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Abstract 

 

The retinal pigment epithelium [RPE] is a multifunctional monolayer located at the back of the 

eye required for the survival and function of the light-sensing photoreceptors. In Age-related 

Macular Degeneration [AMD], the loss of RPE cells leads to photoreceptor death and 

permanent blindness. RPE cell transplantation aims to halt or reverse vision loss by preventing 

the death of photoreceptor cells and is considered one of the most viable applications of stem 

cell therapy in the field of regenerative medicine. Proof-of-concept of RPE cell transplantation 

for treating retinal degenerative disease, such as AMD, has long been established in animal 

models and humans using primary RPE cells, while recent research has focused on the 

transplantation of RPE cells derived from human pluripotent stem cells [hPSC]. Early results 

from clinical trials indicate that transplantation of hPSC-derived RPE cells is safe and can 

improve vision in AMD patients. Current hPSC-RPE cell production protocols used in clinical 

trials are nevertheless inefficient. Treatment of large numbers of AMD patients using stem 

cell-derived products may be dependent on the ability to generate functional cells from 

multiple hPSC lines using robust and clinically-compliant methods. Transplantation outcomes 

may be improved by delivering RPE cells on a thin porous membrane for better integration 

into the retina, and by manipulation of the outcome through control of immune rejection and 

inflammatory responses. 

 

Keywords: Pluripotent stem cells, retinal pigment epithelium, age-related macular 

degeneration, cell transplantation, stem cell therapy 

 

Abbreviations:    AMD: Age-related Macular Degeneration; AMD-GA, dry AMD identified by 

geographic atrophy; AMD-CNV, wet AMD identified by choroidal neovascularization; cGMP: 

current Good Manufacturing Practice; hESC: human embryonic stem cells; hiPSC: human 

induced pluripotent stem cells; PLLA, poly-L-lactic acid; PLGA, poly lactic-co-glycolic acid; 

PSC: pluripotent stem cell; RPE: retinal pigment epithelial.  
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INTRODUCTION 

The retinal pigment epithelium is a multifunctional monolayer required for the health and 

function of neighbouring photoreceptor cells in the retina. Age-related macular degeneration 

[AMD] is associated with loss of retinal pigment epithelial [RPE] cells which cover the Bruch’s 

membrane at the back of the eye and support the survival and function of the photoreceptor 

cells which detect light. Dysfunction or death of RPE cells in the macula region causes loss of 

photoreceptor cells and permanent central blindness.  

AMD is a highly prevalent irreversible visual impairment. The onset of dry AMD is 

characterized by formation of drusen deposits leading to complement activation and chronic 

inflammation of the RPE with subsequent loss of photoreceptor function. Damaged RPE cells 

cannot clear debris efficiently and so condition a toxic environment for photoreceptors. In 

wet or neovascular AMD, choroidal vessels proliferate and invade the retina and leak blood 

and fluid under the retina, leading to rapid loss of RPE cells and ultimately loss of vision (Figure 

1). While anti-angiogenic factors like anti-VEGF inhibitors have been used as drugs to suppress 

vascularization in wet AMD, this is not always effective, is not curative and involves multiple 

injections into the eye. Currently there is no available treatment available for dry AMD that 

improves vision. 
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Figure 1. Age-related Macular Degeneration (AMD) can manifest as Dry and Wet (or 

neovascular) forms, each having a different disease aetiology. Dry AMD is characterized by 

the formation of drusen deposits behind the retina, while neovascularization and blood 

leakage into the eye characterize Wet AMD.  

 

 

It has been estimated that the number of people living with AMD will reach 196 million 

by 2020 and that this will increase to 288 million by 2040 [1]. That study showed that 17% of 

45- to 85-year old adults would suffer some loss of vision or blindness due to AMD. The 

incidence of AMD is predicted to accelerate due to an ageing population, diet, smoking and 

overexposure to light. Treatment options are limited and only partially effective, and there is 

urgent need to develop new strategies for cellular therapy particularly in the case of dry AMD. 

RPE cell transplantation aims to halt or reverse vision loss by preventing the death of 

photoreceptor cells and is considered one of the most viable applications of stem cell therapy 

within the field of regenerative medicine. Early studies of RPE cell transplantation to treat 

retinopathies identify rescue of photoreceptor function in animal studies [1]. However, the 

challenge with RPE cell transplantation is in the source of sufficient numbers of cells to effect 

therapy. Clinical trials involving human adult or foetal RPE cells have not proven successful 
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due to the limited number and proliferative potential of available cells [2].While mesenchymal 

stem cells have been reported as promising for therapy of retinal diseases , clinical trials have 

not been reported. Accordingly, the use of RPE cells derived from pluripotent stem cells has 

been readily adopted.[3] 

Several overseas groups have reported that the transplantation of stem cell-derived RPE 

cells in AMD patients is safe and can improve vision. Recent studies include The London Project 

to Cure Blindness [2], The California Project to Cure Blindness [3] and the Riken Laboratory for 

Retinal Regeneration [4]. The most recent paper from the London group [2] reported 

significant improvement in vision in two [of two] patients with neovascular or wet AMD using 

a cell-on-membrane construct with some similarity to that developed in this Centre by Surrao 

et al. [5, 6]. These published clinical trials demonstrate proof-of-concept for a stem cell 

therapy to treat AMD and provide details of implant size and choice of patient group.  

