internal and leaf nodes are
structurally indistinguishable. Going forward, we assume this is the case.

An example BPT of order 5 is shown in Figure 5.8.

5 8

1 2 5 6 7 8 9 10 12

Figure 5.8: Example BPT of order 5 after inserting (in order): 8, 5, 1, 7, 2, 12,
10, 6 and 9.

We will briefly describe the base algorithms that are supported by a B+-tree.
For more details concerning these operations, we refer to [1].

Look-up. Searching for a value in a BPT is an iterative process of visiting
nodes. It starts at the root and ends when a leaf node is reached. When visiting
an internal (i.e. non-leaf) node, the subtree that could potentially contain the
look-up value is found and the corresponding child node is visited next. When
finally a leaf node is visited, two cases can occur: either the leaf node contains

5.1. INDEXING 123

the look-up value, or it does not. In case of the latter, the algorithm ends with
no result. In the former case, the disk block pointer associated to the look-up
value indicates the disk block where (the start of) the full entity is stored. That
disk block is loaded and returned, also terminating the algorithm. Retrieving
an entity indexed by a BPT of t levels requires the loading of t+ 1 disk blocks:
one for every level of the tree (root included) and one for the final disk block
containing the entity data.

Insertion. In order to insert a new value into the index, the BPT is first
traversed in order to identify the leaf where the value should be placed. If the
leaf is not full, the value is inserted and the insertion algorithm stops. If the
leaf is full, the node “overflows” and is split in two new leaf nodes and the keys
are redistributed across them. Typically the first dr/2e values are stored in one
leaf and the remaining values are stored in the other leaf. The lowest value of
the other leaf is copied to the parent, which triggers an insert into an internal
node. Inserting into internal nodes is similar to inserting in leaf nodes but with
one subtle difference: when overflowing, the lowest value of the other node is
moved to the parent instead of copied. This ensures that each key value can
only occur once among the internal nodes. In case the root splits, a new parent
node is created and the tree grows by one level. This new parent becomes the
new root of the tree.

Inserting a value has a limited complexity. At worst, an overflow occurs at
every level, meaning there are as many splits as there are levels in the tree,
which is logarithmic in the amount of keys that are indexed by the tree.

Deletion. In order to delete a value, the leaf that would contain the value
is first identified by traversing the BPT, similar to look-up and insertion. If
the leaf contains the value, it is deleted. In doing so, it could occur that the
leaf contains fewer keys than db/2e (“underflow”). In order to restore the fill
factor constraint, the keys of neighbouring leaves are redistributed. First, the
immediate neighbours are consulted to see if any of them can donate a value
without themselves underflowing. If neither neighbour has sufficient values, the
leaf is merged with either of its neighbours into a single leaf, absorbing a value
from their parent in the process. This process is repeated for the parent node
until each node satisfies the minimal fill factor constraint.

The complexity of deleting a value is similar to that of inserting a value and
is hence logarithmic in the amount of entities that are indexed by the BPT.

Update. Updating value X to Y is done by first deleting X and then inserting
Y. The complexity of updating a value is also logarithmic in the amount of keys
that are indexed by the BPT.

Composite BPT

Up to here, we have only covered trees built on a single attribute. However,
BPTs can also be used to build composite indices. For the resulting so-called

124 CHAPTER 5. INDEXING (UNCERTAIN) DATA

composite BPT (CBPT), the order in which the attributes are specified is im-
portant. The essential idea behind CBPT is to sort the indexed entities by a
certain attribute first, and to use the next attribute as a tiebreaker, and so on.
For an index on n attributes, one can create (at least) n! different composite
indices (even more if the indexed attributes can be sorted according to several
orders). For example, one could sort people’s names by ascending last name
first, and ascending first name second, or the other way around.

Building a CBPT index is similar to building a regular BPT, but the keys
are composed of the concatenation of all of the indexed attribute values. Conse-
quently, CBPTs have a typically lower branching factor. Everything else (pro-
cedures for look-up, insert and delete) remain the same.

When evaluating a query, a database is more likely to use a composite index
if the query poses constraints on only the first or at least all attributes that
are used in the index. This makes a composite index generally less applicable
than a collection of separate BPT indices Composite indices can be used when
only the first attribute is subject to filtering due to the fact that a CBPT
uses this attribute to build its internal nodes. Nonetheless, a composite index
would be strictly less efficient than a regular BPT because it is necessarily
larger by having to store information on the other attributes, too. In cases
when all relevant attributes are included in a query, it is easy to verify that a
composite index is more efficient than having a separate index for each attribute.
A collection of separate BPT indices would not only take up more storage space,
but finding the result set would require evaluating each of them individually and
combining each partial result sets. For a conjunctive query, this would result in
having to compute the intersection, a process during which many false positives
(matching one filter but not all of them) would be loaded into memory, which
is a waste. In case a CBPT is used, only one index structure is traversed,
resulting in far more efficient disk block reads. All records in the leaf node are
tested to see if they match the query constraints. Then, the Pnext list is used
to traverse the leaf nodes until the first record not matching the constraint on
the first attribute is found. Due to the structure of the index, all following
records can no longer satisfy the first constraint and thus it is guaranteed that
all potentially matching records have been tested. This procedure is guaranteed
to load a minimal amount of disk blocks containing no relevant entities.

For a certain order, it should be noted that a CBPT will be “larger” than
a regular BPT. Larger here means that there are either more nodes or that the
nodes are more filled. In other words: a CBPT of order b, built on 50000 entities
will take up more space than a BPT of order b, built on 50000 entities. This is
because the leaf nodes must store more bytes per indexed record for each extra
attribute that is added to the index. Nevertheless, this will only have an impact
on query efficiency in case this would result in an extra level being added to
the tree, meaning that each query would then require an additional disk block
to be read. In any case, a CBPT will take up less space than a collection of
separate BPTs for each of the attributes, and particularly queries that make
use of all indexed attributes will executed significantly more efficiently with a
CBPT index.

5.1. INDEXING 125

5.1.5 Alternative techniques
Bitmap indexing

Bitmap indices [17] are a fairly new (compared to tree-based indexing tech-
niques) way of indexing data that is based on bitmaps. A bitmap is essentially
a bit matrix for a single attribute with a finite domain where each value from
the domain translates to a column in the matrix, and each entity in the dataset
corresponds to a row. As such, each entity corresponds to a bit string which
can be seen as a mask that identifies its value. Bitmaps are interesting because
of multiple reasons:

• They significantly speed up query evaluation.

• They do not depend on the existence of a total order on the domain of
the indexed attribute.

• Due to their bitwise nature, they are very efficient at evaluating logical
combinations of values, such as “and”, “or”, “not”, “xor”,….

Bitmaps perform very well for ad hoc querying including multiple attributes,
even without composite indices. The reason this is true is because, unlike with
other indexing techniques, the results of individual bitmap index lookups can
be combined before any disk blocks are loaded. Indeed, the bitmasks for the
potential entities can be fetched and combined logically before any blocks have
to be loaded, the entire combination logic can be performed at the level of the
bitmasks itself.

Bitmaps are however less efficient when it comes to maintenance operations
such as inserting, updating or deleting data. Whereas adding new entities is
easy, adding new columns is not. Especially in case that the length of the
bitmask would be extended beyond a multiple of the length of the machine word
(the unit of operation for processors, typically 32 or 64 bit), updating the bitmap
is a costly operation. Hence, bitmaps are mostly found in read-only systems
that focus on rapid querying, like data warehouses, online analytical processing
(OLAP) and online transaction processing (OLTP) applications. Furthermore,
the size of bitmaps scales with the amount of distinct values in the attribute’s
domain, and as such are typically used for attributes with few distinct values
(e.g. gender). Though it might seem to be implied that bitmaps are most
efficient for attributes with a small amount of distinct values, it has been shown
that bitmaps can also be highly performant for attributes with a large domain
(e.g. unique value per row), despite their quickly increasing size1.

Spatially, each bitmask denoting an entity is preferrably kept in a single disk
block. The amount of such entity bitmasks that can be fit within a single disk
block depends on the length of the bitmask, which is determined by how many
attributes and attribute values are indexed. The fragmentation of a bitmap
(i.e. the fraction of “wasted” space in each disk block) depends on how close the
length of each bitmask is to a multiple of a machine word. In case the amount

1https://www.oracle.com/technetwork/articles/sharma-indexes-093638.html

126 CHAPTER 5. INDEXING (UNCERTAIN) DATA

of columns matches an exact multiple of the machine word length, there is no
fragmentation. In the rare event that a bitmask would extend beyond a single
disk block, a linked-list mechanism can be used to chain the blocks containing
the mask together.

In practice, however, bitmasks are typically stored in compressed form using
some form of lossless encoding such as run-length encoding. In addition to
bitmask compression, one can also encode the attribute values, lowering the
amount of rows required to store the same amount of entity data. However, it is
generally true that encoding sacrifices performance in order to lower the spatial
storage requirements. The best compression technique is thus different for each
use case as it depends on the hardware of the machine housing the index and
the willingness of the system administrator to trade space for performance.

It should be noted that, aside from the bitmap, the database system must
also maintain look up tables which map the column indices to attribute values
and back, and entity identifiers to the addresses of the disk blocks where the
reside. Nevertheless, these are generally insignificant compared to the size of
the bit matrix itself.

Hashing techniques

Another popular technique for indexing is based on hash functions. A hash
function is essentially a mathematical transformation of any value to a different
value in a way that certain properties are satisfied, namely:

• Hashing the same value twice will yield the same result.

• Hashing two similar values will result in two very different values.

• It is rare that two different values will result in the same value.

In the context of indexing, hash functions are used to translate attribute
domain values to disk block addresses. This poses a few challenges, as there
are a finite amount of disk block addresses, but a possibly infinite amount of
domain values.

Hash functions have the advantages of not having any storage requirements
(only the hash function itself needs to be stored) and of having extremely good
performance (constant order). Indeed, given a specific value, a hash function
is capable of finding the disk block containing the target entity data in only
one operation, implying that only a single disk block must be loaded. In addi-
tion, hash functions do not require that the domain of the indexed attribute is
sortable.

Hash functions also suffer from particular drawbacks. For instance, they
are very poor at evaluating range queries. Alternatively, it is difficult to con-
struct a hash function that maintains its desirable properties as datasets evolve
over time, more precisely when they grow. This has lead to dynamic hashing
techniques such as extendible hashing [11] and linear hashing [12]. For hashing
values from multiple attributes, a technique called partitioned hashing was pro-
posed, wherein essentially different attribute values are hashed to part of a disk

5.1. INDEXING 127

block address, and the entire disk block address is obtained by concatenating
the results of the individual hashes.

