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Abstract

Sea ice deforms constantly under the forcing of winds and ocean currents.

Eventually the ice cover of the Arctic Ocean breaks into a multitude of ice

floes. Strips of open ocean, so-called leads, and pressure ridges, where the

collision of floes piled up the ice, are found along the floe boundaries. These

features have a strong impact on the interaction of sea ice with the atmo-

sphere and the ocean, as they affect heat loss and surface drag. Currently,

climate models do not resolve leads and pressure ridges in simulated sea ice

fields due to their coarse resolution. They parameterize the effects of leads

on the Arctic climate, if at all.

The goal of this thesis is to develop Arctic simulations that reproduce

leads sufficiently to be used in climate simulations. By decreasing the hori-

zontal grid-spacing, a numerical ocean sea-ice model is shown to resolve leads

explicitly. To test how realistic these lead-resolving sea-ice simulations are,

the following research questions are addressed: (1) what are good metrics to

evaluate the simulated leads with observational data? (2) Which observed

characteristics of sea ice deformation and deformation features are repro-

duced by the model?

In a first step, the sea ice deformation in a 1-km lead-resolving sea-ice

simulation is analyzed with a spatio-temporal scaling analysis. The simu-

lated sea ice deformation is strongly localized in failure zones and dominated

by spontaneous fracture. This heterogeneity and intermittency of sea ice

deformation shows that the simulation captures the fracture processes that

form leads.

In a second step, two new algorithms are described that detect and track

leads and pressure ridges, combined into Linear Kinematic Features (LKFs).

Both algorithms are applied to deformation data observed from satellite to

establish a data set of deformation features that can be used as a reference

in model evaluation. LKFs in two lead-resolving sea-ice simulations are ex-
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tracted with the same algorithms, and found to agree with the LKF data set

with respect to their spatial characteristics and temporal evolutions.

In conclusion, high resolution sea-ice simulations can explicitly resolve

leads. These simulations reproduce the characteristics of sea ice deforma-

tion and the representation of LKFs that are both observed from satellite.

In future work, these simulations could be used as prototypes for the con-

figuration of the sea-ice component in a climate model to directly simulate

air-ice-ocean interaction processes in the Arctic.
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Zusammenfassung

Meereis ist ständiger Deformation durch Winde und Ozeanströmungen aus-

gesetzt, die die Eisdecke des Arktischen Ozeans in eine Vielzahl von Schollen

brechen. Zwischen einzelnen Schollen finden sich sowohl langgezogene Strei-

fen offenen Ozeans, auch Meereisrinnen genannt, als auch Presseisrücken, die

sich durch das Aufeinanderschieben von Eis bei der Kollision zweier Eisschol-

len bilden. Meereisrinnen und Presseisrücken sind für die Wechselwirkungen

zwischen Eis, Atmosphäre und Ozean von großer Bedeutung, da sie z.B.

die Wärmeflüsse und den Strömungswiderstand ändern. Klimamodelle bilden

momentan keine Meereisrinnen und Presseisrücken ab, da ihre Auflösung zu

niedrig ist. Wenn überhaupt beschreiben sie diese Effekte durch Parameteri-

sierungen.

Das Ziel dieser Arbeit ist eine Arktische Simulation zu entwickeln, die

Meereisrinnen abbildet und in Klimamodellen verwendet werden könnte.

Durch Reduzieren der horizontalen Gitterweite können numerische Ozean-

Meereismodelle Meereisrinnen explizit auflösen. Wie realistisch diese rinnenauf-

lösenden Meereissimulationen sind, wird in folgenden Forschungsfragen be-

arbeitet: (1) Was sind geeignete Methoden um die simulierten Meereisrinnen

mit Beobachtungsdaten zu vergleichen? (2) Wie gut werden Meereisdeforma-

tion, Meereisrinne und Presseisrücken im Modell wiedergegeben?

Meereisdeformation wird in einer rinnenauflösenden Meereissimulation

mit einer Gitterweite von 1 km simuliert und auf räumliche und zeitliche

Skalierung hin untersucht. Die simulierte Meereisdeformation zeichnet sich

durch starke Lokalisierung und spontanes Bruchverhalten aus. Die nachge-

wiesene Heterogenität und Intermittenz von Meereisdeformation zeigt, dass

das Modell in der Lage ist die Bruchprozesse, die Meereisrinnen bilden, kor-

rekt darzustellen.

Im nächsten Schritt werden zwei neue Algorithmen beschrieben, die Meer-

eisrinnen und Presseisrücken zu Linear Kinematic Features (LKFs) zusam-
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menfassen, diese in Satellitendaten filtern und über ihre gesamte Lebens-

zeit verfolgen. Satellitengestützte Meereisdeformationsdaten werden mit Hilfe

beider Algorithmen prozessiert, um einen LKF-Datensatz zur Modellevalua-

tion zu erstellen. Die LKFs in zwei rinnenauflösenden Meereissimulationen

werden mit diesen Algorithmen erfasst. Diese stimmen mit dem LKF Daten-

satz hinsichtlich räumlich und zeitlicher Eigenschaften von LKFs weitestge-

hend überein.

Als Fazit dieser Arbeit bleibt, dass hohe Auflösungen ein Abbilden von

Rinnen in Meereismodellen ermöglichen und damit die in Satellitendaten

beobachteten Eigenschaften von Meereisdeformation wiederzugeben. In Wei-

terführung dieser Arbeit könnten diese rinnenauflösenden Meereissimulatio-

nen in Klimamodelle integriert werden, um damit Wechselwirkungen zu si-

mulieren, die eng mit Meereisrinnen verbunden sind.
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1. Introduction

”The ice grew worse and worse, and we got no way.