Despite significant clinical progress, published methods used for RPE cell production 

from stem cells remain labour-intensive and not readily amenable to commercial scale clinical 

application. Although several groups have reported high efficiencies in RPE cell production [7-

9], their methods require the use of undefined animal products that carry risk of patient 

infection. Most clinical trials have generated hPSC-RPE cells using spontaneous differentiation 

under xeno-free/defined conditions [2, 3, 10]. Conversely, published studies showing more 

efficient differentiation of hPSCs to RPE cells use undefined reagents [such as Matrigel] and 

have not been adapted to current Good Manufacturing Protocols [cGMP] for integration into 

human clinical trials. Routine treatment of large numbers of AMD patients will require the 

ability to rapidly and efficiently generate clinical-grade RPE cells. It will be necessary to 

develop methodology for rapidly producing hPSC-RPE cells at high yield and high homogeneity 

from possibly multiple PSC lines under xeno-free/defined clinical grade conditions in order to 

provision cells for a large clinical cohort.  

 

IMPORTANT CONSIDERATIONS IN STEM CELL THERAPY FOR AMD    

 

Making sufficient RPE cells under clinical-grade conditions  

In terms of a suitable source of cells for transplantation, an important consideration is the 

number of cells which can be generated. While there have been reports of transplantation of 
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isolated mature and fetal RPE cells into animal models [11-13], it is difficult to obtain enough 

of these cells for effective transplantation to multiple patients. The field has therefore 

adopted the transplantation of RPE cells differentiated from pluripotent stem cells [PSCs], and 

procedures for cell differentiation involving both spontaneous and directed differentiation 

[14, 15]. Most reported culture systems producing RPE cells for clinical trial use hESCs as a 

starting cell source, with hiPSCs used more recently. There is variability amongst the 

procedures used in clinical trials [Table 1].  Derivation of hESC-RPE cells through long-term 

spontaneous differentiation followed by cell isolation and maturation has been commonly 

used [16-19]. Although this approach is sufficient for small trials of 10 to 20 patients, it would 

be insufficient and cost prohibitive for the production of the cell numbers required to treat 

the estimated 200 million AMD patients worldwide. Methods have been published that can 

generate RPE cells at high efficiency and speed using chemically defined signals that mimic 

stages of eye development, but these have been applied to research and not to clinical testing 

[7, 9, 20]. The efficiency and robustness of clinical grade cell production lags behind research-

grade methods. For clinical grade cell preparation, all culture components need to be 

approved by the Therapeutics Goods Administration [TGA] and Federal Drug Administration 

[FDA].  No published procedure produces RPE cells at high efficiency without the use of cell 

culture components that are not xeno-free and carry risk of infection to patients. The 

application of directed differentiation methods to AMD therapy will require rapid, efficient 

manufacturing procedures to produce pure populations of RPE cells at scale, sufficient for 

testing and validation of batches ahead of use.  
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Table 1. Clinical trials using pluripotent stem cell derived RPE cells to treat AMD. 
 

Clinical trial ID Phase Disease No. Cell Type Cell line Differentiation 
Protocol 

Delivery 
Method 

Sponsor[s] Ref. 

NCT01344993 
NCT02563782 
NCT02463344 

I/II AMD-GA 9 hESC-RPE MA-09 Spontaneous Sub-retinal suspension Ocata Therapeutics [Astellas] [24, 
25] 

UMIN000011929 I AMD-CNV 2 hiPSC-RPE Autologous Directed [42] Monolayer Riken Institute for Developmental 
Biology 

[4] 

On hold I/II AMD-CNV 2 hiPSC-RPE Non-autologous Directed [42] Monolayer Riken Institute for Developmental 
Biology 

 

UMIN000026003 I AMD-CNV - hiPSC-RPE Allogeneic  Directed [42] Monolayer Kobe City Medical Centre General 
Hospital 

 

NCT02590692 I/IIa AMD-GA 5 hESC-RPE CPCB Spontaneous Monolayer on substrate 
Paralyene C 

Regenerative Patch Technologies [3] 

NCT01691261 I AMD-CNV 2 hESC-RPE SHEF-1.3 Spontaneous Monolayer on substrate 
Polyethylene terephthalate 

Pfizer [2] 

NCT01674829 I/II AMD-GA 12 hESC-RPE MA09 Spontaneous Sub-retinal suspension CHA Bio Biotech [26] 
NCT03305029 I AMD-GA 3 hESC-RPE SCNT-HESC Spontaneous Sub-retinal suspension CHA University  
NCT02286089 I/II AMD-GA 24 hESC-RPE HAD-C 102 Directed [9] Sub-retinal suspension BioTime 

CellCure Neurosciences 
 

NCT02903576 I/II AMD-GA 
AMD-CNV 

18 hESC-RPE MA09 Spontaneous Sub-retinal suspension 
Monolayer on substrate 

Federal University of Sao Paulo  

NCT03046407 I/II AMD-GA 10 hESC-RPE Q-CTS-HESC-2 Spontaneous Sub-retinal suspension Chinese Academy of Sciences  
NCT02755428 I/II AMD-GA 10 hESC-RPE Q-CTS-HESC-2 Spontaneous Sub-retinal suspension Chinese Academy of Sciences  
NCT02749734 I/II AMD-CNV 15 hESC-RPE Q-CTS-HESC-2 Spontaneous Sub-retinal suspension Chinese Academy of Sciences  