5.1.6 Balanced tree-based indices for fuzzy data
2BPT

In 2008, Barranco et al. proposed 2BPT indices for fuzzy numerical data [6].
The index is based on the combined usage of two BPTs, hence the acronym
2BPT. 2BPT treats the lower and upper bounds of the support of the indexed
fuzzy numbers as separate attributes. Rather than using a CBPT, two separate
BPTs are used.

Inserting an interval in a 2BPT index corresponds to inserting its upper
bound in one BPT index and its lower bound in another BPT index. Computing
the preselection set for a query with convex membership function P , whose
support corresponds to the interval [Pa, Pd], happens in three steps:

1. Perform the look-up of Pa in the BPT on upper bounds to find the fuzzy
numerical value whose uppermost possible value is closest to Pa. Assuming
the upper bounds are sorted in natural order (ascending), following the
Pnext pointers of the leaf nodes leads to the set of intervals T1 for which
Eq. 5.4 does not hold, i.e. for which the (uncertain) datum is certain to
end before Pa.

2. Perform the look-up of Pd in the BPT on lower bounds to find the fuzzy
numerical value whose lowermost possible value is closest to Pd. Assum-
ing the lower bounds are sorted in reversed natural order (descending),
following the Pnext pointers of the leaf nodes leads to the set of intervals
T2 for which Eq. 5.3 does not hold, i.e. for which the (uncertain) datum
is certain to start after Pd.

3. The intersection T = T1 ∩ T2 describes the intervals for which neither
equation holds. In other words, T is the preselection set.

Note that, even though the first two steps can be executed in parallel, the last
step must wait until both steps are completed. Alternatively, the third step
can be performed during the execution of the second step, but in that case, the
first two steps must be executed sequentially. In any case, the evaluation comes
down to a procedure where different steps must be executed sequentially and
possibly the system must thus wait for a previous step to complete.

Note that 2BPT must furthermore traverse both linked lists of leaf nodes
of the individual indices entirely, from the found fuzzy numerical value until
the end, in order to compute the preselection set. Since visiting a leaf node
corresponds to the costly operation of reading a disk block, this has two disad-
vantages:

1. The performance of 2BPT is linearly correlated to the amount of leaf
nodes and thus the size of the data set.

128 CHAPTER 5. INDEXING (UNCERTAIN) DATA

2. 2BPT will unavoidably visit leaf nodes that are not part of the intersection,
i.e. disk blocks that do not contribute to the preselection set.

As indices should try to minimize loading irrelevant disk blocks, this signals a
possible area to improve upon 2BPT.

2ABPT

In [14], Medina et al. propose a variant of 2BPT called 2ABPT, wherein the two
component BPT indices of 2BPT are replaced by CBPT indices: one on upper
bounds first and one on lower bounds first. The advantage is that having all
interval information in each tree makes it possible to compute the preselection
set by traversing only one of the CBPTs, rather than having to traverse both
BPTs. Either CBPT index can be used to compute the full result, but one
will always be more efficient than the other, depending on the query and the
characteristics of the data set. Their experiments show that the query analyser is
well capable of selecting the most efficient one based on its empirical knowledge
of the data set. The largest remaining downsides of 2ABPT are that such an
index is rather large and that it requires the simultaneous upkeep of two separate
CBPT indices in order to keep them synchronized.

5.2 Preselection
Constructing a suitability distribution to represent the degree to which a fuzzy
datum satisfies a fuzzy query is a costly operation, involving the analysis of the
possibility distribution denoting the fuzzy datum and the fuzzy set denoting
the user preferences. In some cases, however, this evaluation can be avoided.
While studying the subject, Bosc et al. were the first to notice that it is possible
to easily identify the records for which it is certain that they can not satisfy
the query [9] in case both the fuzzy value and the fuzzy query have a convex
membership function. In a database querying context, this implies that those
records do not have to be fetched and processed in order to construct the query
response. The so-called preselection principle observes that if the support of
the fuzzy value does not overlap the support of the fuzzy query, the value is
guaranteed not to satisfy the query.

Consider the criterion a IS c, where a is an attribute of a relation in a
relational database supporting uncertainty and c is a fuzzy set expressing the
user preferences regarding the desired values of a. Assume criterion c is a
trapezoidal fuzzy set that is fully defined by the quadruple (ca, cb, cc, cd). Testing
if the record r whose value for a is given by another trapezoidal fuzzy set πa(r) =
(πr

a, π
r
b , π

r
c , π

r
d), may be rejected, requires two checks:

πr
a > cd (5.3)

and
πr
d < ca (5.4)

5.3. INTERVAL B+-TREES 129

domA

πt1
d

Pa

support PA

Pd

πt2
a

Figure 5.9: Visualisation of preselection for processing query criterion A IS P .
Rejection areas for P are highlighted in grey. Based on Eq. 5.3 (resp. 5.4),
record t2 (resp. t1) is rejected.

Indeed, if either Eq.5.3 or Eq.5.4 is true, the supports of πa(r) and c do not
overlap and r can never satisfy c and thus can be safely rejected. This is
visualized in Figure 5.9.

The preselection principle hence provides two simple mathematical tests that
can be used in order to determine which records should not be further processed.
This is useful because it allows us to identify entities that can be rejected from
the result set without having to compute the suitability distribution first. In
fact, this is true even when suitability distributions are not used, too. Not only
does preselection lower query evaluation time, it also offers a large degree of
freedom when it comes to choosing which evaluation technique to use, as the
actual evaluation can be postponed until after preselection is done.

The idea of preselection essentially comes down to interval boundary com-
parison and has sparked the invention of several indexing techniques for interval
data (and by extension for possibilistic data). Bosc et al. first suggested using
an index built by superimposed coding to annotate the support and core of a
possibility distribution [10]. Yazici et al. proposed to use a single, multidimen-
sional index for similarity-based fuzzy data in [18, 19]. Their technique can be
applied for attributes whose domain consists of a finite amount of fuzzy sets
that are denoted by linguistic labels. Liu et al. presented 1GT, a technique
based on G-trees that can be used for convex possibility distributions [13]. In
[6, 3, 2] Barranco et al. proposed 2BPT. This technique employs two B+-trees:
one for the lower and one for the upper bounds of the supports of the indexed
(convex) trapezoidal possibility distributions. Since this later work, there are
proposals index structures for scalar fuzzy scalar data [8, 7], and designed to
solve necessity based queries [4, 5]. Also, some works make wide evaluation of
indexes proposal in the possibility [14, 16] and necessity contexts [15, 14].

5.3 Interval B+-trees
In this section, we propose a new technique for indexing interval data called
an interval B+-tree (IBPT). An IBPT is essentially a composite BPT with an
extra pointer list connecting the leaf nodes in order to optimize query evaluation
for interval data. More precisely, an IBPT index is a two-column index on
both bounds of the indexed intervals. It has already been shown that a single

130 CHAPTER 5. INDEXING (UNCERTAIN) DATA

composite BPT index can be used to compute the preselection set, but the
procedure to do so requires that all leaf nodes are traversed using the Pnext

pointer list, which can be inefficient in many cases. Medina et al. [14] mitigated
this problem by creating an additional composite BPT and letting the query
optimiser decide which index to use in a super index they call 2ABPT. IBPT
solves the problem by adding an additional pointer to each leaf node which form
an alternative linked list of all leaf nodes, enabling a traversal of all leaf nodes
in a different order than the one imposed by the Pnext pointers.

Just like is true for any CBPT, the order in which the attributes are specified
matters. For a certain attribute, one can build two different IBPTs: one on lower
bounds first or one on upper bounds first. As will be shown in the experiments,
this choice has an impact on query performance. For the remainder of the
chapter, we assume that the specified order is upper bound, lower bound. We
will use the symbol d to represent key values in internal nodes. These represent
the upper bounds of the indexed intervals.

5.3.1 IBPT Structure
For an IBPT index of order b, an IBPT internal node contains at most b − 1
keys, di, i = 1, . . . , b−1, d1 < d2 < · · · < db−1, and b tree pointers Pi, i = 1, . . . , b
to b subtrees Si, i = 1, . . . , b such that each key d in Si satisfies di−1 ≤ d < di.
It is easy to verify that IBPT internal nodes are structurally identical to BPT
internal nodes.

An IBPT leaf node contains three pointers to other leaf nodes (Pnext, Pprev

and P ′
prev) and at most q intervals (ai, di), i = 1, . . . , q with their corresponding

data pointers Di, i = 1, . . . , q. Herewith, q ≤ l, with l being the largest natural
number for which

l(||P ||+ 2||k||) + 3||P || ≤ ||B|| (5.5)

holds. Roughly, l = 2b/3. The Pnext pointer is identical to the one of a regular
BPT leaf node such that following the Pnext pointers corresponds to iterating
over all indexed intervals according to the chosen order of the chosen bounds
(here: increasing upper bounds).

The novel aspect of IBPT is the introduction of a secondary, doubly linked
list that connects all leaf nodes in a different order. The idea behind this
secondary linked list is to have a data structure that additionally provides sorted
access to the intervals according to the other bound (here: lower bounds), in
both decreasing and increasing order. If there were exactly one interval per leaf
node, it would be possible to create this list perfectly. However, because a leaf
node contains multiple intervals, grouped and sorted by their upper bounds, only
an approximate sorting is achievable. For any leaf node l, let a(l) be the minimal
lower bound of all intervals in l. The leaf nodes can be ordered according to
their minimal lower bound. In order to realize the secondary linked list, two
extra leaf node pointers (respectively Pprev and P ′

prev) must be added to each
leaf node. Though only Pprev is necessary to compute the preselection set, the
P ′
prev pointers significantly lower the cost of insert and delete operations.

5.3. INTERVAL B+-TREES 131

Before we continue, let us briefly reflect on the structural impact of adding
additional pointers to each leaf node. Adding the proposed two additional point-
ers to each leaf node means that, given that the size of a leaf node is fixed, leaf
nodes can store less key values, which in turn has an influence on the size of
the tree. How big this impact is depends on how large the two pointers are
compared to the size of a leaf node. In practice, this is typically very small:
a modern hard disk block is generally 4096 bytes large, a pointer is 8 bytes.
The ratio of two pointers to a leaf node is roughly 0.4%, which is practically
negligable.

