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Abstract 
In a recently demonstrated algorithmic spectral-tuning technique by Jang et al. [Opt. Express 19, 19454-19472, 
(2011)], the reconstruction of an object’s emissivity at an arbitrarily specified spectral window of interest in the 
long-wave infrared region was achieved. The technique relied upon forming a weighted superposition of a series 
of photocurrents from a quantum dots-in-a-well (DWELL) photodetector operated at discrete static biases that 
were applied serially. Here, the technique is generalized such that a continuously varying biasing voltage is 
employed over an extended acquisition time, in place using a series of fixed biases over each sub-acquisition 
time, which totally eliminates the need for the post-processing step comprising the weighted superposition of 
the discrete photocurrents. To enable this capability, an algorithm is developed for designing the time-varying 
bias for an arbitrary spectral-sensing window of interest. Since continuous-time biasing can be implemented 
within the readout circuit of a focal-plane array, this generalization would pave the way for the implementation 
of the algorithmic spectral tuning in focal-plane arrays within in each frame time without the need for on-sensor 
multiplications and additions. The technique is validated by means of simulations in the context of spectrometry 
and object classification while using experimental data for the DWELL under realistic signal-to-noise ratios. 

1. Introduction 
In multispectral (MS) and hyperspectral (HS) infrared (IR) sensing, the spectral information of an object is 
traditionally captured through dispersive optics or MS/HS optical-filter wheels. In recent years, our group has 
developed the quantum dots-in-a-well (DWELL) photodetector [1,2], which offers electrically controlled 
spectrally tunable responses in the long-wave IR (LWIR: 8-12 μm) region. The bias-controlled tunability is a result 
of the quantum-confined Stark effect [3]. Figure 1 shows bias-dependent spectral responses of a DWELL 
photodetector developed by our group. (We will use the spectral data of this device throughout this paper as we 
demonstrate the sensing algorithms to be developed.) Specifically, a single DWELL photodetector can perform 
the task of a MS IR detector by changing its bias voltage without requiring optical-filter wheels. The DWELL’s 
spectral tunability, as it stands, however, is not sufficient to provide the high resolutions required by many 
spectral-sensing problems. 

 
Fig. 1 Bias-tunable spectral responses of the DWELL photodetector at 60K device temperature by varying applied 
biases in the range from −3 to 3 V. 

To extend the MS capability of the DWELL photodetector, the DWELL’s bias-controlled spectral tunability was 
substantially enhanced by means of a post-processing technique, termed here as the spectral tuning (ST) 
algorithm [4–6]. The extended MS capabilities demonstrated by the ST algorithm include high-resolution, 
narrowband spectral filtering, as well as object spectrometry and classification [7,8]. We emphasize that none of 
these capabilities involved the use of spectral filters. The underlying principle of the ST algorithm is to sense an 
object with the DWELL photodetector sequentially at prescribed bias voltages, yielding a set of bias-dependent 
photocurrents. Then, the ST algorithm performs a linear superposition of photocurrents with a set of weights to 
reconstruct the emissivity of an object at a given wavelength. Each set of weights is designed by the ST algorithm 
for a specific spectral filter of interest. For each spectral filter of interest, the so-called superposition 
photocurrent best approximates the ideal photocurrent that would have been obtained while using a 
combination of a broadband detector and the desired spectral filter. To date, the ST algorithm has been 
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developed and demonstrated using discrete set of static biases. The three data-processing steps involved 
include the calculation of weights corresponding to each spectral tuning filter, multiplication of weights with 
sensed photocurrents and the superposition of the weighted photocurrents to yield the superposition 
photocurrent. 

In this paper we develop the concept for novel implementation of the ST algorithm within the readout circuit 
(ROIC) of a DWELL-based focal-plane array (FPA) without resorting to multiplying photocurrents by or 
performing photocurrent additions algebraically. Motivated by how a trans-impedance-based ROIC, works, 
namely by feeding the photocurrent at each bias into an integrating capacitor that yields an integrated 
photocurrent (charge) for each integration time [9–12], the idea here is to absorb both the multiplications (by 
weights) and additions of the ST algorithm in the photocurrent integration process by appropriately adjusting 
the bias of the DWELL continuously in time within an extended integration time. For example, if we have only 
two photocurrents, corresponding to two bias levels va and vb, with infinite signal-to-noise ratios (SNRs), 
multiplying the first and second by the weights 1 and 5, respectively, and summing up the two can be done in 
one step via the integration of the first photocurrent over a certain duration followed by the integration of the 
second photocurrent over five times the integration time of the first one while keeping the total integration 
time fixed. In this simple example the bias is held constant at level va for one unit of time and then changed to 
level vbfor five units of time, as the dynamic photocurrent is integrated continuously over the extended 
acquisition time. To achieve this effect for more general superposition schemes while incorporating the effects 
of SNRs, we will need to generalize the ST algorithm to allow for continuous, time-varying biases within a fixed 
integration time. As a result of the generalization, the algorithm will yield, for each desired spectral filter, a time-
varying bias waveform. 