 
AMD, age-related macular degeneration; AMD-GA, dry AMD identified by geographic atrophy; AMD-CNV, wet AMD identified by choroidal neovascularization. 
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RPE cells have limited proliferative potential in vitro, and so large-scale production will 

necessarily involve rapid, efficient expansion at an early stage of passage.  In this laboratory, 

we have developed a protocol that uses chemical cocktails to instruct cell differentiation to 

RPE cells [21]. The entire process utilizes synthetic, human or clinical grade components, and 

involves no components that carry risk to human patients, and is therefore highly likely to 

obtain FDA and TGA approval [21]. The process has also been adapted to an adherent format 

which makes it easier to produce cells at scale, and potentially in an automated, closed 

system. It appears to be a robust procedure and has been used effectively on several hESC 

lines to give the same cell output despite natural variation between stem cells of different 

origin.  

 

Cell transplantation on support membranes 

Cell therapy approaches to AMD treatment target the subretinal space between the 

photoreceptor layer of the retina and the damaged RPE so that implanted cells interact 

directly with photoreceptors. Early studies tested the implantation of single cells and cell 

aggregates or sheets [20, 22-26]. Although partially successful, RPE cell injection is a sub-

optimal technique that relies on loose individual cells to self-integrate into the existing 

diseased tissue. Recent attention has focused on the delivery of cells as a sheet growing on a 

support membrane and has yielded more success [5, 27-29]. This is likely due to the delivery 

of a layer of mature, functional cells directly into the region requiring treatment. Mature cells 

are polarized and as functional monolayers can better survive as a group. They are 

immediately ready to function by clearing waste, secreting survival signals to retinal cells and 

reducing the activity of inflammatory cells in the eye [30]. By comparison, cells in suspension 

are more likely to be stressed at injection and unlikely to seed for growth on to the damaged 

RPE layer in the eye. Successful monolayer implants have involved cells grown and matured 

on membranes of various type including a PET polyester [Transwell®] membrane [2] a thin 

Parylene C construct [3, 29], as well as electrospun nanofibre membranes like poly-L-lactic 

acid [PLLA] and poly lactic-co-glycolic acid [PLGA] developed in this lab (Figure 2) [5, 27]. 

Unsupported cell sheets of RPE cells grown on collagen have also been used as a successful 

implant [4, 31]. While several different membrane types have been used for RPE cell 

implantation with some success, these have not yet been directly compared for therapeutic 

potential.  
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Figure 2. Provision of stem cell-derived retinal pigment epithelial (RPE) cell replacement 

therapy for Age-related Macular Degeneration (AMD). The path to the clinic involves the 

establishment of banks of human pluripotent stem cells (hPSCs) prepared under Good 

Manufacturing Practice (GMP) conditions to produce clinically acceptable cells. These could 

be derived from human embryonic stem cells (hESCs) or as human induced PSCs (hiPSCs) 

derived from fibroblasts or other somatic cell types. Banks of hPSC lines with broad 

immunocompatibility can be established by selection or by editing HLA genes to produce 

HLA ‘super donor’ haplotype li nes.hPSC-RPE cells are then generated under GMP conditions 

and frozen down to give a master cell bank of quality tested cells. For cell therapy in HLA-
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matched AMD patients, hPSC-RPE cells are thawed and grown as a monolayer on 

biocompatible membranes. These constructs are implanted beneath the retina to support 

survival and function of photoreceptors and maintain vision.  

 

In this lab, RPE cells grown on a thin PLLA membrane have shown optimized 

differentiation, polarization, viability and maturation [5, 6] [Surrao et al., unpublished data]. 

Thin, small fibre diameter electrospun membranes have a high level of porosity that allows 

exchange of water, waste and nutrients between RPE cells and the underlying blood supply. 

Another advantage is the increased surface area-to-volume ratio that enhances the coating 

of membranes with proteins that support cell attachment, monolayer formation and cell 

function [32]. We have tested four biodegradable polymers for their ability to ultimately form 

functional constructs for transplantation [5]. These are all polymers approved for clinical use 

by the USA Food and Drug Administration [FDA] and Australian Therapeutic Goods 

Administration [TGA]. The application of a protein coat enhances cell attachment, and xeno-

free laminin and vitronectin have been used successfully in several studies [unpublished data].  

In our Centre, a porous, thin, electrospun membrane coated with hPSC-derived RPE cells 

and having the modulus of the Bruch’s membrane has been successfully transplanted into rat 

eyes and shown to support RPE cell survival and function at the interface with photoreceptors 

[Surrao et al., unpublished data]. Slowly biodegradable compositions like PLLA and PLGA 

would appear to be desirable, with the expectation that extracellular matrix production by 

transplanted RPE cells might replace the damaged Bruch’s membrane over time. Coating the 

membrane with laminin [22], vitronectin [30] or other extracellular matrix protein, supports 

cell attachment, differentiation and monolayer formation, so providing the correct 

arrangement of cells needed for subretinal implantation into the eye.  