5 7 8 10

[1,1] [1,2] [4,5] [0,6] [3,7] [8,8] [9,9] [4,10] [10,12]

l1 l2 l3 l4 l5

root

Figure 5.10: Example of an upper-bound based IBPT of order 5: internal nodes
can store 4 values, leaf nodes can store 2 intervals. The minimal lower bound is
underlined for each leaf. The following intervals were inserted (in order): [8,8],
[4,5], [1,1], [3,7], [1,2], [10,12], [4,10], [0,6] and [9,9]. The secondary linked list,
indicated by the blue arrows, order the leaf nodes by a, yielding l4 ↔ l5 ↔ l3 ↔
l1 ↔ l2 (left to right indicates Pprev, as shown in blue, and right to left indicates
P ′
prev, as shown in brown).

Figure 5.10 shows an example of an upper bound based IBPT of order 5. The
same keys that were used in the example from Figure 5.8 are now considered as
upper bounds for random intervals and are inserted in the same order.

5.3.2 Impact on Insert and Delete Procedures
Each time the index is changed (i.e. when an interval is added or deleted), the
correctness of the secondary pointer list must be validated. If no longer valid,
the lists must be repaired. In the following, we will cover the impact on the
performance of insert and delete operations.

Insertion. Assume we are adding the interval [an, dn] to an existing IBPT
index. The process to do so is as follows. First, the appropriate leaf node where
the interval should be inserted is determined by applying the insert algorithm
of regular BPTs using dn as a look-up value. Let us call this leaf node lc. After
inserting the interval in lc, two situations can occur: either lc is overflowing and

132 CHAPTER 5. INDEXING (UNCERTAIN) DATA

must split, or lc is not full yet and the interval has been successfully inserted.
Let us first consider the situation where lc is not full yet. In this situation, again
two cases can appear: either an < a(lc) or an ≥ a(lc). In case of the latter, the
insert operation is finished and the secondary list does not need to be updated.
In case of the former, however, a(lc) changes to an and the secondary linked
list must be evaluated to check if it needs to be repaired. If an < a(Pprev),
lc is no longer in the correct position in the list and the secondary linked list
must be repaired. In order to do so, one must follow the Pprev pointers until
a leaf node l is reached such that a(l) ≤ an. When this leaf node is found, let
lp = P ′

prev(lc), ln = Pprev(lc) and lm = P ′
prev(l). In order to repair the linked

list, these pointers must then be updated in the following order:

1. P ′
prev(ln)← lp

2. Pprev(lp)← ln

3. Pprev(lc)← l

4. P ′
prev(l)← lc

5. Pprev(lm)← lc

6. P ′
prev(lc)← lm

Example. Let us insert the interval [0.5, 7.5] in the example of Figure 5.10.
The interval would be inserted in l3 and because 0.5 < 3, a(l3) changes and
the secondary pointer list must be updated. Following Pprev(l3) brings us to l1.
Because a(l1) = 1 > 0.5, we must continue traversing the secondary list using
the Pprev pointers. Pprev(l1) brings us to l2. This time a(l2) = 0 ≤ 0.5, so we
have found the right place to insert l3. The following pointers are updated:

1. P ′
prev(l1) = l5

2. Pprev(l5) = l1

3. P ′
prev(l3) = l2

4. P ′
prev(l2) = l3

5. Pprev(l1) = l3

6. P ′
prev(l3) = l1

The secondary, doubly-linked list now corresponds to l4 ↔ l5 ↔ l1 ↔ l3 ↔ l2
(descending lower bounds from left to right).

Let us now consider the case where lc is full and overflows. Again, let
ln = Pprev(lc) and lp = P ′

prev(lc). Before splitting the node, the secondary list
has to be updated so that P ′

prev(ln) = lp and Pprev(lp) = ln (in words: lc is
removed from the secondary list). Next, the regular splitting strategy is applied
and the intervals are distributed among the two new leaf nodes based on their

5.3. INTERVAL B+-TREES 133

upper bounds. After redistributing the intervals across the two new leaf nodes,
it is almost guaranteed that one of them will have to move “upstream”. The
other can either stay in place or has to be inserted “downstream”, similar to
the case when lc did not overflow. The reinsertion procedure for these two
new leaf nodes is similar to the one described above but the pointers used to
traverse the secondary list depend on whether the node should be inserted up-
or downstream. To insert the new leaf l (with minimal lower bound a(l)), P ′

prev

is used if a(l) > a(ln) (upstream) and Pprev is used if a(l) < a(ln) (downstream).
Clearly, the complexity of inserting an interval in an IBPT is higher than

the complexity of the insert procedure of a regular BPT. Each interval that is
inserted can trigger an update procedure which could, in the worst case, cause
the traversal of all leaf nodes. IBPT should be preferred in situations where
the data is queried (much) more frequently than it is modified. For batch insert
operations, it is advised to create the IBPT index without maintaining the
secondary pointer list and to postpone the construction of the secondary linked
list until the entire batch has been inserted.

Deletion. Similar to insertion, each deletion might invalidate the secondary
list. Assume that the interval [an, dn] has to be deleted from an existing IBPT
index. This can be achieved by applying the following procedure. First, the
look-up algorithm is applied using dn in order to find the leaf node lc which
contains [an, dn]. Should the index not contain this interval, the procedure ends
without making any modifications. If it does, [an, dn] is removed. Two possible
situations arise: either lc is underflowing, or it is not. The simplest case to
handle is that in which it is not underflowing. In that case, a(lc) is computed
(after the removal of [an, dn]). If a(lc) ≤ an, then removing an did not have
an impact on the secondary linked list, as it was clearly not the smallest lower
bound in lc, and the deletion procedure is finished. Otherwise, a(lc) > an
(an was the minimal lower bound in lc), then the secondary linked list must
be validated as the order may no longer be correct: indeed, given that a(lc)
has increased, it is possible that lc must be moved “up” the secondary linked
list. The P ′

prev pointers can be used to find the first leaf node l for which
a(l) ≥ a(lc). If no such node exists (the end of the list is reached), lc must be
moved to the head of the secondary linked list. In all other cases, lc is removed
from the secondary list and re-inserted just before l, such that P ′

prev(lc) = l and
Pprev(l) = lc.

Let us now consider what happens if lc underflows after removing [an, dn].
In this case, the regular BPT algorithm for dealing with underflow is applied (as
described in section 5.1.4). During this process, either lc steals a value from one
of its neighbors, or it merges with one entirely, absorbing a value from its parent
(possibly propagating all the way up to the root). If a value was stolen, both
lc and that neighbor must be deleted from the secondary list and re-inserted in
their appropriate places. If lc and a neighbor merged, lc and that neighbor are
removed from the secondary list and the resulting single leaf is re-inserted.

134 CHAPTER 5. INDEXING (UNCERTAIN) DATA

Example. Let us delete the interval [3, 7] from the example index shown in
Figure 5.10. Looking up the value places us in leaf node l3. By removing [3, 7], l3
is underflowing. According to the underflow procedure, first the “left” neighbor,
l2, is consulted. As it happens, l2 contains sufficient entries so that it can donate
one and still not be underflowing. As such, it donates [0, 6] to l3. Because no
merge procedure has occured, both l2 and l3 must be removed from and then
re-inserted into the secondary list. The resulting tree is shown in Figure 5.11.
It shows that l3 has been moved downsteam to take over the position of l2, as
it received [0, 6], the interval that was deciding for a(l2). Meanwhile, l2 has
moved upstream because its minimal lower bound has increased from 0 to 4,
placing it just after l5 in the Pprev order. The secondary, doubly-linked list now
corresponds to l4 ↔ l5 ↔ l2 ↔ l1 ↔ l3 (descending lower bounds from left to
right).

5 6 8 10

[1,1] [1,2] [4,5] [0,6] [8,8] [9,9] [4,10] [10,12]

l1 l2 l3 l4 l5

root

Figure 5.11: Example of an upper-bound based IBPT built using [8,8], [4,5],
[1,1], [3,7], [1,2], [10,12], [4,10], [0,6] and [9,9], after removing [3,7].

5.3.3 Applying Preselection
It has already been established in 5.1.4 that the preselection set can be con-
structed by traversing all the leaf nodes of a composite index on both lower
and upper bounds. In what follows, we will describe a procedure that allows
us to construct the preselection set by traversing fewer than all leaf nodes. The
procedure hinges strongly on the following two observations:

• to exploit Eq. 5.3, we can use the Pprev pointers, and

• to exploit Eq. 5.4, we can use the Pnext pointers.

Assume we have to evaluate a fuzzy query of the form a ISc, where c de-
notes preferred values for attribute a modelled by a convex membership function
whose support is bounded by [ca, cd] (we will use this notation, for the sake of
clarity). We will now show how an IBPT index can be used to compute the
preselection set. Starting the procedure is done by initializing three variables:

• S = {}, a set that will be used to collect intervals that match the query.

5.3. INTERVAL B+-TREES 135

• M = Pnext, a traversal method that is used to determine how to navigate
the leaf nodes.

• E = {f1(a, d) = Id<ca , f2(a, d) = Ia>cd} (where IA(x) is the indicator
function, returning 1 if x satisfies A and 0 otherwise), a set of functions
that is used to evaluate the preselection predicates on intervals [a, d].

Initially, S is empty, M dictates the usage of the primary linked list through
Pnext pointers and E contains prediates that test both Eqs. 5.3 and 5.4. After
applying the following procedure, S should contain the preselection set:

1. Perform the look-up algorithm for the value ca in order to obtain leaf node
l.

2. Test all intervals in l and add only those that satisfy none of the predicates
in E to S. Meanwhile, keep a running minimum of the lower bounds so
as to efficiently compute a(l).

3. If a(l) ≤ cd, remove f1 from E, load the next leaf (as indicated by M) and
go back to the previous step. Otherwise, move to the next step.

4. Determine (e.g. using a heuristic) whether or not it is beneficial to change
M and then proceed to the final step. Consider, for instance, the following
heuristic. Consult the root node and determine the index i of the subtree
Si that contains the upper bound of the first interval from the current leaf
node. In other words, for upper bound d, find which value for i satisfies
ki < d ≤ ki+1 for the root node. Assuming that the root node contains s
subtrees, check whether i > s/2. If it is, do not change M or E. Otherwise,
change M to Pprev and add f1 to E.

5. Fetch the next leaf node according to M and add those intervals that
satisfy (none of) the predicate(s) in E to S. Repeat this step until the
end of the linked list is reached.