Since weights that are to be absorbed in the time-varying bias can be positive or negative, two waveforms are 
designed that together span the total integration time: a “positive” waveform corresponding to the positive 
weights and a “negative” waveform corresponding to the negative weights. The integrated photocurrent 
corresponding to the “positive” waveform is added to the negative of the integrated photocurrent 
corresponding to the “negative” waveform, yielding the subtracted photocurrent. With this approach, the 
superposition photocurrent representing the spectral measurement is directly extracted from the ROIC [13,14] 
as the ROIC can be configured to apply the positive and negative bias waveforms sequentially and the two 
integrated photocurrents at each detector in the FPA. This paper will focus on the algorithmic aspects of the 
proposed ST technique; the ROIC-based implementation will be reported elsewhere. 

The remainder of this paper is organized as follows. In Section 2 we review the concept of spectral tuning (ST) 
algorithm and further review its application to two representative MS sensing problems of object spectrometry 
and classification. In Section 3 we describe a theory to achieve the generalized spectral tuning (GST) algorithm, 
which allows a weight-compound and continuous time-varying biasing for the integration-time constraint. In 
Section 4, the algorithm is validated, followed by the conclusions in Section 5. 

2. Review of the spectral tuning algorithm 
In this section, we begin by briefly reviewing germane aspects of the ST algorithm drawing freely from our 
earlier work [5]. We consider an object of interest, f, whose emissivity in the LWIR region is denoted by e(λ). 
Suppose that a DWELL photodetector is used to probe the object illuminated by a blackbody at the bias 
voltages, v1,…, vm, yielding a set of bias-dependent photocurrents, I1,…, Im. In principle, the 
photocurrent Ik corresponding to the kth bias can be expressed as an inner product between the emissivity of an 
object and each one of the DWELL’s spectral responses with the bias-dependent noise [5,9,15], 
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𝐼𝐼𝑘𝑘 = 𝑞𝑞[𝛺𝛺 � 𝑒𝑒(𝜆𝜆,𝑇𝑇)𝑀𝑀𝑝𝑝(𝜆𝜆,𝑇𝑇)𝑅𝑅𝑘𝑘(𝜆𝜆)𝜏𝜏𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝜆𝜆)𝜏𝜏𝑤𝑤𝑓𝑓𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤(𝜆𝜆)𝑑𝑑𝜆𝜆

𝜆𝜆max

𝜆𝜆min

]𝐴𝐴det + 𝑁𝑁𝑘𝑘 , 

where 

𝛺𝛺- Solid Angle 
𝑒𝑒(𝜆𝜆,𝑇𝑇)- Scene emissivity at temperature T 
𝑀𝑀𝑝𝑝(𝜆𝜆,𝑇𝑇)- Planck function at temperature T 
𝑅𝑅𝑘𝑘(𝜆𝜆)- DWELL spectral response at the kth bias 
𝜏𝜏𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝜆𝜆)- Spectral window transmission, if used 
𝜏𝜏𝑤𝑤𝑓𝑓𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤(𝜆𝜆)- Window transmission 
𝐴𝐴det- Detector area 
𝑁𝑁𝑘𝑘- Noise associated with 𝑅𝑅𝑘𝑘(𝜆𝜆)Rk(λ) 
𝑞𝑞- Electron charge. 

 

This general formula can be simplified to 

(1) 

𝐼𝐼𝑘𝑘 = 𝐶𝐶 � 𝑒𝑒(𝜆𝜆)𝑅𝑅𝑘𝑘(𝜆𝜆)𝑑𝑑𝜆𝜆

𝜆𝜆max

𝜆𝜆min

+ 𝑁𝑁𝑘𝑘 , 

where 𝜏𝜏𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝜆𝜆) and 𝜏𝜏𝑤𝑤𝑓𝑓𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤(𝜆𝜆) are assumed to 1, 𝑒𝑒(𝜆𝜆) is the emissivity of an object illuminated by the black 
body at temperature T, simplifying the term, 𝑒𝑒(𝜆𝜆,𝑇𝑇)𝑀𝑀𝑝𝑝(𝜆𝜆,𝑇𝑇) and C combines all the remaining 
factors. Nk represents the total noise, which includes one or more of the following components: generation-
recombination (G-R) noise, shot noise, Johnson noise, and 1/f noise. The noise varies over the operating 
temperature and bias voltage of the detector and is assumed independent from detector to detector. In the ST 
algorithm [5], Nk in Eq. (1) is embedded into the integral, so that the noisy spectral response at each bias is 
identified. Such noisy spectral responses are then incorporated into the algorithm to find a weight vector that 
best approximates a desired spectral shape in the sense of minimizing the wavelength-integrated mean squared 
error. The solution for a weight vector is provided in Eq. (2) and the detailed derivation can be found in [5]. Note 
that the bias-dependent variance of the noise is embedded in the solution of the weight vector through the 
signal-to-noise matrix Φ. 