 

LESSONS FROM IMPLANTATION STUDIES 

 

Early clinical trials in patients with Stargardt’s disease or dry AMD showed that hESC-RPE cells 

could be successfully transplanted across an HLA, or major histocompatibility barrier. Two 

separate clinical trials showed maintenance of a suspension of allogeneic hESC-RPE cells for 

at least one year following systemic immunosuppressive therapy with cyclosporin A and 
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tacrolimus for 3-4 months [24-26]. The ability to control inflammation and immune rejection 

of an allograft may be more challenging however if cells are transplanted as a monolayer on 

a foreign membrane, or if choroidal neovascularization is present as occurs in wet AMD. While 

it may be possible to control inflammation at least initially for a biodegradable membrane, if 

the membrane is non-biodegradable, inflammation and an immune rejection response may 

heighten with time, requiring prolonged administration of immunosuppressive therapy.  

Recent clinical trials have involved the implantation of HLA-mismatched hESC-RPE cells 

grown on a porous, non-biodegradable membrane, combined with systemic and local 

immunosuppressive drug therapy for up to a year [2, 3]. These small Phase I trials provide 

evidence for the safety and efficacy of stem cell therapy for AMD and demonstrate survival 

of functioning RPE cells and visual improvement in some patients. However, general 

application of the therapy, and further clinical trials, may be precluded if long-term 

immunosuppressive drug therapy is needed to maintain an effective implant. For this reason, 

effective long-term cell replacement therapy may require the use of HLA-matched 

histocompatible implants delivered as a monolayer on membranes, and perhaps measures to 

control early inflammation. Furthermore, a biodegradable electrospun membrane of PLLA or 

PLGA [5, 6] might be more desirable as a support for a cell monolayer, particularly if 

immunosuppressive treatment is required only across the lifespan of the membrane. 

RPE cells in the normal eye are unique in their capacity to support an immune privileged 

environment. They produce a range of factors including transforming growth factor beta 

which supports maintenance of an immunosuppressed state within the eye [33]. A recent 

report now confirms that hESC-derived RPE cells also produce immunosuppressive cytokines 

and factors. These cells contribute to the maintenance of an immunosuppressed state in the 

damaged eye following transplantation in the absence of immunosuppressive drug therapy 

[20]. It has also been shown that both hESC-RPE cells and hiPSCs-RPE cells have unique 

potential above other PSC-derived differentiated cells like smooth muscle cells, to induce 

immunological tolerance [34]. For example, hiPSC-derived RPE cells are immune tolerated not 

only when implanted into the eye but also into other body sites [34]. In general, hESC-RPE 

cells and hiPSC-RPE cells have a characteristic immunosuppressive phenotype, and are weakly 

immunogenic, showing low expression of HLA Class I antigens, and expression of HLA Class II 

antigens only following interferon-g treatment [31, 35].  
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In terms of their immune capability, hESC-RPE cells have clear capacity to inactivate T 

cells and induce T cell apoptosis, suggesting a direct inhibitory effect on T cell immunity [20]. 

Implantation of hESC-RPE cells subretinally into rats was shown to induce detectable blood 

levels of IL-10, a growth factor that supports development of regulatory T cells which mediate 

peripheral tolerance. The same hESC-RPE cells were also found to survive transplantation into 

vision-impaired RCS rats without administration of cyclosporin as an immunosuppressant 

[20]. Furthermore, RCS vision-impaired rats implanted with hESC-RPE cells showed greater 

improvement in photoreceptor function in the absence of immunosuppression than did 

animals given cyclosporin as an immunosuppressant [20]. A number of studies now indicate 

that both xenogeneic and allogeneic transplantation of hESC-RPE cells prepared as a cell 

suspension can occur successfully without long-term use of immunosuppression. It is likely 

therefore that immunosuppressive drug treatment negatively impacts the development of T 

cell-mediated tolerance, so that sustained immunosuppressive treatment following 

implantation of RPE cells into the eye may not be desirable.  

Important considerations in the future design of a cell therapy for AMD will be 

histocompatibility between transplanted cells and the host, and the need for 

immunosuppressive drug therapy to achieve long-term transplantation without rejection. 

The two reported clinical trials involving hESC-derived RPE cells grown on a membrane did 

not use histocompatible cells [2, 3], and a third trial used hESC-RPE cells administered as cells 

in suspension [18]. Those grafts have been sustained for up to a year with no signs of rejection 

through administration of a combination of local and systemic immunosuppressants given 

over several months following implantation. Going forward, histocompatible transplantation 

could be achieved using patient-derived or MHC-matched hiPSCs for differentiation of RPE 

cells, or through the use of an allogeneic hESC cell line that has been engineered to no longer 

express HLA antigens [36].  

Going forward, another option to allay graft rejection issues is to develop patient-

specific hiPSC-derived RPE cells. The process of reprogramming, differentiation and validation 

of each line would make this a very costly and time-consuming activity, and this alone could 

preclude the patient-specific approach. More commercially feasible would be the provision 

of a bank of HLA-typed hESC-RPE and hiPSC-RPE cell lines, prepared, validated and banked for 

distribution to patients as needed. The development of super-donor cell banks of iPSCs for 

generation of differentiated cells of defined HLA haplotype has been considered in terms of 
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the number of lines required to treat a majority of a given regional population such as 

California [37] or Japan [38].  

