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1. General Introduction 

1.1 Harmful algal blooms (HABs) – definition, environmental and societal context 

The marine environment accounts for 70% of the world’s surface area (Raymont, 2014). 

Microbial eukaryotes are an important component of this biome, contribute substantially to 

global primary production (roughly 50%) and form an important part of the marine food chain 

(Hallegraeff, 2010; Reynolds, 2007). In most cases, a massive proliferation of the marine 

phytoplankton, which represents a bloom event, has a positive influence on marine 

ecosystems (Raymont, 2014). However, in certain cases microbial eukaryotes produce 

secondary metabolites that are toxic to other organisms in the food chain (such as fish, marine 

mammals and humans) and pose a negative impact on the ecosystem. Hence, these events 

are called Harmful Algal Blooms (HABs) (Hallegraeff, 1993). 

Commencing with the book Exodus in the Bible (New International Version, Exod. 10) (Biblica, 

2011), events which could be recognized as HABs are reported throughout history. The 

transformation of the river Nile into a bloodlike appearance was the first of the ten plagues of 

Egypt. These phenomena are known as “red tides”, a special type of HABs characterized by 

discoloration of the water, often with algae of the class Dinophyceae as causative organisms 

(Schoental, 1984). The massive proliferation of dinoflagellates may lead to a discoloration of 

the water and a mass mortality of aquatic organisms either through production of toxic 

compounds or through generation of anoxic conditions (Hallegraeff, 1993). It is likely that even 

the name Red Sea derives from blooms of dinoflagellates and the resulting discoloration of the 

water (Culotta, 1992).  

On his expedition to the coast of British Colombia, Captain George Vancouver had to mourn 

the death of one man among his crew after consumption of shellfish. The chronic of this 

disease highly resembled a classical description of a fatal episode of paralytic shellfish 

poisoning (PSP) (Acres and Gray, 1978). The mussels were harvested in June 1793 in a small 

cove near Baranof Island (Alaska, USA) (Acres and Gray, 1978). Vancouver subsequently 

named the bay Poison Cove (Acres and Gray, 1978). Only three years earlier the Russian 

expedition of Alexander Baranow suffered the loss of some 100 men due to a disease they 

called “mussel poisoning” on Baranof Island (Anderson, 1960). Further, Vancouver reported 

about a taboo of local Indian tribes, where it is off-limits to eat shellfish when the seawater 

became phosphorescent due to dinoflagellate blooms (Hallegraeff, 1993). 

In recent history, during the middle of the past century, the frequency and intensity of HABs 

with noxious and/or toxic dinoflagellates as causative organism has increased (Figure 1.1) 

(Anderson, 1989; Imai et al., 2006). A recent example was a massive bloom of Karenia brevis, 



General Introduction    2 
 

 

which led to a state of emergency in Florida (USA) in summer 2018. The bloom began in 

November 2017 and lasted until after October 2018. The bloom affected the coast at a length 

of 240 km and killed many marine animals due to the neurotoxic brevetoxin. Besides a dead 

whale shark at the shore, the death of at least a hundred manatees, a dozen dolphins, 

thousands of fish and 300 sea turtles was reported (Resnick, 2018). The tourism industry 

suffered due to the smell of rotting marine animals and the risk of skin and eye irritation from 

swimming in red tide waters. The neurotoxin can be even part of aerosol particles that are 

formed directly from the ocean, the so called sea spray, and affected people with asthma or 

other respiratory issues onshore. Lifeguards had to wear gas masks at the hardest-hit 

stretches of shoreline. Possible long-term effects of breathing air with the toxin are completely 

unknown (Resnick, 2018). 

This example illustrates the broad impact of HABs on human health and economy. The main 

economic sectors impacted by HABs are: 

1. Tourism: smell, deterrent effect of dead animals, health concern for swimmer 

2. Fishery: massive loss of fish stocks and resulting lower fishing quotas 

3. Shellfish production: ban of shellfish harvest, risk of loss of shellfish stocks 

Despite the ban of shellfish harvest during the presence of toxin producing microalgae, over 

60,000 cases of food poisoning with toxins produced by microalgae are reported annually (van 

Dolah, 2000). This number could be an underestimation because some symptoms associated 

with microalgal toxins, particularly those involving gastrointestinal symptoms, are often 

incorrectly diagnosed for example as food poisoning from spoiled seafood (Zingone and 

Enevoldsen, 2000). Estimates of fatal episodes of this kind of poisoning exceed several 

hundred cases annually (Zingone and Enevoldsen, 2000). A mortally rate of 15% was 

estimated for paralytic shellfish poisoning, a type of intoxication with contaminated shellfish 

(Hallegraeff, 1993).  

Various factors, primarily of anthropogenic nature, are linked to the frequency and intensity of 

HAB events (van Dolah, 2000). Toxic dinoflagellates were observed in previously unaffected 

regions (Dickman and Zhang, 1999; Hallegraeff, 1998; Zhang and Dickman, 1999). Ballast 

water, which is used to enhance stability of ships without full loading, is a possible vector for 

introduction of nonindigenous and invasive species to new ecosystems (Cariton and Geller, 

1993; Dickman and Zhang, 1999; Hallegraeff, 1998; Zhang and Dickman, 1999). Atmospheric 

deposition from agricultural, urban, and industrial sources, which bypasses estuarine 

processes that filter terrestrial sources of nitrogen, caused an long term increase in 

concentrations of dissolved inorganic nitrogen, which is a limiting nutrient in oceanic, estuarine, 

and coastal waters (Nixon, 2012; Paerl and Whitall, 1999; van Dolah, 2000). In coastal waters 
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of developing countries, nitrogen as well as phosphorus concentrations increased by more 

than four-fold in comparison to several decades ago (Nixon, 2012). Evidence showed a 

connection between enhanced nutrient load and increased incidence of certain harmful algal 

blooms (Hallegraeff, 1993; Paerl and Whitall, 1999; van Dolah, 2000). In addition to the 

eutrophication, the increased total nutrient load, nutrient ratios were altered by anthropogenic 

sources (Hallegraeff, 1993; Paerl and Whitall, 1999; van Dolah, 2000). Especially low ratios of 

silica to nitrogen (Si:N) and phosphorous (Si:P) favored growth of dinoflagellates over silica-

dependent diatoms (Smayda, 1990).  

After a maximum number of red tide incidents in 1976, a decreasing trend of HAB events was 

observed in the Seto Inland Sea (Figure 1.1) (Imai et al., 2006). This development was a result 

of the legislative in 1973 to decrease the anthropogenic loading, which had a positively 

influence the progression of red tide species in this area (Imai et al., 2006). Here, the red tide 

induced economical damage called for the intervention of the legislative authority. This 

example demonstrates the long term influence human activities can exert on HAB events. 

 

Figure 1.1: Occurrence of red tides in the Seto Inland Sea from 1967 to 2004. Black filled columns indicate 
incidents with fishery damage such as fish-kills (Imai et al., 2006). 

Climatic factors are also linked to the appearance of HABs (van Dolah, 2000). Unusual climatic 

conditions, such as drought, storm events that produce heavy rainfall, and El Niño Southern 

Oscillation (ENSO), alter the local conditions and could thereby trigger blooms of 

dinoflagellates in areas previously unknown for such incidents (Hallegraeff, 2010). For 

example, conditions caused by the phenomenon of ENSO seem to favor the growth of 

dinoflagellates in some regions, while in other regions they had a negative correlation between 

appearance of dinoflagellate blooms and ENSO conditions (Ochoa, 2003).  
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In addition to short-term climatic events, such as ENSO, long term (global) changes also seem 

to influence HAB occurrences and intensities (van Dolah, 2000). Increased global average 

temperature due to climate change, also enhance surface stratification, alter ocean currents, 

intensify or weaken local nutrient upwelling, stimulate photosynthesis due to elevated CO2 

levels and reduce calcification due to decreased seawater pH (‘‘the other CO2 problem’’) 

(Hallegraeff, 2010). However, a direct relationship between global climate change and 

increase of HAB incidences can be confounded by factors such as increased population and 

industrialization during the same time-span, complicating a direct assignment of HAB 

increases to climate change (van Dolah, 2000).  

HABs will likely further increase in the futureas the human population is assumed to rise by 

over 30% until 2050 (Wilmoth, 2017). To sustain the increased human population, an 

expansion of production of food resources by agriculture and aquaculture is inevitable, 

including advance of technologies (van Dolah, 2000). This would further enhance the 

eutrophication of coastal waters, favoring HABs.  
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1.2 Chemical Ecology of dinoflagellates 

In total, the class Dinophyceae covers approximately 2377 species (Gómez, 2012). About 200 

species of this phylum are attributed with the ability to form red tides (Smayda and Reynolds, 

2003). The red tides, induced by these species, include benign red tides as well as harmful 

blooms. Only roughly 90 species of the class Dinophyceae are attributed with the ability to form 

toxic HABs (Moestrup et al., 2009 onwards). The Dinophyceae are an ancient group of 

unicellular microbial eukaryotes, named due to a characteristic whirling movement by two 

flagella. Besides insertion of flagellar, golden-brown plastids, assimilative cell with indented 

waist, and relatively large nucleus that contains visible chromosomes are also typical 

characteristics of this genus (Carty and Parrow, 2015). Some members are armored with 

cellulose plates, which are colloquially called “thecate”, while other species exist unarmored 

(“athcate”). Even though the members of this group of microalgae are comparatively inefficient 

at nutrient uptake and show slower growth than other planktic members, they can dominate 

the plankton (John et al., 2015; Smayda and Reynolds, 2003). Their ecological success is 

supposed to be the result of their extraordinary physiological diversity and adaptation to 

specific ecological niches (Dyhrman, 2008). Many dinoflagellates exhibit a mixotrophic life 

style, that is they employ phototrophic autotrophy (usage of solar energy and inorganic 

nutrients) and phagotrophic heterotrophy (ingestion of particulate organic matter) as modes to 

acquire of energy, micro- and macronutrients (Glibert et al., 2008; Stoecker, 1999). Many 

dinoflagellates act as symbionts or parasites (Hoppenrath et al., 2014). Notably, they produce 

complex chemical compounds which impact on interactions with competitors and predators 

(Selander et al., 2006; Tillmann et al., 2008).  

Further, different individuals of a single species can differentially express traits, such as cell 

size, cell shape and the production of secondary metabolites (Wohlrab et al., 2016). This 

variability reaches even the genetic level of populations on a global level as well as within 

spatially restricted populations (Wohlrab et al., 2016). Each genetic variant represents a single 

genotype and these genotypes possess the ability to express traits differently than the other 

genotypes (Alpermann et al., 2010). Through the differently expressed traits, the single 

genotypes have an advantage under specific environmental conditions. However, periods with 

advantageous environmental conditions for one genotype do not suffice to outcompete the 

other genotypes (Alpermann et al., 2010; Wohlrab et al., 2016). The resulting presence of 

various genotypes on global scale and within spatially restricted populations, is considered as 

one of the paradoxes of the plankton (Fox et al., 2010; Hebert and Crease, 1980).  

A diverse suite of toxic compounds are known to be produced by dinoflagellates. “Different 

genotypes within one population can differentially express traits, such as cell size, cell shape 

and the production of secondary metabolites.” (Wohlrab et al., 2016) In addition to a 
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quantitative dimension, the production of secondary metabolites differs at the qualitative level. 

For toxic compounds of dinoflagellates, a broad range of chemical compounds is known (see 

1.3). Even though the possible effect of most known compounds on humans is well studied, 

their ecological purpose remains enigmatic (Sheng et al., 2010). Studies of paralytic shellfish 

poisoning inducing toxins (PST) exemplify here a possible ecological function of dinoflagellate 

toxins. 

Paralytic shellfish toxins (PST) have been hypothesized to act as a chemical defense against 

grazing zooplankton (Selander et al., 2006). The predator-prey interactions between 

dinoflagellates and grazers, such as copepods, are complex (Turner and Tester, 1997). Some 

copepods ingested PST producing dinoflagellates with no apparent adverse effect, they even 

seemed to store the toxins several days in their bodies past the time of gut clearance (White, 

1981). These toxin containing copepods can be a vector of the toxins to higher trophic levels 

(White, 1981). In other experiments, however, showed adverse effects of PST-producing 

dinoflagellates on copepods (Turner and Tester, 1997). 

In grazing experiments, copepods showed lower feeding rates on PST producing 

dinoflagellates than on non-toxic diatoms (Huntley, 1982). Even the bioluminescence of 

dinoflagellates had a detrimental effect on the feeding behavior of copepods in lab experiments 

(White, 1979). In coastal waters, areas with high densities of toxic dinoflagellates have been 

reported to be actively avoided by some copepods (Fiedler, 1982). Further, the interaction 

between dinoflagellates and copepods seem to also have an influence on the physiology of 

some dinoflagellates. These dinoflagellates react to the presence of copepods with an 

increased production of toxic compounds (Selander et al., 2015). 

In addition to antigrazing defense, some dinoflagellates use their toxins to hunt for prey 

themselves (Place et al., 2012). Predation of Storeatula major, an unicellular algae, by the 

dinoflagellate Karlodinium micrum, for example, is significant higher in presence of Karlotoxin 

(KmTX) (Adolf et al., 2006) which immobilizes prey cells (Sheng et al., 2010).  

In the studies mentioned above , various genotypes have been tested and the observed effects 

varied significantly for the different genotypes (e. g. Sheng et al., 2010; Turner and Tester, 

1997; White, 1979). The interspecies interactions of dinoflagellates could differ for various 

genotypes, as the genotypes show qualitatively and quantitatively different toxin profiles.  
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1.3 Biological and chemical diversity of microalgal toxins 

Microalgal toxins, primarily of the polyketide group, exhibit a remarkable range of potent 

biological activities, including ion channel modulation, phosphatase inhibition, hemolysis, 

mycotoxicity and cytotoxicity (van Wagoner et al., 2014). The marine biotoxins responsible for 

food poisoning have been historically divided into six groups based on symptoms, origin, and 

chemical structure (Table 1.1) (Stivala et al., 2015). However, the range of dinoflagellates that 

produced secondary metabolites exceeds the selection of compounds with oral toxicity (Figure 

1.2). Spiroimine toxins, for example, are characterized by a macrocycle and an imine group 

embedded in a ring system, are potent neurotoxins but nonpoisonous to humans after oral 

ingestion (and therefore not represented in Table 1.1).  

Each group of dinoflagellate secondary metabolites compromise several derivatives. Both 

groups of azaspiracids and derivatives of saxitoxins (responsible for paralytic shellfish 

poisoning (PSP)) comprise more than 20 known derivatives (Alpermann et al., 2010; Hess et 

al., 2014). Even though dinoflagellates may produce the whole range of structural derivatives, 

the toxin profile of single genotypes is dominated by only a few derivatives (Alpermann et al., 

2010). This poses a challenge for food safety monitoring: Each HAB is characterized by its 

own toxin profile. Therefore, in the case of AZAs for example, over 40 derivatives would have 

to be consistently monitored to ensure food safety (Hess et al., 2014; Kilcoyne et al., 2018; 

Rehmann et al., 2008). Toxins often differ only in a small parts of the molecule, but these 

modifications alter the bioactivity of the compounds (Hess et al., 2014; Kilcoyne et al., 2018). 

This thesis mainly covers structural derivatives of spirolides, gymnodimines (both chapter 

1.3.1), and azaspiracids (chapter 1.3.2) which are introduced in more details in the following 

sections. 
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Figure 1.2: Overview of prominent members of dinoflagellate secondary metabolites toxin classes. 
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prorocentin 

karlotoxin 2 



General Introduction    9 
 

 

Table 1.1: Categories of important biotoxin poisonings: paralytic shellfish poisoning (PSP), amnesic shellfish poisoning (ASP), diarrheic shellfish poisoning (DSP), azaspiracid 
poisoning (AZP), neurotoxic shellfish poisoning (NSP), ciguatera fish poisoning (CFP); modified after Bürk et al. and Yasumoto (Bürk et al., 1998; Chevallier et al., 2015; Yasumoto, 
2000). 

 PSP ASP DSP AZP NSP CFP 

Biological origin 

Alexandrium 

Gymnodinium 

Pyrodinium 

Pseudonitzschia 

Dinophysis 

Prorocentrum 

Protoceratium 

Azadinium Gymnodinium breve 
Gambierdiscus 

toxicus 

Toxin groups 
saxitoxin 

and derivates 
domoic acid (DA) 

okadaic acid (OA) 

pectenotoxin (PTX) 

dinophysistoxin (DTX) 

yessotoxin (YTX) 

azaspiracid (AZA) brevetoxin (BTX) 
ciguatoxin 

maitotoxin 

Symptoms 
paraesthesia; 

paralyses 

memory loss; 

gastrointestinal 

disorders 

gastrointestinal disorders 
gastrointestinal 

disorders 

paraesthesia; 

ichthyotoxin 

paraesthesia; 

gastrointestinal 

disorders 

Mode of action 
blockage of 

sodium channels 

excitatory 

neurotransmitter 

inhibition of protein 

phosphatases 

inhibition of sodium 

channels 

activation of sodium 

channels 

activation of 

sodium channels 

Contaminated 

food 
shellfish shellfish shellfish shellfish shellfish fish 

Concentration 

limit (EU) 
800 µg/kg shellfish 20 mg/kg shellfish 

160 µg/kg shellfish for OA, 

PTX 

1 mg/kg shellfish for YTX 

160 µg/kg shellfish none none 

Regulated toxins 

(EU) 
undefined DA 

OA; PTX 1, 2; DTX 1, 2, 3 

(inclusive Esters); YTX, 

Homo YTX, 45-OH YTX 

and 45-OH Homo YTX 

AZA-1, -2, -3 none none 
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1.3.1 Diversity of spirolides and gymnodimines 

In 1993 during a routine monitoring of shellfish in New Zealand, oysters were found to be 

contaminated with a potent mouse neurotoxin (MacKenzie et al., 1995). Shortly after this 

incidence gymnodimine (GYM) A (1) was first described in the marine dinoflagellate 

Gymnodinium sp. (later renamed to Karenia selliformis) and identified as the causative 

compound (Seki et al., 1995). The exact stereochemistry of (1) was elucidated by X-ray crystal 

structure analysis (Stewart et al., 1997). In 2000, GYM B (2) was described in K. selliformis as 

a derivative of GYM A (1), but with an exocyclic methylene at C-17 and an allylic hydroxyl 

group at C-18 (Miles et al., 2000). Only three years later, the same authors reported the 

presence of GYM C (3) in K. selliformis, which is an isomer of GYM B at C-18 (Miles et al., 

2003). Currently, six gymnodimines are fully structurally elucidated (cf. Figure 1.3).  

Concurrently with the discovery of GYM B and GYM C in Atlantic Canada, Alexandrium 

ostenfeldii was identified as the source of spirolides (Cembella, 2001). These toxins have a 

similar toxicological effect on mice than gymnodimines and were structurally related to this 

toxin group (Cembella, 2001). In 2011, van Wagoner et al. (van Wagoner et al., 2011) reported 

the production of 12-methyl GYM A in an isolate of Alexandrium peruvianum from New River, 

NC, USA. A. peruvianum is now regarded as conspecific with Alexandrium ostenfeldii (Kremp 

et al., 2014). The occurrence of GYMs in A. ostenfeldii was notable as for the first time another 

genus than Karenia was associated with the biosynthesis of gymnodimines. Due to the 

occurrence in the same dinoflagellate and the high structural similarity to gymnodimines and 

spirolides, a common biosynthetic pathway for these cyclic imines was proposed (cf. chapter 

1.3.4) (van Wagoner et al., 2014).  

GYMs and SPXs belong to the group of cyclic imine toxins, characterized by a macrocycle and 

an imine group embedded in a ring system (Molgó et al., 2017). In addition to GYMs and SPXs, 

the group of cyclic imine toxins comprises pinnatoxins (Vulcanodinium rugosum)/pteriatoxins 

(unknown), portimines (Vulcanodinium rugosum), prorocentrolides (Prorocentrum lima), and 

spiro-prorocentrimines (Prorocentrum sp.) (Molgó et al., 2017; Selwood et al., 2013; Stivala et 

al., 2015).  