Ridge after ridge, and nothing but rubble to travel

over. ... It was a veritable chaos of ice-blocks,

stretching as far as the horizon.”

Fridtjof Nansen in Nansen (1897)

The North Pole has been one of the last unvisited spots on Earth that cast

its spell on humans. The North Pole is located in a sea — the Arctic Ocean.

The surface of the Arctic Ocean is frozen due to the low temperatures, form-

ing a layer of ice. Around the beginning of the 20th century courageous ad-

venturers with bold ideas headed North, and were challenged by the extreme

environment and the harsh weather conditions. Fridtjof Nansen and his com-

panion Hjalmar Johansen had traveled with their ship “Fram” 18month with

the ice1, before they left it behind in March 1895 to begin their march to

the pole. The first few days they were able to ski on flat ice, however as

they expand into the ice, skiing conditions became worse. After 25 days of

travel, Nansen and Johansen were facing strongly deformed ice that Nansen

described in the citation above on the evening before they needed to turn

back. The ice was piled up in long ridges such strongly as a results of sea ice

deformation that a passage further North was impossible.

Sea ice deformation is driven by wind and ocean currents that exert drag

forces on the ice. These forces move2, deform, and eventually break the

1Fram drifted frozen in the ice from the New Siberian Islands to Spitzbergen, but
missed the Pole by 450 km (Nansen, 1897).

2Nansen, actually, made use of this wind-driven motion. Dominant wind patterns
drive an ice circulation from the East Siberian Sea across the North Pole to Fram Strait.
This ice stream is called Transpolar drift.
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CHAPTER 1. INTRODUCTION

Figure 1.1: Sea ice floes at different scales in: (left) a satellite image of the
Bering Strait captured by MODIS in May 2000 (NASA earth observatory3), and
(right) an areal photo of ice floes in the Weddel Sea (Stefan Hendricks/IceCam).

ice into a multitude of ice floes. The size of these floes ranges from a few

decimeters to multiple kilometers (Fig. 1.1). In converging ice motions, the

collision of floes piles up the ice along the floe boundary and so-called pressure

ridges are formed. In contrast, floes are pushed apart after failure in diverging

forcing conditions and stripes of open ocean are exposed. These narrow

regions where the ocean is not covered by ice are referred to as leads. The

result of deformation is omnipresent in the ice cover in forms of floes, leads,

and pressure ridges.

The fact that sea ice is an agglomeration of floes alters its interaction

with other climate components, such as the ocean and the atmosphere. Dur-

ing wintertime, sea ice acts as an insulator between the warm ocean and

the cold atmosphere. Thereby, sea ice and especially its snow cover pro-

gressively reduce the growth rate of ice as it gets thicker. In a lead the

ocean is in direct contact with the atmosphere, so that strong heat loss is

initiated and consequently new ice is formed. The dark ocean in a lead ab-

sorbs more short-wave radiation than bright ice caused by the lower albedo

of open ocean. A comparably warmer ocean and the lateral melting along

the floe boundary accelerates the erosion of the ice floes in summer (Horvat

et al., 2016). This feedback accelerates the retreat of the ice edge when the

swell of Arctic storms is breaking the ice (Asplin et al., 2012). In addition,

short-wave radiation penetrating the ocean is a source of energy for primary

production (Nomura et al., 2018). Furthermore, pressure ridges have also an

effect on Arctic climate system: (1) pressure ridges increase the surface and

3https://earthobservatory.nasa.gov/images/657/ [Status: 25.3.2019]
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underwater roughness of sea ice, which consequently alters the form drag

(Arya, 1973; Tsamados et al., 2014), (2) snowdrifts form near pressure ridges

(Iacozza & Barber, 1999), and (3) the keels of pressure ridges are grounded

in shallow regions of the Arctic Basin, so that stable and immobile ice along

the coast, so-called fast-ice, is formed (Mahoney et al., 2007; Lemieux et al.,

2015).

The role of sea ice changes in the context of global warming. The surface

temperature in Arctic regions rises two times faster than the global average,

which is referred to as Arctic amplification. Higher temperatures have lead

to a rapid decrease in the Arctic sea ice extent over the past decades. In the

period from 1979 to 2012 the minimum sea ice extent in September dropped

by more than 30% (Stroeve et al., 2012) and the sea ice volume reduced

by even 70-80% (Overland & Wang, 2013). The thinning results in weaker

ice that is more prone to deformation. Indeed, the mean drift of sea ice is

accelerated by 17% in winter and 8.5% in summer, in conjunction with an

increase in deformation rates of 50% between 1979 and 2007 (Rampal et al.,

2009). The increased fracturing of the ice cover drives a further retreat of

the ice cover because increased absorption of short-wave radiation and lateral

melting intensify the melting of the sea ice. The Arctic Ocean is expected

to become ice-free during summer within the first half of the 21st century

(Overland & Wang, 2013).

The opening of the Arctic Ocean is “not just the best opportunity of

our generation, but of the last 12,000 years”4 says Scott Minerd, the chief

investment officer of a large global investment and advisory firm5. He referred

to the increasing economic interest in the Arctic caused by the decline of

sea ice coverage such as: (1) shipping through the North Sea Route or the

Northwest passage will be feasible under climate change conditions (Smith

& Stephenson, 2013) and Arctic shipping increases already today (Egúıluz

et al., 2016). (2) Considerable amounts of the global oil and gas resources

hide underneath the Arctic Ocean (Bird et al., 2008). (3) Arctic tourism is

growing (Hall & Saarinen, 2010; Maher, 2017). These economic activities and

the Arctic climate change have a strong impact on indigenous communities

and the Arctic environment and wildlife. Thus, reliable forecast systems of

4The Sydney Morning Herald, May 3rd 2014, https://www.smh.com.au/business/
arctic-investment-the-best-opportunity-of-last-12000-years-20140502-37lv2.

html [Status: 26.3.2019]
5Guggenheim Partners LLC, https://www.guggenheimpartners.com [Status:

20.4.2019]
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CHAPTER 1. INTRODUCTION

the polar regions are strongly needed, but those currently lag behind the skill

of mid-latitude forecasts due to lack of observational data (Jung et al., 2016).