The need for a cell bank to provide MHC-matched iPSC-RPE cells for transplantation 

should however be weighed against the suitability of iPSCs as a starting cell population for 

differentiating RPE cells. In terms of RPE cell transplantation for AMD, there has been caution 

over the choice of hiPSCs as a starting cell population on the grounds that hiPSC-derived cells 

are prone to differentiative change and oncogenic transformation to give teratomas. In one 

study, the tumorigenic potential of iPSC-RPE cell lines was directly assessed through 

subretinal implantation into nude rats and no oncogenic transformation was detected after 

12 months [39]. A clinical study however by the same group preparing similar hiPSCs-RPE cell 

sheets for implantation into two wet AMD patients reported oncogenic change in an hiPSC 

line derived from one patient which was then not implanted [4].  

 

PROGRESS IN CLINICAL TRIALS    

       

Macular degeneration is now recognized as a disease highly amenable to stem cell therapy. 

The introduction of hPSC-derived RPE cells into the subretinal space provides a means to 

replace the damaged retinal pigment epithelium. Already there have been multiple small 

clinical trials initiated involving hESC-derived RPE cells in several countries. Details of these 

trials are summarized in Table 1. These have involved both wet and dry forms of AMD 

characterized by geographic atrophy or choroid neovascularization. They have employed both 

hESC-derived and hiPSC-derived RPE cells. Most cells have been prepared through 

spontaneous differentiation which is a slow and prolonged procedure. Only one study has 

involved cells prepared through a protocol involving directed differentiation [9]. A Japanese 

trial represents the first implantation of autologous hiPSC-derived RPE cells into a patient with 

neovascular or wet AMD [4]. The combined studies have involved implantation of either cell 

suspensions, a monolayer sheet of cells grown on collagen, or cells grown as a monolayer on 

a substrate for implantation. Polymeric substrates tested to date include polyethylene 

terephthalate [PET] and Parylene C [2, 3].  

The safety of hESC-RPE cell implantation into the subretinal space in humans was first 

demonstrated by Ocata Therapeutics [USA] [24, 25] and was confirmed by a Korean study 
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[26]. Those studies involved implantation of allogeneic cell suspensions into patients with 

either Stargardt’s muscular dystrophy or dry AMD and followed for a year in the Korean study 

[10], and for 2 years in the American study [24], with no adverse proliferation of cells, no 

rejection or serious ocular effects, and no serious systemic effects. Both studies reported 

either improvement or no loss in visual acuity. However, when cells were transplanted as a 

suspension, it was more difficult for cells to localize and integrate into an existing retinal 

pigment epithelium [27]. A recent clinical trial involving 12 patients with Stargardt’s disease 

given a suspension of hESC-RPE cells sub-retinally reported focal areas of hyperpigmentation 

in the subretinal region consistent with survival of transplanted cells, but no significant 

improvement in vision in those patients [18].  

The efficacy of hiPSC-RPE cell implantation was reported for patients with neovascular 

or wet AMD receiving an autologous subretinal implant of cells grown as a sheet on collagen 

[4]. This was the first reported case of a successful hiPSC-derived stem cell therapy. A single 

patient maintained the graft without immunosuppressive drug treatment for up to a year, by 

which time there was no sign of rejection. Visual acuity was maintained but did not improve 

[4]. A second patient was withdrawn from the trial when mutations were observed in their 

differentiated autologous hiPSC-RPE cells.  

Most relevant to the discussion here are the two clinical trials reported recently using 

cell-on-membrane implants. The London Project to Cure Blindness first initiated a clinical trial 

in 2015 to test the safety and efficacy of a ‘patch’ implant [2]. hESC-RPE were delivered 

subretinally on a polyester membrane coated with vitronectin into patients with advanced 

neovascular or wet AMD. This was the first successful trial delivering hESC-RPE cells grown on 

a non-degradable polyester [PET: Transwell®] membrane [2]. Subretinal implantation of the 

patch into 2 patients confirmed no serious retinal damage, with an improvement in visual 

acuity after a year. The California Project to Cure Blindness also reported results of a clinical 

trial in 2018 involving four patients with advanced dry AMD, who were implanted with hESC-

RPE cells on a non-degradable Parylene C membrane [3]. Patients were followed for up to a 

year and showed no loss of vision, and with improved vision in one case.  

In both clinical trials involving cell-on-membrane implants or ‘patches’, a monolayer of 

fully differentiated cells was delivered which was polarized and had tight junction barrier 

formation [2, 3]. The membrane allowed easy insertion and also provided cells in a fully 

functional form. Maintenance of cells on the membrane was monitored over time as dark 
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pigmented cells, and cells were seen to migrate from the patch to nearby areas devoid of RPE 

cells. Patients received perioperative systemic immunosuppressants, and in the case of the 

London Trial, local anti-inflammatories through use of a fluocinolone acetonide intravitreal 

implant. The controlled differentiation of cells to give RPE cells and their delivery as a 

membrane-supported functional monolayer, is thought to be an important element of this 

successful procedure.  

No clinical trials have yet involved biodegradable nanofiber electrospun membranes as 

a support matrix for hESC-RPE cells. In this Centre, testing in RCS vision-impaired rats has 

begun and already shows successful implantation, survival and function of hESC-RPE cells 

grown on PLLA membranes, leading to a protective effect on photoreceptor survival [Surrao 

et al., unpublished data]. A recent study in pigs reported iPSC-RPE cells prepared as a ‘patch’ 

of cells grown on a biodegradable PLGA membrane [27]. Successful integration of cells into 

the retinal pigment epithelium was achieved using a membrane of the same composition but 

thicker fibre diameter as that developed in this Centre [5, 6]. Cells grown on membranes were 

implanted subretinally into pigs in which RPE had been damaged through laser injury as a 

model for dry or non-neovascular AMD. To date there have been no clinical trials to determine 

the effectiveness of long-term implantation of hESC-RPE cells on biodegradable membranes, 

or their impact on immunity in the eye.   