After this procedure, S contains the preselection set.
The first step serves as a way to identify the leaf node l from where traversal

will start. By applying the regular BPT look-up algorithm with the value ca,
the leaf node that contains the interval whose upper bound is closest to ca is
found. All intervals in this leaf node must be tested using both Eq. 5.4 and
Eq. 5.3 because this node might contain intervals that satisfy either. As it is
the central theory of ABPT, we know that following the Pnext pointers will
result in finding all the intervals that make up the preselection set. However, if
a(l) > cd, traversing the secondary linked list by following the Pprev pointers will
also result in finding all the intervals. Therefore, we check to see if a(l) > cd and
if it is not, we simply load the next leaf node using Pnext (the default mechanism
contained in M which is guaranteed to work for an upper bound based CBPT)
and remove f1 from E. Indeed, by using ca as a look-up value in an index built
(and thus sorted) on upper bounds, it is guaranteed that all intervals in leaf
nodes following (according to Pnext traversal) the leaf node containing ca (or

136 CHAPTER 5. INDEXING (UNCERTAIN) DATA

its closest indexed upper bound value) can no longer satisfy Eq. 5.4, so f1 does
not need to be tested anymore.

This process continues until a leaf node is reached for which a(l) > cd, at
which point there are two possible ways to proceed: by following the Pnext

pointers or the Pprev pointers. The question is: which list is shorter, and will
thus find the remaining intervals faster? In order to answer this question, we
propose a heuristic that tries to estimate how far along the primary linked list
the current leaf node l is. If it is deemed likely that l is over halfway of the
primary linked list, then it is assumed that following the Pnext pointers will be
faster than switching to the secondary linked list, and vice versa. The rationale
behind the heuristic is as follows. Not much can be said about the amount of
leaf nodes that will be visited using the Pprev pointers, so it is assumed that,
on average, half of the total amount of leaf nodes will be visited until the end
of the list is reached. The linked list derived from the Pnext pointers, however,
is well known. When starting from a leaf node in the right half of the tree,
using the Pnext pointers would lead to having to visit at most half of the total
amount of leaf nodes. Conversely, using the Pnext pointers in the left half of
the index would lead to having to visit at least half the total amount of leaf
nodes. In such cases, it is decided to use the Pprev pointers because, on average,
it will require that only half of the leaf nodes be traversed, which is better
than at least half. Obviously, guessing which side of the tree the current leaf
node is in by using only the index of the subtree containing the first search
key value, based purely on the root node is a simple but crude estimate. One
could think of a more sophisticated heuristic, especially if additional metadata
regarding the secondary linked list is stored, but this would generally come at
a trade of between insert/delete performance versus look-up speed. This offers
an interesting way for database administrators to influence the performance of
IBPT indexing based on their actual use-case.

If the heuristic decides to switch, M is changed to reflect this, and E is
updated to contain f2 instead of f1. Indeed, when following the Pprev pointers,
it is no longer guaranteed that all intervals satisfy Eq. 5.4, so f2 must be re-
added to E. Instead, it now becomes a certainty that no remaining intervals
can satisfy Eq. 5.3, so f1 can be removed from E.

Note that in case the heuristic decides not to switch, the procedure is es-
sentially identical to the query evaluation mechanism found in a regular CBPT
index. As such, the heuristic plays a role similar to that of the query optimiser
in 2ABPT in the sense that it will estimate which option is the fastest way to
calculate the preselection set.

5.3.4 Example
We will demonstrate the preselection procedure using an example. We will not
yet concern ourselves with counting how many disk blocks are loaded; this is
discussed in greater detail later, in section 5.4. This example is purely to show
how the algorithm functions.

Let us revisit the example from Figure 5.10. Figure 5.12 is a graphical

5.3. INTERVAL B+-TREES 137

representation of the indexed records (sorted by upper bounds, as in the IBPT
index) and a user preference (indicated by vertical dashed lines). This particular
user preference can be interpreted as a desire for records whose value is between
6 and 7. For a small data set like this one, we can easily identify the preselection
set (i.e. the set of intervals that have at least one value in common with [6, 7])
on sight. Let us call this set T :

T = {[0, 6], [3, 7], [4, 10]}

Let us now follow our procedure step-by-step, keeping track of the records that
are identified as candidates in the set S. Initially, S = ∅, M = Pnext and
E = {f1(a, d) = I(d<ca , f2(a, d) = Ia>cd}. After the procedure, S should be
equal to T .

1. We search the IBPT for the lower bound of the query (i.e., 6) and arrive
at leaf node l2.

2. Testing all intervals in this leaf against Eq. 5.4 and Eq. 5.3 yields:

• reject [4, 5] (satisfies Eq. 5.4)
• add [0, 6]

Meanwhile, calculate a(l2) = 0.

3. Because a(l2) ≤ 7, load the next node according to Pnext, remove f1 from
E and repeat the previous step.

4. The next node is l3. We test all intervals with f2 and find that [3, 7] is
added to S because it does not satisfy f2. At this point, S = {[0, 6], [3, 7]}.
We find that a(l3) = 3. Because 3 ≤ 7, we again repeat step 2.

5. Still following Pnext brings us to l4. We reject both [8, 8] and [9, 9] (both
satisfy f2) and find a(l4) = 8. Because 8 > 7, we will apply the heuristic
in order to determine which list to follow for continuing our traversal.

6. From the root node, we can identify that l4 is (in) the 4th subtree from its
5 children. As 4 > 5/2, it is assumed that it is likely fastest to continue
using the primary linked list. As such, we do not have to update anything,
and traversal proceeds using Pnext.

7. The next node that is visited this way is l5. Here, we add [4, 10] and reject
[10, 12]. Because Pnext = ⊥, the procedure ends.

After the procedure, S contains the following records:

S = {[0, 6], [3, 7], [4, 10]}

This confirms that S = T . Note that continuing to use the primary linked list
based on the heuristic resulted in visiting one more leaf node. If we would have
switched to the alternative linked list, however, we would have had to visit four

138 CHAPTER 5. INDEXING (UNCERTAIN) DATA

domA0 1 2 3 4 5 6 7 8 9 10 11 12

[1, 1]
[1, 2]
[4, 5]
[0, 6]
[3, 7]
[8, 8]
[9, 9]

[4, 10]
[10, 12]

Figure 5.12: Visualization of the indexed records and a query for all intervals
overlapping with a value between 6 and 7 (inclusive).

domA0 1 2 3 4 5 6 7 8 9 10 11 12

[1, 1]
[1, 2]
[4, 5]
[0, 6]
[3, 7]
[8, 8]
[9, 9]

[4, 10]
[10, 12]

Figure 5.13: Visualization of the indexed records and a query for all intervals
overlapping with 0.

5.4. IBPT ANALYSIS 139

more leaf nodes (as indicated by the blue arrows in Figure 5.10), which would
have been much less efficient.

Imagine now that we want to execute another query (visualized in Fig-
ure 5.13), this time for all intervals that contain 0 (i.e. overlap with the range
[0, 0]). In this case, we should find:

T = {[0, 6]}

• Search for 0 and arrive at l1.

• Test [1, 1] and [1, 2] only to reject both and find that a(l1) = 1.

• Because a(l1) > 0, proceed by applying the heuristic.

• From the root node, this time we find that l1 is (in) the 1st subtree from
the 5 children. Because 1 ≤ 5/2, it is recommended to switch to the
alternative linked list. Hence, M is changed to Pprev and E is updated to
again include f1.

• Now following Pprev, the next leaf node to visit is l2. The intervals in this
leaf node are subjected to the predicates in E, which yields:

– reject [4, 5] (satisfies Eq. 5.3)
– add [0, 6] (satisfies neither)

Because Pprev = ⊥, the procedure ends.

Again, S = T . It is purely coincidental that l2 follows after l1 in the alternative
linked list as well as in the primary linked list. However, this example clearly
shows that the heuristic was right to make the switch, because using the primary
linked list would have resulted in visiting every leaf node, whereas switching led
to only having to visit one more leaf node. Indeed, we know that any potential
intervals with a lower bound smaller than 0 can be found by following the
Pprev pointers, and, thanks to the alternative linked list, we know that no more
intervals exists with a smaller bound than a(l2).

5.4 IBPT Analysis
In this section, we perform and report multiple experiments to measure the
performance of the IBPT index structure. The experiments use generated, fuzzy
data and random, fuzzy queries. For each experiment, we measure the amount
of disk blocks that are transferred (DBTs) from the hard disk into rapid access
memory by applying the preselection procedure described in Section 5.3.1. Aside
from the performance of IBPT, we will also measure the performance of a CBPT
index (on upper bounds first), a 2BPT index, a 2ABPT index and the baseline
where there is no index.

140 CHAPTER 5. INDEXING (UNCERTAIN) DATA

5.4.1 On the Data Set Generation
For the experiments, we use synthetic, generated data sets. Doing so is in fact
beneficial for analyzing the performance of IBPT because it gives us control
over various aspects of the data set so we can measure how the characteristics
of the data set influence the performance of IBPT.

Before we continue, let us first describe the process that is used to generate
data sets. Understanding this process is important, because it has implications
regarding the random nature of the generated data. To clarify: the generated
data sets are essentially lists of intervals. Among these intervals can be intervals
of length zero, i.e. representing a single value rather than a range of values.

The intention was to create a procedure that is capable of generating random
data sets, but, as it turns out, random is not so easily defined. For simplicity,
we have limited ourselves to dealing with bounded, discrete domains. This
restriction follows naturally from using computers (which inherently work in a
discrete, numerical way) and the observation that many properties have some
form of natural bounds. Furthermore, data set generation is controlled with the
following four parameters:

• an infimum (integer value),

• a supremum (integer value),

• the desired size of the data set (amount of intervals that should be gener-
ated), and

• the maximal fuzziness (i.e. interval length) that is allowed in the data set.

The procedure is essentially a loop in which unique intervals are generated
until the desired data set size is reached. Initially, a list of all integer values
ranging from the lower bound up to and including the upper bound is generated
and shuffled. This list represents all unused bounds in the specified range. In
each loop iteration, two random numbers are selected from this list of available
bounds and the corresponding interval is proposed. It is possible that the upper
and lower bound are the same number, in which case the interval denotes a
precise value. It is tested whether or not the length of the interval exceeds the
defined maximal interval size. If this is not the case, the interval is emitted
and the bounds are removed from the list. This ensures that all lower and
upper bounds, across all intervals, are unique. Though this is not necessary for
using IBPT, it simplifies the tree structure. If the interval exceeds the defined
maximal interval size, the process increases a failed-attempt counter and tries
again. The failed-attempt counter has the sole purpose of ensuring the process
can not get stuck in an infinite loop.