We specify the transmittance of a desired tuning filter, r(λ;λn), that would be used to estimate e(λ) at the tuning 
wavelength λn. For r(λ;λn), the ST algorithm [5,6] calculates a weight vector, wn= [w1,…,wm] using Eq. (2) below, 
which yields the algorithmic tuning filter �̂�𝑟(𝜆𝜆; 𝜆𝜆𝑤𝑤). The weights are derived so that the algorithmic tuning 
filter �̂�𝑟(𝜆𝜆; 𝜆𝜆𝑤𝑤) best approximates the hypothetical tuning filter r(λ;λn). The weight vector wn is calculated using 
the formula [5] 

(2) 

𝑤𝑤𝑤𝑤 = [𝐴𝐴𝑇𝑇𝐴𝐴 + 𝛷𝛷 + 𝛼𝛼𝐴𝐴𝑇𝑇𝑄𝑄𝑇𝑇𝑄𝑄𝐴𝐴]−1[𝐴𝐴𝑇𝑇𝑟𝑟(𝜆𝜆; 𝜆𝜆𝑤𝑤)], 

where A is the matrix of DWELL’s spectral responses [R1(λ),…,Rm(λ)]T and Φ is a matrix that includes the SNR 
term. Each measurement SNRk corresponding to the kth bias was calculated using the formula [6] 

(3) 
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SNR𝑘𝑘 =
𝐼𝐼𝑘𝑘
𝜎𝜎𝑁𝑁,𝑘𝑘

 

where Ik is the averaged photocurrent of DWELL under illumination from a black body source and 𝜎𝜎𝑁𝑁,𝑘𝑘 is the 
noise power, which was calculated empirically from the dark current realizations by Poisson noise model [6,9]. 
The inclusion of SNR term reduces the noise accumulation in the linear superposition. The term α ΑΤQΤQΑ is a 
regularization term, which penalizes spurious fluctuations in the approximation. The matrix Q is a Laplacian 
operator and α is the regularization weight. Then the weight vector wn is linearly synthesized with the 
photocurrents, I1,…, Im, yielding the superposition photocurrent �̂�𝐼 I^ as expressed by 

(4) 

𝐼𝐼 = �𝑤𝑤𝑓𝑓𝐼𝐼𝑓𝑓

𝑚𝑚

𝑓𝑓=1

. 

The superposition photocurrent, 𝐼𝐼, is usually computed with positive and negative signs since weights in wn can 
be either positive or negative. The synthetic photocurrent, 𝐼𝐼, represents the captured output by �̂�𝑟(𝜆𝜆; 𝜆𝜆𝑤𝑤), which 
best reconstructs the emissivity e(λ) at λn that we would have obtained by the DWELL photodetector looking at 
the object through an ideal spectral filter r(λ;λn). Hence, our algorithmic tuning filter �̂�𝑟(𝜆𝜆; 𝜆𝜆𝑤𝑤) [5–8] is 
functionally equivalent to the effect of an optical filter in IR multispectral sensing. 

3. Generalized spectral tuning algorithm 
In this section, we describe the generalized spectral tuning algorithm to achieve a continuous time-varying 
biasing with acquisition time constraint. Our solution to the generalization is based upon a discrete-time 
approximation of the continuous-time problem. 

Any continuous time-varying function can be approximated by a piecewise-constant function with jumps 
occurring at fixed time increments; an example is shown in Fig. 2 . 

 
Fig. 2 Approximation of a continuous time-varying biasing waveform (solid black line) by the discretization (blue 
shaded region) with a constant interval Δt within the total integration time α. 

For an arbitrary bias function V(t), t∈[0,α], let IV(t) represent the dynamic photocurrent of the DWELL when it is 
driven by the time-varying bias waveform V. Now consider a desired spectral filter f that we can approximate 
with a superposition spectral filer according to the bias set B(f) = {B1(f),…, Bk(f)}, each applied for a duration Δt, 
such that 

(5) 
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𝑓𝑓 = �𝑤𝑤𝑓𝑓

𝑘𝑘

𝑓𝑓=1

𝑅𝑅𝐵𝐵𝑖𝑖(𝑓𝑓)(𝜆𝜆) 

where wi and 𝑅𝑅𝐵𝐵𝑖𝑖(𝑓𝑓)(𝜆𝜆) are the weight and the spectral response of DWELL at Bi(f). 