Skillful sea-ice predictions are useful for shipping but also they are required

to fully capture the impact of sea-ice on weather forecasts (Jung et al., 2016;

Chevallier et al., 2019). The forecasting community has so far mainly focused

on seasonal to decadal time-scales (Guemas et al., 2016) and Pan-Arctic

metrics like minimum sea-ice extent in September (Stroeve et al., 2014).

While such forecasts might be of interest for longterm strategic planning,

necessary daily forecast of sea ice are still in the exploratory stage. Especially,

short-term forecasts of regional drift, leads, and ice pressure are of particular

relevance for Arctic shipping.

In summary, floes, leads, and pressure ridges are distinct features of sea

ice that play a leading role in the atmosphere-ice-ocean interaction and are

prerequisites for improving short-term regional sea-ice forecasts. In this the-

sis, I focus on the potential of state-of-the-art sea-ice models to resolve leads

in sea ice and present different methods to evaluate these features. The

remainder of this introduction provides a brief overview of the sea-ice obser-

vations, the sea-ice modeling, and the evaluation of sea-ice models, all three

with a focus on sea-ice deformation features, followed by an outline of the

scope and structure of this thesis.

1.1 Sea ice observations

The earliest sea-ice models were mostly constraint by in-situ observations on

sea ice. Large field campaigns like the Arctic Ice Dynamics Join Experiment

(AIDJEX) offered new insights and process understanding of the dynamics

and thermodynamics of ice. Nowadays, in-situ observations are still essential

to fill knowledge gaps and for ground-truthing of remotely sensed data. The

large spatial and temporal coverage of satellite data allow us to evaluate

and adjust parameters in large-scale simulations. In the following section,

I summarize satellite-based data sets of leads and sea ice deformation that

could be useful to evaluate lead-resolving sea-ice simulations.

The small width of leads and pressure ridges hinders their observation

from space. Leads can be extracted by separating the thin stripes of open

ocean from sea ice in very high resolution satellite imagery. First data sets

were derived by hand-picking leads in visible range imagery (Walter & Over-
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1.1. SEA ICE OBSERVATIONS

land, 1993; Miles & Barry, 1998) or automated detection of open-water

pixels in advanced very high resolution radiometer (AVHRR) (Lindsay &

Rothrock, 1995) and SAR imagery (Banfield, 1992; Van Dyne & Tsatsoulis,

1993; Van Dyne et al., 1998). These data set are case-studies with limited use

for model evaluation due to their small coverage in space and time. The com-

bination of fully automated detection algorithms with the continuous acquisi-

tion of satellite imagery enables us to derive long-term data sets of leads from

passive microwave (Röhrs & Kaleschke, 2012; Bröhan & Kaleschke, 2014),

thermal (Willmes & Heinemann, 2016), and radar altimeter data (Wernecke

& Kaleschke, 2015). Recently, attempts have been made to detect leads

directly from SAR-images (Murashkin et al., 2018). All data sets provide

estimates of lead densities, while some studies also yield lead orientations

(Miles & Barry, 1998; Bröhan & Kaleschke, 2014) and lead widths (Lindsay

& Rothrock, 1995; Wernecke & Kaleschke, 2015).

While the studies above identified leads as open ocean, the second method

to obtain lead observations is based on the dynamic origin of leads and pres-

sure ridges. Sea-ice deformation is derived from high resolution sea ice drift

fields. Leads and pressure ridges are marked by high deformation dates. Due

to their elongated shape they are referred to as Linear Kinematic Features

(LKFs). Sea ice drift is determined by cross-correlating tracking points in

two consecutive SAR images (Kwok, 2010). Deformation events are recorded

in the relative displacement of the tracked points. These imprints are inde-

pendent of the width of the deformation zone. SAR images offer the high

spatial resolution that is needed to provide drift estimates at 10-km reso-

lution. In addition, they are not restricted by poor weather or nighttime.

The first operational deformation data set of this kind was the RADARSAT

geophysical processor system (RGPS, Kwok, 1998) covering the Amerasian

basin of the Arctic Ocean during the years 1996 to 2008. This data set was

continued using ENVISAT SAR data in the ENVISAT Geophysical Processor

System (EGPS)6 and GlobICE7 for years 2007 to 2012. A follow-up oper-

ational data set is based on Sentinel-1 SAR images (Pedersen et al., 2015).

The temporal sampling rate of these data sets is limited by the repeat cycle

of the satellite, i.e. the time until the satellite overflies the same point, which

6Arctic and Antarctic ice drift from Envisat is available at http://rkwok.jpl.nasa.
gov/envisat/index.html [Status: 8.4.2019] and the derivation of the data set is funded
by NASAs MEaSUREs program.

7GlobICE - Sea ice dynamics for climate research: http://www.globice.info/index.
php [Status: 8.4.2019]
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CHAPTER 1. INTRODUCTION

is 3 days for RGPS and GlobICE and 1 day for EGPS and Sentinel data.

Drift estimates at higher sampling rate of 10min are recorded by ship radars

(Oikkonen et al., 2017) but the spatial coverage is limited to the vicinity of

the ships. Buoy records of the International Arctic Buoy Program (IABP)

also provide drift information at high sampling rates of 1 hour. These data

cover the entire Arctic and reach back until 1979 but have a sparse coverage,

which makes a direct retrieval of deformation data difficult.