It is important to note that, using this data generation technique, the lengths
of the intervals are not uniformly distributed: there is a higher chance to gen-
erate an interval with a short length. This is because the closer the arbitrarily
chosen lower bound is to the supremum that is used to generate the data set,
the smaller its possible intervals are. Thus, the truly long intervals can only be

5.4. IBPT ANALYSIS 141

generated if a small lower bound is chosen, whereas a short interval can be gen-
erated for nearly all lower bound values. Therefore, longer intervals are much
less likely to be generated. It is possible to use a different approach in order to
be able to guarantee that the lengths of the intervals are uniformly distributed,
but as a consequence thereof, the bounds of the intervals would no longer be
randomly distributed across the domain; instead, the lower (respectively upper)
bounds will be more concentrated around the infimum (supremum). We decided
to choose for the first option because, in practice, we expect that there would
be more small intervals (denoting somewhat known values) than large intervals
(denoting very uncertain values), especially in case fully unknown values are
omitted from the index.

5.4.2 Index applicability
In order to judge whether or not it is justified to create an index, it should be
considered whether or not the index is in fact useful when evaluating queries.
In order to do that, we must first compute the amount of DBTs that is required
to generate the preselection set. The amount that would be needed in case
there is no index serves as a base case. However, it is not straightforward to
calculate this required amount because it depends on factors like the spatial
locality of data and the size of each record. Spatial locality is an indicator for
how scattered records are across disk blocks. To illustrate this, consider records
that are r bytes large and that a disk block is b bytes large. Technically, it is
possible to store bb/rc records in each disk block, in which case spatial locality
is maximal. In the (unrealistic) case that such a record would denote only an
interval and that all records are stored contiguously, scanning all records in a
data set consisting of s records would require s

bb/rc DBTs. It can already be seen
that the amount of DBTs increases with r (as r grows, the denominator shrinks
and the fraction becomes larger). In practice, however, records typically describe
entities that consist of multiple attributes and as such, r is usually (much) larger
than the size required to store a single interval. Moreover, data is rarely stored
contiguously. In the worst case, the records are scattered across disk blocks in
such a way that there is only one record per disk block. In that case, it does
not matter how large r is (as long as it is smaller than b), and computing the
preselection set for a given query in the absence of indices would require s DBTs.
Reality is arguably much closer to the worst case than to the best case. This
becomes apparent when considering the complexity of maintaining contiguity
in the presence of delete and update operations. In any case, the complexity of
the procedure is linear in s.

It should be stressed that when an index is used, neither spatial locality nor
record size has an impact on the amount of DBTs that is required to construct
the preselection set. When using a B+-tree based index, a high degree of spatial
locality is guaranteed by design. These indices explicitly focus on organising disk
blocks such that the interval data are not only grouped (as to maximize spatial
locality) but also sorted (in order to facilitate logarithmic searching). By only
copying the values of the indexed attribute(s) (e.g. the bounds of the indexed

142 CHAPTER 5. INDEXING (UNCERTAIN) DATA

intervals), the index is already significantly smaller than the entire data set and
exhaustively scanning it would be almost as efficient as the base case. The only
reason that the index structure can never be as efficient as the absolute best
base case scenario, is because each interval has to be annotated with a pointer
to the disk block where the entire record is stored, which implies that storing
an interval requires more bits than those needed to describe its bounds. As
such, the maximal spatial locality can never be as good as when no index is
used (where no additional pointer must be stored per interval). Let l denote the
amount of records whose interval datum can be stored in an IBPT leaf node,
then iterating over all leaf nodes of such an index requires an amount of DBTs
that is linear in s/l. Though this is also linear in s, the factor 1/l is guaranteed,
even in the absolute worse case where each record is potentially very large and
all records are scattered across different disk blocks. It is worth noting that
these are exactly the situations in which it is desirable to lower the required
amount of DBTs.

All in all, it is possible to give a pretty accurate number predicting the
amount of DBTs that will be required to construct the preselection set given
an index. Clearly, this is not the case when no index is used, making it hard
to say whether or not an index is worth creating. Whether or not an index for
a certain data set will be useful depends on the size of the records and their
fragmentation across disk blocks. It is safe to say that, unless for read-only
databases, fragmentation will accumulate over time up to the point where non-
indexed data access becomes infeasible. This means that the same index for the
same data set might not be used on machine A, while it is used for that same
index for that same data set on machine B. Only the query analyser, which is
a part of the database system that has insight into how data is actually stored
in that particular instance, is truly capable of estimating whether or not using
an index to answer a query is worth it. However, it is not hard to defend that
when an attribute is frequently used in queries and the query analyser suggests
that using an index is at least sometimes worth it, that the index should be
made, as it clearly serves a purpose to speed up what would otherwise be slow
queries. Other than that, it is also somewhat of a subjective issue, depending
on the requirements (will the data be manipulated often, how important is the
speed of select queries versus that of data manipulation operations, …). After
this discussion, we find it safe to say that it is at least interesting to try out
IBPT in order to see if the query analyser would decide to use it. We know for a
fact that it will, in some cases, drastically speed up query evaluation time, and
in any case enable us to make very stable and accurate predictions about query
evaluation time, which would not be possible without the index. This stability
and predictability is in itself valuable, too. But as the experiments point out,
IBPT does not just offer stability, it can significantly speed up query evaluation,
too.

5.4. IBPT ANALYSIS 143

5.4.3 Influence of the Fuzziness of the Query
Let us now take a look at the influence of some of the characteristics of the
data on the efficiency of IBPT. We will first cover the “fuzziness” of the query,
by which we mean the amount of acceptable values it specifies. The fuzzier the
query, the more values it accepts. In more formal wording: by fuzziness of the
query [Pa, Pd], we mean Pd − Pa.

The data sets that were generated for these experiments consist of 1000
unique intervals (each with a unique lower and upper bound) in the domain
[bl, bu] with a maximal fuzziness of (bu − bl)/4.

Given a discrete domain bound by bl and bu. Let bα = (1− α)bl + αbu. To
measure the influence of query fuzziness, we consider three unique queries:

1. [b4/16, b5/16] (a “small” query),

2. [b1/4, b1/2] (a “median” query), and

3. [b1/4, b3/4] (a “large” query).

Instead of randomizing the position of the query (by choosing a random lower
bound, for example), the same queries are repeatedly executed on 100 different
data sets. In doing so, we attempt to minimize the influence of the position of
the query, which is discussed in the next set of experiments.

The results of the experiments are summarized graphically in Figure 5.14.
A first observation is that the amount of DBTs increases with the fuzziness
of the query. This is logical, because (given a fixed data set) the more fuzzy
the query, the larger the preselection set. A second observation is that the
performance of IBPT varies between that of CBPT and 2ABPT. Recall that
2ABPT is essentially a combination of two CBPT indices, one on lower and
one on upper bounds, from whom the query analyser picks the most efficient
one at query execution time. In cases when the query analyser decides to use
the index on upper bounds, it is not surprising that the performance of CBPT
is identical to 2ABPT. In all other cases, IBPT performs better than CBPT.
Any performance gained can be explained by the extra pointers which enable
the secondary traversal order of the leaf nodes. Compared to 2ABPT, the
observed lower performance can be explained by the fact that the secondary
linked list is inherently less efficient than the primary linked list (as is used
in 2ABPT). Our final observation regarding this experiment is that it seems
that the largest performance gains can be found in the cases where the query is
“small”. However, we are not yet in a position to say that there is a causality
behind this observed correlation. In the following, we consider multiple small
queries and manipulate other parameters to gain a better understanding.

5.4.4 Influence of the Position of the Query
For queries of limited fuzziness (i.e. Pd−Pa is small compared to bu−bl), we now
test the influence of the position of the query on the amount of DBTs required
to construct the preselection set. By position of the query we mean an indicator

144 CHAPTER 5. INDEXING (UNCERTAIN) DATA

20

40

60

20

40

60

20

40

60

IBPT 2ABPT CBPT 2BPT

Figure 5.14: Visual representation of the amount of DBTs required to compute
the preselection set for varying query fuzziness. From top to bottom, the fuzzi-
ness of the query is increased. The x-axis denotes different data sets and the
y-axis denotes the amount of DBTs.

5.4. IBPT ANALYSIS 145

of whether or not the interval it denotes predominantly overlaps with the lower
half of the domain of the data set or with the upper half. More formally, if
γ = (Pa+Pd− 2bl)/[2(bu− bl)], then we say that the query prefers low values if
γ < 1/3, the query lies “in the middle” if 1/3 ≤ γ ≤ 2/3 and the query prefers
high values if 2/3 < γ.

The data sets that were generated for these experiments each consist of 1000
unique intervals (each with a unique lower and upper bound) in the domain
[bl, bu] with a maximal fuzziness of (bu − bl)/4. To measure the impact of the
position of the query, we consider the three following queries:

1. [b3/16, b5/16] (a query preferring low values),

2. [b7/16, b9/16] (a query “in the middle”), and

3. [b11/16, b13/16] (a query preferring high values).

The results of this experiment are depicted in Figure 5.15. From these results
it is clear that for queries preferring high values, IBPT performs very similar to
2ABPT and CBPT. This is not surprising, because in these cases, the heuristic
of step 3 of the preselection procedure will consistently decide to use step 4a,
in which case the procedure for IBPT is identical to that of CBPT. Because
the queries are small, this seems to correspond to the logic the query analyser
uses for 2ABPT, too. However, the lower the values preferred by the query are,
the more likely it becomes that the heuristic decides to use step 4b. It is no
surprise that in those cases the performance of 2ABPT is better than IBPT
(again due to the difference in efficiency of the secondary linked list versus the
primary linked list connecting the leaf nodes), but it clearly also outperforms
CBPT by avoiding to traverse all leaf nodes. This is interesting, because here
we can observe that IBPT can compete with 2ABPT regarding performance,
while only taking up as much space as CBPT. Indeed, IBPT combines almost
the best of both worlds, providing near 2ABPT performance at a significantly
smaller space requirement.

5.4.5 Influence of the Data Set Fuzziness
Next, we will measure the impact of the average fuzziness of the data itself on
the amount of DBTs required to compute the preselection set. For these expe-
riments, we consider three sets of parameters to generate data sets, each time
limiting the maximal fuzziness of indexed data. Though we will discuss this in
greater detail in section 5.4.6, we can already mention here that it is a viable
strategy to omit entities whose value is unknown (denoted by the maximal inter-
val to indicate all values are possible) as these overlap with all possible queries
and should always be returned. Hence, it makes sense to consider situations
where data fuzziness is limited to a certain degree (the “fuzziness threshold”).
The special case where there is no uncertainty is also considered. The following
three different fuzziness thresholds are used to each generate 100 random data
sets of 1000 intervals in [bl, bu]:

146 CHAPTER 5. INDEXING (UNCERTAIN) DATA

20

40

60

20

40

60

20

40

60

IBPT 2ABPT CBPT 2BPT

Figure 5.15: Visual representation of the amount of DBTs required to compute
the preselection set for varying query position. From top to bottom, the query
moves from the left to the right. The x-axis denotes different data sets and the
y-axis denotes the amount of DBTs.