 

ADVANCING A CELL THERAPY FOR AMD 

 

Development of optimal cell-on-membrane constructs for implantation 

Transplantation of mature RPE cells prepared as a monolayer on a synthetic, biomimetic 

Bruch’s membrane is considered a promising therapy for AMD. However, the synthetic 

scaffolds used in clinical trials to date do not mimic the Bruch’s membrane or the 

microenvironment of the retinal pigment epithelium. The native human Bruch’s membrane 

is a 2-4 μm thick extracellular matrix comprised of mainly collagen and elastin, which supports 

RPE cell adhesion, migration, differentiation and maturation. One argument is that 

biodegradable, electrospun membranes will support cell growth for a prolonged period 

following implantation in the eye until cells integrate within the existing retinal pigment 

epithelium.  Electrospun nanofiber PLLA and PLGA membranes have been developed with a 
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thickness, porosity, thin fibre diameter, and protein coating which resembles the Bruch’s 

membrane [5, 6]. A thinner fibre diameter of ~70nm, and laminin coating of the membrane, 

represent advances over the first PLGA membrane developed and tested for RPE cell growth 

[40]. 

Production of hPSC-RPE cells under clinical grade conditions  

In order to pursue human trials of hPSC-RPE cells, therapy-grade cell products must be 

generated according to cGMP regulations. The quest for an efficient cGMP compliant protocol 

to produce differentiated cells requires xeno-free hPSC lines, small molecule inducers to 

direct differentiation, and cGMP compatible media and surfaces for cell growth. Most of the 

hESC-RPE cell lines used in clinical trials were produced through spontaneous differentiation 

[2, 18] or through the use of compromised protocols of directed differentiation [7, 9] and are 

not readily adaptable to commercial scale cell production under clinical or cGMP conditions.  

A differentiation protocol has been developed in this lab which is unique in that it is 

rapid, directed, efficient and completely xeno-free. By this procedure ~90% of hESCs can be 

directed to an RPE cell fate in two weeks using small molecules in serum-free/feeder-free 

cultures and under xeno-free/chemically-defined conditions [21]. Large scale production of 

differentiated cells from multiple hPSC lines will require protocols which allow scale up of cell 

production to meet clinical needs. Production of cells for clinical application will require 

robust, rapid, efficient and xeno-free methods for differentiation capable of producing large 

numbers of mature functional cells in a short time window. It will be important to optimise 

cell production through generation of higher yields of cells, so reducing the need for 

rederivation of differentiated cells and quality control associated with each batch 

preparation. 

 

Maintenance of the immunoprivileged state of the eye 

Transscleral incision and subretinal implantation could compromise the immune privileged 

environment of the eye. However, published reports, also confirmed by us, indicate that 

hESC-RPE cells as implants are tolerated for at least 4 weeks without immunosuppression in 

animal models [20, 27]. Inflammatory responses reflected by microglia activation are to be 

expected with incision and insertion of a foreign body, since microglia play an important role 
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as resident immune cells in maintaining immune homeostasis [41]. This type of response 

could be controlled through use of anti-inflammatory drugs at least perioperatively.  

Implantation into a diseased or damaged eye also raises the issue of the environment 

in which the implanted cells must survive. Inflammation is a key factor in the pathogenesis of 

AMD and could prevent successful implantation. Strategies must be developed to control the 

inflammatory environment and to support the development of tolerance to the graft. 

Previous studies have shown that long-term use of systemic immunosuppression is not 

beneficial to successful acceptance of hESC-RPE cells transplanted into rats [20]. In fact, 

immunosuppressive drug therapy could inhibit induction of a regulatory T cell response 

needed to establish and maintain tolerance to the graft. 

 

CONCLUSION 

 

The success of stem cell therapies is entirely dependent on the quality of cells transplanted, 

their purity, functional competence and survival. The effectiveness of the therapy will then 

be dependent on a whole-of-problem approach involving the perfection of supporting 

membranes, the development of surgical techniques, and the management of the immune 

environment into which cells are transplanted. Despite a number of clinical trials reporting 

the preparation of hPSC-derived RPE cells and their placement as a subretinal implant, none 

is supported by a procedure for producing cells according to a protocol which will deliver stem 

cell-based therapy to the clinic. A protocol for cell production and differentiation is needed 

which can be applied to commercial scale cell production where cells are produced rapidly, 

under completely defined, small molecule and xeno-free conditions, which can then be 

quality tested and then banked for future clinical use. Future Clinical Trials will require 

production of homogenous, differentiated cells prepared under cGMP conditions, and in 

numbers reflecting the needs of AMD patients. 

 

CONFLICT OF INTEREST 

 

 The authors declare that they have no competing interests. 



 17 

 

ACKNOWLEDGEMENTS 

 

This study was supported by funding provided by the Clem Jones Foundation, Brisbane QLD, 

Australia, and the Cutmore Bequest provided to Bond University, Gold Coast, Australia. 