The structural comparison of SPXs and GYMs reveals some conserved features for all known 

GYMs and SPXs. For example all GYMs and SPXs share the moiety of a five membered ester 

ring (Figure 1.3, ring A) attached to a cyclohexene ring (Figure 1.3, ring B). The two compound 

classes are distinguished by ring C (Figure 1.3). While ring C of GYMs consists of a six-

membered cyclic imine moiety without attached methyl groups, ring C of SPXs is a seven-

membered cyclic imine moiety with one or two attached methyl groups. The side chain of SPXs 

(C-8 to C-27) exhibits a spiro fused ether ring system. Three different variations are observed 
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of the side chain for known SPXs. Therefore, SPXs are differentiated by the degree of 

methylation of ring C and the chemical composition of the side chain. For discrimination of 

different GYMs, only the structure of the side chain matters (Figure 1.3) (Stivala et al., 2015), 

which is divided in two parts. For each part of the gymnodimine side chain, two possible 

moieties are observed (Figure 1.3 left side: blue and green).  

This structural diversity is not reflected in the mouse bioassay, as both GYMs or SPXs result 

in an “all or nothing”-effect after intraperitoneal injection only at different amounts of toxin 

(Otero et al., 2011). Either the mice died within 20 min after intoxication or a complete recovery 

without observed consequential damages was observed (Otero et al., 2011). Initially, 

gymnodimines were described as neurotoxic (Seki et al., 1995), but later it became evident 

that they bind specifically to muscular and neuronal nicotinic acetylcholine receptors (Bourne 

et al., 2010; Gill et al., 2003; Kharrat et al., 2008). For the human nicotinic acetylcholine 

receptors 13-desmethyl SPX C (SPX 1, 4), the best-studied representative of the group of 

SPXs, is a competitive irreversible antagonism, while GYM A is a competitive reversible 

antagonism (Richard et al., 2001; Wandscheer et al., 2010). Further 13-desmethyl SPX C is 

identified as weak activator of L type calcium channels (Hu et al., 1995). 
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Figure 1.3: Most prominent member and structural derivatives of spirolides and gymnodimines. In case of 
SPX E and SPX F, the imine group is replaced by the structure fragment marked with an asterisk (according 
to Stivala et al., 2015). 

  

upper molecule part (UP) upper molecule part (UP) 

toxin UP R1 toxin UP ∆2,3 R1 R2 R3 R4 

GYM A (1) A1 H 13-desMe SPX C (4) A ∆ H Me Me Me 
12-Me GYM A A1 Me SPX A A ∆ Me Me H H 
GYM B A2 H SPX B A  Me Me H H 
12-Me GYM B A2 Me SPX C  A ∆ Me Me H Me 
GYM C A2 H SPX D A  Me Me H Me 
GYM D B1  SPX E A* ∆ Me Me H H 
   SPX F A*  Me Me H H 
   SPX G C ∆  H H Me 
   20-Me SPX G C ∆  Me H Me 
   SPX H B ∆    Me 
   SPX I B     Me 
   27-OH-13-desMe SPX C A ∆ H Me OH Me 
   13,19-didesMe SPX C A ∆ H H H Me 
   27-OH-13,19-dides SPX C A ∆ H H OH Me 
   27-Oxo-13,19-dides SPX C A ∆ H H O Me 

lead structure 

gymnodimines 

structural diversity 

13-desMe SPX C/SPX 1 (4) 

spirolides 

GYM A (1) 
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1.3.2 Diversity of azaspiracids  

An intoxication event in 1995 in the Netherlands led to discovery of the first azaspiracid (AZA, 

5) (Satake et al., 1998). At least eight people experienced symptoms known for DSP such as 

nausea, vomiting, severe diarrhea and stomach cramps after consumption of blue mussels 

(Mytilus edulis) cultivated in West Ireland. Mussels revealed a positive result in the mouse 

bioassay (MBA) even though the major DSP toxins okadaic acid (OA) and dinophysistoxins 

(DTXs) were not detected at elevated levels. The causative marine biotoxin was named 

azaspiracid and described as a nitrogen-containing polyether with a unique spiral ring 

assembly, a cyclic amine and a carboxylic acid (Satake et al., 1998). The initially proposed 

structure of AZA-1 (5a, Figure 1.4) had to be revised by comparison of NMR data of the natural 

toxin (5, Figure 1.4) with that of the synthetic molecule (Nicolaou et al., 2004). The identification 

of Azadinium spinosum, a small (< 20 µm) photosynthetic dinoflagellate with a thin theca, as a 

source of AZA was achieved a decade later (Tillmann et al., 2009). Today AZAs are also found 

in other dinoflagellates of the family Amphidomataceae, e. g. Azadinium poporum, Azadinium 

dexteroporum, and Amphidoma languida (Krock et al., 2012; Rossi et al., 2017). 

 

Figure 1.4: Initial incorrect structure (left) and revised structure (right) of AZA-1. Shown are fragmentation 
patterns of CID fragmentation (characteristic fragments in bold). 

Since the discovery of AZA-1, the number of structure derivatives discovered by mass 

spectrometry has increased greatly (Krock et al., 2019). The new derivatives are by general 

convention chronologically enumerated based on the time of their discovery, a practice 

resulting in a mixture of AZAs produced by dinoflagellate and metabolites of shellfish (Krock 

et al., 2019). Still, most of the derivatives had their structures proposed solely by mass 

spectrometric investigations without conformation e.g. by NMR spectroscopy (cf. section 1.5). 

The proposed structures are shown in Figure 1.5 and structures elucidated by NMR are 

highlighted in grey (Hess et al., 2014). Further, only for three derivatives, concentration 

AZA-1 (5a) 
AZA-1 (5) 

revised 

B 
D 

F 
H I 

6 
13 

20 

40 

32 

26 
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thresholds in shellfish are established, namely for AZA-1, AZA-2 and AZA-3 (European Union, 

2004).  

 

 Type R1 7,8 R2 R3 R4 R5 R6 [M+H]+ Origin  

AZA-1 a1 H ∆ H H CH3 H CH3 842.5 A. spinosum 

37-epi 

AZA-1 
a1 H ∆ H H CH3 H CH3 842.5 Abiotic 

AZA-2 a1 H ∆ CH3 H CH3 H CH3 856.5 A. spinosum 

AZA-3 a1 H ∆ H H H H CH3 828.5 Shellfish/Abiotic* 

AZA-4 a1 OH ∆ H H H H CH3 844.5 Shellfish/Abiotic* 

AZA-5 a1 H ∆ H H H OH CH3 844.5 Shellfish/Abiotic* 

AZA-6 a1 H ∆ CH3 H H H CH3 842.5 Shellfish/Abiotic* 

AZA-7 a1 OH ∆ H H CH3 H CH3 858.5 Shellfish 

AZA-8 a1 H ∆ H H CH3 OH CH3 858.5 Shellfish 

AZA-9 a1 OH ∆ CH3 H H H CH3 858.5 Shellfish/Abiotic* 

AZA-10 a1 H ∆ CH3 H H OH CH3 858.5 Shellfish/Abiotic* 

AZA-11 a1 OH ∆ CH3 H CH3 H CH3 872.5 Shellfish 

AZA-12 a1 H ∆ CH3 H CH3 OH CH3 872.5 Shellfish 

AZA-13 a1 OH ∆ H H H OH CH3 860.5 Shellfish/Abiotic* 

AZA-14 a1 OH ∆ H H CH3 OH CH3 874.5 Shellfish 

a 

b 

c 

1 

2 

left hand side right hand side 

a 

b 

c 

1 

2 

left hand side right hand side 

R
1
 

R
2
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 Type R1 7,8 R2 R3 R4 R5 R6 [M+H]+ Origin  

AZA-15 a1 OH ∆ CH3 H H OH CH3 874.5 Shellfish/Abiotic* 

AZA-16 a1 OH ∆ CH3 H CH3 OH CH3 888.5 Shellfish 

AZA-17 a1 H ∆ H H CO2H H CH3 872.5 Shellfish 

AZA-19 a1 H ∆ CH3 H CO2H H CH3 886.5 Shellfish 

AZA-21 a1 OH ∆ H H CO2H H CH3 888.5 Shellfish 

AZA-23 a1 OH ∆ CH3 H CO2H H CH3 902.5 Shellfish 

AZA-25 a2 H ∆ H - H H CH3 810.5 Shellfish/Abiotic* 

AZA-26 a2 H ∆ H - H =O CH3 824.5 Shellfish/Abiotic* 

AZA-27 a2 CH3 ∆ H - H H CH3 824.5 Shellfish/Abiotic* 

AZA-28 a2 CH3 ∆ H - H =O CH3 838.5 Shellfish/Abiotic* 

AZA-29 a1 H ∆ H CH3 H H CH3 842.5 Shellfish 

AZA-30 a1 H ∆ H CH3 CH3 H CH3 856.5 A. spinosum 

AZA-32 a1 H ∆ CH3 CH3 CH3 H CH3 870.5 A. spinosum 

AZA-33 b1 - ∆ - H CH3 H CH3 716.5 A. spinosum 

AZA-34 c1 - ∆ - H CH3 H CH3 816.5 A. spinosum 

AZA-35 a1 H ∆ # H CH3 H CH3 830.5 A. dexteroporum 

AZA-36 a1 OH ∆ CH3 H CH3 H H 858.5 A. poporum 

AZA-37 a1 OH - H H CH3 H H 846.5 A. poporum 

AZA-381 a1 H - CH3 H CH3 H H 830.5 Am. languida 

AZA-391 a1 H - # H CH3 H H 816.5 Am. Languida 

AZA-40 a1 CH3 ∆ H H CH3 H H 842.5 A. poporum 

AZA-41 a1 H ∆ H H CH3 H # 854.5 A. poporum 

AZA-42 no proposed structure 870.5 A. poporum 

AZA-43 no proposed structure 828.5 Am. languida 

AZA-44 a1 H ∆ H H CO2H OH CH3 888.5 Shellfish 

AZA-45 a1 CH3 ∆ H H CO2H OH CH3 902.5 Shellfish 

AZA-46 a1 H ∆ OH H CO2H OH CH3 904.5 Shellfish 

AZA-47 a1 CH3 ∆ OH H CO2H OH CH3 918.5 Shellfish 

AZA-48 a2 H ∆ OH - H H CH3 826.5 Shellfish/Abiotic* 

AZA-49 a2 CH3 ∆ OH - H H CH3 840.5 Shellfish/Abiotic* 

AZA-502 a1 H ∆ CH3 H CH3 H CH3 842.5 A. spinosum 

AZA-512 a1 OH ∆ CH3 H CH3 H CH3 858.5 A. spinosum 

AZA-52 no proposed structure 830.5 Am. Languida 

AZA-53 no proposed structure 830.5 Am. languida 

AZA-54 a1 H ∆ # H CH3 H CH3 870.5 A. dexteroporum 



General Introduction    16 
 

 

 Type R1 7,8 R2 R3 R4 R5 R6 [M+H]+ Origin  

AZA-55 a1 H ∆ # H CH3 H # 868.5 A. dexteroporum 

AZA-56 a1 H ∆ # H CH3 H CH3 884.5 A. dexteroporum 

AZA-57 a1 H ∆ # H CH3 H CH3 844.5 A. dexteroporum 

AZA-58 a1 H ∆ # H CH3 H CH3 828.5 A. dexteroporum 

AZA-59 a1 H - OH H CH3 H CH3 860.5 A. poporum 

AZA-60 a2 H ∆ H - H OH CH3 826.5 Shellfish/Abiotic* 

AZA-61 a2 CH3 ∆ H - H OH CH3 840.5 Shellfish/Abiotic* 

AZA-62 no proposed structure 870.5 A. poporum 

Figure 1.5: Proposed derivatives of AZAs with respective mass of the protonated ion ([M+H]+) and origin 
reviewed by Hess et al. (Hess et al., 2014) and Kilcoyne et al. (Kilcoyne et al., 2018), updated with (Kim et 
al., 2017; Krock et al., 2019; Krock et al., 2014; Krock et al., 2012; Rossi et al., 2017; Tillmann et al., 2018; 
Tillmann et al., 2017). Compounds confirmed by NMR are highlighted in grey; compounds highlighted in 
blue have confirmed structures following decarboxylation to known products; compounds highlighted in 
yellow have confirmed structures following heat/acid-catalysis to known compounds; compounds 
highlighted in white have structures inferred by mass spectrometry only; the Type refers to variations of 
the left hand side and right hand side parts of the molecule. AZA-18, -20, -22, -24, and -27 proposed by 
Rehmann et al. (Rehmann et al., 2008) have been confirmed not to exist naturally; * potential degradation 
product of natural precursor toxin; # for R2:proposed with modification of the side chain and/or at ring A 
(C-1 to C-10); # for R6: with modification at ring H or ring I; 1: proposed with demethylation at C-14; 2: 
proposed with demethylation at C-23. 
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1.3.3 Biosynthesis of dinoflagellate polyketides  

The majority of the toxic compounds produced by dinoflagellates are lipophilic polyketides (van 

Wagoner et al., 2014). Only few small organic precursors, namely glycolate and glycine, are 

used beside acetate units by dinoflagellates in the production of polyketides (MacKinnon et al., 

2006; van Wagoner et al., 2014; Yamazaki et al., 2011). In comparison to the variety of building 

blocks utilized by bacteria and fungi, the group of precursors in dinoflagellate polyketide 

synthesis is limited, whereby the remarkable complexity and variety of dinoflagellate 

polyketides is even more extraordinary (van Wagoner et al., 2014).  

Marine biotoxins occur in a remarkable structural variety with unique features, such as five-, 

six-, seven-, eight-, and nine-membered ether rings (van Wagoner et al., 2014). In 

dinoflagellate polyketides, ether rings occur isolated, in spiroketal formations or fused together 

(van Wagoner et al., 2014). Fused ether rings can contain only two rings (e. g. Azaspiracid 1 

(5) (Satake et al., 1998)) or as many as eleven as in brevetoxin (Lee et al., 1986; Lin et al., 

1981). Often dinoflagellate biotoxins contain series of trans fused ether rings, with syn 

stereochemistry across the top and bottom of the molecules, such as in brevetoxin (Rein and 

Borrone, 1999). The ether oxygen atoms, which acts as one-atom bridge, alternate between 

the top and bottom side of the molecule (Rein and Borrone, 1999).  

These common features can be explained by a biosynthetic pathway for fused ether ring 

systems in dinoflagellates (Rein and Borrone, 1999). In general polyketides are built, similar 

to fatty acids, as series of CLAISEN ester condensations with “activated acetate” units in form 

of malonyl coenzyme A to a start of an acetyl coenzyme A unit until a polyketide chain of the 

required length and functionality is obtained (Figure 1.6A) (van Wagoner et al., 2014). In 

contrast to fatty acid biosynthesis, where a saturated acyl chain with little functionality is 

obtained through ketoreduction, dehydration, and enoyl reduction for each acetate unit, 

polyketide secondary metabolites show a broad structural variety (van Wagoner et al., 2014). 

The functional variety of these compounds arises when some or all of the polyketide 

processing steps are omitted or skipped, resulting in nascent polyketide chains (NPC) 

containing carbonyl groups (lack of ketoreduction function), hydroxyl groups (lack of 

dehydration function) and double bonds (lack of an enoyl reduction function) (van Wagoner et 

al., 2014). In some cases, other small carboxylic acids are used during for NPCs (van Wagoner 

et al., 2014), carbons of the NPC can be removed (carbon deletion) and methyl group can be 

added in various ways (β-alkylation, pseudo α-alkylation or methionine derived methyl) (review 

by van Wagoner et al., 2014). Fused ether ring systems are supposed to form via epoxidation 

of polyene in the NPC followed by polyepoxide cyclisation (see Figure 1.6B) (Rein and 

Borrone, 1999). Observations of the incorporation of molecular oxygen in ring systems of a 
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dinoflagellate polyketide by labeling experiments supports the hypothesized epoxide 

intermediate (Murata et al., 1998).  

 

Figure 1.6: Prolongation of polyketide chains (A) and proposed ring closure reaction at the example of 
brevetoxin (B). 

1.3.4 Biosynthesis of spirolides and gymnodimines 

The high structural similarity and production through the same organism indicates a common 

biosynthetic pathway for SPXs and GYMs (van Wagoner et al., 2011). For both groups of 

polyketides, NPCs have been proposed (Harju et al., 2016; van Wagoner et al., 2014). In case 

of SPX 1, the polyketide nature has been verified by incorporation experiments with isotope 

labeled precursors (MacKinnon et al., 2006). These experiments gave insight into the origin of 

carbon atoms in SPX 1 (see Figure 1.7). Originating from the unfolded nascent polyketide 

chain (4a) the formation of ring A by ester formation and ring C by nucleophilic attack was 

suggested (van Wagoner et al., 2014). These reactions were followed by the formation of the 

spiro fused ether ring system by usage of carbonyls and DIELS ALDER reaction leading to 

13-desmethyl SPX C (cf. Figure 1.7) (van Wagoner et al., 2014). The formation of GYM D side 

chain was proposed by an ether formation via epoxidation establishing ring D and E, as shown 

in Figure 1.6 for brevetoxin (Harju et al., 2016). Similarly, NPCs as 4a have been proposed for 

enoyl reduction 

A) 
B) 

Brevetoxin 

epoxidation 

ring closure 

dehydration 

ketoreduction 
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GYM A, 12-methylGYM A, and GYM D (Harju et al., 2016; van Wagoner et al., 2011; Zurhelle 

et al., 2018). 

 

Figure 1.7: Biosynthesis of SPX1 (4) based on the proposed NPC (4a) and origin of carbons according to 
MacKinnon et al. and van Wagoner et al. (MacKinnon et al., 2006; van Wagoner et al., 2014). 

 

1.3.5 Biosynthesis of azaspiracids 

The biosynthesis pathway of AZAs is yet to be established. Current work suggests biosynthesis 

via a polyketide pathway analogue to other dinoflagellate secondary metabolites (Kalaitzis et 

al., 2010). The application of biosynthetic principles, observed for other dinoflagellate 

polyketides, on AZAs suggests a ring formation as shown in Figure 1.8. The nitrogen atom 

could derive from a glycine unit as in spirolides (cf. chapter 1.3.4). However, in order to confirm 

the hypothetical biosynthesis of AZAs, feeding studies are required (Kalaitzis et al., 2010). 

For the synthesis of AZAs, a convergent strategy was applied. The key steps are a dithiane 

coupling between a molecule fragment with ABCD ring system and a molecule fragment with 

ring E, and a Stille coupling between the product of the preceding reaction and molecule 

fragment with FGHI ring system (Nicolaou et al., 2006; Nicolaou et al., 2004).  
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Figure 1.8: Proposed biosynthetic pathway for the formation of the ring systems in AZA-1 based on ring 
formation reactions of other dinoflagellate polyketides in green and concept of the synthesis pathway of 
AZA-1 by Nicolaou et al. in blue (Nicolaou et al., 2006; Nicolaou et al., 2004). 
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1.4 Legislative regulation of microalgal toxins 

Since the 1930ies, the mouse bioassay (MBA) is used to detect marine biotoxins in shellfish 

(Christian and Luckas, 2008). The assay has been refined and standardized by the Association 

of Official Analytical Chemists (AOAC) (Marine biotoxins, 2004). In the MBA a quota of the 

sample was injected into twenty gram mice and the time till death was recorded. A timeframe 

of 5 to 15 minutes is preferable, samples with a higher toxicity (lower death time) should be 

diluted. The toxicity on the basis of the death time is expressed as mouse units. One mouse 

unit is defined as amount of toxin, which can kill a mouse (20 g) in a certain time. (Marine 

biotoxins, 2004) 

In the EU, liquid chromatography coupled to mass spectroscopy (LC-MS) replaced the MBA 

as routine method for testing toxic compounds in shellfish (Hess, 2010). The Federal Institute 

for Risk Assessment (BfR) and the German National Reference Laboratory (NRL) for the 

Control of Marine Biotoxins expressed concern regarding MBA as definite reference test for 

marine biotoxins (Bundesinstitut für Risikobewertung, 2005). The MBA has failed to show a 

good reproducibility between laboratories of member states and even between repeated tests 

in the same laboratory (Bundesinstitut für Risikobewertung, 2005; Le Doux and Sherwood, 

2000; Toti et al., 1991). MBA results may differ due to the variability between animal lineages, 

sex, age and bodyweight (Nagashima et al., 1991; Prakash et al., 1971; Stabell et al., 1992). 

In some cases, the MBA has even failed to be sensitive to detect toxins within legal 

concentration limits (Hess, 2010). In 2005 the EU declared the MBA as unsuitable for routine 

surveillance of marine biotoxins in shellfish (European Union, 2011). The MBA is still used for 

verification of presence and assessment of risk for novel toxins (European Union, 2011).  