5.4. IBPT ANALYSIS 147

1. 0 (all data is certain),

2. (bu − bl)/2, and

3. bu − bl (fully unknown data is allowed and indexed).

The amount of DBTs required to compute the preselection set for the fixed
query [b1/8, b3/8] is measured and visualised in Figure 5.16. We have chosen this
query because it is a small query that prefers low values, both factors for which
we have so far found that they guarantee different behaviour between IBPT and
CBPT.

The experiments show that the performance of IBPT decreases as the fuzzi-
ness of the data set increases. Obviously, the more fuzzy the data is, the larger
the preselection set for any given query will be, but more importantly, the rel-
ative performance of IBPT decreases faster with increasing fuzziness compared
to other indexing techniques. The reason for this is once again found in the
efficiency of the secondary linked list. This efficiency namely depends on the
fuzziness of the data. If there is no uncertainty, IBPT has a very similar per-
formance as 2ABPT. This makes sense because the order found by sorting on
upper or lower bound is the same as the intervals actually denote numbers and
we can sort them perfectly. In such a scenario, the secondary linked list is max-
imally efficient, hence explaining its high performance. If, on the other hand,
fully unknown data are allowed in the index, IBPT will perform poorly because
the secondary linked list is almost arbitary and could potentially lead to visiting
more leaf nodes when using it compared to simply sticking with the primary
linked list connecting the leaf nodes.

5.4.6 Discussion
In this section, we reflect on what the experiments have taught us about IBPT.

Clearly, the secondary linked list (which provides an alternative traversal
option for the leaf nodes) strongly impacts the performance of IBPT. The effi-
ciency of the secondary linked list is largely determined by how different its
implied order is from the order that would be obtained by actually sorting the
intervals by their lower bounds. This, in turn, depends on how similar the order
according to their upper bounds is, and how many intervals are clustered per
leaf node. As we have already shown, in case there would be no uncertainty
(and the order on upper and lower bounds is identical), the secondary linked
list is extremely efficient. However, the fuzzier the data, and the more intervals
per node, the lower the efficiency. Say that there are, on average, n intervals
per leaf node, and that, starting from some arbitrary leaf node lc, traversing
the leaf nodes using the Pprev pointers until the end of the secondary linked list
would result in visiting t leaf nodes. In the process, roughly nt intervals would
be tested, though it might be so that there is only one interval per node for
which its lower bound is actually smaller than the minimal lower bound of lc.
That means that, in the worst case, only t intervals from the nt that are tested

148 CHAPTER 5. INDEXING (UNCERTAIN) DATA

20

40

60

20

40

60

20

40

60

IBPT 2ABPT CBPT 2BPT

Figure 5.16: Visual representation of the amount of DBTs required to compute
the preselection set for varying data set fuzziness. From top to bottom, the
fuzziness threshold is increased. The x-axis denotes different data sets and the
y-axis denotes the amount of DBTs.

5.4. IBPT ANALYSIS 149

are actually relevant, an efficiency of 1 in n. Conclusively, the larger n (the
amount of intervals per leaf node), the lower the efficiency of the secondary list.

Let us now study the properties of the secondary linked list. More precisely,
let us try to understand when a Pprev pointer will move “right” (i.e. in the same
direction of Pnext) and when it will move “left” (i.e. in the opposite direction of
Pnext). The reason we will investigate this is because we can say a few things
about the efficiency of the traversal. Consider that we are evaluating a query
and that we start by looking up the lower bound of the query in an upper-bound
based IBPT. Due to the nature of tree-based indexing structures, we know that
we can immediately exclude all nodes to the left of the first leaf node that is
visited because the intervals they contain all end before the lower bound of the
range query. This means that we are certain that, by repeatedly following Pnext

and exclusively moving right one node at a time, we will be able to construct the
entire preselection set correctly. However, as is proven by the performance of
CBPT, it is highly likely that, during this process, we will visit leaf nodes that
do not contain any relevant interval. The secondary linked list is supposed to
improve the traversal over the leaf nodes by offering us a way to “skip over” such
leaf nodes. Essentially, if the Pnext pointers would have us traverse k nodes, we
want to visit less than k nodes by following the Pprev pointers. Therefore, it
the Pprev pointers would have to move to the right, sometimes jumping across
nodes. In order for this to happen, there must exist a leaf node, to the right
of the current node (i.e. there must exist intervals with larger upper bounds),
that has a smaller minimal lower bound than the minimal lower bound of the
current node. In other words, there must exist a more uncertain interval than
the most uncertain interval in the current node.

Alternatively, the Pprev pointers can also move to the left. Their tendency
to do so is determined by how well the lower and upper bounds are positively
correlated. An extreme case thereof is when there is no uncertainty in the data.
If this is the case, the intervals denote precise values (for which a unique partial
order exists) and the Pprev pointers will coincide with the Pnext pointers, but
in the opposite direction. This property does not only hold in the absence of
uncertainty, indeed, it can be seen that this property will keep holding as long
as the uncertainty increases equivalently across all entities, as long as the order
based on upper and lower bounds remains identical.

As such, it can be concluded that the properties of the Pprev pointers depend
on the distribution of the uncertainty across all intervals in the data set. It is
plausible to assume that there will always be entities whose value is unknown,
but it can be justified to omit them from the index because they will always be
part of the preselection set.

We have yet to explain the impact of moving left using the Pprev pointers.
We already know that it is guaranteed that all entities that should be included
in the preselection set regarding a particular query can be found by only moving
to the right. As described above, the purpose of the secondary linked list is to
allow us to traverse the leaf nodes faster by allowing us to skip over nodes that
do not contain any relevant intervals. However, we just mentioned that using
the Pprev pointers can cause us to move to the left. Moving to the left will

150 CHAPTER 5. INDEXING (UNCERTAIN) DATA

either force us to revisit a node that we have already visited (during step 2)
or to visit a node that we have already rejected (in step 1). Revisiting a node
that has already been visited is not that big of a problem, because we do not
need to load the corresponding disk block into memory again (assuming that
the database buffers are sufficiently large). Otherwise, moving left to a leaf node
that had not yet been visited essentially implies that we must transfer a disk
block of which we know that it can not contain any results for the preselection
set. Such an “empty visit” can not be avoided, because we need to extract the
next Pprev pointer in order to be able to continue the traversal, in the hopes
that it might move us to the right eventually. This confirms once more that the
heuristic from step 3 makes sense, because the more to the left side of the tree
we find ourselves, the fewer leaf nodes are eliminated by step 1 and the lower
the expected amount of empty visits will be.

It can be concluded that at most, all leaf nodes will be visited. Nonetheless,
due to the nature of a B+-tree based structure, this traversal will be a specific
factor faster than when using no index, as the index construction guarantees
spatial locality of records. If it turns out that the secondary linked list traversal
only moves to the left, it was unnecessary. This property can prove valuable for
improving the heuristic and how query optimizers implement it. For example,
the database system could maintain the secondary linked list in a separate data
structure, rather than embedding it in the leaf nodes, which would enable it
to load large parts of the linked list and to skip across different nodes without
actually needing to fetch those leaf nodes from the hard disk, until a jump to
the right of the starting point is detected.

Finally, let us try to estimate the characteristics of a realistic data set in
order to be able to determine how useful an IBPT index would generally be.
The knowledge regarding a datum will always be one of the following three
cases:

1. the value is precisely known,

2. the value is unknown, or

3. the value is vaguely known.

As already discussed, unknown values should be omitted from the index and
precise values actually improve the performance of IBPT, because they have
a positive influence on the efficiency of the secondary list. Though certainly
not always true, assuming on the one hand that the amount of vague values is
relatively small compared to the size of the entire data set, and on the other
hand that the fuzziness is generally limited (i.e. the intervals are small), IBPT
has a performance that is comparable to that of 2ABPT. Though IBPT can
never perform better than 2ABPT, it will be almost as efficient under these
circumstances. The largest advantage of IBPT lies in the fact that it is a single
index structure, whereas 2ABPT consists of two separate CBPT indices that
must be kept consistent and will take up almost twice as much space. Again, the
importance of the trade off between space and efficiency can be a determining
factor to choose for IBPT.

5.5. CONCLUSIONS 151

5.5 Conclusions
In this work, we have proposed Interval B+-trees, a novel approach to indexing
interval data, and have studied their applicability when it comes to performing
preselection in order to evaluate fuzzy queries on uncertain data. In contrast
to 2ABPT, the fastest, state of the art index for such data, IBPT requires
about only half as much storage space. Though IBPT can never be strictly
faster than 2ABPT, in many realistic cases, it will be comparably fast. Its
main advantage is that it is a single data structure, which not only reduces
its size but also simplifies maintenance operations. Compared to other B+-tree
based single index structures (such as a regular composite BPT index), IBPT is
typically faster or comparable, but never slower. It has been established through
experiments that the performance of IBPT is mostly sensitive to the fuzziness
of the data set. More precisely, the fuzzier the data, the worse the performance.
However, it has been discussed how data with a high degree of fuzziness (i.e.
records about which only little information is known) can be omitted from the
index and treated separately, which partially mitigates this issue.

152 CHAPTER 5. INDEXING (UNCERTAIN) DATA

Bibliography

[1] Alfred V. Aho and Jeffrey D. Ullman. Data structures and algorithms.
Pearson, 1983.

[2] C. D. Barranco, Jesús R. Campaña, and J. M. Medina. “A Low Imple-
mentation Cost Alternative for Indexing Fuzzy Numerical Data”. In: 2007
IEEE International Fuzzy Systems Conference. July 2007, pp. 1–6. doi:
10.1109/FUZZY.2007.4295627.

[3] Carlos D. Barranco, Jesús R. Campaña, and Juan M. Medina. “An Index-
ing Technique for Fuzzy Numerical Data”. In: Scalable Uncertainty Man-
agement. Ed. by Henri Prade and V. S. Subrahmanian. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2007, pp. 187–200. isbn: 978-3-540-75410-7.

[4] Carlos D Barranco, Jesús R Campaña, and Juan M Medina. “Indexing
Fuzzy Numerical Data With a B+ Tree For Fast Retrieval Using Necessity-
Measured Flexible Conditions”. In: International Journal of Uncertainty,
Fuzziness and Knowledge-Based Systems 17.01 (2009), pp. 1–23.