Based on this piecewise-constant approximation of the time-varying bias, the superposition 
photocurrent 𝐼𝐼 in Eq. (3) can be reinterpreted as the integration of weighted photocurrents over α. As such, Eq. 
(3) can be recast as 

(6) 

𝐼𝐼 = �𝑤𝑤𝑓𝑓(𝑡𝑡)𝐼𝐼B(𝑓𝑓)(𝑡𝑡)
𝛼𝛼

0

𝑑𝑑𝑡𝑡, 

where the piecewise constant weight function wf(t) and piecewise constant photocurrent 𝐼𝐼B(𝑓𝑓)(𝑡𝑡) are defined 
as wf(t) = wi and 𝐼𝐼B(𝑓𝑓)(𝑡𝑡) = Ii for (i-1)Ti-1 ≤ t ≤ iTi, with Δt = iTi - (i-1)Ti-1, i = 1,…, k. 

Motivated by the form of (6), we can further extend Eq. (6) to find 𝐼𝐼 without performing multiplications and 
superpositions with wf(t) as expressed by 

(7) 

𝐼𝐼 = � 𝐼𝐼𝐵𝐵�(𝑓𝑓)(𝑡𝑡)𝑑𝑑𝑡𝑡
𝛼𝛼

0

, 

where 𝐵𝐵�(𝑓𝑓) is a bias function designed so that it absorbs the factor, wf(t) in Eq. (6). The idea is to embed the 
multiplication and superposition processes in the photocurrent integration by properly adjusting the integration 
time Δt within α instead of scaling each photocurrent with wf(t). A key task is now to find 𝐵𝐵�(𝑓𝑓). 

The question is then whether we should simply scale Δt with the corresponding weight in order to blend the 
weight information into the integration time. The answer is no. As shown in Eq. (2), the weights are calculated 
by the ST algorithm using the detector’s SNRs. It is to be noted that the SNR is proportional to the integration 
time of the detector [5,6,9], so, for instance, if Δt is reduced according to some weight factor, so does the SNR of 
the integrated photocurrent. The new SNR, if lower than the old value, could result in an error in reconstructing 
the emissivity of an object. We next provide a solution to 𝐵𝐵�(𝑓𝑓). The algorithm for calculating 𝐵𝐵�(𝑓𝑓) is given 
below. 

We begin by normalizing entire set of weights {wi} by their absolute minimum, 

(8) 

𝑤𝑤�𝑓𝑓 =
𝑤𝑤𝑓𝑓

min
𝑓𝑓=1,...𝑘𝑘

|𝑤𝑤𝑓𝑓|
. 

Then each Δt is scaled by the absolute normalized weight |𝑤𝑤�𝑓𝑓|, denoted by 𝑏𝑏𝑓𝑓 = |𝑤𝑤�𝑓𝑓|𝛥𝛥𝑡𝑡, where i= 1,…, k, and k is 
the number of bias-time intervals (or bias slots). This weight normalization guarantees that each bi is equal to or 
greater than Δt, so that the SNR corresponds to bi will not be reduced. In addition, bi indicates that the 
important bias has a longer bias-time interval than the weak bias. The total (extended) integration time, τ(Δt), is 
then calculated as 

(9) 
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𝜏𝜏(𝛥𝛥𝑡𝑡) = �𝑏𝑏𝑓𝑓

𝑘𝑘

𝑓𝑓=1

= 𝛥𝛥𝑡𝑡� |𝑤𝑤�𝑓𝑓|
𝑘𝑘

𝑓𝑓=1

, 

which is greater than or equal to Δt. As a result, a time-varying biasing waveform with adjusted integration time 
is obtained as illustrated in Fig. 3 . 

 
Fig. 3 Illustration of a continuous time-varying biasing waveform (blue shaded region) obtained by the GST 
algorithm using the adjusted integration time bi within the total integration time τ(Δt). 

As we mentioned earlier, the sign of the weights can be either positive or negative, so two types of waveforms 
for integrating photocurrents, 𝐼𝐼𝐵𝐵�(𝑓𝑓)(t), are obtained: (1) a negative waveform corresponding to negative sign of 
weights and (2) a positive waveform corresponding to positive sign of weights. In order to find 𝐼𝐼, we subtract the 
integrated photocurrent corresponding to the negative waveform from the integrated photocurrent 
corresponding to the positive waveform, mimicking the superposition of the probed photocurrents as in Eq. (4). 

The challenge here is that τ(Δt) may exceed the given total integration time α and the question is how do we 
adjust τ(Δt) so that τ(Δt) ≤ α ? To address this challenge, we repeat the steps above while reducing Δt. 