Given its high sensitivity and reproducibility, LC-MS is able to distinguish between individual 

toxic compounds, while quantifying these compounds simultaneously (Christian and Luckas, 

2008). Further, a reliable detection of toxins by LC-MS in comparison to MBA was 

demonstrated (Suzuki et al., 2005). Even in some samples, which were negative for toxin 

presence in MBA due to removal of toxins in sample preparation, the presence of toxins was 

successfully revealed with the LC-MS method (Suzuki et al., 2005).  

After LC-MS analysis, the toxicity of a sample is determined for each toxin group by a weighted 

summation of all toxin concentrations. The weighting factor is the toxic equivalency factor 

(TEF), which represents the toxicity of a compound in comparison to the main toxin, e. g. 1.8 

for AZA-2 in comparison to AZA-1 with a toxicity equivalency factor of 1.0 (cf. Table 1.2 for 

AZAs) (Marine biotoxins in shellfish – Azaspiracid group ‐ Scientific Opinion of the Panel on 

Contaminants in the Food chain, 2008). The determination of toxic equivalency factor can base 

on acute toxicity to human or animals as in the MBA or other means of assessing toxicity such 
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as in vitro experiments (Louzao et al., 2017). However, results of living animals are still 

preferred over in vitro experiments, because this simplified system (in comparison to the living 

animal) has to reflect the mode of action of the toxin as in the living animal. In some recent 

studies, an oral application instead of the intraperitoneal injection is used in MBA, considering 

the potential human exposure by oral route. However, in the case of AZAs the toxicity of a 

number of known derivatives is solely based on the Jurkat T lymphocyte cell assay (Kilcoyne 

et al., 2018; Kilcoyne et al., 2015; Kilcoyne et al., 2014a; Kilcoyne et al., 2014b; Krock et al., 

2015). This cell line test requires less toxin material in comparison to the MBA. Even though 

the order of potency coincides for Jurkat T lymphocyte cell assay and the regulations of the 

european food safety authority (EFSA), the toxic equivalency factors (TEFs) determined with 

the Jurakat T cell assay differs in value from the TEFs established by the EFSA and contradict 

results of the MBA (see Table 1.2) (Kilcoyne et al., 2014a; Pelin et al., 2018; Twiner et al., 

2012; Marine biotoxins in shellfish – Azaspiracid group ‐ Scientific Opinion of the Panel on 

Contaminants in the Food chain, 2008). Based on the toxicity of the compound in relation to 

the lead structure of the toxin group, expressed as the toxic equivalency factor, an addition to 

routine surveillance might reasonable. 

Table 1.2: Toxic equivalency factors (TEFs) for the regulated AZAs based on Jurkat T lymphocyte assay 
(Twiner et al., 2012), MBA with intraperitoneal (i.p.) injection (Kilcoyne et al., 2014a), and oral application 
(Pelin et al., 2018) in comparison to TEFs established by the european food fafety authority (EFSA) (Marine 
biotoxins in shellfish – Azaspiracid group ‐ Scientific Opinion of the Panel on Contaminants in the Food 
chain, 2008). 

compound EFSA Jurakat T  MBA (i.p.) MBA (oral) 

AZA-1 1.0 1.0 1.0 1.0 

AZA-2 1.8 8.3 0.6 0.7 

AZA-3 1.4 4.5 0.5 0.5 

Beside the group of AZAs only three other of the six toxin groups in Table 1.1 are regulated in 

the European Union (EU). Depending on the type of toxin, the concentration limits in shellfish 

range from 0.16 mg/kg (AZAs) to 20 mg/kg (DA) (European Union, 2004). The food safety for 

products of shellfish production sites located in the German Blight is ensured by a cooperation 

of the three following authorities: 

- Institut für Fische und Fischereierzeugnisse (IFF) Cuxhaven of the Niedersächsisches 

Landesamt für Verbraucherschutz und Lebensmittelsicherheit (LAVES) 

- Niedersächsischer Landesbetrieb für Wasserwirtschaft, Küsten- und Naturschutz 

(NLWKN) 

- municipal veterinary and food surveillance authority  
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The NLWKN maintains an early warning system for toxin producing microalgae that can 

potentially reach the harvest sites. During July to October, the presence of toxin producing 

algae in seawater samples is periodically analyzed by microscopy. At shellfish production sites 

prior to and during harvesting, samples are assessed by the IFF Cuxhaven of the LAVES. The 

clearance for shellfish harvest requires the negative results in a mussel sample and a seawater 

sample. The presence of marine biotoxins is determined in shellfish, while the seawater sample 

is examined for toxin producing algae by microscopy (e. g. Dinophysis sp., Pseudonitzschia 

sp., Alexandrium sp., Prorocentrum sp., Protoperidinium sp. and Lingulodinium sp.). 

(Niedersächsisches Ministerium für Ernährung und Landwirtschaft und Verbraucherschutz, 

2016). 

The detection and quantification of biotoxins in shellfish (or in algal biomass) is specifically 

shown here for AZA-1 at the example of a triple quadrupole MS. This represents a tandem in 

space mass spectrometer, which is usually used in toxin quantification. The first quadrupole 

selects the parent ion, which is in case of AZA-1 (shown in Figure 1.9) the proton adduct with 

a m/z ratio of 842. The second quadrupole induces a fragmentation of the parent ions due to 

a collision with inert gas atoms. The energy of the collision can be varied. Daughter ions of 

interest are selected at the third quadrupole. In case of AZA-1 the daughter ion with a loss of 

one water molecule (m/z = 824) is used for quantification, while the daughter ion (m/z = 672) 

with an additional dissociation of a neutral particle with C9H12O2 due to a RETRO-DIELS-ALDER 

reaction in ring A (Figure 1.9 red line) serves as verification of the analyte as AZA-1. The 

sample concentration is determined by comparison of the peak areas of the quantification 

mass transition (m/z 842 -> m/z 824) for the sample with a dilution series of an analytical 

standards. 
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Figure 1.9: Schematic workflow of AZA-1 analysis by LC-MS/MS; Extraction of toxins from biological matrix 
(represented as mussel; top right); separation of toxins through liquid chromatography (LC; top center); 
ionization; parent ion of AZA-1 (m/z 842; left side) with fragmentation position due to RETRO-DIELS-ALDER 
reaction marked with red line and daughter ions for quantification (m/z 824; upper right side) and for 
validation (m/z 672; lower right side); triple quadrupole in the center with m/z selecting quadrupoles 
indicated by four cylinders (first on the left, third on the right) and collision quadrupole in the center (red 
star), with dissociated neutral particles below.  

Even though LC-MS has many advantages as routine method for surveillance of toxins in 

seafood compared to the MBA, the specific disadvantages are: 

- Analytical standards of each toxin are necessary for quantification 

- Specific detection is possible only for known toxins  

In contrast to MBA, where only one representative toxin for a toxin class is used as standard, 

a reliable LC-MS quantification requires an analytical standard for each derivative of the toxin 

class, because the signal intensity for given concentrations differs in MS for each one. 

Structural features determine the degree of ionization as well as the fragmentation pathways 

of the analytes. Therefore chemical derivatives of the same concentration potentially show 

different signal intensities in mass spectrometry due to a different behavior (e. g. ionization 

efficiencies). Further, external factors, such as environmental conditions (e. g. humidity in the 

laboratory), affect the performance of LC-MS (Sargent, 2013), but this problem is easy to 

address by the measurement of standards and/or quality control samples routinely over time. 

The continuous measurement of analytical standards for each toxin requires a supply of 

standards, which have an accurately and independently determined concentration (e. g. by 

NMR spectroscopy).  

Sample Ionisation 

LC 

m/z 842 

m/z 824 
- H2O 

m/z 672 

- C9H12O2 

- H2O 

Extraction 
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Even though selectivity for specific compounds is an advantage of LC-MS, regarding toxin 

detection in food items, an excessive selectivity can be considered as disadvantage. Since the 

mass transitions are selected before the start of the measurement, unregulated or even 

unknown toxins would be beyond the scope of LC-MS quantification. A limitation to regulated 

toxins is based on availability of standards and for economic reasons. A lower number of 

screened toxins helps to provide fast feedback about the condition of the shellfish to the 

respective production sites, while it reduces expenses for analytical standards of toxins, which 

were previously not observed in these areas. However, the occurrence of a novel toxin, e. g. 

through introduction of non-indigenous microalgae species via currents or in ballast water of 

ships, could introduce new toxins in an area, which are not covered through routine 

surveillance of toxins in shellfish. For example in the group of AZAs, only the three most 

prominent derivatives in terms of occurrence (AZA-1, AZA-2 and AZA-3) are regulated and 

monitored, despite more than twenty derivatives have their structure elucidated (Figure 1.5) 

(European Union, 2011; Marine biotoxins in shellfish – Azaspiracid group ‐ Scientific Opinion 

of the Panel on Contaminants in the Food chain, 2008).  

These non-indigenous species could attract attention in the microscopic analysis of the water 

samples, even though the focus is set on acquainted species (Niedersächsisches Ministerium 

für Ernährung und Landwirtschaft und Verbraucherschutz, 2016). The presence of 

dinoflagellates, which are known for production of toxins, can trigger the same measures (e. g. 

closure of the harvesting areas) as presence of toxins in shellfish (Niedersächsisches 

Ministerium für Ernährung und Landwirtschaft und Verbraucherschutz, 2016).  

  



General Introduction    26 
 

 

1.5 Risk assessments of novel toxin derivatives 

In case of a novel derivatives of a marine biotoxin in a shellfish sample, an initial toxicity can 

be assessed by the MBA, however, this is not suited for routine surveillance because of the 

reasons stated in chapter 1.4. In order to include new derivatives in a LC-MS based monitoring, 

the following steps are necessary: 

1. Identification of the toxin group  

2. Structure elucidation of the toxin 

3. Production of analytical standards 

4. Assessment of toxicity  

Even through some derivatives are observed only in very small cellular concentrations and 

thus may not substantially contribute to the toxicity for humans, their structure elucidations are 

of great interest as exemplary shown for the group of AZAs by Krock et al. (Krock et al., 2019): 

- Increased knowledge of derivatives gives insight to the biosynthetic pathway for 

production of the toxins.  

- Some rare derivatives may serve as geographical marker for the presence of the 

producing species. In remote areas, where the identification by microscopic and/or 

genetic tools is not possible, the toxins can serve as chemotaxonomic markers. 

- The improved insight in fragmentation patterns of the toxin class, which will be a result 

of the higher number of derivatives with confirmed structure, will lead to a better 

prediction of structures of novel derivatives based on the interpretation of their collision 

induced dissociation (CID) spectra.  

- Knowledge of all produced compounds with toxicity to humans will lead to a better risk 

assessment for the toxins in seafood. 

 

1.5.1 Identification of the toxin group  

Each toxin group exhibits a characteristic CID mass fragmentation pattern. The pathways 

leading to these fragments are similar for the derivatives of the same toxin classes, in some 

cases even the m/z ratios of the fragments are the same. Therefore a scanning method for the 

characteristic fragmentation could lead to the discovery of novel derivatives. As an example 

for such fragmentation, Figure 1.10 shows the characteristic CID fragments of AZA-1. The 

group 2 fragment (m/z 672), which results of the dissociation of one water molecule and the 

molecular part containing C-1 to C-9 due to a RETRO-DIELS-ALDER reaction, is used as a 

qualifier ion for AZA-1 quantification.  
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Figure 1.10: Structure of protonated AZA-1 and m/z ratios of characteristic fragmentation groups; dashed 
lines indicate position of bond cleavages during fragmentation (Adapted after Krock et al., 2012). 

After discovery of a novel toxin, commonly the standard toxin of this class (e. g. AZA-1 for all 

new AZAs) is used as external analytical standard to quantify the novel derivatives. The 

resulting concentration is expressed as equivalent concentration of the standard toxin. Even 

though this method is prone to systematic mistakes, due to variations in the response for the 

different compounds by mass spectrometry, this method enables the comparison of results 

obtained at different times.  

1.5.2 Structure elucidation of the toxin 

The measurement of a CID spectra exhibit structural information’s, especially the comparison 

of CID spectra of a novel derivative of a toxin class with the CID spectra of known derivatives 

allows statements about the structure of the novel compound. By usage of a high resolution 

CID spectra, the assignment of sum formulas is possible for the fragments. But alone the 

comparison of CID spectra is not suitable for the structure elucidation. The fragmentation 

reactions for CID spectra were not systematically investigated, therefore fragments (observed 

in CID spectra) can often only described as plausible retrospectively (Hesse et al., 2012).  

Application of further techniques such as X-ray crystallography (XRD) or nuclear magnetic 

resonance (NMR) spectroscopy are necessary. Both techniques require purified toxin material, 

which is obtained through the chromatographic purification of a toxin containing extract either 

of a mass culture of the toxin producing algae or shellfish biomass. The different experiments 

in NMR spectroscopy vary in the structural information they contain. However, through 
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combination of the structural information’s obtained in different NMR experiments the structure 

of the novel derivatives can be elucidated.  

Further, in silico methods offer the possibility to simulate the NMR properties, the simulated 

shielding tensors can be correlated with the chemical shift of the compounds. A determination 

of the stereo centers, in addition to a verification of the determined structure, is possible 

(Bifulco et al., 2007).  

1.5.3 Production of analytical standards 

A suitable analytical standard can be produced using the purified toxin for structure elucidation. 

The pure toxin needs to be quantified. If the available amount of toxin is high enough, 

gravimetrical determination is suitable. Lower amounts are quantified by NMR spectroscopy. 

The quantification by NMR uses the direct proportionality of the signal intensity and the 

concentration of the measured compound (Friebolin, 2011). The integrals of the analyte signals 

are compared with the integrals of tetramethylsilane (TMS), which is quantified by a gravimetric 

determined amount of an external standard (Cironi et al., 2000).  

1.5.4 Assessment of toxicity  

In addition to the production of analytical standards, material of the purified novel derivative is 

used in experiments to assess its toxicity, such as the MBA or cell line tests. With the toxicity 

of the novel derivative known, the comparison of toxicities could determine the TEF of the 

novel derivative as required for regular shellfish surveillance (cf. section 1.4).  
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1.6 Aims and objectives of this thesis 

Marine biotoxins produced by dinoflagellates exhibit a remarkable structural diversity and 

mode of action. However, only few toxins are fully characterized and their ecological roles are 

poorly understood.  

I will focus on two classes of toxins: Cyclic imines (specifically gymnodimines and spirolides) 

and polycyclic ethers (e. g. azaspiracids). While the former class is not toxic to humans after 

oral application, it shows strong neurotoxic effects in other mammalian assays and has been 

suggested as a potential target for neurodegenerative disease treatment. The latter class 

possesses an acute oral toxicity in humans and is therefore relevant for food safety 

surveillance. Additionally, both classes of toxins and their respective producers have received 

significant attention for their role as ecosystem engineers and marine food chain. Despite this, 

little is known about the effect of chemical structural diversity on biological activity (e. g. toxicity 

and mode of action) and ecological function. 

Experimental strategies that may point to the ecological role of dinoflagellate toxins range from 

in vitro co-cultivation experiments to interaction studies using known receptors and toxin 

derivatives. For these experiments, purified toxin is either directly required to test its effect on 

other organisms (e. g. potential predators) or indirectly needed as an analytical standard to 

ensure accurate quantification of the toxin in a biological experiment or for environmental 

monitoring. Novel or unavailable toxins are often quantified via analytical standards of closely 

related toxins from the same class. However, this may be inaccurate because structural 

differences can influence signal intensities in mass spectrometry. Therefore, analytical 

standards of each respective toxin require an independent verification with absolute detectors 

(e. g. NMR).  

My goals are to purify enough of each novel toxin produced by Alexandrium ostenfeldii 

(chapter 2) and Azadinium poporum (chapter 3) to allow structural characterization, to produce 

analytical standards for their accurate quantification and to enable in vitro and in vivo 

assessment of toxicity.  

In silico stereo-chemical modeling can verify results of the NMR-based structure elucidation 

(chapter 4). This methodology can also provide further insight in other physical and chemical 

properties (e. g. stereo chemistry, conformation, and electrostatic potential) that are 

prerequisite for improving our understanding on how these compounds bind to specific proteins 

or membranes. The goal in the last data chapter of this thesis is to compare measured and 

simulated spectroscopic properties of cyclic imines to verify their stereo chemistry.  
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Together, the results from this thesis will facilitate the characterization of structure-activity 

relationships and will enable the identification of common binding sites. This will ultimately lead 

to a better understanding of how the large structural diversity of marine dinoflagellate toxins 

contributes to the success of this protist subgroup. 
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2. Identification of novel neurotoxic gymnodimines and spirolides from 

the marine dinoflagellate Alexandrium ostenfeldii 

Several novel gymnodimines and spirolides were recently discovered by mass spectrometry 

in a genotype of Alexandrium ostenfeldii originally cultured from the North Sea of the coast of 

the Netherlands (Martens et al., 2017). In this chapter I report the structure elucidation, make 

theoretical assumptions about likely biosynthetic pathways of their production and discuss the 

potential ecological impact of these compounds. These results were compiled in a publication 

describing the structure elucidation of two novel GYMs and two novel SPXs. In this publication, 

I was responsible for measurement of the NMR spectra, the structure elucidation of the 

compounds, setting up and the analysis of the quantum chemical calculation, the identification 

of the biosynthetic implications of the novel compounds, the extraction, the measurement, and 

the analysis of the novel compounds in natural plankton assemblages, and visualization and 

writing of the original draft.  

Identification of Novel Gymnodimines and Spirolides from the Marine Dinoflagellate 

Alexandrium ostenfeldii 

C. Zurhelle1, J. Nieva2, U. Tillmann2, T. Harder1,2, B. Krock2, J. Tebben2 (2018) 
1 Marine Chemistry, University of Bremen, Leobener Straße 6, 28359 Bremen, Germany 
2 Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Section Ecological Chemistry, Am Handelshafen 

12, 27570 Bremerhaven, Germany 

Marine Drugs 2018, 16(11), 446 

DOI: 10.3390/md16110446 

I contributed in following parts to the paper: data curation, formal analysis, investigation, 

methodology, validation, visualization, and writing - original draft 
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3. Identification of novel Azaspiracids from Azadinium poporum 

This chapter describes the structure elucidation of two novel Azaspiracids (AZAs), namely 

AZA-40, and AZA-59, produced by two genotypes of the dinoflagellate Azadinium poporum 

originally isolated from Fangchenggang, South China Sea and Puget Sound, Washington 

State, USA respectively. The data presented in this chapter will be published as part of two 

collaborative publications focusing on the toxicity of these novel compounds and implications 

for human health and food safety. My contribution was prerequisite for these studies and 

provided pure toxin sufficient for mouse bioassays by intraperitoneal injection ((Kilcoyne et al., 

2014a), performed by Silvio Sosa), ELISA method development ((Samdal et al., 2015), 

performed by Ingunn Anita Samdal) and in vitro cell line toxicity ((Escher et al., 2012; Miller et 

al., 2010; Wang et al., 2006), performed by Beate Escher). In both papers, I was responsible 

for the mass-culturing of the dinoflagellates, purification of the toxins, structure elucidation and 

the calibration/quantification. 

The structure elucidation and in vitro toxicity of two novel azaspiracids from cultures of the 

South China Sea  

Ulf Bickmeyer1, B. I. Escher2,3, H. Gu4, T. Harder5, B. Krock1, J. Nieva1, J. Tebben1, U. 