[5] Carlos D Barranco, Jesús R Campaña, and Juan M Medina. “On the
behavior of indexes for imprecise numerical data and necessity measured
queries under skewed data sets”. In: International Conference on Flexible
Query Answering Systems. Springer. 2011, pp. 485–496.

[6] Carlos D Barranco, JR Campaòa, and Juan Miguel Medina. “A B+-tree
based indexing technique for fuzzy numerical data”. In: Fuzzy Sets and
Systems 159.12 (2008), pp. 1431–1449.

[7] Carlos D Barranco and Sven Helmer. “An impact ordering approach for
indexing fuzzy sets”. In: Fuzzy Sets and Systems 196 (2012), pp. 33–46.

[8] Carlos D Barranco and Sven Helmer. “Increasing the Performance of
Fuzzy Retrieval Using Impact Ordering.” In: IFSA/EUSFLAT Conf. 2009,
pp. 957–962.

[9] Patrick Bosc and M Galibourg. “Indexing principles for a fuzzy data base”.
In: Information Systems 14.6 (1989), pp. 493–499.

[10] Birgit Boss and Sven Helmer. “Indexing a fuzzy database using the tech-
nique of superimposed coding-cost models and measurements”. In: Tech-
nical reports 96 (1996).

153

154 BIBLIOGRAPHY

[11] Ronald Fagin et al. “Extendible hashing—a fast access method for dy-
namic files”. In: ACM Transactions on Database Systems (TODS) 4.3
(1979), pp. 315–344.

[12] Witold Litwin. “Linear hashing: a new tool for file and table addressing.”
In: VLDB. Vol. 80. 1980, pp. 1–3.

[13] Chengwen Liu et al. “Performance evaluation of g-tree and its application
in fuzzy databases”. In: Proceedings of the fifth international conference
on Information and knowledge management. ACM. 1996, pp. 235–242.

[14] Juan Miguel Medina, Carlos D Barranco, and Olga Pons. “Evaluation of
indexing strategies for possibilistic queries based on indexing techniques
available in traditional RDBMS”. In: International Journal of Intelligent
Systems 31.12 (2016), pp. 1135–1165.

[15] Juan Miguel Medina, Carlos D Barranco, and Olga Pons. “Indexing tech-
niques to improve the performance of necessity-based fuzzy queries using
classical indexing of RDBMS”. In: Fuzzy Sets and Systems 351 (2018),
pp. 90–107.

[16] Juan Miguel Medina et al. “Building and evaluation of indexes for possi-
bilistic queries on a fuzzy object-relational database management system”.
In: 2017 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE).
IEEE. 2017, pp. 1–6.

[17] Israel Spiegler and Rafi Maayan. “Storage and retrieval considerations of
binary data bases”. In: Information processing & management 21.3 (1985),
pp. 233–254.

[18] Adnan Yazici and D Cibiceli. “An index structure for fuzzy databases”.
In: Fuzzy Systems, 1996., Proceedings of the Fifth IEEE International
Conference on. Vol. 2. IEEE. 1996, pp. 1375–1381.

[19] Adnan Yazici and Dogan Cibiceli. “An access structure for similarity-based
fuzzy databases”. In: Information Sciences 115.1-4 (1999), pp. 137–163.

Chapter 6

Conclusions

Undisputably, computers are already extremely powerful and capable of solving
problems that would be unfeasible to solve manually. Nevertheless, they are
still confined to their rather limited mode of operating on precise data, informa-
tion and knowledge and hence struggle when faced with problems that involve
imperfect information. Fuzzy set theory provides us with a sound theoretical
framework for bridging this gap between discrete, precise computers and their
natural, fuzzy, human operators. Using fuzzy sets, it would be possible to store
uncertain information in databases and to query this information with fuzzy
query terms. However, introducing fuzzy sets has a lot of consequences. Ex-
isting techniques that rely on precise data have to be revisited. The work in
this dissertation is situated in this area of research, and covers only some of
the topics that have to do with the consequences of introducing imperfect in-
formation in the world of computers. This concluding chapter summarizes the
novel scientific contributions that were presented in this thesis and lists some
remaining research challenges that could be interesting to research in the future,
structured according to the chapters in which they were discussed. Hereby, we
also discuss how the three research questions presented in the beginning of this
work have been addressed and answered. These research questions were:

1. How should the evaluation results of a flexible query on uncertain data be
represented truthfully?

2. What is the impact of incorporating uncertain data and flexible querying
on multi-criteria decision making (more precisely: on aggregation tech-
niques)?

3. Today’s systems are fast, and this is partly due to indexing techniques that
rely on precise data. Working with uncertain data prevents the application
of traditional indexing techniques. How can we adapt traditional indexing
techniques so that they can be applied on uncertain data?

155

156 CHAPTER 6. CONCLUSIONS

6.1 Flexible evaluation of uncertain data
The first research question that we wanted to answer was how to truthfully
represent the results of evaluating flexible queries on uncertain data. A literary
study has shown that it is not trivial to reconcile the current techniques for
flexible querying on the one hand and for dealing with uncertain data on the
other. Both concepts change the way a classical result set is represented from a
regular set to a fuzzy set, but in a different way. The most common approach
to combine both uses two degrees, possiblity and necessity, to try to express
the evaluation result. This numerical approach makes it simple to compare
entities, but as we have shown, also enforces a particular sorting order that
can be counter-intuitive. Even in cases where the resulting order does feel
intuitive, this technique is not flexible enough to allow for modification by other
agents that might hold a different opinion on how the results should be ordered.
This inflexibility is the result of a conscious trade-off that was made by its
inventors, which sacrifices configurability for simplicity in order to be more
directly compatible with existing systems.

With the introduction and study of suitability distributions, we have shown
that there does not necessarily have to be a trade-off. A suitability distribution
is essentially a functional relation between grades of suitability and grades of
possibility. It captures that the degree to which an uncertain value satisfies a
criterion, is likely also uncertain. Suitability distributions are very flexible and
do not enforce a particular order. They reflect that, under uncertainty, a single,
true order does not always exist. Different agents might have different opinions
on what the correct order should be, based on how they personally estimate
the risk of relying on a value that is uncertain. Suitability distributions can be
compared, given that a specific tolerance towards uncertainty is first specified.
This way, different agents may obtain different orders. In case there is no
uncertainty, there is no difference compared to working with a traditional, non-
fuzzy approach and the chosen tolerance has no influence on the results.

Suitability distributions are furthermore truthful. The entire point of cre-
ating a suitability distribution is to reflect all possible values of an uncertain
attribute. Any loss of information is minimized by keeping uncertainty and suit-
ability separated. This results in a two-dimensional solution that takes the form
of an uncertainty distribution similar to the one that is used in the framework
that models the underlying attribute value uncertainty. Because of this simi-
larity with the underlying framework, suitability distributions are immediately
well-known and come with a lot of useful properties.

For all of its benefits, suitability distributions also have downsides. Though
the observed properties and applicability of suitability distributions are always
applicable, we have limited our research to only the “easy” cases, where both
uncertainty and user preferences are represented by simple, trapezoidal distri-
butions. This has allowed us to simplify our calculations and made it easier to
compare suitability distributions to existing techniques. The main reason we
chose to limit ourselves, is because in order to tap into the full potential of suit-
ability distributions, we would need to perform analytical calculations, which

6.2. DEALING WITH UNCERTAINTY IN AGGREGATION 157

are not trivially done on a computer. These simplifications made it possible to
reduce the calculations to a few numerical computations. Clearly, it would be
wise to keep studying suitability distributions in a more broad setting, allowing
for more general distributions.

Aside from that, there are still many other things left to research in the field
of uncertainty in flexible querying. There seems to be an ever-growing list of
frameworks to express uncertainty in, and with it, more and more possible fields
of application that could serve as a novel way to expand and test the theory be-
hind suitability distributions. Aside from technical complexities, most questions
that come to mind deal with integration in existing systems. Using suitability
distributions would require changing the way we ask questions. It would require
that a whole array of challenges that have already been overcome, be revisited
and re-evaluated. We have already covered some examples, like sorting and
comparing results, but there are others. By replacing graded results by uncer-
tainty distributions, the entire calculus regarding multi-valued logic is uprooted.
Entire fields like aggregation, visualization and indexing are impacted and must
be investigated. One example of an area of application is flexible controllers
(rule-based systems), wherein computers are employed to automate certain be-
havior (e.g. self driving cars). These systems often rely on many sensors that
may at some point produce inaccurate readings or even fail alltogether. Another
possible application lies in imputation. This technique concerns itself with try-
ing to replace missing values by realistic estimates (in cases where the absence
of the value does not indicate inapplicability but rather incomplete knowledge).
A common critique on imputation is that, no matter which particular imple-
mentation is used, introducing certain value impacts analyses that are carried
out on the data. Aside from making it possible to perform analyses in the first
place, different imputation techniques influence different analyses. Instead of
replacing missing values by particular estimates, replacing them by uncertain
values (possibly having a particular distribution) is more truthful in the sense
that it reflects that the value was imputed and should be treated as uncertain.
Suitability distributions might then find applicability in the analyses performed
on datasets that were imputed in such a way.

6.2 Dealing with uncertainty in aggregation
Realistic decisions are rarely taken based on the value of a single attribute. Typ-
ically, many different aspects are taken into account when evaluating a set of
alternatives. This complicates the process of finding the best solution, because
comparing alternatives is no longer straightforward. Of the different techniques
that serve to support multi-criteria decision making, aggregation is the most
popular. In aggregation, the evaluation of an alternative is broken down into
first evaluating the individual per-attribute criteria and then aggregating those
outcomes into a single, global rating. Despite being an inherently lossy practice
(as multiple indicators of information are intentionally aggregated into a single
indicator), it is popular due to the fact that it feels intuitive and is quite flexi-

158 CHAPTER 6. CONCLUSIONS

ble. Indeed, aggregation techniques are capable of sorting alternatives in ways
that are not possible when using other, lossless approaches (e.g. lexicographical
ordering). This makes aggregation an active research area of its own, in which
several different approaches for performing flexible, semantically rich aggrega-
tion exist. These approaches compete to try to be as flexible as possible, and
even though they all have the same goal, they are not true alternatives: some
techniques have features that others do not.

In that regard, we have proposed a way to extend fuzzy integration tech-
niques in such a way that they can realize the partial absorption, an operator
that is otherwise only found in the generalized conjunction/disjunction. The
way we have done this is by allowing the weights that define the behavior of
the fuzzy integral to be functions rather than scalars. We have shown that by
choosing functions that satisfy particular constraints, the conjunctive partial ab-
sorption can be implemented. In the future, this research could be extended by
studying other advanced aggregators such as the disjunctive partial absorption,
compound absorption aggregators and more.