 

REFERENCES 
 

1. Wong WL, Su X, Li X, et al. Global prevalence of age-related macular degeneration 

and disease burden projection for 2020 and 2040: a systematic review and meta-analysis. 

The Lancet Global health. 2014; 2[2]: e106-16. 

2. da Cruz L, Fynes K, Georgiadis O, et al. Phase 1 clinical study of an embryonic stem 

cell-derived retinal pigment epithelium patch in age-related macular degeneration. Nature 

biotechnology. 2018; 36[4]: 328-37. 

3. Kashani AH, Lebkowski JS, Rahhal FM, et al. A bioengineered retinal pigment 

epithelial monolayer for advanced, dry age-related macular degeneration. Science 

translational medicine. 2018; 10[435]: pii: eaa04097. 

4. Mandai M, Watanabe A, Kurimoto Y, et al. Autologous Induced Stem-Cell-Derived 

Retinal Cells for Macular Degeneration. The New England journal of medicine. 2017; 

376[11]: 1038-46. 

5. Surrao DC, Greferath U, Chau YQ, Skabo SJ, Huynh M, Shelat KJ. Design, 

development and characterization of synthetic Bruch's membranes. Acta Biomater. 2017; 

64: 357-76. 

6. Surrao S, Skabo S, Chau YQ, Limnios IJ, Shelat K, Liu Q. Design, development and in 

vitro evaluation of synthetic scaffolds for retinal tissue engineering. Front Bioeng Biotech. 

2016; 4. 

7. Buchholz DE, Pennington BO, Croze RH, Hinman CR, Coffey PJ, Clegg DO. Rapid and 

efficient directed differentiation of human pluripotent stem cells into retinal pigmented 

epithelium. Stem cells translational medicine. 2013; 2[5]: 384-93. 

8. Foltz LP, Clegg DO. Rapid, Directed Differentiation of Retinal Pigment Epithelial Cells 

from Human Embryonic or Induced Pluripotent Stem Cells. Journal of visualized experiments 

: JoVE. 2017[128]. 



 18 

9. Idelson M, Alper R, Obolensky A, et al. Directed differentiation of human embryonic 

stem cells into functional retinal pigment epithelium cells. Cell stem cell. 2009; 5[4]: 396-

408. 

10. Song MJ, Bharti K. Looking into the future: Using induced pluripotent stem cells to 

build two and three dimensional ocular tissue for cell therapy and disease modeling. Brain 

research. 2016; 1638[Pt A]: 2-14. 

11. Binder S, Krebs I, Hilgers RD, et al. Outcome of transplantation of autologous retinal 

pigment epithelium in age-related macular degeneration: a prospective trial. Investigative 

ophthalmology & visual science. 2004; 45[11]: 4151-60. 

12. Falkner-Radler CI, Krebs I, Glittenberg C, et al. Human retinal pigment epithelium 

[RPE] transplantation: outcome after autologous RPE-choroid sheet and RPE cell-suspension 

in a randomised clinical study. The British journal of ophthalmology. 2011; 95[3]: 370-5. 

13. Radtke ND, Aramant RB, Petry HM, Green PT, Pidwell DJ, Seiler MJ. Vision 

improvement in retinal degeneration patients by implantation of retina together with 

retinal pigment epithelium. American journal of ophthalmology. 2008; 146[2]: 172-82. 

14. Bobba S, Di Girolamo N, Munsie M,  et al. The current state of stem cell therapy for 

ocular disease. Experimental eye research. 2018; 177: 65-75. 

15. Nazari H, Zhang L, Zhu D, et al. Stem cell based therapies for age-related macular 

degeneration: The promises and the challenges. Progress in retinal and eye research. 2015; 

48: 1-39. 

16. Haruta M, Sasai Y, Kawasaki H, et al. In vitro and in vivo characterization of pigment 

epithelial cells differentiated from primate embryonic stem cells. Investigative 

ophthalmology & visual science. 2004; 45[3]: 1020-5. 

17. Kawasaki H, Suemori H, Mizuseki K, et al. Generation of dopaminergic neurons and 

pigmented epithelia from primate ES cells by stromal cell-derived inducing activity. 

Proceedings of the National Academy of Sciences of the United States of America. 2002; 

99[3]: 1580-5. 

18. Mehat MS, Sundaram V, Ripamonti C, et al. Transplantation of Human Embryonic 

Stem Cell-Derived Retinal Pigment Epithelial Cells in Macular Degeneration. Ophthalmology. 

2018; 125[11]: 1765-75. 



 19 

19. Vugler A, Carr AJ, Lawrence J, et al. Elucidating the phenomenon of HESC-derived 

RPE: anatomy of cell genesis, expansion and retinal transplantation. Experimental 

neurology. 2008; 214[2]: 347-61. 

20. Idelson M, Alper R, Obolensky A, et al. Immunological Properties of Human 

Embryonic Stem Cell-Derived Retinal Pigment Epithelial Cells. Stem cell reports. 2018; 11[3]: 

681-95. 

21. Limnios IJ and Bond University Ltd.  Methods for differentiating cells. International 

Patent Application No.PCT/AU2016/000390, International Publication No. WO2017/091844 

(published June 8, 2017).  

22. Lu B, Malcuit C, Wang S, et al. Long-term safety and function of RPE from human 

embryonic stem cells in preclinical models of macular degeneration. Stem cells [Dayton, 

Ohio]. 2009; 27[9]: 2126-35. 