As defined in Eq. (9), τ(Δt) is the integration time combined with weights, which it is assumed to be continuous. 
However, τ(Δt) may not be monotonic but there is a maximal critical Δt, call it t*, such that τ(t*) = α . Ideally, t* 
is the maximum solution to τ(Δt) = Δt. As an approximation, however, t* can be solved for numerically within a 
specified tolerance-level ε of α by 

(10) 

𝑡𝑡* = sup{𝛥𝛥𝑡𝑡: (1 − 𝜀𝜀)𝛼𝛼 ≤ 𝜏𝜏(𝛥𝛥𝑡𝑡) ≤ 𝛼𝛼}, 

where the selection ε = 0.02 gives good results in our simulations. 

The computational procedure to search t* is described as follows. 

1) The normalized weight 𝑤𝑤�𝑓𝑓 is obtained by using Eq. (8) and then each Δt is scaled by |𝑤𝑤�𝑓𝑓|, yielding a 
weighted bias time bi. 
2) With bi available from Step 1, τ(Δt) is calculated by using Eq. (9) and if τ(Δt) = α, the search is complete 
with t* = Δt and the corresponding biasing waveform is obtained. Otherwise, go to the next step. 
3) Set Δt = Δt/2 and �̃�𝑡2Δt. 
4) Recalculate 𝑤𝑤�𝑓𝑓 and bi. 
5) Compute τ(Δt): if τ(Δt) > α, then go back to Step 3; if τ(Δt) satisfies Eq. (10), then t* = Δt. Otherwise, 
set Δt = (Δt + �̃�𝑡) and go back to Step 4. 
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4. Simulation results on spectrometry and classification 
To demonstrate the ST algorithm, we will show two representative MS sensing examples: (1) spectrometry of a 
LWIR object and (2) statistical classification of a test object among three LWIR objects based on the spectral 
matched filter [8]. For the sensing example (1), the LWIR object we selected shows the emissivity in 8-9 μm 
range (red curve in Fig. 4 ). For the example (2), we selected r1(λ;λ1) out of three LWIR filters in Fig. 5 (dotted 
lines) as our test object. As shown in dotted line of Fig. 5 (left), the test object is a band-pass LWIR filter 
transmitting in 7.5-10.5 μm range. We sense the test object with the DWELL photodetector at once and then 
find its identity using our ST algorithm. These examples will be used as a reference for comparison with the 
generalized algorithm. 

 
Fig. 4 Desired triangular narrowband tuning filter, r(λ;λn) with λn = 8.8 μm, whose transmittance is shown by the 
dashed line. Transmittance of algorithmic tuning filter, �̂�𝑟(𝜆𝜆; 𝜆𝜆𝑤𝑤), as shown in solid black line, was obtained by the 
ST algorithm [5–7] using the minimal set of four biases, {-3.0, −0.8, 1.0, 2.8 V} identified by the MBS selection 
algorithm reported in [8]. The algorithmic tuning filter �̂�𝑟(𝜆𝜆; 𝜆𝜆𝑤𝑤) is implemented via post processing (without 
using any physical spectral filters) to reconstruct sample of the emissivity of an object (in red) at λn = 8.8 μm. 

 

 
Fig. 5 Transmittances of three algorithmic spectral matched filters [8], �̂�𝑟(𝜆𝜆; 𝜆𝜆1) (left), �̂�𝑟(𝜆𝜆; 𝜆𝜆2) (middle) 
and �̂�𝑟(𝜆𝜆; 𝜆𝜆3) (right) in solid black line were obtained by the ST algorithm using same minimal set of four biases, {-
3.0, −0.8, 1.0, 2.8 V}. Transmittances of actual spectral filters, r1(λ;λ1), r2(λ;λ2) and r3(λ;λ3) are shown in dashed 
line. These three algorithmic matched filters are used to classify the test object, r1(λ;λ1). 

For the spectrometry example, we selected a triangular narrowband tuning filter as r(λ;λn) with 0.5 μm width 
and λn = 8.8 μm to sample the emissivity of LWIR object, e(λ), at λn as illustrated in Fig. 4. Using Eq. (2), we 
calculated wn for the algorithmic tuning filter �̂�𝑟(𝜆𝜆; 𝜆𝜆𝑤𝑤) using minimal four biases, {-3.0, −0.8, 1.0, 2.8 V}, selected 
by the Minimal-Bias-Set (MBS) algorithm [8]. The MBS algorithm is the bias selection algorithm based on an 
exhaustive search approach, which identifies a minimal set of biases required for multiple sensing applications 
of interest. The search process of MBS algorithm is well described in [8]. The algorithmic tuning filter �̂�𝑟(𝜆𝜆; 𝜆𝜆𝑤𝑤) is 
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shown in Fig. 4 (solid black). We also simulated photocurrents, I1,…, I4, for these four biases using Eq. (1) with 
actual noise values available from the DWELL’s SNRs, {397.8, 135.9, 155.3, 122.2}. The reconstructed 
sample �̂�𝑒(𝜆𝜆;𝜆𝜆𝑛𝑛)e^(λ;λn)was then obtained by forming a linear superposition between wn and photocurrents 
(I1,…, I4) according to Eq. (4). We also generated the estimated emissivity, e(λ;λn), resulting from sampling e(λ) 
by r(λ;λn), which is used as a reference measurement for the ST algorithm. The reconstructed emissivity �̂�𝑒(𝜆𝜆; 𝜆𝜆𝑤𝑤) 
by the ST algorithm is 0.134, and is within 22% error as compared to the benchmark value of e(λ;λn) = 0.171. 