Another reason due to which aggregation is further complicated, is by con-
sidering that data might be uncertain. Given our contributions to the modelling
of uncertainty in flexible evaluation of uncertain data, we have also studied the
effects of introducing suitability distributions in aggregation frameworks. It was
discussed that suitability distributions can be aggregated directly, albeit gen-
erally by having to resort to numeric approximation techniques. However, we
have also shown that there is merit to defuzzifying the distributions before ag-
gregating them, as doing so makes it possible to specify different tolerance levels
towards the uncertainty of individual criteria. In addition, the fact that suitabil-
ity distributions inherit the properties of the uncertainty framework in which
the data are expressed, results in different families of suitability distributions
that may not be directly comparable. For example, the uncertain suitability
of a stochastic variable (expressed using probability theory) can not directly
be aggregated with the uncertain suitability of an ill-known variable (expressed
using possibility theory). It has to be investigated further whether or not these
can be compared and if so, how this is done properly. Though there has been
research connecting both frameworks, it has not yet been studied in the con-
text of suitability distributions. Moreover, there are other frameworks, too, for
which a way to compare and translate their way of representing uncertainty has
yet to be investigated. This is clearly a very rich area when it comes to research
opportunities.

Though it may seem like defuzzifying first solves some of these problems, it
creates a different problem: how to aggregate indicators of uncertainty? There
seems to be no standardized way to do so, but one common suggestion is to ag-
gregate the grades of suitability and those of uncertainty separately from each
other. We have studied this idea in the context of the generalized conjunc-
tion/disjunction and have found that it is possible to aggregate uncertainty in-
dicators, though not entirely independently of the suitability aggregation. First,
the suitability grades should be aggregated individually, as if there was no un-
certainty, and then the uncertainty grades can be aggregated based on weights

6.3. INDEXING OF UNCERTAIN ATTRIBUTE VALUES 159

that are derived from the “dominance” of their corresponding suitability grades
(i.e. how big their influence is on the suitability aggregation). Furthermore, we
have discussed that the uncertainty indicators used in the aggregation should
all share similar semantics for the results of the aggregation to make sense. Our
research in this area has been limited to a study of binary aggregators (i.e. of
two inputs), leaving a lot of unexplored potential for future research.

6.3 Indexing of uncertain attribute values

Indexing is a common practice to speed up query evaluation when looking up
information in datasets. Common indexing techniques rely on a natural (or
otherwise specified) order among the values of an attribute’s domain, but such
a (weak) total order no longer necessarily exists when introducing uncertain
attribute values.

When building a result set from a dataset that contains uncertain values,
one can rely on preselection, which is a principle that uses two tests in order
to determine if an attribute value could possibly overlap with a specified fuzzy
preference. In case that an attribute value satisfies either test, it can be rejected
safely. This preselection procedure is the key to indexing techniques for uncer-
tain data, and can be employed to avoid having to scan the entire dataset and
having to evaluate the two tests for every entity.

Our novel contribution in this area is the interval B+-tree: a new indexing
technique based on B+-trees, which are themselves a popular indexing method
for regular data. B+-trees use a linked list to traverse the indexed attribute
values quickly. Interval B+-trees introduce a second linked list to traverse the
indexed attribute values according to an alternative order. Combined with
the original linked list, these two linked lists provide an efficient way to apply
the tests on all indexed values, such that large parts of the dataset can be
rejected very quickly. Though there exist other techniques that are typically
faster than interval B+-trees, they are always larger in size and more difficult
to maintain. However, in many conditions, interval B+-trees will be able to
perform comparably well. Interval B+-trees provide an interesting extra tool for
database experts that allow them to optimize aggressively, leveraging storage
space for execution speed.

There are still a few loose ends that can be investigated further. For example,
the proposed method relies on a heuristic which has an impact on the efficiency
of the index. In our research, we have only investigated a simple heuristic, and
we are confident that better heuristics must exist. Another example is that
the secondary linked list could be optimized further. In its current form, it
is required that it is traversed until the end, though it would be possible to
stop early given that a certain condition is satisfied. This would require that
additional information is stored in the index, but it might prove to be beneficial
to do so.

160 CHAPTER 6. CONCLUSIONS

6.4 Final remarks
It should be clear by now that there is still a long way to go before computers
can be considered as flexible as humans when it comes to handling imperfect
information. Perhaps, they may never reach this point, due to the fundamental
differences in how they treat data, information and knowledge. However, with
the contributions that were presented in this dissertation, it is shown that there
might be a partial solution, that allows decision makers to intuitively model
their evaluation logic and apply it on uncertain data, without requiring that
computers modify the way they store data. There are still plenty of loose ends
to pick up, though, as many questions remain unanswered.

6.5 List of publications
1. Robin De Mol, Ana Tapia Rosero, and Guy De Tré. “An approach for

uncertainty aggregation using generalised conjunction/disjunction aggre-
gators”. In: 16th World Congress of the International Fuzzy Systems As-
sociation (IFSA); 9th Conference of the European Society for Fuzzy Logic
and Technology (EUSFLAT). vol. 89. Atlantis Press. 2015, pp. 1499–1506

2. Robin De Mol, Antoon Bronselaer, and Guy De Tré. “Evaluating flexible
criteria on uncertain data”. In: Fuzzy Sets and Systems (2017)

3. Robin De Mol and Guy De Tré. “Representing Uncertainty Regarding
Satisfaction Degrees Using Possibility Distributions”. In: Advances in
Fuzzy Logic and Technology 2017. Springer, 2017, pp. 597–604

4. Antoon Bronselaer, Robin De Mol, and Guy De Tré. “A measure-theoretic
foundation for data quality”. eng. In: IEEE Transactions on Fuzzy Sys-
tems 26.2 (2018), pp. 627–639. issn: 1063-6706

5. Christophe Billiet, Robin De Mol, and Guy De Tré. “A novel fuzzy result
ranking technique”. eng. In: 2017 Joint 17th World Congress of Inter-
national Fuzzy Systems Association and 9th International Conference on
Soft Computing and Intelligent Systems (IFSA-SCIS). Otsu City, Japan:
IEEE, 2017. isbn: 9781509049172

6. Antoon Bronselaer et al. “Ordinal assessment of data consistency based on
regular expressions”. eng. In: Information Processing and Management
of Uncertainty in Knowledge-based Systems, IPMU 2016, PT II. ed. by
Joao Paulo Carvalho et al. Vol. 611. 2. Eindhoven, The Netherlands:
Springer, 2016, pp. 317–328. isbn: 978-3-319-40580-3

7. Robin De Mol, Antoon Bronselaer, and Guy De Tré. “Partial absorp-
tion aggregators with fuzzy integrals”. eng. In: 2016 IEEE International
Conference on Fuzzy Systems (FUZZ-IEEE). Vancouver, Canada, 2016,
pp. 424–430. isbn: 978-1-5090-0625-0

6.5. LIST OF PUBLICATIONS 161

8. Robin De Mol et al. “Data driven Xpath generation”. eng. In: Advances
in Intelligent Systems and Computing. Ed. by P Angelov et al. Vol. 322.
Warsaw, Poland: Springer, 2014, pp. 569–580. isbn: 9783319113128

9. Robin De Mol and Guy De Tré. “Applying suitability distributions in
a geological context”. eng. In: Information Processing and Manage-
ment of Uncertainty in Knowledge-Based Systems. Theory and Foun-
dations. Cadiz, Spain: Springer International Publishing, 2018. isbn:
9783319914725

10. Guy De Tré, Robin De Mol, and Antoon Bronselaer. “Indexing possibilis-
tic numerical data : the interval B+-tree approach”. eng. In: Information
Processing and Management of Uncertainty in Knowledge-based Systems,
IPMU 2016, PT II. ed. by Joao Paulo Carvalho et al. Vol. 611. 2. Eind-
hoven, The Netherlands: Springer, 2016, pp. 305–316. isbn: 978-3-319-
40580-3

11. Guy De Tré, Robin De Mol, and Antoon Bronselaer. “On the need for
explicit confidence assessments of flexible query answers”. eng. In: Flexible
Query Answering Systems, FQAS 2017. Ed. by Henning Christiansen et
al. Vol. 10333. London, UK: Springer, 2017, pp. 51–58. isbn: 978-3-319-
59692-1

12. Guy De Tré, Robin De Mol, and Antoon Bronselaer. “Handling veracity in
multi-criteria decision-making : a multi-dimensional approach”. eng. In:
INFORMATION SCIENCES 460 (2018), pp. 541–554. issn: 0020-0255

13. Guy De Tré et al. “Data quality assessment in volunteered geographic deci-
sion support”. eng. In: Mobile information systems leveraging volunteered
geographic information for earth observation. Ed. by Gloria Bordogna
and Paola Carrara. Vol. 4. Earth Systems Data and Models. Springer
International Publishing, 2017. isbn: 9783319708775

14. Guy De Tré et al. “Human centric recognition of 3D ear models”. eng. In:
International Journal of Computational Intelligence Systems 9.2 (2016),
pp. 296–310. issn: 1875-6891

15. Joachim Nielandt et al. “Wrapper induction by XPath alignment”. eng.
In: Proceedings of the International Conference on Knowledge Discovery
and Information Retrieval. Ed. by Ana Fred and Joaquim Filipe. Vol. 6.
Rome, Italy: Science and Technology Publications, 2014, 107:492–107:500.
isbn: 9789897580482

16. Ana Tapia Rosero et al. “Fusion of preferences from different perspectives
in a decision-making context”. eng. In: Information Fusion 29 (2016). Ed.
by Francisco Herrera and Luis Martínez, pp. 120–131. issn: 1566-2535

17. Ana Tapia Rosero, Robin De Mol, and Guy De Tré. “Handling uncertainty
degrees in the evaluation of relevant opinions within a large group”. eng.

162 CHAPTER 6. CONCLUSIONS

In: Computational Intelligence, IJCCI 2014. Ed. by Juan Julian Merelo
et al. Vol. 620. Rome, Italy: Springer International Publishing, 2016,
pp. 283–299. isbn: 978-3-319-26391-5

18. Vera Van Lancker et al. “Building a 4D voxel-based decision support sys-
tem for a sustainable management of marine geological resources”. eng.
In: Oceanographic and marine cross-domain data management for sus-
tainable development. Ed. by Paolo Diviacco, Adam Leadbetter, and
Helen Glaves. Advances in Environmental Engineering and Green Tech-
nologies (AEEGT) Book Series. IGI Global, 2017, pp. 224–252. isbn:
9781522507017