1.2 Sea ice modeling

Sea ice models describe the relevant processes that determine the evolution of

sea ice by a set of mathematical equations. The first numerical sea-ice model

was a 1D-models that described the thermodynamics of a column of ice, that

is the heat transport through the ice and snow and the melting and freezing

of the ice (Maykut & Untersteiner, 1971). To date thermodynamic sea-ice

models are still the previously described column models with most of them

including more detailed descriptions, such as considering melt ponds (Taylor

& Feltham, 2004) or adding a vertically variable salinity profile (Turner &

Hunke, 2015). Following AIDJEX, Coon et al. (1974) introduced the first

dynamic sea-ice model that was able to describe the motion and deformation

of sea-ice due to external forces. In the following section I introduce the

dynamical part of sea-ice models, which will have a special relevance in the

remainder of this thesis. For a full review on sea-ice modeling — thermody-

namics and dynamics— I refer the interested reader to Hunke et al. (2010),

Leppäranta (2011), and Lemieux et al. (2017).

Generally, two different approaches exist to model the dynamics of sea

ice as a multitude of ice floes: (1) the motion of individual floes and their

interaction are simulated individually in so-called discrete element sea-ice

models (Hopkins & Thorndike, 2006; Herman, 2016). (2) Sea-ice is described

as a continuum with material properties representative of the agglomeration

of floes in a certain control volume, e.g. a grid cell in the model (Coon

et al., 1974; Hibler, 1979). Nowadays, sea-ice models based on the continuum

assumption are used widely in Global Climate Models (GCMs) due to their

numerical efficiency. Discrete element models are computationally expensive

and challenging to initialize. Thus, they are mainly used in regional studies

or idealized set-ups, e.g. to study ice-wave interaction (Herman, 2017). In

6



1.2. SEA ICE MODELING

the following, I describe the details of sea-ice models that use the continuum

assumption.

The contrast between the sea-ice thickness of a few meters and the basin-

scale extent of sea ice motivates the second major assumption made by these

model (besides the continuum assumption): sea ice can be described as a

vertically integrated 2D continuum where vertical heterogeneity in the ice

are negligible for dynamical processes. The momentum balance of sea ice

reads as follows,

m

(
Du

Dt

)
= −mfk× u+ τa + τo −mg∇H +∇ · σ, (1.1)

where the left hand side describes the change in momentum of the ice with

m as the mass per unit area of the ice and the horizontal ice velocity u.

On the right hand side all forces acting on the ice are summarized: the

Coriolis force (Coriolis parameter f and unit vector normal to the surface

k), the atmospheric τa and oceanic stress τo, the gravitational force due to

the surface tilt (gravitational constant g and the surface height H), and the

ice interaction force given by the divergence of the internal stress tensor σ

(Hibler, 1979; Feltham, 2008).

The rheology of sea ice describes how the ice deforms under given forces

and thereby links the ice velocity to the internal stress in the ice. Nonlinear

plastic rheologies are most commonly used to describe the material prop-

erties of sea ice. Coon et al. (1974) introduced an elastic-plastic rheology

stating that the ice deforms elastically until the forcing stress reaches the ice

strength, in which case the deformation turns plastic. Hibler (1979) proposed

a viscous-plastic (VP) rheology, which has been widely adopted in GCMs due

to its numerical efficiency. This rheology consists of (1) a constitutive law

that relates stress and deformation rates and allows for viscous and plastic

deformation, (2) an elliptical yield curve that encloses all stress states that

lead to viscous deformation, while stress states on the ellipse lead to plastic

deformation, and (3) a normal flow rule directing plastic deformation per-

pendicular to the yield curve. The ice strength is isotropic, i.e. independent

of the direction of external forces, and depends on the gradual coverage of

a grid cell with ice and its mean thickness. These assumptions were made

having large grid cells of the order of 100×100 km size in mind such that each

contains a large amount of floes and leads in all directions.

Classical VP models are successful in representing sea-ice fields at large
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and medium resolution up to 10 km. These coarse resolutions, however, are

not sufficient to resolve the small-scale variation of velocity fields that are

the imprint of leads and pressure ridges (Lindsay et al., 2003; Coon et al.,

2007; Kwok et al., 2008). Various modifications to this rheology have been

suggested to improve the representation of sea-ice deformation, most of which

were based on changing the shape of the yield curve. New rheologies address

especially the preferred deformation along existing leads and weaknesses in

the ice: an anisotropic rheology (EAP) (Wilchinsky & Feltham, 2004), a

elastic-decohesive rheology (Schreyer et al., 2006), or most recently a Maxwell

elasto-brittle rheology (MEB) (Dansereau et al., 2016).

In addition to changes in the rheology, two parameterization handle pres-

sure ridges and the floes in sea-ice models implicitly. The thickness of Arctic

sea ice shows a wide range from thin first-year ice (centimeters to decime-

ters) to thicker multi-year ice (meters) to thick pressure-ridges (around ten

meters). In areas as small as a model grid cell, all of these types can be

present. The VP-model of Hibler (1979), however, divided a grid-cell only

in fractions of open-water and ice with one mean thickness. In contrast, an

active Ice Thickness Distribution (ITD) allows for more ice thickness classes,

such that all ice types are described. Dynamic processes as divergence and

convergence and thermodynamic processes as melting and freezing alter the

ITD and redistribute the ice between the different classes (Thorndike et al.,

1975; Lipscomb et al., 2007). Similarly to its variety in ice thicknesses, a grid

cell also contains floes of different sizes. This floe size distribution (FSD)

can also be parameterized to account for floe-size dependent interaction pro-

cesses, e.g. lateral melting and wave fracturing (Horvat & Tziperman, 2015;

Roach et al., 2018).