For the classification example, we selected three actual spectral filters, r1(λ;λ1), r2(λ;λ2) and r3(λ;λ3) with centers 
at λ1 = 9 μm, λ2 = 8.5 μm and λ3 = 10 μm as shown in Fig. 5 (dashed line), as objects that need to be classified 
once each one of them is probed by the DWELL detectors using a set of prescribed biases. The classification is 
based on spectral matched filtering, which employs the three weight vectors (one weight vector for each filter) 
obtained from the ST algorithm to form a inner product with the photocurrent vector, thereby producing three 
features. Based on the maximum feature, the classifier labels the object of interest. In this example, we 
selected r1(λ;λ1) as the test object of interest to be classified. The classification process is described as follows. 

Using Eq. (2), while using the same bias set as before, {-3.0, −0.8, 1.0, 2.8 V}, we obtained the three weight 
vectors, w1, w2 and w3, which respectively yield the approximated spectral filters, �̂�𝑟(𝜆𝜆; 𝜆𝜆1), �̂�𝑟(𝜆𝜆; 𝜆𝜆2) and �̂�𝑟(𝜆𝜆; 𝜆𝜆3), 
that are optimally matched to r1(λ;λ1), r2(λ;λ2) and r3(λ;λ3), respectively. The approximated filters 
�̂�𝑟(𝜆𝜆; 𝜆𝜆1), �̂�𝑟(𝜆𝜆; 𝜆𝜆2) and �̂�𝑟(𝜆𝜆; 𝜆𝜆3) are termed algorithmic spectral matched filters to be used to classify the test 
object, r1(λ;λ1). Transmittances of three spectral matched filters are shown in Fig. 5 (solid black line). 

We simulated the photocurrent vector, Iclass = [I1,…, I4], with Eq. (1) just as the DWELL photodetector probed the 
emissivity transmitted through the test object, r1(λ;λ1) using the biases, {-3.0, −0.8, 1.0, 2.8 V}. We 
considered Iclass as the test data to classify. For the classification, we labeled three matched filters, r ̂(λ;λ_1), 
r ̂(λ;λ_2) and r ̂(λ;λ_3) with Class 1, Class 2 and Class 3 respectively. Based on Eq. (4), w1, w2 and w3 were linearly 
combined with Iclass, extracting three synthesized features: 𝐹𝐹1 = (𝑤𝑤1)𝑇𝑇𝐼𝐼class = 0.519, 𝐹𝐹2 = (𝑤𝑤2)𝑇𝑇𝐼𝐼class =
0.428 and 𝐹𝐹3 = (𝑤𝑤3)𝑇𝑇𝐼𝐼class = 0.457. Our classifier [8] identifies the class of an object (out of three predefined 
choices: 1… 3) based on the maximum (strongest) feature. In this case, the classifier correctly assigned the test 
object r1(λ;λ1) to Class 1 since F1 was the largest value. 

For validation, we applied the GST algorithm for the same MS sensing problems as demonstrated for the ST 
algorithm above. For the spectrometry problem, the continuous time-varying bias waveform, which consists of 
negative and positive waveforms, was obtained by the GST algorithm as shown in Fig. 6 . According to these two 
waveforms, we simulated and integrated two photocurrents. The progression curves for integrating 
photocurrents corresponding to negative and positive waveforms are shown in Fig. 7 . The integrated 
photocurrent for negative waveform, 𝐼𝐼neg, is 0.472 and the integrated photocurrent for positive waveform, 𝐼𝐼pos, 
is 0.619. To reconstruct the emissivity of an object at 8.8 μm, we simply subtracted 𝐼𝐼neg from 𝐼𝐼pos, yielding 𝐼𝐼 =
𝐼𝐼pos − 𝐼𝐼neg = 0.147. By comparison, this reconstructed emissivity (0.147) by the GST algorithm is closer to the 
ground truth (0.171 shown in Table 1 ) than the value (0.134 shown in Table 1) obtained by the ST algorithm. 
Thus, the GST algorithm performs better than the original ST algorithm in successfully extracting the 
narrowband spectral feature. Specifically for this problem, the GST algorithm reconstructed the emissivity of an 
object with a 14% of error rather than the ST algorithm, which achieved a 21% error for the same 
reconstruction. Since the GST algorithm inherently selects more relevant biases (more relevant spectral 
information) by virtue of employing continuous time-varying waveform (Fig. 6) compared to the original ST 
algorithm (which uses only four static biases) the GST algorithm can generally yield improved tuning results. 
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Fig. 6 Time-varying biasing waveform obtained by the GST algorithm for the spectrometry problem. This bias 
waveform consists of negative waveform (shown in red) and positive waveform (shown in blue), which are used 
to integrate photocurrents. Inset shows the negative and positive signs of weights over the integration time. 