Tillmann1, S. Wietkamp1, C. Zurhelle5 (alphabetical order) 
1 Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Section Ecological Chemistry, Am Handelshafen 

12, 27570 Bremerhaven, Germany 
2 Department of Cell Toxicology, UFZ – Helmholtz Centre for Environmental Research, Leipzig, Germany 
3 Department of Environmental Toxicology, Center for Applied Geosciences, Eberhard Karls University, Tübingen, Germany 
4 Third Institute of Oceanography, SOA, Xiamen 361005, PR China 
5 University of Bremen, Department of Biology and Chemistry, Marine Chemistry, Leobener Straße 6, 28359 Bremen, Germany 

To be submitted (the journal depends on the results of the bioassays e. g. Harmful Algae) 

I contributed in following parts to the paper: data curation, formal analysis, investigation, 

methodology, validation, and visualization 
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Structural elucidation, acute oral toxicity of the novel azaspiracid AZA-59 from Puget Sound, 

USA 

J. Deeds1, T. Harder2, J. Kilcoyne3, B. Krock4, I. A. Samdal5, S. Sosa6, J. Tebben4, U. Tillmann4, 

V. L. Trainer7, A. Tubaro8, C. Zurhelle2 (alphabetical order) 
1 US Food and Drug Administration Center for Food Safety and Applied Nutrition, 5100 Paint Branch Parkway, College Park, 

Maryland, 20723, USA 
2 University of Bremen, Department of Biology and Chemistry, Marine Chemistry,  Leobener Straße 6, 28359 Bremen, Germany 
3 Marine Institute, Renville, Oranmore, County Galway, Ireland 
4 Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Section Ecological Chemistry, Am Handelshafen 

12, 27570 Bremerhaven, Germany 
5 Veterinary Institute, PB 8156 Dep., 0033 Oslo, Norway 
6 IFREMER, Laboratoire Phycotoxines, Rue de l’Ile d’Yeu, 44311 Nantes, France 
7 Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 

2725 Montlake Blvd. E., Seattle, WA 98112, USA 
8 Department of Life Sciences, University of Trieste, Via A. Valerio 6, 34127 Trieste, Italy 

To be submitted (the journal depends on the results of the bioassays e. g. Harmful Algae) 

I contributed in following parts to the paper: data curation, formal analysis, investigation, 

methodology, validation, and visualization 

 

3.1 Introduction  

Since the discovery of azaspiracids (AZAs) in 1998, 40 structure derivatives have been 

reported, 17 of which have been confirmed by NMR (see Figure 1.5). This study reports the 

structure elucidation of two unknown AZAs, namely AZA-40, and AZA-59.  

The compounds AZA-40 were first detected by mass-spectrometry in cultures of Azadinium 

poporum from the South China Sea (Krock et al., 2014). AZA-40 can be mistaken for AZA-1 in 

liquid chromatography-mass spectrometric analyses because of similar retention times and 

fragmentation into the same the quantifier ion (m/z 842 -> 824).  

AZA-59 was first discovered in cultures of a genotypes of A. poporum isolated from Puget 

Sound, , USA, WA (Kim et al., 2017). Anecdotal evidence by consumers of gastrointestinal 

disorders after consumption of Puget Sound shellfish supported the presence of a potentially 

new toxin since no regulated toxins were detected by food-safety monitoring and no 

aquaculture closures were issued (Kim et al., 2017). These incidents triggered this study to 

chemically characterize the putative novel toxin and provide analytical reference material for 

bioassays and chemical analyses to include this toxin in food-safety monitoring.  
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3.2 Results and discussion 

3.2.1 Structure elucidation of AZA-40 

Previously, AZA-40 (6) a novel Azaspiracid (AZA) with identical m/z of 842 as AZA-1 and 

similar chromatographic characteristics was identified in cultures of Azadinium poporum 

obtained from the South China Sea (Krock et al., 2014). The absence of the characteristic 

qualifier transition observed in AZA-1 (m/z 842 -> 672) suggested the presence of an unknown 

AZA. The MS2-spectra of the novel molecule revealed a similar MS fragmentation pattern as 

compared to AZA-1 but with a mass difference of minus14 Da (CH2), indicating an additional 

methyl-group between C-1 and C-9 and a missing methyl-group in part of the molecule 

consisting C-33 to C-39 (rings H, I). A more precise localization was not possible by MS 

characterization (Krock et al., 2014). 

Apart from the lower mass, high similarity between the CID-spectra of AZA-1 and AZA-40 

suggested a high structure similarity of these molecules (cf. Table 3.1). The NMR spectra of 

both molecules confirmed the structural similarities.  

Table 3.1: Calculated and measured accurate masses (m/z) for [M + H]+ of AZA-40 and its product ions 
obtained with HRMS in comparison to the parent ion and corresponding fragments of AZA-1. 

AZA-40 AZA-1 

Formula Measured Calculated Δ/ppm Formula m/z 

C47H72NO12  842.50524 842.50490 0.41 C47H72NO12  842 

C47H70NO11  824.49479 824.49434 0.55 C47H70NO11  824 

C37H56NO9  658.39530 658.39496 0.52 C38H58NO9  672 

C37H54NO8  640.38476 640.38439 0.57 C38H56NO8  654 

C26H42NO5 448.30605 448.30575 0.67 C27H44NO5  462 

C26H40NO4 430.29546 430.29519 0.63 C22H36NO3 362 

C21H34NO3 348.25347 348.25332 0.43 C16H26NO3 280 

C15H22NO2 248.16460 248.16451 0.38 C16H24NO2 262 

C9H16NO 154.12273 154.12264 0.58 C10H18NO 168 

 

The spin system of ring I of AZA-40 (Figure 3.1) was identified by TOCSY and HSQC-TOCSY 

experiments. The chemical shift of C-37 in the 135° DEPT experiment revealed a positive 

signal, whereas the chemical shift of C-39 showed a negative signal, confirming a single methyl 

group at C-37 in ring I of AZA-40. Therefore, AZA-40 lacks the methyl group at C-39 in 

comparison to AZA-1. The additional methyl-group of AZA-40 between C-1 to C-9 identified by 

CID, was annotated to either C-7 or C-8 by NMR. The COSY correlation between proton at 
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C-6 and the additional methyl-group suggested C-7 as the most likely position of the methyl 

group. However, a COSY correlation between proton of C-6 and C-9 revealed a close spatial 

proximity between C-6 and C-9, suggesting a methylene group (C-9) at position 7 and a double 

bond between positions 8 and 9. This COSY correlation (C-6/C-9) was also observed during 

the first structural elucidation of AZA-1 by Satake et al. (Satake et al., 1998)(cf. Chapter 1.3.2, 

Figure 1.4). This initial annotation was later corrected (Figure 3.1) by comparison of the natural 

toxin with a synthetized version and its precursor (Nicolaou et al., 2004). This long-range 

COSY coupling (C-6 to C-9 in 6; Figure 3.2) was also observed in a simpler structure, such as 

lissoketal (7: C-1 to C-4) (Hopmann and Faulkner, 1997). Therefore, the COSY coupling 

between the methyl group and the proton at C-6 did not equivocally assign the position of the 

methyl group to C-7. Further HMBC correlations of the additional methyl group to C-7, C-8 and 

C-9 suggested C-8 as the most likely position for this methyl group. Generally, a methyl group 

at C-8 is a known feature for AZAs. For example, AZA-2 (8), AZA-9 and AZA-10 carry methyl 

groups at C-8 (cf. Figure 3.2) and both show a COSY coupling between proton at C-6 and 

protons of the methyl group attached to C-8 (Kilcoyne et al., 2015).  

 

Figure 3.1: Structures of AZA-1 and AZA-40 with characteristic CID fragments (bold m/z values) according 
to Krock et al. (Krock et al., 2014) and the incorrect structure of AZA-40 as indicated by COSY correlation 
between methylene group and C-6 (6a). Numbers and letters indicate the atom position and ring position 
respectively. 
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Figure 3.2: Structures of lissoketal (7), AZA-2 (8), AZA-9 and AZA-10. Numbers and letters indicate the atom 
position and ring position respectively. 

Finally, the comparison of the chemical shifts of AZA-40 with literature NMR data of AZA-2 

(Table 3.2) revealed high similarity of chemical shifts especially for nuclei of ring A (Nicolaou 

et al., 2006; Ofuji et al., 1999). Therefore, the position of the methyl group was unequivocally 

established at C-8, concluding that AZA-40 is structurally similar to AZA-1, but lacking the 

methyl group at C-39 and with an additional methyl group at C-8. 
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Table 3.2: The NMR chemical shifts (δ) of the novel AZA-40 (cf. section 9.2.1 for spectra) in comparison with 
the NMR chemical shifts (δ) of AZA-2 (Ofuji et al., 1999). 

 AZA-2 (8) AZA-40 (6)  AZA-2 (8) AZA-40 (6) 

No. 13C 1H 13C 1H No. 13C 1H 13C 1H 

1 177.8a   181.5   22-Me 17.2 0.89  14.2 0.92  

2 35.6 2.34 2.34 38.4 2.24  23 39 1.43 1.43 38.3 1.42  

3 29.5 2.31 2.31 30.2 2.33  24 43.1 1.33  41.5 1.38  

4 132.8 5.68  133.2 5.74  24-Me 18.9 0.83  17.8 0.83  

5 132.1 5.42  130.7 5.41  25 80.4 3.97  79.5 3.94  

6 73.3 4.72  72.4 4.74  26 149.1   147.4   

7 123.6 5.32  122.7 5.36  =CH2 118.1 5.35 5.17 115.2 5.25 5.11 

8 132.8   130.7   27 50.1 2.42 2.24 49.0 2.36 2.17 

8-Me 23.8 1.67  22.8 1.71  28 99.5   97.7   

9 41.1 2.42 1.97 40.1 2.44 1.99 29 44.9 2.03 1.36 44.5 1.99 1.32 

10 108.3   107.1   30 27.2 2.22  26.4 2.27  

11 34 2.33 1.65 37.1 2.18 1.97 30-Me 24.1 0.93  23.6 0.95  

12 38.3 2.16 1.96 32.9 2.36 1.67 31 36.1 1.82 1.51 35.6 1.8 1.49 

13 112.1   111.1   32 73.6 4.35  72.6 4.27  

14 31.7 2.00  30.6 2.04  33 82.4 4.06  79.1 3.76  

14-

Me 
17.4 0.93  16.5 0.95  34 75.6 5.00  75.3 4.82  

15 33.4 1.83 1.73 32.2 1.83 1.77 35 42.4 2.62 2.49 42.8 2.4 1.95 

16 79 3.87  77.5 3.9  36 97.5   96.3   

17 74.2 4.2  72.9 4.19  37 36.5 1.97  37.3 1.74  

18 37.7 1.98 1.98 37.9 2.13 2.04 37-Me 16.2 0.97  15.9 0.9  

19 79.9 4.42  78.7 4.42  38 38.4 1.68 1.29 25.6 1.59  

20 77.6 3.93  76.6 3.53  39 30.2 1.86  30.8 1.57  

21 101   99.5   39-Me 19.3 0.94     

22 37.6 2.07  38.5 2.26  40 46.9 2.91 2.83 40.1 2.95 2.56 

a 13C chemical shifts at C-1 were deduced from HMBC. 
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3.2.2 Structure elucidation of AZA-59 (10) 

While AZA-40 were found in cultures of A. poporum from the South China Sea, another 

putative novel AZA was discovered in cultures of A. poporum originating from Puget Sound 

(Seattle) (Kim et al., 2017). It was reported as AZA-59 with a m/z 860 for the protonated form, 

which revealed CID fragments typical for AZA-1 (5), namely m/z 462, m/z 362, m/z 262 and 

m/z 158 (Figure 3.3) (Kim et al., 2017). Based on the comparison of the CID-spectra, Kim et 

al. proposed AZA-59 to be similar to AZA-1 with a hydroxyl-group at C-3 and hydration of 

double bond between C-7 and C-8 as showed in Figure 3.3 (Kim et al., 2017). 

 

Figure 3.3: Structures and characteristic CID-fragments (bold m/z values) of AZA-37 and AZA-59 (Kim et al., 
2017; Krock et al., 2012). 

AZA-59 was suggested to be structurally similar to AZA-37 with an additional methyl group at 

C-39. The sum formulas of all fragment ions for AZA-59 revealed an additional CH2 in 

comparison to AZA-37 (Table 3.3), which supports the proposed position of the methyl group.  

Table 3.3: Exact and measured accurate masses (m/z) for [M + H]+ of AZA-59 and its product ions obtained 
with HRMS in comparison to parent ion and corresponding fragments of AZA-37 (group 6 fragments (cf. 
Figure 3.3) were not detected). 

AZA-59 (10) AZA-37 (9) 

Formula Measured Calculated Δ/ppm Formula m/z 

C47H74NO13 860.51612 860.51547 0.76 C46H72NO13 846 

C47H72NO12 842.50437 842.5049 -0.64 C46H70NO12 828 

C40H62NO9 700.44205 700.44191 0.2 C39H60NO9 686 

C40H60NO8 682.43152 682.43134 0.26 C39H58NO8 668 

C27H44NO5 462.3216 462.3214 0.43 C26H42NO5 448 

C22H36NO3 362.26899 362.26897 0.04 C21H34NO3 348 

C16H24NO2 262.18019 262.18016 0.13 C15H22NO2 248 
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The proposed structure of AZA-59 was confirmed by NMR. Chemical shifts of proton and 

carbon nuclei of compound 10 were highly similar to the corresponding proton and carbon 

chemical shifts of AZA-37, except for nuclei of ring I (Table 3.4, Figure 3.3). The highest 

discrepancy of chemical shifts between AZA-59 and AZA-37 was observed at C-38 to C-40. 

Notably, C-39 in AZA-59 was identified by 135° DEPT as CH-group unlike a CH2-group in 

AZA-37. An additional methyl group at C-39 distinguished AZA-59 from AZA-37.  

Table 3.4: Comparison of NMR chemical shifts (δ) of novel AZA-59 (cf. section 9.2.2 for spectra) and AZA-37 
(Krock et al., 2015). 

 AZA-37 (9) AZA-59 (10)  AZA-37 (9) AZA-59 (10) 

No. 13C 1H 13C 1H No. 13C 1H 13C 1H 

1 180.3   178.5   22-Me 17.2 0.92  16.66 0.94  

2 46.1 2.33  44.94 2.39  23 39.1 1.43 1.43 38.39 1.45  

3 71.4 4.39  70.55 4.45  24 43 1.35  42.57 1.36  

4 134.6 5.70  133.44 5.72  24-Me 18.9 0.84  18.31 0.86  

5 133.1 5.65  132.89 5.68  25 80.3 4.00  79.75 4.00  

6 73.3 4.35  72.56 4.38  26 149   149.9   

7 38.4 1.87 1.43 32.29 1.68 1.34 =CH2 117.8 5.33 5.15 117.21 5.37 5.19 

8 22.2 1.77 1.70 21.54 1.93 1.76 27 50.4 2.42 2.25 49.6 2.44 2.27 

8-Me       28 99.4   99.5   

9 36.6 1.83 1.70 37.73 1.70  29 45 2.05 1.36 44.29 2.07 1.4 

10 109.1   109.3   30 27.2 2.23  26.57 2.25  

11 33.9 2.33 1.69 37.8 2.08 1.90 30-Me 24.3 0.96  23.73 0.97  

12 32.8 2.03 1.83 33.2 2.31 1.64 31 36.1 1.84 1.52 35.45 1.86 1.54 

13 111.8   112   32 73.7 4.37  72.94 4.38  

14 31.8 2.01  31.17 2.01  33 82.1 4.05  81.76 4.09  

14-Me 17.5 0.9  16.87 0.91  34 75.7 5  74.99 5.03  

15 33.5 1.87 1.76 32.93 1.88 1.82 35 42.7 2.60 2.49 41.9 2.66 2.51 

16 78.9 3.94  78.42 3.95  36 98   97.5   

17 74.3 4.29  73.61 4.29  37 36.7 1.98  36.07 2.03  

18 37.6 2.07 2.00 36.95 2.11 2.03 37-Me 16.4 0.97  15.68 1.01  

19 79.9 4.44  79.34 4.45  38 29.7 1.67 1.63 37.76 1.73 1.32 

20 77.4 3.93  76.95 3.96  39 23.8 1.70  29.5 1.93  

21 101   101.1   39-Me    18.69 0.98  

22 37.6 2.07  36.8 2.05  40 41.2 3.17 2.99 46.34 2.92 2.85 
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3.2.3 Quantitative comparison of AZA-1 by LC-MS and NMR  

AZA-1 is commonly used as analytical LC-MS standard for other AZA derivatives. While NMR-

based quantification only relies on the concentration and the number of nuclei responsible for 

the NMR signal, LC-MS quantification varies due to the ionization efficiency and fragmentation 

resulting in highly variable signal intensities even for molecules with similar structural features. 

The correlation between both quantifications is shown in Figure 3.4. The slope of nearly 1 for 

AZA-40 and AZA-59 highlighted the equivalence of both methods, suggesting that AZA-1 

serves as a reliable analytical standard for the quantification of AZA-40 and AZA-59.  

 

Figure 3.4: Quantitative comparison of AZA-40 and -59 by LC-MS analysis with AZA-1 as external analytical 
standard (y-axis) and NMR (x-axis).  

The quantifier ion in LC-MS based quantification of AZAs corresponds in structure to the parent 

ion after a dehydration. A dehydration reaction in CID-fragmentation is usually induced by a 

hydroxyl group or a carboxylic acid. The comparison between the chemical environments of 

the AZA hydroxyl groups show a high degree of similarity for these three AZA derivatives, only 

AZA-59 differs with an additional hydroxyl group at C-3. However, the structural alteration was 

not reflected in the LC-MS analysis (Figure 3.4). In conclusion, the quantification of AZA-40 

and AZA-59 as AZA-1 equivalent by LC-MS differs in median only 33 pg/uL and 7 pg/uL from 

quantification by NMR.  
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3.3 Conclusion 

We elucidated the structure of two novel AZAs, namely AZA-40 and AZA-59. AZA-40 is 

structurally closely related to AZA-1, with an additional methyl group at C-8 but no methyl group 

at C-39. AZA-59 most closely resembled AZA-37 but with an additional methyl group at C-39. 

The purified toxin was used to compare the accurate concentration (by NMR) and LC-MS 

analysis with AZA-1 as external, analytical standard. This comparison revealed a very good 

correlation of both means of quantification. The structural differences between these three AZA 

derivatives seem to have no influence on the quantification.  

Both, the purification and the structure elucidation are prerequisites for toxicity studies.  

 

3.4 Material and Methods 

3.4.1 Cell culture and sample preparation of AZA-40 

Azadinium poporum strain AZBH 03, was isolated May 2010 in the South China Sea (21°23’ 

N, 109°07’ E), China and shown to produce novel AZA-40 (Krock et al., 2014). Mass cultures 

of 800 L were grown in half-strength K-medium (Keller et al., 1987), without ammonia and full 

strength concentration of vitamins and salts. Cells were separated by a flow-through 

centrifugation and the flow through was directly run through a pre-conditioned HP-20 column 

(ca. 300 g, Diaion Supelco). The retentate was desalted and eluted with methanol. The 

concentrated algal cell pellet was freeze dried and extracted with acetone. The acetone extract 

was diluted with MilliQ to a final concentration of 7% acetone, loaded onto a HP-20 column 

(dimensions 40 mm x 150 mm), desalted and eluted with methanol.  

3.4.2 Cell culture and sample preparation of AZA-59 

A. poporum cultures producing AZA-59 were obtained from sediment samples of Puget Sound, 

Washington State (USA) and characterized by LC-MS/MS (as strain 121E10) (Kim et al., 

2017). A mass culture of strain 121E10 was grown in half-strength K-medium with 

modifications as in 3.4.1 (Keller et al., 1987) and harvested accordingly. The supernatant and 

the extracted cell pellet were applied to pre-conditioned HP-20 (ca. 300 g, Diaion Supelco). 

The supernatant was chromatographed at original concentration, the acetone extracted cell 

pellet was dissolved in 7% acetone and chromatographed accordingly on HP-20. The retentate 

was desalted and eluted with methanol.  
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3.4.3 Sample preparation and separation 

The toxin-containing fractions were dried under vacuo with a small amount of silica gel prior 

applying to silica chromatography. Compounds were eluted by stepwise elution (20% 

increments) from 100% hexane to 100% ethyl acetate to 100% methanol. All azaspiracid 

containing fractions were pooled and subjected to LC reversed-phase purification on a C18 

column (15 × 310 mm, MERCK LOBAR) with solvent A: water with ammonium formiate (AF)/ 

formic acid (FA) buffer, solvent B: Methanol with AF/FA buffer and solvent C: acetonitrile (AcN). 

After injection, the samples were eluted isocratically at 50% A and 50% B for 10 min, followed 

by a 30 min gradient to 100% B and held for 10 min, and a 20 min elution at 100% C. A final 

purification step was performed at HPLC with solvent A: water and solvent B: AcN both with 

AF/FA buffer on an ISIS C18 column (10 mm × 150 mm, 4 mL min−1, Machery & Nagel). After 

an initial phase of 55% solvent B for 9 min, a gradient to 60% B in 1 min was applied and 

another gradient in 1 min to 100% B. These conditions were held for 4 min. Salt and buffer 

were removed by small SPE cartridge. Purity of toxins was determined by NMR spectroscopy 

(cf. chapter 3.4.5).  