Independently of these improvements in modeling the underlying physical

processes, horizontal grid spacing of climate models is decreasing towards

scales that start to resolve large floes and leads. In fact, VP models have the

potential to simulate linear failure lines for a grid spacing smaller than ∼ 5 km

(Hunke et al., 2010; Losch et al., 2014; Hutter, 2015; Wang et al., 2016). In

spite of this potential, it is still unclear if any of these sea ice simulations that

explicitly resolve large floes and leads are realistic and reproduce observed

characteristics of sea ice. It is also unknown which modifications to the model

are needed for lead-resolving sea-ice simulations given the large variety of

suggested methods.
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1.3 Evaluation of sea-ice models

Systematic evaluations of sea-ice models have been based on the compari-

son of large-scale fields like sea ice concentration, thickness, and drift (e.g.,

Nguyen et al., 2011a; Massonnet et al., 2014; Ungermann et al., 2017). Con-

tinuous fields allow for direct point-by-point comparisons of observations and

model outputs. Leads and pressure ridges mark discontinuities in sea-ice

fields that are not necessary co-located in observations and models due to

the chaotic nature of sea-ice fracture. Thus, other means of comparison are

required for the evaluation of these features (Coon et al., 2007).

First simulations showing deformation features have been compared to

observations by qualitative description based on visual inspection (Kwok

et al., 2008) and by assessing the intersection angle of LKFs (Hutchings

et al., 2005). Due to the lack of more quantitative methods, the focus has

changed to statistical methods that evaluate the strong localization of sea-ice

deformation along LKFs (Girard et al., 2009). These metrics make use of

the multi-fractal characteristics of sea-ice deformation in space and time and

determine their degree of heterogeneity and intermittency. These methods

provide detailed information on sea-ice deformation, but direct inferences

about specific characteristics of LKFs are not straightforward.

The position and the temporal evolution of individual LKFs is needed

to deduce and compare specific properties of LKF, such as their length or

lifetime. The visual extraction of leads previously used to describe their

orientation in a regional study (Miles & Barry, 1998) is not feasible in the

context of large-scale model-observations comparison. The automated de-

tection of LKFs is in an exploratory phase (Linow & Dierking, 2017), but

promises to process large amounts of data and allow for a comprehensive

description of LKFs.

1.4 Scope and Structure of this thesis

In this thesis I study the potential of sea-ice models using the classic VP

rheology to resolve leads at very high resolution. Here, very high resolution

refers to simulations having a grid spacing of 1 and 2 km. State-of-the-art

climate simulations use a grid spacing that is one magnitude larger, but

my choice of resolution is meant to be representative of next-level sea-ice
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simulations in the upcoming years. I focus on the VP rheology as it is

used in most climate models. The overall aim of this thesis is to present

lead-resolving sea-ice simulations in a framework that is easily adoptable to

current climate models and to focus on the thorough evaluation of this kind

of simulations. In doing so, I analyze sea-ice deformation — the driver of

failure in the ice — as well as leads and pressure ridges that are the result

of fracturing ice. The latter affect many interactions processes in the Arctic

climate system and are thus of special relevance in climate simulations.

In a first step, I investigate whether sea-ice models using VP-rheology sim-

ulate leads in high resolution set-ups and how the explicitly resolved leads

change the sea-ice deformation fields. I show that sea-ice deformation con-

centrates along resolved fracture lines for sufficiently high model resolution.

By means of a spatio-temporal scaling analysis, I test for the heterogeneity

and intermittency of sea-ice deformation, which describes how strongly de-

formation is localized in failure zones and how irregular the timing of fracture

events is. Both characteristics are prerequisites for any deformation feature

to be resolved in a physically realistic way. A proper spatial distribution and

temporal evolution of leads and pressure ridges is essential to simulate inter-

action processes in climate models, but these characteristics are not validated

by a scaling analysis of sea-ice deformation.

In a second step, I explore new ways to evaluate specific characteristics of

deformation features directly. I outline an algorithm that detects leads and

pressure ridges in sea-ice deformation data and present a method to track the

detected features using drift data. Both algorithms are new. I then apply

my algorithms to the RGPS data set to derive a large-scale reference data

set of LKFs that can be used in model evaluations. Spatial and temporal

characteristics of LKFs, e.g. length, density, or lifetime, are derived from

the RGPS LKF data set. This allows for the first time a comprehensive

description of deformation features.

Finally, I investigate if the extracted LKFs can discriminate between the

realism of different model simulations and hence, if extracting LKFs is a

valuable tool for model evaluation. To this end, two simulations, one using

an active ITD model and one using the classical two ice-class VP-model, are

compared with the RGPS LKF data set regarding the spatial and temporal

characteristics of simulated LKFs. I compare the results to a multi-fractal

scaling analysis testing whether the presented method provides insights com-

plementary to established evaluation methods. With the combination of the
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LKF statistics and the scaling analysis I show that deformation and LKFs

are realistic in my simulations. These simulations can be used in next-level

climate models to explicitly resolve leads and pressure ridges and simulate

related interaction processes.

The key research questions addressed in this thesis can be summarized in

the following way:

Key research questions and goal

• Q1: Can leads and individual floes be resolved with current

sea-ice model that use the continuum assumption?

• Q2: Which aspects of sea ice deformation are reproduced in

lead-resolving sea-ice simulations, i.e. do they capture the

fracture processes that form leads and pressure ridges correctly?

• Q3: What are good metrics to evaluate simulated leads and

pressure ridges with observational data given the chaotic nature

of ice fracture?