23. Maminishkis A, Miller SS. Experimental models for study of retinal pigment epithelial 

physiology and pathophysiology. Journal of Visualized Experiments. 2010; 45: pii:3032. 

24. Schwartz SD, Hubschman JP, Heilwell G, et al. Embryonic stem cell trials for macular 

degeneration: a preliminary report. Lancet [London, England]. 2012; 379[9817]: 713-20. 

25. Schwartz SD, Regillo CD, Lam BL, et al. Human embryonic stem cell-derived retinal 

pigment epithelium in patients with age-related macular degeneration and Stargardt's 

macular dystrophy: follow-up of two open-label phase 1/2 studies. Lancet [London, 

England]. 2015; 385[9967]: 509-16. 

26. Song WK, Park KM, Kim HJ, et al. Treatment of macular degeneration using 

embryonic stem cell-derived retinal pigment epithelium: preliminary results in Asian 

patients. Stem cell reports. 2015; 4[5]: 860-72. 

27. Sharma R, Khristov V, Rising A, et al. Clinical-grade stem cell-derived retinal pigment 

epithelium patch rescues retinal degeneration in rodents and pigs. Science translational 

medicine. 2019; 11[475]: pii: eaat5580. 

28. Stanzel BV, Liu Z, Somboonthanakij S, et al. Human RPE stem cells grown into 

polarized RPE monolayers on a polyester matrix are maintained after grafting into rabbit 

subretinal space. Stem cell reports. 2014; 2[1]: 64-77. 

29. Thomas BB, Zhu D, Zhang L, et al. Survival and Functionality of hESC-Derived Retinal 

Pigment Epithelium Cells Cultured as a Monolayer on Polymer Substrates Transplanted in 

RCS Rats. Investigative ophthalmology & visual science. 2016; 57[6]: 2877-87. 



 20 

30. Diniz B, Thomas P, Thomas B, et al. Subretinal implantation of retinal pigment 

epithelial cells derived from human embryonic stem cells: improved survival when 

implanted as a monolayer. Investigative ophthalmology & visual science. 2013; 54[7]: 5087-

96. 

31. Kamao H, Mandai M, Okamoto S, et al. Characterization of human induced 

pluripotent stem cell-derived retinal pigment epithelium cell sheets aiming for clinical 

application. Stem cell reports. 2014; 2[2]: 205-18. 

32. Warnke PH, Liu Q and Bond University Ltd. Customised compositions and uses 

thereof. U.S. Patent No. 9,095,524 B2, U.S. Publication No. 2013/0095167 A1 (published Apr 

18, 2013). 

33. Holtkamp GM, Kijlstra A, Peek R, de Vos AF. Retinal pigment epithelium-immune 

system interactions: cytokine production and cytokine-induced changes. Progress in retinal 

and eye research. 2001; 20[1]: 29-48. 

34. Zhao T, Zhang ZN, Westenskow PD, et al. Humanized Mice Reveal Differential 

Immunogenicity of Cells Derived from Autologous Induced Pluripotent Stem Cells. Cell stem 

cell. 2015; 17[3]: 353-9. 

35. Sugita S, Kamao H, Iwasaki Y, et al. Inhibition of T-cell activation by retinal pigment 

epithelial cells derived from induced pluripotent stem cells. Investigative ophthalmology & 

visual science. 2015; 56[2]: 1051-62. 

36. Karabekian Z, Ding H, Stybayeva G, et al. HLA Class I Depleted hESC as a Source of 

Hypoimmunogenic Cells for Tissue Engineering Applications. Tissue engineering Part A. 

2015; 21[19-20]: 2559-71. 

37. Pappas DJ, Gourraud PA, Le Gall C, et al. Proceedings: human leukocyte antigen 

haplo-homozygous induced pluripotent stem cell haplobank modeled after the california 

population: evaluating matching in a multiethnic and admixed population. Stem cells 

translational medicine. 2015; 4[5]: 413-8. 

38. Nakajima F, Tokunaga K, Nakatsuji N. Human leukocyte antigen matching 

estimations in a hypothetical bank of human embryonic stem cell lines in the Japanese 

population for use in cell transplantation therapy. Stem cells 2007; 25[4]: 983-5. 

39. Kanemura H, Go MJ, Shikamura M, et al. Tumorigenicity studies of induced 

pluripotent stem cell [iPSC]-derived retinal pigment epithelium [RPE] for the treatment of 

age-related macular degeneration. PloS one. 2014; 9[1]: e85336. 



 21 

40. Warnke PH, Alamein M, Skabo S, et al. Primordium of an artificial Bruch's membrane 

made of nanofibers for engineering of retinal pigment epithelium cell monolayers. Acta 

Biomater. 2013; 9[12]: 9414-22. 

41. Okunuki Y, Mukai R, Pearsall EA, et al. Microglia inhibit photoreceptor cell death and 

regulate immune cell infiltration in response to retinal detachment. Proceedings of the 

National Academy of Sciences of the United States of America. 2018; 115[27]: E6264-e73. 

42. Osakada F, Jin ZB, Hirami Y, et al. In vitro differentiation of retinal cells from human 

pluripotent stem cells by small-molecule induction. Journal of cell science. 2009; 122[Pt 17]: 

3169-79. 