3.4.4 LC-HRMS 

Accurate mass measurements of AZA-40 and AZA-59 were acquired in a direct measurement 

with a QExactive Plus mass spectrometer (Thermo Fisher Scientific, Bremen, Germany), using 

a heated electrospray ionization (HESI-II) source at a flow-rate of 5 µL per minute. MS 

measurement were performed in full MS mode with a resolution of 280,000, a scan range of 

150 to 2000 m/z in positive mode using a spray voltage of 3.5 kV. 

3.4.5 NMR Analyses  

Purified compounds 6 and 10 were dried under vacuo and dissolved in 40 µL deuterated 

methanol (3.33 ppm of residual CHD2OD for 1H-NMR and 49.0 ppm for 13C). BRUKER standard 

pulse programs as well as IMPACT-HMBC as described by Furrer (Furrer, 2010) were used. 

NMR experiments were measured at 292 K with a BRUKER AVANCE II 600 MHz NMR 

spectrometer equipped with a 1.7 mm CPTCI cryoprobe. The spectra were referenced to the 

solvent residual peak. 

For NMR quantification of AZA-59, the dried sample was dissolved in 60 µL deuterated 

methanol containing 5.78 mmol/L 1,4-dioxane, confirmed by external calibration, and 

transferred to a 1.7 mm NMR tube. Proton spectra were acquired with ns = 32, aq = 3 s and 

d1 = 17 s. For bioactivity assays, 250 µg were stored away in a combusted Wheaton ampule 

under argon atmosphere.  
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For NMR quantification of AZA-40, the dried sample was dissolved in 40 µL deuterated 

methanol containing 1.90 mmol/L tetramethylsilane, confirmed by prompt external calibration, 

and transferred to a 1.7 mm NMR tube. Proton spectra were acquired with ns = 32, aq = 3 s 

and d1 = 27 s.  

Further dilution series of AZA-40 and AZA-59, respectively, were prepared for the comparison 

of accurate quantification by NMR with LC-MS based quantification. 

3.4.6 Quantification of Azaspiracids by liquid chromatography tandem mass spectrometry 

(LC-MS/MS) 

The LC-MS analysis was performed on a LC-MS/MS system in selected reaction monitoring 

mode (HPLC: model 1100, Agilent, Waldbronn, Germany), equipped with a reverse-phase 

analytical C8 column (Hypersil BDS 120 Å, 50 x 2 mm, 3 µm, Phenomenex, Aschaffenburg, 

Germany) at 20°C with a flow-rate of 0.2 mL·min−1 as previously described by Kim et al. (Kim 

et al., 2017). A gradient elution was performed with two eluents, where eluent A was water and 

eluent B was acetonitrile/water (95:5 v/v), both containing 2.0 mM ammonium formate and 

50 mM formic acid. Initial conditions were 8 min column equilibration with 30% B, followed by 

a linear gradient to 100% B in 8 min, and isocratic elution for 10 min with 100% B. The system 

was then returned to initial conditions. The detection parameters of the AZAs were shown in 

Table 3.5. 

Table 3.5: Selected reaction monitoring parameters for the quantification (Krock et al., 2019). 

mass transition common name retention time time collision energy 

(m/z)  /min /msec /V 

842 > 824 AZA-1 2.25 20.0 40 

842 > 824 AZA-40 1.97 20.0 40 

860 > 842 AZA-59 1.65 20.0 40 
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4. Full relative assignment of stereochemistry and conformational 

analysis of GYMs and SPXs by NMR- and molecular modeling-based 

techniques 

Based on the structural elucidation of GYMs and SPXs in Chapter 2, this chapter deals with a 

combination of in silico methods and NMR spectroscopy to determine the stereochemistry of 

these biotoxins. The established method will eventually be applied to AZA-40 and AZA-59 

(chapter 3), but is beyond the scope of this thesis due to the significantly higher computational 

time requirements for AZAs in comparison to GYMs and SPXs. 

4.1 Introduction 

The stereochemistry of bioactive compounds can significantly influence the biological effect, a 

prominent example is the compound thalidomide (Contergan ©). A compound with only one 

stereogenic center, whereas both isomers show a completely different effect in the human 

body. While the R-isomer of thalidomide has a sedative effect, a teratogenic effect is 

associated with the S-isomer (Maio, 2001). Further, the knowledge of the stereochemistry 

enables the usage of in silico tools to determine the molecular properties. The simulations of 

biological and chemical experiments on a computer are often labeled with the term in silico. 

To a certain degree, the toxicity of a compound can be explained with a single known primary 

target protein as previously reported for saxitoxin and its analogues. The comparison between 

the interactions between the toxin and the target protein (the change in Gibbs free energy) of 

various compounds of the toxin class can reveal the toxicity prior in vitro and in vivo studies. 

However, additional in vitro and in vivo studies are still necessary to validate the simulated 

data, because between the binding interactions and the toxicity is no linear correlation. (Durán-

Riveroll et al., 2016)  

Another usage of the in silico simulated molecular properties is the determination of the 

stereochemistry by comparison of the experimental data with simulated properties of all 

possible stereoisomers. The molecular properties observed in circular dichroism (CD) as well 

as NMR spectra are reported to depend on the stereochemistry and were already applied in 

the field of microalgal toxins (Ciminiello et al., 2009; Zurhelle et al., 2018). The simulation of 

CD spectra was used to determine the stereochemistry of 16-desmethyl GYM D (11), which is 

in addition to GYM A (determined by X-ray crystal structure analysis) the only GYM with fully 

elucidated stereochemistry. The comparison between the strength of nuclear overhauser 
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effects (NOEs) and spatial closeness derived from simulations led to the stereochemistry at 

13,19-didesmethyl SPX C (Ciminiello et al., 2009). 

The accurate simulation of the molecular parameters requires careful selection of input 

geometries (procedure according to Ciminiello et al., 2009). Therefore, a preoptimized 3D 

structure is subjected to a simulated annealing procedure, whereby the compound is 

repeatedly simulated at high temperature to surpass rotary boundaries, followed by a cooling 

period to almost room temperature (300 K) in order to find geometries with minimized potential 

energy. The structures obtained by the simulated annealing procedure are subsequently 

subjected to geometry optimizations in force field and semi-empirical ab-initio calculations 

(AM1 level of theory). The geometries with highest abundance, determined by the potential 

energy obtained in semi-empirical structure optimization, are compared. The representative 

structures are selected and subjected to determination of shielding tensors on the B3LYP level 

of theory. The obtained shielding tensors are equivalent to chemical shift observed in NMR 

spectroscopy. 

In this chapter, I evaluate in silico simulated NMR data of GYM E and 20-hydroxy-13,19-

didesmethylSPX C to determine the stereochemistry after establishment of the method with 

16-desmethylGYM D (11) and 13-desmethyl SPX C (4). To establish the simulation of 

shielding constants compound 11 was chosen. This compound requires lower computing time 

for similar levels of theory due to fewer atoms in comparison to SPXs, while possessing the 

same structure motif at C-4 as SPXs, whose stereochemistry is not possible to elucidate solely 

with NMR spectroscopy. Since the stereochemistry at C-4 of 13-desmethyl SPX C, the lead 

structure of SPXs, is yet to be elucidated, the application of validated methods such as CD 

spectrometry is necessary.  
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4.2 Results and discussion 

4.2.1 Method development with 16-desmethy GYM D (11) 

A decisive factor for the accurate simulation of shielding constants is the careful selection of 

the input structure. In order to cover a sufficiently wide range of possible input structures, a 

simulated annealing procedure was applied. The heating and cooling rates were optimized to 

achieve a broad variety of geometries (n = 200) for further optimization (data not shown). 

Starting with these 200 possible input structures, two strategies were pursued to select the 

most important ones to limit computing time (cf. Figure 4.1). One strategy comprised the 

optimization on the semi empiric AM1 level for all geometries obtained by simulated annealing 

(cf. Figure 4.1 a). The second strategy (cf. Figure 4.1 b) was the selection of 50 geometries 

with highest difference based on dihedral angles. The comparison of geometries based on 

dihedral angles offers a deep insight in the geometry, while being independent of rotation and 

translation of the whole molecule. After division of the whole set of geometries into 50 groups 

by hierarchical clustering (HCA) of each group, one geometry was selected by application of 

a principal component analysis (PCA). The selected geometries were subjected to geometry 

optimization on semi-empiric AM1 level and all 200 structures derived from the simulated 

annealing procedure were subjected to single point calculation (AM1 level).  

The geometries obtained by each strategy were screened for the geometry with the lowest 

AM1 energy. Dominant geometries with AM1 energies 10 kJ/mol above the lowest AM1 were 

selected for further structure optimizations and determination of shielding parameters on 

various levels of theory. This resulted in five and three selected geometries for each strategy 

respectively (Figure 4.1 a, b). Both, the restricted Hartree-Fock (RHF) method as well as 

density functional theory (DFT) with B3LYP or TPSSH approximation were then used as levels 

of theory.  
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Figure 4.1: Workflow of NMR simulations by different methods using shielding constants of 16-desmethyl 
GYM D; RHF calculations were performed with the 6-31+G(d) basis set; DFT calculations were performed 
with the def2-TZVPP basis set and def2/JK auxiliary basis set. 

The shielding tensors, obtained for each level of theory, were averaged according to the 

BOLTZMANN distribution and correlated with the corresponding chemical shift. Theoretical 

chemical shifts were then derived from the resulting linear regression of the averaged shielding 

tensors. These were compared with measured chemical shifts (cf. Table 9.1; Zurhelle et al., 

2018) resulting in a ∆δ value. The proton chemical shifts showed deviations of up to 

∆δ = 0.96 ppm between simulated and measured data at RHF level of theory and of up to 

∆δ = 0.54 ppm at the highest level of theory. The standard deviations of the ∆δ varied only 

slightly for the used levels of theory. However, for carbon chemical shifts the differences 

between simulated and measured data varied significantly for the used levels of theory.  

The lowest ∆δ values were observed for simulation of shielding constants by application of 

density functional theory (DFT, B3LYP functional) after an additional optimization at the same 

level of theory for the selected geometries of strategy “a” (cf. Figure 4.1 and Table 4.1 in green). 

The usage of “conductor like polarizable continuum model” (CPCM, Figure 4.1 and Table 4.1 

in blue) to simulate the effect of a solvent was better suited to reduce the discrepancies 

between measured and simulated data (max. ∆δ), but the increased computational time 

requirements did not justify the slight improvement in accuracy. 
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Table 4.1: Comparison of measured NMR data with simulated shielding constants for different levels of 
theory (St. Indicates the used strategy of pre-optimization; Std. div: standard deviation; max.: maximum). 

theoretical level 13C 1H 

St. opt. Type NMR Std. div ∆δ max. ∆δ Std. div ∆δ max. ∆δ 

a B3LYP, CPCM B3LYP, CPCM 2.02 4.75 0.24 0.56 

a B3LYP B3LYP 2.00 5.00 0.24 0.58 

b B3LYP B3LYP 3.27 8.80 0.24 0.68 

a B3LYP PBE0 2.40 5.64 0.26 0.67 

a B3LYP RHF 3.89 8.39 0.28 0.76 

a RHF RHF 4.10 8.85 0.29 0.96 

a  B3LYP, CPCM 3.09 7.00 0.28 0.68 

b  B3LYP, CPCM 2.52 4.94 0.21 0.54 

a  TPSSh, CPCM 3.20 7.35 0.27 0.61 

a  B3LYP 2.86 7.94 0.31 0.77 

a  RHF 4.88 9.44 0.33 0.86 

After the selection of relevant geometries using strategy “a”, the geometry optimization and 

simulation of shielding tensors was performed on DFT level of theory with B3LYP as 

approximations to the exchange–correlation energy (cf. Figure 4.1 green path). This simulation 

showed a comparatively good agreement between simulated and real data.  

In order to test the usefulness of this method, two theoretical stereoisomers of compound 11 

were used. The inversion of stereo centers of the side chain (cf. Figure 4.2 top right) should 

greatly influence the chemical environment, and consequently the chemical shift for both 

tetrahydrofuran moieties resulting in a clear difference to the chemical shift of the natural 

isomer. A better agreement between simulated and measured NMR data was also expected 

from the change of the configuration of C-4 (cf. Figure 4.2 top center). Notably, the 

stereochemistry at C-4 is not assessable by NMR spectroscopy alone. 
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Figure 4.2: Structures and comparison of standard deviation (std. dev.) overall and around C-4 and highest 
(max.) ∆δ value for three stereoisomers of 16-desmethyl GYM D; left side without CPCM; right side with 
CPCM (cf. section 9.3.1 for chemical shifts).  

The standard deviations and maximal differences between simulated and NMR data is shown 

in Figure 4.2 for all three isomers of 16-desmethyl GYM D. The values for both theoretical 

isomers are close, while the ∆δ values of the natural isomer is lower. Therefore, this method 

shows the potential to elucidate the configuration of stereo centers, which are not assessable 

by NMR spectroscopy.  
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4.2.2 Evaluation with 13-desmethyl SPX C (4) 

Despite being the best studied spirolide, the stereochemistry of 13-desmethyl SPX C at C-4 is 

still unknown. In silico methods with Gauge Including Atomic Orbitals (GIAO) approach in 

combination with NMR spectroscopy were successfully applied to the elucidated of C-4 in 16-

desmethyl GYM D (cf. chapter 4.2.1). Further, CD spectroscopy can also be simulated in silico, 

allowing a comparison with measured spectroscopic data and assignment of stereo centers 

close to chromophores as C-4 (Maksimenka, 2010). In case of 13-desmethyl SPX C, the 

comparison between measured and simulated CD spectra (cf. Figure 4.3) indicated 

S-configuration at C-4.  

 

Figure 4.3: Measured CD-spectrum of 13-desmethyl SPX C with simulated spectra for both configurations 
at C-4. 

In contrast to GYM 11, the NMR spectra of compound 4 were recorded in deuterated methanol. 

To estimate the effect of this solvent, the simulations of the isomer with S configuration were 

performed with and without the CPCM solvation model. The best agreement between 

measured and simulated data was obtained with the CPCM solvation model during both 

optimization and determination of shielding parameters (Figure 4.4). In contrast to pyridine, the 

significant improvement through application of CPCM solvation model justified its usage.  
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Figure 4.4: Comparison of standard deviation (std. dev.) of ∆δ values for different applications of CPCM.  

The imine carbon (C-28) showed the highest discrepancy between measured (δ = 201.3 ppm 

(Hu et al., 2001)) and simulated (δ = 179.7 ppm) data. This discrepancy may result from partial 

or complete protonation of the imine group, consequently both protonation states were 

included in the investigation.  

Especially for carbon chemical shifts, a better agreement between measured and simulated 

shifts was observed for the protonated form (Figure 4.5). However, the standard deviation and 

maximal ∆δ for both protonation states were either lower or very similar to the C-4 S isomer. 

This was in agreement with the results obtained by CD spectroscopy. In conclusion, the 

combination of in silico techniques and NMR spectroscopy unequivocally identified the 

stereochemistry of the cyclic imine toxins under investigation. 
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Figure 4.5: Comparison of standard deviation (std. dev.) and highest (max.) ∆δ value for both C-4 isomers 
and protonation states of 13-desmethyl SPX C (4) (cf. section 9.3.3 for chemical shifts). 

 

4.2.3 Verification of proposed structure of GYM E (12) 

The structure elucidation of GYM E was performed with a low amount of toxin, therefore only 

chemical shifts of protons and respective carbons were reported (Zurhelle et al., 2018). Proton 

and carbon chemical shifts of 12 revealed a high similarity to 16-desmethyl GYM D (11), with 

the exception for C-19, C-20 and C-29 (Zurhelle et al., 2018). These nuclei belong to the 

exocyclic methylene group and the allylic hydroxyl group which are absent in 11. Based on the 

evidence, that 12 is a potential degradation product of 11, the same stereochemistry was 

assumed. This hypothesis is supported by the high similarity of NMR chemical shifts between 

12 and 11. Only the stereochemistry for C-19 could not be assigned by comparison of 

measured NMR spectra. 

The application of in silico methods offers the verification of the proposed structure, while 

providing additional insight to the stereochemistry of GYM E. Both configurations at C-19 are 

plausible, therefore both were subjected to the in silico simulation of NMR shielding constants. 

The simulated NMR spectra with S configuration at C-19 showed a higher similarity to 

measured NMR data (cf. Figure 4.6). GYM 12 shared the configuration at C-19 with the 

corresponding stereo center in GYM B (Miles et al., 2000). The expected chemical shift for 
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R-configuration at the allylic hydroxyl group (C-19 in GYM E) would be lower than the observed 

chemical shift of GYM E, based on the comparison with GYM B and GYM C and the simulated 

data.  

The comparison of the potential energy for the most stable geometry of the natural and 

unnatural C-19 conformer showed that the unnatural isomer had a lower potential energy. A 

non-stereo selective degeneration mechanism would favor the formation of the product with 

lower potential energy, which is represented by the unnatural C-19 isomer. Consequently, the 

putative degradation of 11 into GYM E seems to be stereo selective and favors the product 

with the higher potential energy.  

Since only little knowledge about the configuration at C-4 for GYMs and SPXs is available, 

GYM E with R-configuration at C-4 and S-configuration at C-19 was additionally simulated 

(Figure 4.6). While the overall standard deviation of ∆δ values of protons and carbons were 

very similar for both configurations of C-4, the standard deviation for the nuclei around C-4 

unequivocally revealed S-configuration at C-4.  

For GYM E, the effect of stereochemistry at C-4 on ∆δ values is not as strong as for 

16-desmethyl GYM D. This is a result of the higher number of quaternary carbons without 

measured chemical shift in the environment of the stereogenic center C-4 than in the 

environment of the stereogenic center at C-19. But still, the influence of C-4 on the measured 

surrounding nuclei seems to be strong enough to assign the stereochemistry at this position. 
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Figure 4.6: Comparison of standard deviation (std. dev.) and highest (max.) ∆δ value for three 
stereoisomers of GYM E (12), each with the lowest potential energy (cf. section 9.3.2 for chemical shifts). 

 

4.2.4 Stereochemistry of 20-Hydroxy-13,19-didesmethyl-SPX C (13) 

The preliminary assignment of the stereochemistry of 20-Hydroxy-13,19-didesmethyl-SPX C 

(13) with NOEs reduced the number of possible stereoisomers. The NOE between H-7 and H-

38 indicated E-configuration at the double bond between C-8 and C-9. A linkage between the 

stereo centers C-7 and C-29 was indicated by a NOE between H-7 and H27, implying either 

S-configuration at C-7 together with R-configuration at C-29, or both configurations inverted. 

However, the mentioned configuration (C-7: S and C-29: R) was indicated by the NOEs of H-

34b to H-7 and H-34a to H-33. The strong NOE between H-42 and H-43 indicated an equatorial 

position of both methyl groups. These methyl groups of the modeled geometries of 13-

desmethyl SPX C have an equatorial orientation. Therefore, both C-31 and C-32 were 

assigned with S-configuration in analogy to 13-desmethyl SPX C.  

Proton H-22 showed NOEs to other protons in the macrocycle (e. g. H-25, H-11), whereas H-

17 and H-12 did not reveal such NOEs. Therefore, H-22 is directed towards the macrocycle 

and H-12 and methylene groups of the ether ring in the middle (C-16 and C-17) are directed 

away from the macrocycle. H-19 faces away from the macrocycle as indicated by the NOE 
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between H-17 and H-19. Further, the proton H-19 showed a NOE to H-21 and H-20 in addition 

to a small coupling constant (3JHH near 0 Hz). In conclusion, the proton H-19 has axial 

orientation, while an equatorial orientation is assigned to H-20. The NOE between H-22 and 

both protons of at C-25 indicated equatorial orientation for H-22. In conclusion, S-configuration 

was assigned at C-12 and R-configuration at C-15, C-18, C-19, C-20, and C-22. The 

configuration at C-4 and C-10 are to be elucidated by the integration of in silico methods. 

  

Figure 4.7: Stereochemistry of 20-Hydroxy-13, 19-didesmethyl-SPX C with selected NOEs (C-4: S; C-10: S 
configuration). 