• Goal: Present a simulation that reproduces leads and pressure

ridges sufficiently to be used in forceasting systems and to study

interaction processes in climate simulations.

The thesis is structured as follows: In Chapter 2, I investigate the lo-

calization and intermittency of sea-ice deformation in a 1-km lead-resoving

sea-ice simulation to test for an realistic representation of ice fracture. For

this purpose, I perform a spatio-temporal scaling analysis of the simulated

sea-ice deformation as well as of satellite observations, and compare their re-

sults. Chapter 2 has been published in the Journal of Geophysical Research:

Oceans by Hutter, N., Losch. M. & Menemenlis, D. (2018) under the ti-

tle ‘Scaling Properties of Arctic Sea Ice Deformation in a High-Resolution

Viscous-Plastic Sea Ice Model and in Satellite Observations’.

In Chapter 3, I develop two algorithms that detect leads and pressure

ridges in sea-ice deformation data and track them using drift information.
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Both algorithms are applied to the RGPS data set to establish a Pan-Arctic

LKF dataset covering the winters from 1996 to 2008 (Hutter et al., 2019).

This analysis enables a comprehensive description of LKFs. Chapter 3 has

been published in the journal The Cryosphere by Hutter, N., Zampieri,

L. & Losch, M. (2019) under the title ‘Leads and ridges in Arctic sea ice

from RGPS data and a new tracking algorithm’. Both algorithms are open

source and publicly available on github (https://github.com/nhutter/

lkf_tools.git, Hutter, 2019).

In Chapter 4, the LKF detection and tracking algorithms are applied

to two 2-km simulations, where one uses an ITD parametrization and the

other the classical two ice class model. The spatial and temporal statistics

of LKFs are outlined and used to compare the detected and tracked LKFs

with the RGPS data set. In doing so, I test how adapting the description

of the different physical processes that govern sea-ice strength improves the

representation of LKFs. Chapter 4 has been submitted to the journal The

Cryosphere by (Hutter & Losch, 2019) under the title ‘Feature-based com-

parison of sea-ice deformation in lead-resolving sea-ice simulations’.

In Chapter 5, I summarize the main results of this thesis, draw conclu-

sions, and give an outlook for possible future work.

Remark Chapters 2, 3, and 4 constitute unaltered papers which I have com-

piled together with my co-authors. Their individual contributions are acknowl-

edged at the beginning of the respective chapters. I decided to retain the original

manuscripts as published/submitted resulting in small inconsistencies with the rest

of this thesis regarding style, utilization of the first person plural, and abbrevia-

tions.
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2. Scaling properties of Arctic

sea ice deformation in a high-

resolution viscous-plastic sea

ice model and in satellite ob-

servations1

1The content of this chapter has been published in the journal Journal of Geophysical
Research: Oceans by Hutter et al. (2018) under the title ‘Scaling properties of Arctic sea
ice deformation in a high-resolution viscous-plastic sea ice model and in satellite obser-
vations ’. I implemented the scaling analyses and processed the satellite observations. D.
Menemenlis performed the simulation. I analyzed the model output and satellite obser-
vations. M. Losch contributed to the discussion of the results. I prepared the manuscript
with contributions of all co-authors.
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CHAPTER 2. SCALING PROPERTIES OF SEA ICE DEFORMATION

Abstract Sea ice models with the traditional viscous-plastic (VP) rheology

and very small horizontal grid spacing can resolve leads and deformation rates

localized along Linear Kinematic Features (LKF). In a 1-km pan-Arctic sea ice-

ocean simulation, the small scale sea-ice deformations are evaluated with a scaling

analysis in relation to satellite observations of the Envisat Geophysical Processor

System (EGPS) in the Central Arctic. A new coupled scaling analysis for data

on Eulerian grids is used to determine the spatial and temporal scaling and the

coupling between temporal and spatial scales. The spatial scaling of the modeled

sea ice deformation implies multi-fractality. It is also coupled to temporal scales

and varies realistically by region and season. The agreement of the spatial scaling

with satellite observations challenges previous results with VP models at coarser

resolution, which did not reproduce the observed scaling. The temporal scaling

analysis shows that the VP model, as configured in this 1-km simulation, does not

fully resolve the intermittency of sea ice deformation that is observed in satellite

data.

2.1 Introduction

Oriented fractures scatter Arctic sea ice in all seasons. They divide the

ice cover into many ice floes and narrow lineaments of open water (Marko &

Thomson, 1977; Kwok, 2001; Richter-Menge et al., 2002). The fragmentation

of ice is caused by stress resulting from surface wind associated with weather

systems, ocean eddies, geometric boundaries such as the coastline or a fast

ice edge (Richter-Menge et al., 2002), tides (Holloway & Proshutinsky, 2007),

ocean waves (Squire et al., 1995), or swell originating from Arctic storms

(Asplin et al., 2012). Convergent motion in the ice pack forms pressure

ridges whereas stripes of open ocean, so-called leads, develop during divergent

motion. These narrow and long structures are often referred to as Linear

Kinematic Features (LKF) due to their formation by the kinematic processes:

opening, closing, and shear (Kwok, 2001).

Systems of leads in Arctic sea ice are observed across all scales from

aerial photographs to satellite images — pointing to self-similar properties

(or a fractal structure) of sea ice. This impression is supported by the floe

size distribution following a power-law scaling (Rothrock & Thorndike, 1984).
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Power-law scaling was also observed in lead width distributions (Lindsay &

Rothrock, 1995), in fracture and faulting of sea ice (Weiss, 2003), and in sea

ice deformation (Marsan et al., 2004; Rampal et al., 2008; Stern & Lindsay,

2009).