 
Fig. 7 Integrated photocurrents, 𝐼𝐼neg and 𝐼𝐼pos, based on negative waveform (left) and positive waveform (right). 
Subtraction of 𝐼𝐼neg from 𝐼𝐼pos gives a reconstruction of the emissivity of an object sampled at 8.8 μm using the 
spectral filter. 

Table 1. Comparison of reconstructed emissivity at 8.8 μm between the conventional ST algorithm and the GST 
algorithm. Results are also compared to the true value of the emissivity. 

Reconstructed sample of 
emissivity 

Methods  True value (Sampled emissivity by ideal 
triangle)  

ST 
algorithm 

GST 
algorithm 

 

at 8.8 μm 0.134 0.147 0.171 
 

For the classification problem, three bias waveforms were computed by the GST algorithm as shown in Fig. 8 . 
Each bias waveform includes negative (Fig. 8 (red)) and positive (Fig. 8 (blue)) waveforms that were used to 
successfully design each algorithmic matched filter as shown in Fig. 9 . Three algorithmic matched filters were 
then labeled with the appropriate class number (Class 1, Class 2 and Class 3). 
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Fig. 8 Three bias waveforms each including negative (in red) and positive (in blue) waveforms for three matched 
filters, (a) �̂�𝑟(𝜆𝜆; 𝜆𝜆1), (b) �̂�𝑟(𝜆𝜆; 𝜆𝜆2) and (c) �̂�𝑟(𝜆𝜆; 𝜆𝜆3). Inset shows the negative and positive signs of weights over the 
integration time. 

 
Fig. 9 Transmittances of three algorithmic spectral matched filters, �̂�𝑟(𝜆𝜆; 𝜆𝜆1) (left), �̂�𝑟(𝜆𝜆; 𝜆𝜆2) (middle) 
and �̂�𝑟(𝜆𝜆; 𝜆𝜆3) (right) in solid black line were obtained by the GST algorithm using the bias waveforms as shown 
in Fig. 8. Actual filter transmittances, r1(λ;λ1) (left), r2(λ;λ2) (middle) and r3(λ;λ3) (right) are shown in dashed line. 

Based on the bias waveforms shown in Fig. 8, the curves showing the integration of photocurrents were 
obtained. Each curve represents the process of continuously probing the test filter object, r1(λ;λ1) with the 
DWELL photodetector controlled by the bias waveforms in Fig. 8. 

From the curves shown in Fig. 10(a) , the integrated photocurrents for negative and positive bias 
waveforms, 𝐼𝐼neg,class1 and 𝐼𝐼pos,class1, are 0.99 and 1.515 for Class 1, respectively. For Class 2, the integrated 
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photocurrents, 𝐼𝐼pos,class2 and 𝐼𝐼pos,class2, are 3.164 and 3.563 obtained from Fig. 10(b). For Class 3, the integrated 
photocurrents, 𝐼𝐼neg,class3 and 𝐼𝐼pos,class3 are 2.064 and 2.504 obtained from Fig. 10(c). To perform the feature 
extraction for each class, we subtracted the integrated photocurrent corresponding to negative waveform from 
the one corresponding to positive waveform, in the same way as we did for the spectrometry example, yielding 
three features: F1 = 𝐼𝐼pos,class1 − 𝐼𝐼neg,class1 0.525, F2 = 𝐼𝐼pos,class2 − 𝐼𝐼neg,class2 = 0.399, and F3 = 𝐼𝐼pos,class3 − 𝐼𝐼neg,class3 = 
0.44. According to the classification rule, (similarly, the classifier outputs Class 1 since feature value F1 is the 
largest among the three features. Thus, the classifier correctly identified the test filter object, r1(λ;λ1) by 
assigning it to Class 1. The plot for the feature vector F is shown in Fig. 11(blue). By comparison with the 
reference, the classification results shown in Fig. 11demonstrate that classifiers by both algorithms have 
correctly assigned the test object to Class 1 based on extracted feature vectors. 

 
Fig. 10 Integrated photocurrents, 𝐼𝐼neg,class (from red curve) and 𝐼𝐼pos,class (from blue curve) for (a) Class 1, (b) Class 
2 and (c) Class 3 based on the bias waveforms as shown in Fig. 8. 