The best agreement between measured and simulated data was observed for the molecule 

with S configuration at both positions C-4 and C-10 (cf. Figure 4.8). The isomer with R 

configuration at both positions revealed the best fit in terms of the highest discrepancy between 

measured and simulated chemical shifts of carbon nuclei. However, for all three modelled 

isomers this ∆δ value exhibited by the carbon at position C-41, suggested a systematic 

influence due to the lack of a solvation model. Given the long distance between carbon C-41 

and the stereo centers of interest, the observation of high ∆δ values at C-41 is not related to 

the stereochemistry of neither C-4 nor C-10. Therefore, the stereochemistry of 20-Hydroxy-13, 

19-didesmethyl-SPX C is suggested to resemble the stereochemistry of 13-desmethyl SPX C. 

This conclusion supports the concept of a common biosynthetic for SPXs, whereas the nascent 

20-Hydroxy-13,19-didesmethyl-SPX C (13) 
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polyketide chain differs slightly for the different derivatives (Anttila et al., 2016; van Wagoner 

et al., 2014). 

 

Figure 4.8: Comparison of standard deviation (std. dev.) and highest (max.) ∆δ value for three stereo 
isomers of 20-Hydroxy-13, 19-didesmethyl-SPX C (13) (cf. section 9.3.4 for chemical shifts). 

 

4.2.5 Stereochemistry of C-4 of cyclic imine toxins 

The simulated compounds cumulatively suggest for the S-configuration at C-4 for all 

considered compounds. Out of all six gymnodimines and spirolides with elucidated 

conformation at C-4, only one spirolide namely 13,19-didesmethyl SPX C (Ciminiello et al., 

2009) shows R-configuration at this position.  

The simulated NMR chemical shifts were examined for systematic changes of the chemical 

shift induced by the configuration at C-4 (cf. Figure 4.9). Even though members of the lactone 

ring (C-1 to C-4) did not show different chemical shifts for the configurations at C-4, a 

systematic effect was observed for C-6, and the methylene group C-35 (corresponds to C-25 

in GYMs). The simulated carbon chemical shifts of C-6 and methylene group C-35 of SPXs 

and C-25 of GYMs, respectively, were shifted towards lower field (higher frequencies) for S 

configuration at C-4 in comparison to R configuration at C-4. The chemical shifts of the S 

configuration showed better agreement with measured chemical shifts. The simulated 
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chemical shifts of H-35a for S configuration were shifted towards lower field in comparison to 

R configuration. This effect was more pronounced for SPXs in comparison to GYMs. For the 

other proton of this methylene group (H-35b), the influence of S configuration at C-4 led to a 

shift towards higher field in comparison to R configuration at C-4.  

The effect of stereochemistry at C-4 on chemical shifts of methylene group C-35 in SPXs is 

based on the combined influence of the lactone oxygen (between C-1 and C-4) and methylene 

group C-30 (cf. Figure 4.9). For the C-4 S isomer, both groups were in spatial proximity to H-

35a, which caused a downfield shift in comparison to the isomer with R configuration at C-4, 

where only the methylene group interacted with H-35a. The proton H-35b of the C-4 S isomer 

was neither influenced by lactone oxygen nor methylene group, while the spatial proximity 

between lactone oxygen and the proton H-35b in the C-4 R isomer led to a downfield shift. 

This effect on the methylene group at C-25 was weaker for GYMs, because of a greater 

distance between both methylene groups given the smaller ring size of imine ring. The 

difference in chemical shift at C-6 was caused by the interaction between stereo center at C-7 

and the orientation of ester ring.  

The influence of chirality at C-4 on chemical shift of nuclei at ring B was an indication for the 

influence of stereochemistry at this position on biological activity. As the stereochemistry of C-

4 influences the chemical shift, it also influences the electron density of ring B. Therefore, it 

should affect the binding strength between compound and a target protein.  
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Figure 4.9: Systematic effects of the stereochemistry at C-4 on selected chemical shifts of neighboring 
nuclei and the causative structural motive at the example of 13-desmethyl SPX C. The position C-35 in SPXs 
corresponds to position C-25 in GYMs. Measured chemical shifts of 13-desmethyl SPX C and 13,19-
didesmethyl SPX C were taken from Hu et al. and Ciminiello et al. (Ciminiello et al., 2009; Hu et al., 2001).  
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In addition to the chemical shifts of the modelled cyclic imine toxins, the measured and 

simulated chemical shifts of 13,19-didesmethyl SPX C (Ciminiello et al., 2009), the only cyclic 

imine toxin with proposed R configuration at C-4, were added to Figure 4.9. Even though the 

chemical shift of H-35b was inconclusive, the measured chemical shifts of C-6, C-35 and H-

35a showed a high similarity to the simulated chemical shifts of the S isomer. This outcome 

refutes the proposed stereochemistry at C-4 of 13,19-didesmethyl SPX C (Ciminiello et al., 

2009).  

The Ciminiello group proposed the configuration of C-4 for 13,19-didesmethyl SPX C by 

comparison of modelled intramolecular distances and strength of NOE-signal strength in 

addition to carbon–proton vicinal coupling constants. The latter was used to determine the 

preferred orientation of the lactone ring in relation to ring B which contains C-6 and C-35. In 

the preferred rotation of the bond C-4 and C-5, proton H-4 was characterized by a gauche 

conformation to C-6 and C-35. The observed NOEs revealed a spatial proximity between H-3 

and methyl protons at C-37 as well as of H-4 to methyl protons at C-37 and H-35b (1.52 ppm), 

with the methyl protons closer to H-4 than H-35b. Among the modelled conformers (Ciminiello 

et al., 2009), only the gauche- conformer with R configuration at C-4 (α = -53°; Table 4.2) was 

plausible. The S conformer was ruled out, because it was not compatible with the spatial 

proximity between H-4 and H-35b. (Ciminiello et al., 2009) 

The rationale of Ciminiello et al. (Ciminiello et al., 2009) to assign R configuration only 

considered single conformers. However, for systems without one dominant, highly populated 

conformer (>85%), the averaging of multiple conformers is necessary (Bifulco et al., 2007). 

Besides the modelled distances of single conformers of 13,19-didesmethyl SPX C from 

Ciminiello et al. (Ciminiello et al., 2009), Table 4.2 reveals the averaged distances of 13,19-

didesmethyl SPX C, 13-desmethyl SPX C (neutral and protonated) and 20-Hydroxy-13,19-

didesmethyl SPX C. Evidently, the modelled, averaged distances between H-4 and H-35b 

were either equal or shorter for the C-4 S isomer. Consequently, the argument to rule out the 

S isomer of 13,19-didesmethyl SPX C, is to be refuted for averaged distances. Moreover, the 

averaged distances of the S isomer matched the observed NOEs of Ciminiello et al. (Ciminiello 

et al., 2009) even better than the averaged distances of the R isomer (Table 4.2), especially 

regarding the required spatial proximity between H-3 and H-37. As consequence, C-4 of 13,19-

didesmethyl SPX C was revised and unambiguous assigned with S configuration.  
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Table 4.2: Dihedral angle α values and related intramolecular distances measured on AM1 conformers of 
C-4 R and S isomers of 13,19-didesmethyl SPX C taken from Ciminiello et al. (Ciminiello et al., 2009). 
Averaged intramolecular distances of 13-desmethyl SPX C (neutral and protonated) and 20-Hydroxy-13,19-
didesmethyl SPX C from AM1 conformers. 

Family/Compound Dihedral 
angle α 

H-3–H-37 
/Å 

H-4–H-37 
/Å 

H-4–H-35b 
/Å 

C-4: R 
    

13,19-didesmethyl SPX C: anti  168° 3.3 3.8 2.5 

13,19-didesmethyl SPX C: gauche- -53° 2.5 2.1 3.3 

13,19-didesmethyl SPX C: gauche+  43° 4.7 2.3 3.7 

13,19-didesmethyl SPX C: averaged  3.7 ± 0.5 1.9 ± 0.4 3.5 ± 0.4 

13-desMe SPX C [neutral] 3.7 ± 0.4 1.8 ± 0.2 3.5 ± 0.4 

13-desMe SPX C [protonated] 2.3 ± 0.2 2.1 ± 0.1 3.7 ± 0.1 

20-Hydroxy-13,19-didesmethyl SPX C 
 

3.5 ± 0.4 1.9 ± 0.2 3.2 ± 0.6 

C-4: S 
    

13,19-didesmethyl SPX C: anti -176° 3.4 3.7 2.2 

13,19-didesmethyl SPX C: gauche+ 39° 2.3 2.3 3.7 

13,19-didesmethyl SPX C: gauche- -41° 4.2 2.4 3.7 

13,19-didesmethyl SPX C: averaged  2.6 ± 0.7 2.2 ± 0.3 3.3 ± 0.2 

13-desMe SPX C [neutral] 2.2 ± 0.2 2.1 ± 0.2 3.3 ± 0.3 

13-desMe SPX C [protonated] 2.3 ± 0.1 2.2 ± 0.1 3.4 ± 0.1 

20-Hydroxy-13,19-didesmethyl SPX C 
 

2.2 ± 0.2 2.1 ± 0.2 3.2 ± 0.3 
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4.3 Conclusion 

The combination of NMR spectroscopy and in silico simulations of NMR spectra is a necesary 

strategy for the assignment of stereochemistry in complex molecules. With regard to the 

chosen level of theory, the higher the level of theory, the higher the quality of the simulated 

data. Therefore, simulations were performed on the B3LYP/def2-TZVPP/def2/JK level of 

theory. The CPCM solvation model increased the accuracy for the solvent methanol, while the 

application of this solvent model was not necessary for compounds measured in pyridine. This 

method was successfully applied to elucidate the stereochemistry of GYM E, 20-hydroxy-

13,19-didesmethyl SPX C and 13,19-didesmethyl SPX C, and its application to other marine 

biotoxins is currently done. 

By application of CD spectroscopy, 13-desmethyl SPX C was identified to have S configuration 

at C-4. The stereochemistry of 20-Hydroxy-13,19-didesmethyl SPX C was elucidated similar 

to 13-desmethyl SPX C with R configuration at C-20. GYM E shares similar stereochemistry 

of 16-desmethyl GYM D, with the exception of S configuration at C-19.  

All the simulated compounds had S-configuration at C-4. Out of the six gymnodimines and 

spirolides with elucidated conformation at C-4, only one spirolide, namely 13,19-didesmethyl 

SPX C (Ciminiello et al., 2009), was assigned with R-configuration at this position. Due to the 

simulation of chemical shifts, the configuration at C-4 of 13,19-didesmethyl SPX C was revised 

and assigned with S configuration. In conclusion, the majority of SPXs and GYMs exhibit 

common stereochemistry, as expected for a common biosynthetic pathway of these two 

compound classes.  

As stated above, the effect of C-4 on the molecule, especially ring B, is strong enough to 

influence the chemical shift of the B ring. Therefore, the configuration at C-4 influences the 

electron density and is suggested to influence the binding strength to a target protein.  
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4.4 Material and Methods 

4.4.1 Parameter setup 

The planar structures with limited information’s about stereoisomerism were obtained in 

previous NMR studies (cf. Chapter 2 and 3). These form the foundation for the simulations, 

where the simulated NMR properties of all possible stereoisomers were compared with the 

experimental chemical shifts. The initial three dimensional coordinates for all stereoisomers of 

the compounds were obtained through AVOGADRO software package (Hanwell et al., 2012). 

The structure files, created by AVOGADRO software package (Hanwell et al., 2012), were used 

in the software VISUAL MOLECULAR DYNAMICS (VMD) (Humphrey et al., 1996) and SWISSPARAM 

(Zoete et al., 2011) to obtain input structures for the molecular dynamics simulation using the 

NANOSCALE MOLECULAR DYNAMICS program (NAMD) (Phillips et al., 2005). All simulations were 

either performed on a Lenovo ThinkPad workstation or on the Linux cluster Cray CS400 “Ollie” 

at Alfred Wegener Institute’s computing center. 

4.4.2 Conformational search 

A simulated annealing procedure (Kirkpatrick et al., 1983) in the NANOSCALE MOLECULAR 

DYNAMICS (NAMD) software (Phillips et al., 2005) package was applied for the conformal 

search according to the parameter described by Ciminiello et al. (Ciminiello et al., 2009). The 

simulation was performed with a time steps length of 1 fs. The distance-dependent dielectric 

constant was set to the value of methanol (ε = 33*r). A total of 200 simulated annealing cycles 

were performed and each compromised following steps: 

- Equilibration (10 ps) at 300 K 

- Stepwise temperature increase (∆T = 10 K) with 4ps equilibration at each step 

- Equilibration (20 ps) at 1000 K 

- Stepwise temperature decrease (∆T = 20 K) with 4ps equilibration at each step 

- Equilibration (2 ps) at 300 K 

The geometries obtained in each cycle of the simulated annealing were subjected to geometry 

optimization, subsequently with force field and with ab initio calculations on AM1 level of theory. 

The semi-empirical AM1 structure optimization as well as a following frequency analysis were 

performed with the GENERAL ATOMIC MOLECULAR AND ELECTRONIC STRUCTURE SYSTEM 

(GAMESS) software package (Gordon and Schmidt, 2005).  

The AM1 conformers were ranked on the basis of their conformational energy values and 

grouped into families according to the values of dihedral angles. For each group within a 
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tolerance of 10 kJ mol-1 above the lowest conformational energy, a representative geometry 

was chosen. The chosen geometries were subjected to geometry optimization on the B3LYP/ 

def2-TZVPP/RIJCOSX/def2/J level of theory. For 13-desmethyl SPX C, the NMR solvent 

(MeOD) was simulated with the conductor-like polarizable continuum model (CPCM) and 

parameters of methanol. 

4.4.3 Determination of shielding tensors  

The representative geometries were subjected to shielding tensor simulation in the ORCA 

software package (Neese, 2018). The simulation utilized GIAO and def2-TZVPP basis sets 

with def2/JK auxiliary basis sets, with the RIJK approximation, on the B3LYP level of theory. 

For 13-desmethyl SPX C, the NMR solvent (MeOD) was simulated with the CPCM and 

parameters of methanol.  

The shielding tensors of the conformers were averaged based on a BOLTZMANN distribution of 

their potential energy.  

4.4.4 Evaluation of simulated shielding constants 

The averaged shielding tensors of each nuclei was correlated with the respective NMR shift 

and based on a linear regression translated into a simulated chemical shift. Based on the 

comparison of simulated and measured NMR shifts, the standard deviation was determined 

according following formula: 

���. ���. Δ	 = �1��		�,��������� − 	�,�����������
� !  

Further, the highest difference between measured and simulated data was used for 

interpretation. 

4.4.5 Circular dichroism spectroscopy 

The representative geometries of both C-4 isomers of 13-desMe SPX C (4) were subjected to 

simulation of rotatory strengths applying time depended DFT on B3LYP level of theory with 

def2-TZVPP/def2/J, RIJCOSX approximation and CPCM solvation model. The simulated CD 

spectrum of 4 was obtained by applying Gaussian broadening to each transition as previously 

described by Li et al. (Li et al., 2010) and adjusted manually to the height of experimental data 
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5. Summary 

Marine biotoxins produced by dinoflagellates exhibit a remarkable structural diversity. During 

the course of this thesis, I have elucidated six novel compounds in total, two for each of the 

toxin groups of AZAs, GYMs, and SPXs.  

 

Figure 5.1: Compounds elucidated in this thesis. 

The purified toxin material of AZA-40 and -59 will now be tested for toxicity in comparison to 

the reference standard, AZA-1. Pending the confirmation of toxicity (as determined by S. Sosa, 

permit application pending) AZA-40 and -59 should then be included in the mandatory list of 

toxins in the shellfish monitoring program.  

In GYMs and SPXs novel structural features were discovered, namely the missing methyl 

group at C-16 for GYMs and an additional hydroxyl group at C-20 for SPXs respectively. As 

the example of the AZAs showed, other derivatives with these structural features are likely. 

Further, four cyclic imine toxins had their full relative stereochemistry elucidated. The simulated 

chemical shifts revealed a systematic effect between the chirality at C-4 and neighboring 

nuclei. Based on this systematic effect, reasonable doubts arise towards determination of R 

configuration at C-4 in 13,19-didesmethyl SPX C. The configuration of C-4 was assigned with 

simulated and measured NMR spectra, suggesting that all tested GYMs and SPXs have the S 
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configuration at that position. This assignment supports the hypothesis of a common 

biosynthetic pathway for both compound groups.  

Given the knowledge of full relative conformation of GYMs and SPXs, the next step is to link 

common structural features to bioactivity (e. g. toxicity). Figure 5.2 shows the similarities in 

electrostatic potential simulated in silico for the GYMs and SPXs discussed in this thesis (DFT, 

B3LYP/def2-TZVPP/def2/JK, calculated with ORCA (Neese, 2018) and Multiwfn (Lu and 

Chen, 2012)). These results foreshadow the ultimate goal to simulate theoretical binding 

properties for these toxins in silico with their reported receptor proteins (Bourne et al., 2010). 

One of the underlying ecological questions for these studies is, why microalgal genotypes 

produce a high structural diversity of similar toxins and how these differ in their binding targets 

and binding potentials. 

 

Figure 5.2: Electrostatic potential of 16-desmethyl GYM D (A), GYM E (B), 13-desmethyl SPX C (C), and 20-
hydroxy-13,19-didesmethyl SPX C (D). 
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6. Zusammenfassung 

Marine Biotoxine von Dinoflagellaten eine beeindruckende strukturelle Vielfalt. Im Rahmen 

dieser Arbeit konnte ich die Struktur von sechs dieser Verbindungen aufklären, jeweils zwei 

stammen aus den Toxinklassen der Azaspirazide, Gymnodimine, und Spirolide. 

 

Abbildung 6.1: Im Rahmen dieser Arbeit aufgeklärte Verbindungen. 

Das aufgereinigte Toxinmaterial von AZA-40 und -59 wird nun im Vergleich zum 

Referenzstandard AZA-1 auf Toxizität getestet. In Abhängigkeit von der Toxizität der neuen 

Verbindungen (wie von S. Sosa ermittelt, Genehmigung ausstehend) empfiehlt sich die 

Aufnahme in die regulierte Überwachung von Muscheln.  

Die Gymnodimine und Spirolide in Abbildung 6.1 zeigen für diese Substanzlassen neue 

Strukturmerkmale. Bei den Gymnodiminen ist die fehlende Methylgruppe an C-16 ein neues 

Strukturmotiv. Während dies bei den Spiroliden der erste Bericht von einer Alkoholgruppe an 

C-20 ist. Wie das Beispiel der Azaspirazide zeigte, sind weitere Derivate mit diesen Merkmalen 

wahrscheinlich. Weiterhin wurde die Stereochemie von vier Cycloimin Toxinen aufgeklärt. Die 

Konfiguration an C-4 zeigte einen systematischen Einfluss auf die simulierten chemischen 

Verschiebungen benachbarter Atome. Dieser Effekt ließ an der von Ciminiello et al. 

bestimmten R Konfiguration bei 13,19-didesmethylspirolid C (Ciminiello et al., 2009) zweifeln. 

Die S Konfiguration wurde durch den Vergleich zwischen gemessenen und simulierten 

chemischen Verschiebungen bei 13,19-didesmethylspirolid C nachgewiesen, was auf eine S 
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Konfiguration bei allen getesteten Spiroliden und Gymnodiminen schließen lässt. Diese 

Zuordnung stützt die Hypothese eines gemeinsamen Biosynthesewegs für beide 

Verbindungsgruppen  

In Anbetracht der Kenntnis der vollständigen relativen Konformation bei Gymnodiminen und 

Spiroliden besteht der nächste Schritt darin, gemeinsame Strukturmerkmale mit der 

Bioaktivität (z. B. Toxizität) zu verknüpfen. Die Abbildung 6.2 zeigt, wie ähnlich sich die 

simulierten elektrostatischen Potentiale für die in dieser Arbeit diskutierten Gymnodimine und 

Spirolide sind (DFT, B3LYP/def2-TZVPP/def2/JK, berechnet mit ORCA (Neese, 2018) und 

Multiwfn (Lu and Chen, 2012)). Diese Ergebnisse deuten das ultimative Ziel an, die 

theoretischen Bindungs-eigenschaften dieser Toxine in silico mit dem entsprechenden 

Rezeptorprotein (Bourne et al., 2010) zu simulieren. Eine der zugrunde liegenden 

ökologischen Fragen für diese Studien ist, warum bei Mikroalgen die verschiedenen 

Genotypen eine hohe strukturelle Vielfalt ähnlicher Toxine produzieren und wie sich diese in 

ihren Bindungszielen und Bindungsstärke unterscheiden. 