The mean total deformation ϵ̇t at the spatial scale L was found to follow

a power-law,

⟨ϵ̇qt (L)⟩ ∼ L−β(q), (2.1)

with a scaling exponent β (q), which is a quadratic function of the order of

moment q ranging from 0.5 to 3 (Marsan et al., 2004). The quadratic shape

of β (q) suggests multi-fractal characteristics of sea ice deformation (Marsan

et al., 2004). Typical values for the first order moment scaling coefficient

around β (1) ∼ 0.2 for deformation rates were derived from satellite data

(Marsan et al., 2004; Girard et al., 2009; Stern & Lindsay, 2009) and from

buoy data (Hutchings et al., 2011) in winter time. The spatial scaling expo-

nent follows a seasonal cycle mainly driven by the varying ice strength. It

increases during summertime as a result of weaker summer ice being more

prone to local deformation (Stern & Lindsay, 2009).

In addition to spatial scaling properties, temporal scaling properties and

a coupling between temporal and spatial scaling exponents were found for

sea ice deformation derived from the dispersion of buoys:

⟨ϵ̇d (L, τ)⟩ ∼ L−β(τ) ∼ τ−α(L), (2.2)

where the temporal scaling exponent α (L) depends on the spatial scale L and

the spatial scaling exponent β (τ) on the temporal scale τ (Rampal et al.,

2008; Marsan & Weiss, 2010; Oikkonen et al., 2017). A review on scaling

properties of sea ice deformation can be found in Weiss & Dansereau (2017).

Scaling analyses are a useful tool for evaluating small-scale sea ice defor-

mation produced by sea ice models (Girard et al., 2009; Bouillon & Rampal,

2015b; Rampal et al., 2016) because they quantify the strong localization

of deformation in space (heterogeneity) and in time (intermittency), which

can then be compared to the observed localization in satellite (Marsan et al.,

2004; Stern & Lindsay, 2009; Herman & Glowacki, 2012) and buoy data

(Rampal et al., 2008; Hutchings et al., 2011, 2012; Oikkonen et al., 2017).

The scaling characteristics and multi-fractality of deformation rates in a VP

model with 12-km horizontal grid spacing have been found to significantly
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disagree with the scaling laws that were estimated from satellite data and

buoy trajectories (Girard et al., 2009), even though VP models can realis-

tically represent the large-scale sea ice drift velocity fields (Lindsay et al.,

2003; Kwok et al., 2008). Girard et al. (2009) attributed this disagreement

to the fact that the extreme localization of large deformation rate events,

such as structural failure on sub-grid scale, is not properly represented by

the VP rheology.

Girard et al. (2011) introduced the elasto-brittle (EB) rheology, previ-

ously used in rock mechanics simulations, in order to improve the physical

representation of the brittle behavior of sea ice by including a sub-grid scale

damage parameter and elastic interaction in a sea ice models. The EB rheol-

ogy reproduces the strong localization in space (heterogeneity) (Girard et al.,

2011) and in time (intermittency) (Rampal et al., 2016). It has been shown

to be practical in a dynamical and thermodynamical sea ice model (Rampal

et al., 2016) and, especially with the extension to the Maxwell elasto-brittle

rheology (Dansereau et al., 2016), this rheology has the potential to improve

the modeling of LKFs in coupled climate models.

Independently of these improvements in sea-ice rheology, horizontal grid

spacing of climate models is decreasing towards scales that start to resolve

large leads. In fact, VP sea ice model solutions show linear failure lines for a

grid spacing smaller than ∼ 5 km (for example Fig. 2 in Losch et al., 2014).

Further, Wang et al. (2016) compared different satellite products with sea

ice model solutions obtained with an elastic-viscous plastic (EVP) rheology

solver at 4.5-km grid spacing and at first glance found agreement in the

regional and seasonal variation of the lead area fraction. There is, however,

no thorough evaluation of the spatial and temporal scaling properties at

high resolution that would test the characteristic spatial heterogeneity and

intermittency of small scale sea ice deformation in these models.

In this paper, we use model results of a sea-ice ocean model with an

average grid spacing below 1 km in the Arctic to study the effect of resolved

leads on the scaling properties of sea ice deformation in the VP model. To

this end, we implement a scaling analysis, which is a combination of a spatial

(Marsan et al., 2004) and a temporal scaling analysis (Rampal et al., 2008;

Hutchings et al., 2011) for gridded Eulerian data. In doing so, the spatial

and temporal scaling characteristics are computed simultaneously and the

coupling between both is determined. For evaluation we use the ENVISAT

Geophysical Processor System (EGPS) data set. Furthermore, we examine
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the seasonal and regional variability of spatial scaling properties and how they

depend on the ice condition, that is, sea ice concentration and thickness.

2.2 Model and Observations

2.2.1 EGPS Data Set

We use high resolution sea ice drift data from the Envisat Geophysical Pro-

cessor System (EGPS) for evaluation of the model results. The data is avail-

able at http://rkwok.jpl.nasa.gov/envisat/index.html. EGPS is the

successor of the RADARSAT Geophysical Processor System (RGPS) but it

covers different regions (Central Arctic, Canadian Arctic Archipelago, and

Ross Sea in Antarctica) and the temporal sampling rate is one day, instead

of three days for RGPS. In contrast to RGPS, the EGPS is not provided as

an Arctic wide composite but as single drift data sets. Each drift data set is

derived from two overlapping SAR images and is provided on a regular grid

with 10-km grid spacing. Note that the widely-used RGPS data set has a

larger spatial coverage, but is not available for the simulation period.