 
Fig. 11 Classification results for the GST algorithm (blue) compared to the conventional ST algorithm (white) for 
identifying the test filter object, r1(λ;λ1). Results show that the classifier has successfully classified the test object 
to Class 1 using both algorithms. 

Performance of the GST algorithm for nonuniformity noise 
In this subsection, we evaluate the performance of the GST algorithm with variation in the DWELL’s spectral 
response. We termed this variation the detector-to-detector nonuniformity in the spectral response or simply 
nonuniformity noise. To examine the nonuniformity noise in the GST algorithm, we introduced a stochastic 
multiplicative factor, ρ centered around unity, to the DWELL’s spectral response at each bias in the matrix A 
of Eq. (2) by 

(11) 
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𝑅𝑅�𝑘𝑘(𝜆𝜆) = 𝑅𝑅𝑘𝑘(𝜆𝜆) × 𝜌𝜌atthe𝑘𝑘thbias, 

where ρ = (1 + β) with −1< β <1. 

The GST algorithm used to reconstruct the emissivity of the LWIR object at 8.8 μm in Table 1was repeated for 
various levels of the nonuniformity noise. The noise level was controlled by varying a factor ρ, for example, the 
noise is amplified as ρ is away from 1. The results in Table 2show that at high noise levels (ρ ≤ 0.6), the 
reconstruction error as compared to the reference was over 60%. For moderate noise levels (0.8 ≤ ρ ≤ 1.2), a 
good reconstruction was observed with the error of 25% or less. 

Table 2. Summary of results for the effect of nonuniformity noise to reconstruct the emissivity of the LWIR 
object at 8.8 μm. Results are also compared to the reference value of the emissivity. Reconstruction errors as 
compared to the reference value are shown in parentheses. 

  Reconstructed 
sample of 
emissivity 

  GST algorithm 
with 
nonuniformity 
noise 

      Reference 
value   with ρ = 
1   (No noise) 

 
  ρ = 0.6   ρ = 0.8   ρ = 1.2   ρ = 

1.4 
  ρ = 
1.6 

 

  at 8.8 μm   0.245 66%)   0.184 (25%)   0.123 (17%)   0.105 
(29%) 

  0.092 
(38%) 

  0.147 

 

5. Design considerations for practical applications and readout integrated 
circuit (ROIC) 
To implement the presented algorithm in a practical imaging system, a new custom-designed ROIC with the 
following specifications must be developed: 

a) Ability to apply both positive and negative biases 
b) Ability to integrate both polarities of photocurrent 
c) Ability to perform the analysis in real time 

 

The double polarity biases can be applied by simply using a capacitive trans-impedance amplifier (CTIA) 
technique [16], where an operational amplifier with a capacitive feedback is used for integration. Next, the 
polarity of integration can be controlled by switching the orientation of the integration capacitor in the CTIA 
circuit as shown in Fig. 12 . Finally, to be able to perform the analysis in real time, the algorithm must be 
implemented inside the ROIC. This can be done by using analog circuits to implement the signal processing 
functions. For example, after the completion of the process and by the end of integration time, the integrated 
value related to each feature will be stored in a sample and hold (S&H) circuit within each unit cell. Then the 
maximum value will be identified and the resulted feature will be sent out in real time during the readout 
process. 
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Fig. 12 Functional representation of bidirectional integrator: (a) The input photocurrent charges the integrator 
capacitor, and (b) the input photocurrent discharges the integrator capacitor. 

6. Conclusions 
In this paper we have generalized the original algorithmic spectral tuning technique [5] to allow a continuous, 
time-varying bias waveform, which enables the detector to extract the desired spectral features for a specific 
multispectral sensing application in a limited integration time simply by operating the DWELL detector under an 
appropriately designed time-varying bias. The significance of the algorithm’s generalization is that it entirely 
absorbs the data-processing steps (multiplications and superpositions associated with weights) of the 
conventional spectral tuning algorithm in the photocurrent integration process, making the algorithm readily 
available for hardware implementation. The generalized spectral-tuning algorithm directly extracts spectral 
features by integrating the photocurrent with appropriately biasing the DWELL detector using a waveform 
instead of forming a weighted superposition of photocurrents resulting from static biasing. The elimination of 
the data-processing steps can greatly simplify the design of a multispectral sensing system since the system will 
no longer require an on-chip processing unit. As a result, the required cost and complexity of the system would 
be significantly reduced. 

We successfully validated the generalized algorithm by means of simulation of two multispectral sensing 
problems: spectrometry of a representative spectral filter and the classification of three LWIR filters (used as 
objects to be classified) based on spectral matched filtering. The results were comparable to those obtained by 
the conventional spectral tuning algorithm. The next step is to implement the generalized spectral-tuning 
algorithm in hardware by means of a reconfigurable ROIC-based FPA and demonstrate multispectral 
spectrometry and object classification in real time. 
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