 

Abbildung 6.2: Das elektrostatische Potential von 16-Desmethylgymnodimin D (A), Gymnodimin E (B), 13-
Desmethylsprolid C (C), und 20-Hydroxy-13,19-didesmethylspirolid C (D). 
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7. Index of abbreviations 

AF  ammonium formiate 

AM1  Austin Model 1 (a semi empiric method) 

amu atomic mass unit 

AOAC  Association of Official Analytical Chemists 

ASP  amnesic shellfish poisoning 

AZAs  azaspiracids 

AZP  azaspiracid poisoning 

B3LYP a DFT exchange-correlation functional (Becke, 3-parameter, Lee-Yang-Parr)  

BfR  Bundesinstitut für Risikobewertung 

BTX  brevetoxin  

°C degree Celsius 

CD  circular dichroism 

cf. compare with (cōnfer) 

CFP  ciguatera fish poisoning 

CID  collision induced dissociation 

COSY correlated spectroscopy 

CPCM  conductor-like polarizable continuum model 

δ chemical shift 

DA  domoic acid 

DMSO dimethyl sulfoxide 

DSP  diarrheic shellfish poisoning 

DTX  dinophysistoxin  

ec endcapped 

EFSA European Food Safety Authority 

e. g. for example (exempli gratia) 

ELISA enzyme-linked immunosorbent assay 

ENSO  El Niño Southern Oscillation 

ESI electrospray ionization 

et al. et alia 

EU  European Union 

eV electron volt 

Exod. Exodus (Book II of Mose) 

FA  formic acid 

g gram 

GYM gymnodimine 

HAB harmful algae blooms 
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HMBC heteronuclear multiple bond correlation 

HPLC high-performance liquid chromatography 

HRMS high resolution mass spectrometry 

HSQC heteronuclear single quantum correlation 

Hz Hertz 

IFF  Institut für Fische und Fischereierzeugnisse 

i.p. intraperitoneal 

in silico experiments performed on a computer (Pseudo-Latin for “in silicon”) 

in vitro experiment at microorganisms outside their normal biological context (Latin 

for “in the glass”) 

in vivo experiment at the living animal (Latin for “within the living”) 

J coupling constant 

K Kelvin 

KmTX karlotoxin 

LAVES  Niedersächsisches Landesamt für Verbraucherschutz und 

Lebensmittelsicherheit 

LC-MS  liquid chromatography coupled to mass spectroscopy 

M molar 

m multiplett 

MBA  mouse bioassay 

Me methyl 

MeCN acetonitrile 

MeOD deuterated methanol 

MeOH methanol 

mg milligrams 

MHz megahertz 

mL milliliter 

µL microliter 

mmol millimol 

MS mass spectrometry 

m/z mass to charge ratio 

neg negative 

NLWKN  Niedersächsischer Landesbetrieb für Wasserwirtschaft, Küsten- und 

Naturschutz 

nm nanometer 

NMR nuclear magnetic resonance 

NPC  nascent polyketide chain 

NRL  National Reference Labor 
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NSP  neurotoxic shellfish poisoning 

OA  okadaic acid  

p. a. pro analysi 

pos  positive 

ppm parts per million 

PSP paralytic shellfish poisoning 

PTX  pectenotoxin  

R organic Rest 

rpm rounds per minute 

Rt retention time 

RT room temperature 

sp. species 

SPE solid phase extraction 

SPX spirolide 

STX  saxitoxin 

TEF toxic equivalency factor 

TMS  tetramethylsilane 

TPSSh a DFT exchange-correlation functional  

USA  United States of America 

XRD  X-ray crystallography 

YTX  yessotoxin  
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9. Supporting Information’s 

9.1 Identification of novel neurotoxic gymnodimines and spirolides from the marine 

dinoflagellate Alexandrium ostenfeldii 

All raw NMR data (Topspin) and annotated Mestre files of this section are available in the data 

repository PANGAEA https://doi.pangaea.de/10.1594/PANGAEA.895116. 

 

Figure 9.1: Structures of known and novel gymnodimines. 
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Figure 9.2: Structures of known and novel spirolides. 
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9.1.1 NMR-spectra of 16-desmethyl GYM D 

 

Figure 9.3: 1D Proton spectra of 16-desmethyl GYM D (600 MHz, pyridine-d5). 
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Figure 9.4: 1D 13C-spectra of 16-desmethyl GYM D (150 MHz, pyridine-d5). 
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Figure 9.5: Multiplicity-edited 2D HSQC spectra of 16-desmethyl GYM D (600 MHz Proton frequency, pyridine-d5). 
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Figure 9.6: Slice 1 of multiplicity-edited 2D HSQC spectra of 16-desmethyl GYM D (600 MHz Proton frequency, pyridine-d5). 
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Figure 9.7: Slice 2 of multiplicity-edited 2D HSQC spectra of 16-desmethyl GYM D (600 MHz Proton frequency, pyridine-d5). 
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Figure 9.8: 2D COSY spectra of 16-desmethyl GYM D (600 MHz, pyridine-d5). 
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Figure 9.9: Slice 1 of 2D COSY spectra of 16-desmethyl GYM D (600 MHz, pyridine-d5). 
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Figure 9.10: Slice 2 of 2D COSY spectra of 16-desmethyl GYM D (600 MHz, pyridine-d5). 
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Figure 9.11: 2D double quantum filtered COSY spectra of 16-desmethyl GYM D (600 MHz, pyridine-d5). 
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Figure 9.12: 2D TOCSY spectra of 16-desmethyl GYM D (600 MHz, pyridine-d5). 
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Figure 9.13: Slice 1 of 2D TOCSY spectra of 16-desmethyl GYM D (600 MHz, pyridine-d5). 
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Figure 9.14: Slice 2 of 2D TOCSY spectra of 16-desmethyl GYM D (600 MHz, pyridine-d5). 
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Figure 9.15: HSQC-TOCSY spectra of 16-desmethyl GYM D (600 MHz Proton frequency, pyridine-d5). 
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Figure 9.16: Slice 1 of HSQC-TOCSY spectra of 16-desmethyl GYM D (600 MHz Proton frequency, pyridine-d5). 
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Figure 9.17: Slice 2 of HSQC-TOCSY spectra of 16-desmethyl GYM D (600 MHz Proton frequency, pyridine-d5). 
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Figure 9.18: Slice 3 of HSQC-TOCSY spectra of 16-desmethyl GYM D (600 MHz Proton frequency, pyridine-d5). 
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Figure 9.19: 2D IMPACT-HMBC spectra of 16-desmethyl GYM D (600 MHz Proton frequency, pyridine-d5). 
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Figure 9.20: Slice 1 of 2D IMPACT-HMBC spectra of 16-desmethyl GYM D (600 MHz Proton frequency, pyridine-d5). 
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Figure 9.21: Slice 2 of 2D IMPACT-HMBC spectra of 16-desmethyl GYM D (600 MHz Proton frequency, pyridine-d5). 
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Figure 9.22: ROESY spectra of 16-desmethyl GYM D (600 MHz Proton frequency, pyridine-d5). 
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9.1.2 CD-spectra 

 

Figure 9.23: Measured CD-spectra [expt.] of 16-desmethyl GYM D (1) and GYM A (4) with simulated spectra of 1 with both configuration at C-4. 
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9.1.3 NMR-spectra of GYM E 

 

Figure 9.24: 1D Proton spectra of GYM E (600 MHz, pyridine-d5). 
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Figure 9.25: Multiplicity-edited 2D HSQC spectra of GYM E (600 MHz Proton frequency, pyridine-d5). 
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Figure 9.26. Slice 1 of Multiplicity-edited 2D HSQC spectra of GYM E (600 MHz Proton frequency, pyridine-d5). 
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Figure 9.27: Slice 2 of Multiplicity-edited 2D HSQC spectra of GYM E (600 MHz Proton frequency, pyridine-d5). 
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Figure 9.28: 2D COSY spectra of GYM E (600 MHz, pyridine-d5). 
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Figure 9.29: Slice of COSY spectra of GYM E (600 MHz Proton frequency, pyridine-d5). 
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Figure 9.30: 2D HSQC-TOCSY spectra of GYM E (600 MHz Proton frequency, pyridine-d5). 
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Figure 9.31: Slice of 2D HSQC-TOCSY spectra of GYM E (600 MHz Proton frequency, pyridine-d5). 
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9.1.4 NMR-spectra of 20-hydroxy-13,19-didesMethyl SPX C 

 

Figure 9.32: 1D Proton spectra of 20-hydroxy-13,19-didesmethyl SPX C (600 MHz, CD3OD). 



Supporting Information’s    132 
 

132 
 

 

Figure 9.33: 1D 13C-spectra of 20-hydroxy-13,19-didesmethyl SPX C (150 MHz, CD3OD). 
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Figure 9.34: Slice of 1D 13C-spectra of 20-hydroxy-13,19-didesmethyl SPX C (150 MHz, CD3OD). 
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Figure 9.35: 2D HSQC spectra of 20-hydroxy-13,19-didesmethyl SPX C (600 MHz Proton frequency, CD3OD). 
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Figure 9.36: COSY spectra of 20-hydroxy-13,19-didesmethyl SPX C (600 MHz Proton frequency, CD3OD). 
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Figure 9.37: 2D TOCSY spectra of 20-hydroxy-13,19-didesmethyl SPX C (600 MHz, CD3OD). 
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Figure 9.38: Slice of 2D TOCSY spectra of 20-hydroxy-13,19-didesmethyl SPX C (600 MHz, CD3OD). 
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Figure 9.39: HSQC-TOCSY spectra of 20-hydroxy-13,19-didesmethyl SPX C (600 MHz Proton frequency, CD3OD). 
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Figure 9.40: Slice of HSQC-TOCSY spectra of 20-hydroxy-13,19-didesmethyl SPX C (600 MHz Proton frequency, CD3OD). 
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Figure 9.41: HMBC spectra of 20-hydroxy-13,19-didesmethyl SPX C (600 MHz Proton frequency, CD3OD). 
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9.1.5 NMR-spectra of 20-hydroxy-13,19-didesmethyl SPX C in pyridine 

 

Figure 9.42: 1D Proton spectra of 20-hydroxy-13,19-didesmethyl SPX C (600 MHz, pyridine-d5). 



Supporting Information’s    142 
 

142 
 

 

Figure 9.43: 2D HSQC spectra of 20-hydroxy-13,19-didesmethyl SPX C (600 MHz Proton frequency, pyridine-d5). 
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Figure 9.44: Slice 1 of 2D HSQC spectra of 20-hydroxy-13,19-didesmethyl SPX C (600 MHz Proton frequency, pyridine-d5). 
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Figure 9.45: Slice 2 of 2D HSQC spectra of 20-hydroxy-13,19-didesmethyl SPX C (600 MHz Proton frequency, pyridine-d5). 
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Figure 9.46: 2D COSY spectra of 20-hydroxy-13,19-didesmethyl SPX C (600 MHz, pyridine-d5). 
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Figure 9.47: Slice of 2D COSY spectra of 20-hydroxy-13,19-didesmethyl SPX C (600 MHz, pyridine-d5). 
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Figure 9.48: 2D TOCSY spectra of 20-hydroxy-13,19-didesmethyl SPX C (600 MHz, pyridine-d5). 
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Figure 9.49: Slice of 2D TOCSY spectra of 20-hydroxy-13,19-didesmethyl SPX C (600 MHz, pyridine-d5). 
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Figure 9.50: 2D HSQC-TOCSY spectra of 20-hydroxy-13,19-didesmethyl SPX C (600 MHz Proton frequency, pyridine-d5). 
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Figure 9.51: Slice of 2D HSQC-TOCSY spectra of 20-hydroxy-13,19-didesmethyl SPX C (600 MHz Proton frequency, pyridine-d5). 
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Figure 9.52: 2D HMBC spectra of 20-hydroxy-13,19-didesmethyl SPX C (600 MHz Proton frequency, pyridine-d5). 
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Figure 9.53: Slice of 2D HMBC spectra of 20-hydroxy-13,19-didesmethyl SPX C (600 MHz Proton frequency, pyridine-d5). 
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9.1.6 NMR-spectra of 20-Hydroxy-13,19-didesMethyl-SPX D  

 

Figure 9.54: 1D Proton spectra of 20-hydroxy-13,19-didesmethyl SPX D (600 MHz, CD3OD). 
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Figure 9.55: 2D HSQC spectra of 20-hydroxy-13,19-didesmethyl SPX D (600 MHz Proton frequency, CD3OD). 
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Figure 9.56: Slice of 2D HSQC spectra of 20-hydroxy-13,19-didesmethyl SPX D (600 MHz Proton frequency, CD3OD). 
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Figure 9.57: 2D COSY spectra of 20-hydroxy-13,19-didesmethyl SPX D (600 MHz, CD3OD). 
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Figure 9.58: Slice of 2D COSY spectra of 20-hydroxy-13,19-didesmethyl SPX D (600 MHz, CD3OD). 



Supporting Information’s    159 
 

159 
 

 

Figure 9.59: 2D TOCSY spectra of 20-hydroxy-13,19-didesmethyl SPX D (600 MHz, CD3OD). 
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Figure 9.60: Slice of 2D TOCSY spectra of 20-hydroxy-13,19-didesmethyl SPX D (600 MHz, CD3OD). 
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Figure 9.61: 2D HMBC spectra of 20-hydroxy-13,19-didesmethyl SPX D (600 MHz Proton frequency, CD3OD). 
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Figure 9.62: Slice of 2D HMBC spectra of 20-hydroxy-13,19-didesmethyl SPX D (600 MHz Proton frequency, CD3OD). 
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9.1.7 LC-MS/MS chromatogram of station SL92-2 

 

Figure 9.63: LC-MS/MS chromatogram of station SL92-2. 
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9.2 Identification of novel Azaspiracids from Azadinium poporum 

9.2.1 NMR-spectra of AZA-40 (6) 

 

Figure 9.64: Structure and 1D proton spectra of AZA-40 (600 MHz, d4-methanol). 
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Figure 9.65: 1D DEPT spectra of AZA-40 (600 MHz, d4-methanol). 
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Figure 9.66: Slice of 1D DEPT spectra of of AZA-40 (600 MHz, d4-methanol). 
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Figure 9.67: 2D HSQC spectra of AZA-40 (600 MHz Proton frequency, d4-methanol). 
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Figure 9.68: Slice of 2D HSQC spectra of AZA-40 (600 MHz Proton frequency, d4-methanol). 
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Figure 9.69: multiple quantum filtered 2D-DOSY spectra of AZA-40 (600 MHz Proton frequency, d4-methanol). 
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Figure 9.70: 2D-DOSY spectra of AZA-40 (600 MHz Proton frequency, d4-methanol). 
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Figure 9.71: 2D-TOCSY spectra of AZA-40 (600 MHz Proton frequency, d4-methanol). 
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Figure 9.72: 2D-HSQC-TOCSY spectra of AZA-40 (600 MHz Proton frequency, d4-methanol). 
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Figure 9.73: 2D-HMBC spectra of AZA-40 (600 MHz Proton frequency, d4-methanol).  
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9.2.2 NMR-spectra of AZA-59 (10) 

 

Figure 9.74: Structure and 1D proton spectra of AZA-59 (600 MHz, d4-methanol). 
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Figure 9.75: 1D carbon spectra of AZA-59 (150 MHz, d4-methanol). 
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Figure 9.76:1D DEPT spectra of AZA-59 (150 MHz, d4-methanol). 
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Figure 9.77: 2D HSQC spectra of AZA-59 (600 MHz Proton frequency, d4-methanol, cf. Figure 9.78 and Figure 9.79 for picked peaks). 
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Figure 9.78: Slice of 2D HSQC spectra of AZA-59 (600 MHz Proton frequency, d4-methanol). 
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Figure 9.79: Slice of 2D HSQC spectra of AZA-59 (600 MHz Proton frequency, d4-methanol). 
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Figure 9.80: 2D COSY spectra of AZA-59 (600 MHz Proton frequency, d4-methanol). 
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Figure 9.81: 2D HSQC-TOCSY spectra of AZA-59 (600 MHz Proton frequency, d4-methanol, mixing time 10 ms). 
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Figure 9.82: 2D HSQC-TOCSY spectra of AZA-59 (600 MHz Proton frequency, d4-methanol, mixing time 60 ms). 
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Figure 9.83: 2D HSQC-TOCSY spectra of AZA-59 (600 MHz Proton frequency, d4-methanol, contaminated with a phthalate ester). 
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Figure 9.84: 2D HMBC spectra of AZA-59 (600 MHz Proton frequency, d4-methanol). 
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Figure 9.85: 2D ROESY spectra of AZA-59 (600 MHz Proton frequency, d4-methanol.
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9.3 Full relative assignment of stereochemistry and conformational analysis of 

GYMs and SPXs by NMR- and molecular modeling-based techniques 

9.3.1 16-desmethyl GYM D (11) 

Table 9.1: Simulated and measured chemical shifts of 16-desmethyl GYM D. 

No. Nuc. 
C-4, C-10, C-17: S 

C-13, C-14 : R 

C-10, C-17: S 

C-4, C-13, C-14: R 

C-4, C-13, C-14: S; 

C-10, C-17: R 
measured 

  CPCM no CPCM CPCM no CPCM CPCM no CPCM  

1 C 172.3 171.8 171.6 169.2 171.7 169.2 175.5 

2 C 129.0 129.6 129.7 133.1 128.9 132.2 130.2 

3 C 149.8 147.6 148.2 144.5 149.2 145.0 148.6 

4 C 82.5 81.9 80.8 79.2 81.0 80.5 81.6 

5 C 123.5 125.9 126.2 129.2 124.2 126.5 125.9 

6 C 139.9 138.4 142.6 139.6 141.2 137.9 136 

7 C 43.2 43.4 43.0 43.6 44.6 44.5 43.6 

8 C 30.2 30.3 25.2 27.0 30.5 31.0 31.8 

9 C 72.4 72.7 73.1 74.3 77.1 76.3 71.6 

10 C 81.4 82.1 80.8 83.3 84.7 86.4 83.4 

11 C 25.7 26.4 26.5 27.0 29.8 29.0 27 

12 C 29.7 29.9 29.2 29.1 28.7 29.9 24.9 

13 C 79.9 80.5 79.4 80.1 78.5 80.0 78.6 

14 C 79.5 79.3 79.2 81.6 83.4 85.1 82.5 

15 C 27.7 27.8 27.4 27.2 26.8 27.5 29.4 

16 C 32.1 32.4 31.7 29.7 26.9 27.4 32.1 

17 C 82.6 82.8 82.0 82.6 81.8 83.0 82.9 

18 C 136.4 137.9 136.4 136.6 134.9 135.2 133.1 

19 C 123.6 123.9 122.6 125.1 121.0 124.6 124.9 

20 C 23.2 24.6 23.0 22.7 22.2 22.8 21.9 

21 C 32.7 32.3 32.0 32.6 34.4 34.4 31.8 

22 C 173.3 173.3 172.0 171.7 172.1 172.4 173.3 

23 C 46.8 45.5 48.4 45.8 47.2 45.8 42.7 

24 C 32.4 32.1 36.4 36.1 34.5 31.7 33.6 

25 C 20.8 20.4 22.5 20.6 20.3 19.3 19.7 

26 C 10.9 10.3 10.5 10.2 9.2 10.3 11 

27 C 17.4 18.7 14.3 14.0 15.0 14.6 18.1 

29 C 13.9 13.8 13.6 13.4 13.1 13.7 15.3 
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No. Nuc. 
C-4, C-10, C-17: S 

C-13, C-14 : R 

C-10, C-17: S 

C-4, C-13, C-14: R 

C-4, C-13, C-14: S; 

C-10, C-17: R 
measured 

  CPCM no CPCM CPCM no CPCM CPCM no CPCM  

30 C 23.1 22.6 29.9 29.1 26.4 22.0 26 

31 C 20.5 19.8 19.7 20.6 19.0 19.3 20.5 

32 C 51.4 49.6 50.1 49.3 49.6 50.5 50.3 

3 H 7.02 7.07 7.02 6.84 7.22 6.87 7.05 

4 H 6.13 5.78 6.11 5.95 6.18 5.87 5.93 

7 H 3.34 3.41 3.28 3.34 2.96 3.17 3.16 

8 H 1.36 1.57 1.40 1.64 1.74 1.54 1.43 

8 H 1.88 1.63 2.03 1.79 1.78 1.85 1.9 

9 H 4.17 4.20 3.77 3.60 3.43 3.57 3.66 

10 H 4.21 4.29 4.32 4.14 3.58 3.62 3.94 

11 H 1.85 1.80 1.93 1.83 1.72 1.83 1.56 

11 H 1.96 2.03 2.10 1.97 2.05 1.86 1.79 

12 H 1.88 1.86 1.87 1.87 2.06 2.09 1.77 

12 H 1.95 1.97 2.00 2.19 2.17 2.10 1.77 

13 H 3.76 3.87 3.86 3.99 4.11 4.08 4.36 

14 H 4.01 4.00 4.01 3.93 3.89 3.81 4.13 

15 H 1.71 1.74 1.72 1.75 1.59 1.46 1.76 

15 H 1.96 1.97 2.00 1.88 1.86 2.01 1.99 

16 H 1.76 1.76 1.77 1.79 2.03 1.93 1.79 

16 H 2.18 2.21 2.22 2.23 2.19 2.25 1.79 

17 H 4.30 4.30 4.33 4.41 4.38 4.39 4.15 

19 H 5.51 5.52 5.54 6.00 5.96 6.26 5.99 

20 H 2.01 1.99 2.06 2.07 2.27 2.16 2.1 

20 H 2.63 2.81 2.75 2.85 2.40 2.57 3 

21 H 2.39 2.22 2.48 2.50 2.50 2.55 2.76 

21 H 2.70 2.98 2.81 2.85 2.67 2.57 2.76 

24 H 1.75 1.50 1.12 1.07 1.35 1.67 1.37 

24 H 1.79 1.75 1.88 1.79 1.80 1.67 1.59 

25 H 1.58 1.40 1.75 1.80 1.72 1.42 1.94 

25 H 2.04 2.02 2.01 1.95 1.88 2.17 1.49 

26 H 1.92 1.92 2.00 1.94 1.94 1.84 1.99 

26 H 1.96 1.99 2.00 1.96 2.03 1.95 1.99 

26 H 2.12 2.11 2.13 2.00 2.03 1.96 1.99 

27 H 1.74 1.78 1.79 1.70 1.93 1.66 1.92 
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No. Nuc. 
C-4, C-10, C-17: S 

C-13, C-14 : R 

C-10, C-17: S 

C-4, C-13, C-14: R 

C-4, C-13, C-14: S; 

C-10, C-17: R 
measured 

  CPCM no CPCM CPCM no CPCM CPCM no CPCM  

27 H 1.82 2.01 1.94 2.17 2.00 1.90 1.92 

27 H 2.52 2.24 2.49 2.18 2.23 2.62 1.92 

29 H 1.40 1.42 1.43 1.40 1.61 1.34 1.61 

29 H 1.50 1.45 1.50 1.52 1.67 1.84 1.61 

29 H 2.12 2.19 2.20 2.23 2.07 2.10 1.61 

30 H 1.47 1.42 1.28 1.32 1.48 1.44 1.44 

30 H 1.80 1.72 1.60 1.69 1.57 1.82 1.54 

31 H 1.52 1.50 1.50 1.51 1.54 1.52 1.47 

31 H 1.68 1.82 1.57 1.55 1.59 1.59 1.47 

32 H 3.40 3.57 3.35 3.57 3.56 3.62 3.48 

32 H 3.71 3.74 3.63 3.79 3.78 3.98 3.71 
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9.3.2 GYM E (12) 

Table 9.2: Simulated and measured chemical shifts of GYM E. 

No. Nuc. C-4: S; C-19: R C-4, C-19: S C-4: R; C-19: S measured 

1 C 174.2 173.8 174.5  

2 C 136.3 136.0 137.8  

3 C 149.2 149.3 149.3 149.8 

4 C 81.4 80.5 80.4 81.0 

5 C 132.9 133.9 134.6  

6 C 141.8 142.3 144.6  

7 C 43.8 43.8 43.3 44.5 

8 C 30.6 31.3 31.0 30.3 

9 C 73.2 74.3 74.4 74.9 

10 C 84.4 85.7 85.5 84.5 

11 C 26.0 28.5 28.9 29.0 

12 C 28.6 27.6 27.5 25.2 

13 C 83.5 81.7 81.8 81.1 

14 C 81.1 81.7 82.1 81.6 

15 C 30.1 29.5 29.7 26.4 

16 C 33.0 30.3 30.0 29.7 

17 C 85.7 82.9 83.1 82.1 

18 C 164.0 161.5 163.2  

19 C 69.7 74.3 74.2 73.4 

20 C 27.7 33.0 32.1 36.9 

21 C 28.6 28.3 28.6 32.4 

22 C 179.4 178.7 179.2  

23 C 46.0 46.3 46.3  

24 C 36.9 35.8 35.4 30.3 

25 C 20.5 20.0 20.0 19.9 

26 C 10.0 7.9 9.5 10.7 

27 C 15.0 14.6 14.3 17.3 

29 C 107.4 106.6 106.9 109.2 

30 C 29.1 28.9 29.0 25.2 

31 C 20.3 19.2 18.8 20.2 

32 C 50.1 50.2 49.9 50.3 

3 H 6.74 6.88 6.74 6.93 

4 H 5.86 5.81 5.85 5.88 
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No. Nuc. C-4: S; C-19: R C-4, C-19: S C-4: R; C-19: S measured 

7 H 3.32 3.11 3.23 3.11 

8 H 1.47 1.31 1.23 1.22 

8 H 1.60 1.97 1.90 1.74 

9 H 3.96 3.46 3.47 3.66 

10 H 4.32 4.04 4.03 3.92 

11 H 1.81 1.82 1.88 1.74 

11 H 1.88 2.04 2.09 1.74 

12 H 1.71 1.72 1.73 1.52 

12 H 1.99 2.13 2.09 1.73 

13 H 3.71 3.96 3.96 4.12 

14 H 4.15 4.07 4.11 3.89 

15 H 1.99 1.77 1.80 1.56 

15 H 2.12 2.23 2.29 1.76 

16 H 2.03 2.23 2.25 1.84 

16 H 2.32 2.25 2.25 1.84 

17 H 4.96 4.92 4.94 4.21 

19 H 4.62 4.72 4.70 4.58 

20 H 1.61 1.85 1.77 2.36 

20 H 2.40 2.40 2.41 2.36 

21 H 2.20 2.19 2.25 2.79 

21 H 2.88 2.34 2.43 2.79 

24 H 1.19 1.24 1.08 1.30 

24 H 1.78 1.64 1.75 1.51 

25 H 1.54 1.57 1.70 1.42 

25 H 2.07 1.88 1.86 1.88 

26 H 1.85 1.86 1.90 1.85 

26 H 1.96 1.91 2.01 1.85 

26 H 1.96 2.21 2.03 1.85 

27 H 1.70 1.74 1.62 2.03 

27 H 2.06 1.83 2.05 2.03 

27 H 2.16 2.22 2.19 2.03 

29 H 4.96 5.11 5.13 5.00 

29 H 5.01 5.34 5.28 5.69 

30 H 1.37 1.35 1.24 1.62 

30 H 1.94 1.85 1.77 1.72 

31 H 1.47 1.55 1.54 1.24 



Supporting Information’s    191 
 

191 
 

No. Nuc. C-4: S; C-19: R C-4, C-19: S C-4: R; C-19: S measured 

31 H 1.51 1.67 1.62 1.36 

32 H 3.45 3.71 3.69 3.30 

32 H 3.84 3.78 3.82 3.75 
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9.3.3 13-desmethyl SPX C (4) 

Table 9.3: Simulated and measured chemical shifts of 13-desmethyl SPX C (measured data taken from Hu 
et al. 2001). 

No. Nuc. C-4: S C-4: R C-4: S cation C-4: R cation measured* 

  no CPCM CPCM CPCM CPCM CPCM  

1 C 173.1 176.3 175.5 172.2 171.6 176.8 

2 C 135.6 131.7 131.9 129.7 130.3 131 

3 C 148.0 153.1 154.1 150.0 150.4 149.5 

4 C 81.6 84.1 82.3 82.5 81.0 82 

5 C 131.1 126.6 126.3 125.3 124.5 126.4 

6 C 139.1 140.8 144.0 136.7 140.2 133.2 

7 C 51.4 50.5 50.5 51.1 51.0 48.1 

8 C 123.2 125.3 125.6 117.8 117.1 122.5 

9 C 148.6 145.6 145.1 146.3 146.0 146 

10 C 77.8 79.4 79.1 76.6 76.3 76.8 

11 C 40.6 43.7 43.6 40.0 40.1 45.2 

12 C 83.7 81.0 80.4 82.9 82.9 79.8 

13 C 32.4 31.2 31.0 33.5 33.3 32.8 

14 C 38.1 39.3 39.3 37.6 37.6 38.2 

15 C 121.6 120.7 120.2 119.2 119.0 118.1 

16 C 34.5 34.3 34.2 34.6 34.7 35.2 

17 C 31.1 31.8 31.7 32.5 32.8 32.1 

18 C 116.5 114.3 113.9 112.3 112.2 112.2 

19 C 71.7 72.3 72.0 71.8 71.6 71.1 

20 C 36.9 36.6 36.5 36.5 36.5 35.7 

21 C 28.7 28.5 28.4 29.0 28.9 29.9 

22 C 70.1 69.4 69.2 68.6 68.6 69.1 

23 C 47.8 46.9 47.0 47.0 46.6 46.3 

24 C 155.2 155.1 154.8 149.8 149.6 145.6 

25 C 33.4 35.0 35.2 33.1 32.9 34.6 

26 C 20.9 21.3 22.5 20.5 20.5 21.8 

27 C 34.4 35.0 35.1 36.4 36.2 36 

28 C 179.0 179.5 179.0 204.1 203.7 201.3 

29 C 52.7 53.3 52.9 54.8 55.0 52.4 

30 C 37.4 37.3 37.0 36.5 36.4 36.7 

31 C 36.3 37.0 36.6 37.6 37.7 37.5 
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No. Nuc. C-4: S C-4: R C-4: S cation C-4: R cation measured* 

  no CPCM CPCM CPCM CPCM CPCM  

32 C 42.5 42.5 42.4 40.2 40.0 38.8 

33 C 53.5 53.9 53.6 51.8 51.7 51.8 

34 C 32.5 32.4 32.4 34.9 34.9 32.4 

35 C 19.7 19.8 21.5 21.3 23.5 20.3 

36 C 9.9 9.7 9.9 11.1 11.2 10.5 

37 C 15.7 16.5 17.1 17.3 17.9 16.7 

38 C 14.4 10.1 9.9 16.2 15.9 12.9 

40 C 18.4 18.7 18.7 19.4 19.2 22.7 

41 C 107.4 105.3 105.6 105.1 104.9 112.6 

42 C 16.8 17.6 17.4 17.6 17.4 18.9 

43 C 18.2 18.4 18.2 20.0 20.0 20.1 

3 H 6.63 6.96 6.99 6.90 6.95 7.13 

4 H 5.75 5.97 5.96 5.92 5.89 5.98 

7 H 3.59 3.58 3.59 3.72 3.74 3.78 

8 H 5.19 5.20 5.22 4.95 4.99 5.16 

10 H 4.26 4.01 4.00 4.22 4.21 4.15 

11 H 1.70 1.46 1.41 1.33 1.34 1.37 

11 H 1.86 2.31 2.35 2.00 2.00 2.25 

12 H 4.24 4.21 4.20 4.23 4.22 4.30 

13 H 1.97 1.78 1.76 1.80 1.80 1.70 

13 H 2.05 2.20 2.21 2.11 2.11 2.27 

14 H 1.78 2.04 2.03 1.83 1.84 1.95 

14 H 1.99 2.13 2.12 1.96 1.95 2.29 

16 H 1.89 2.14 2.13 2.02 2.02 2.07 

16 H 2.56 2.29 2.28 2.29 2.29 2.21 

17 H 1.67 1.71 1.72 1.61 1.61 1.79 

17 H 2.22 2.20 2.19 2.14 2.17 2.20 

20 H 1.52 1.53 1.53 1.45 1.43 1.49 

20 H 1.57 1.64 1.63 1.54 1.53 1.81 

21 H 1.16 1.25 1.26 1.22 1.22 1.28 

21 H 1.57 1.48 1.51 1.36 1.36 1.58 

22 H 3.96 3.91 3.89 3.77 3.80 3.97 

23 H 1.99 2.08 2.08 2.01 2.01 2.06 

23 H 2.44 2.35 2.36 2.27 2.27 2.41 

25 H 1.88 1.58 1.66 1.50 1.48 1.83 
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No. Nuc. C-4: S C-4: R C-4: S cation C-4: R cation measured* 

  no CPCM CPCM CPCM CPCM CPCM  

25 H 1.94 2.00 1.96 2.14 2.16 2.05 

26 H 1.13 1.21 1.24 1.79 1.81 1.83 

26 H 2.47 2.06 2.00 1.89 1.84 2.01 

27 H 2.08 2.09 2.11 2.73 2.76 2.82 

27 H 2.25 2.37 2.37 2.79 2.79 3.10 

30 H 1.59 1.53 1.46 1.79 1.73 1.79 

30 H 1.66 1.66 1.62 1.80 1.75 2.01 

31 H 1.26 1.12 1.09 1.15 1.15 1.04 

32 H 1.27 1.31 1.30 1.54 1.53 1.67 

33 H 3.66 3.41 3.40 3.34 3.30 3.55 

33 H 3.75 3.73 3.71 3.95 3.89 4.18 

34 H 1.40 1.47 1.51 1.57 1.59 1.67 

34 H 1.84 1.75 1.76 1.89 1.87 1.98 

35 H 1.46 1.54 1.65 1.69 1.83 1.72 

35 H 2.37 2.17 1.97 2.24 2.01 2.27 

36 H 1.87 1.87 1.90 1.78 1.82 1.90 

36 H 1.87 1.96 1.93 1.84 1.86 1.90 

36 H 1.93 1.96 1.97 1.89 1.86 1.90 

37 H 1.50 1.63 1.77 1.41 1.38 1.74 

37 H 1.70 1.67 1.79 1.65 1.59 1.74 

37 H 1.77 1.94 1.86 1.87 2.11 1.74 

38 H 1.78 1.85 1.80 1.75 1.68 1.91 

38 H 2.00 1.95 1.99 1.94 2.02 1.91 

38 H 2.33 1.97 2.01 2.13 2.15 1.91 

40 H 0.83 1.06 0.96 0.85 0.91 1.20 

40 H 1.04 1.19 1.24 1.14 1.01 1.20 

40 H 1.48 1.24 1.28 1.21 1.29 1.20 

41 H 4.71 4.67 4.68 4.71 4.72 4.81 

41 H 4.81 4.80 4.79 4.81 4.81 4.92 

42 H 0.99 0.96 1.01 0.67 0.89 1.05 

42 H 1.08 1.04 1.02 1.04 0.92 1.05 

42 H 1.19 1.16 1.10 1.15 1.01 1.05 

43 H 0.80 0.89 0.82 0.70 0.83 1.11 

43 H 0.99 0.93 0.94 1.04 0.98 1.11 

43 H 1.13 1.21 1.24 1.33 1.27 1.11 
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9.3.4 20-Hydroxy-13,19-didesmethyl SPX C (13) 

Table 9.4: Simulated and measured chemical shifts of 20-Hydroxy-13,19-didesmethyl SPX C. 

No. Nuc. C-4, C-20: S C-4: R, C-20: S C-4: S, C-20: R measured 

1 C 168.6 167.9 169.1 175.7 

2 C 132.6 133.0 133.1 130.0 

3 C 143.8 145.5 144.4 148.3 

4 C 79.8 78.5 80.3 80.9 

5 C 128.5 127.4 129.5 124.9 

6 C 134.3 139.4 134.8 133.5 

7 C 49.0 51.3 50.7 47.6 

8 C 125.7 120.9 123.1 123.6 

9 C 143.5 144.3 146.0 143.5 

10 C 79.0 76.4 73.3 76.4 

11 C 45.3 41.0 42.8 45.4 

12 C 79.2 82.4 77.8 79.4 

13 C 30.3 32.6 31.9 31.8 

14 C 37.0 37.6 38.9 37.2 

15 C 118.3 119.7 120.7 117 

16 C 35.5 33.7 33.3 34.8 

17 C 36.6 33.4 32.8 35.5 

18 C 113.4 112.8 111.9 110.3 

19 C 72.0 69.5 69.4 71.3 

20 C 70.8 70.7 71.1 69.3 

21 C 37.2 36.8 37.2 38.4 

22 C 64.4 63.7 63.0 63.7 

23 C 49.2 47.8 48.4 46.9 

24 C 150.0 150.7 150.6 147.5 

25 C 36.6 33.6 35.2 35.6 

26 C 24.3 21.8 21.9 23.0 

27 C 36.1 34.4 35.2 34.9 

28 C 172.9 173.6 173.4 174.4 

29 C 51.9 51.8 52.3 52.7 

30 C 36.6 37.5 37.3 37.5 

31 C 35.8 35.9 36.1 35.8 
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No. Nuc. C-4, C-20: S C-4: R, C-20: S C-4: S, C-20: R measured 

32 C 41.9 42.7 42.5 40.6 

33 C 52.4 53.0 53.2 52.8 

34 C 31.9 32.5 32.5 31.4 

35 C 19.2 21.3 20.0 19.2 

36 C 10.1 11.1 10.7 10.7 

37 C 15.8 17.2 16.6 16.7 

38 C 9.2 15.3 16.5 12.6 

41 C 107.6 105.3 106.7 110.6 

42 C 17.3 18.3 18.3 20.1 

43 C 18.1 19.1 18.8 20.0 

3 H 6.76 6.71 6.66 7.00 

4 H 5.87 5.89 5.78 5.82 

7 H 3.66 3.80 3.74 3.39 

8 H 5.49 5.33 5.40 5.25 

10 H 4.07 4.37 4.27 4.38 

11 H 1.69 1.83 1.85 1.66 

11 H 2.47 2.02 1.86 2.73 

12 H 4.58 4.40 4.61 4.71 

13 H 1.83 2.04 1.96 2.16 

13 H 2.36 2.26 2.10 2.16 

14 H 2.21 1.99 2.06 1.77 

14 H 2.22 2.31 2.41 1.96 

16 H 2.05 2.08 1.97 2.10 

16 H 2.39 2.61 2.68 2.30 

17 H 2.37 1.91 1.85 2.19 

17 H 2.37 2.63 2.64 2.50 

19 H 3.41 3.34 3.32 3.68 

20 H 3.89 3.88 3.87 4.18 

21 H 1.45 1.45 1.45 1.36 

21 H 2.27 2.13 2.16 2.06 

22 H 4.19 4.22 4.14 4.54 

23 H 2.30 2.17 2.27 2.29 

23 H 2.65 2.68 2.61 2.69 

25 H 1.80 2.09 1.52 1.75 

25 H 2.39 2.18 2.37 2.55 

26 H 1.50 1.35 1.42 1.46 
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No. Nuc. C-4, C-20: S C-4: R, C-20: S C-4: S, C-20: R measured 

26 H 2.29 2.71 2.62 2.47 

27 H 2.25 2.32 2.36 2.10 

27 H 2.42 2.45 2.38 2.30 

30 H 1.76 1.64 1.77 1.47 

30 H 1.82 1.71 1.86 1.47 

31 H 1.34 1.41 1.40 1.22 

32 H 1.46 1.40 1.48 1.25 

33 H 3.86 3.81 3.81 3.61 

33 H 3.89 3.84 3.85 3.67 

34 H 1.57 1.71 1.60 1.32 

34 H 1.98 2.00 2.05 1.64 

35 H 1.64 2.07 1.68 1.47 

35 H 2.52 2.08 2.55 2.07 

36 H 2.06 2.06 2.07 1.85 

36 H 2.09 2.07 2.11 1.85 

36 H 2.14 2.11 2.13 1.85 

37 H 1.83 1.62 1.64 1.53 

37 H 1.92 1.74 1.86 1.53 

37 H 1.93 2.40 2.05 1.53 

38 H 2.01 1.69 2.15 1.98 

38 H 2.03 2.35 2.23 1.98 

38 H 2.21 2.69 2.57 1.98 

41 H 4.97 4.88 4.89 4.81 

41 H 5.06 4.94 4.96 4.83 

42 H 1.23 1.27 1.31 1.29 

42 H 1.32 1.35 1.37 1.29 

42 H 1.34 1.38 1.39 1.29 

43 H 1.08 0.94 0.99 0.85 

43 H 1.22 1.17 1.29 0.85 

43 H 1.24 1.29 1.32 0.85 

 

 