We compile one sea ice drift and deformation composite from all indi-

vidual drift data sets in the Central Arctic (see Fig. 2.1) during the period

between September 2011 and April 2012. We use the original EGPS grid

with a temporal and spatial sampling of 1 day and 10 km on a Polar stereo-

graphic projection with a reference latitude of 70◦. For each composite day,

all data sets that overlap at least in part with the given day of the composite

are identified. Strain rates are computed from velocities by finite difference

for all those drift data sets and averaged with a weight corresponding to the

size of the temporal overlap with the composite day. Because the EGPS data

are provided on a regular grid with constant grid spacing within the polar

stereographic projection, metric effects can be neglected in the computation

of the velocity gradients. The start time and the time span of individual

drift data sets can vary, so that one data set can contribute to more than

one day in the obtained composite. Similarly, the drift data within one day

composite is not necessarily recorded at exact the same time, which leads to

slight differences in the mean drift within the velocity fields of the composite.
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Figure 2.1: Model do-
main, region of EGPS data,
and the coastline filter.
The analysis regions are
shaded (blue for model
only analysis and green for
model-observation compar-
ison).

2.2.2 Model Description

The simulation we analyze is one of a series of so-called global Latitude-

Longitude-polar-Cap (LLC; Forget et al., 2015) simulations carried out with

the Massachusetts Institute of Technology general circulation model (MITgcm,

Marshall et al., 1997; MITgcm Group, 2017). A 1
12

◦
LLC simulation is initial-

ized on January 1, 2010 from a data constrained 1
6

◦
simulation provided by

the Estimating the Circulation and Climate of the Ocean, Phase II (ECCO2)

project (Menemenlis et al., 2008a). The 1
12

◦
simulation is integrated for

one year with ERA-Interim (Dee et al., 2011) surface boundary conditions.

On January 1, 2011, surface boundary conditions are switched to the 0.14◦

ECMWF atmospheric operational model analysis starting in 2011 (Euro-

pean Centre for Medium-Range Weather Forecasts, 2011). All atmospheric

fields are provided at 6-hourly intervals and converted to surface fluxes using

bulk formulae (Large & Yeager, 2004) and a dynamic-thermodynamic sea ice

model (Losch et al., 2010). Starting on January 1, 2011, surface boundary

conditions also include tidal forcing for the 16 most significant components,

applied as additional atmospheric pressure forcing as in Ponte et al. (2015).

A 1
24

◦
LLC simulation is initialized on January 17, 2011 from the 1

12

◦
simu-

lation and a 1
48

◦
LLC simulation is initialized on September 10, 2011 from

the 1
24

◦
simulation. In this study, we use model output from the 1

48

◦
LLC

simulation, hereinafter labeled LLC4320, where 4320 refers to the dimension
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of the polar cap. The LLC4320 simulation is integrated with 25-s time step

and prognostic model variables are saved at hourly intervals. At the time of

this study, output was available for the period Sept. 13, 2011 to Oct. 8, 2012.

Published model-data comparisons for the LLC4320 simulation to date

are limited to a Drake Passage study (Rocha et al., 2016a), which compared

along-track wavenumber spectra of kinetic energy to Acoustic Doppler Cur-

rent Profiler data, and a Kuroshio Extension study (Rocha et al., 2016b),

which established that the upper ocean stratification and variability in that

region is well captured by the LLC4320 simulation. This study is the first to

examine the LLC4320 model output in the Arctic Ocean, where horizontal

grid spacing is a little below 1 km. Bathymetry is from the International

Bathymetric Chart of the Arctic Ocean (IBCAO) Version 2.23 (Jakobsson

et al., 2008). The sea ice model uses both dynamics and thermodynamics

(Losch et al., 2010). Ocean and sea ice parameterizations and parameters

are from Nguyen et al. (2011b) with the following modifications: (1) the

salt-plume parameterization of Nguyen et al. (2009) is turned off; (2) the

non-local transport term in the K-Profile Parameterization (KPP) of Large

et al. (1994) is turned off; (3) barotropic time stepping uses Crank-Nicolson

instead of Adams-Bashforth; (4) no slip condition is applied at lateral bound-

ary conditions; (5) lead closing parameter H0 is 0.05m instead of 0.61m; and

(6) sea ice strength P ∗ is 27.5 kNm−1 instead of 22.6 kNm−1. Note that the

LLC4320 model parameters have not yet been optimized in any way to fit

observations; the above changes relative to Nguyen et al. (2011b) were pri-

marily applied in order to make the LLC4320 integration numerically stable.

None of the above changes relative to Nguyen et al. (2011b) are essential

to the sea ice model except for H0 and P ∗. A larger P ∗ makes the ice

“stiffer”, but the value of 27.5 kNm−1 is well within the accepted range, in

fact, it is the value suggested by Hibler (1979). The lead closing parameter

H0 determines the thickness of newly formed ice (Hibler, 1979) and is a very

powerful tuning parameter. The very small value used here implies very

thin new ice of 0.05m, so that a partially sea-ice free grid cell in freezing

conditions can be covered by thin ice very quickly, reducing further heat flux

and hence further ice growth. Essentially, low H0 lead to overall thinner

ice. The increased resolution and addition of tidal forcing in the LLC4320

simulation relative to Nguyen et al. (2011b) caused excessively thick sea ice

to form with H0 = 0.61m, especially in shallow coastal regions, causing the

LLC4320 simulation to go unstable. We reduced H0 to 0.05 m to keep sea
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ice thiner. Although this lower value of H0 allowed the integration to remain

stable, it is almost certainly not the optimal value for this parameter.

2.2.3 Processing of modeled velocity fields

For the comparison of model results and EGPS data we sample the model

fields in the same way as the EGPS data: a set of virtual buoys is initialized

each day on the grid covered by the EGPS composite; for each model output

step (i.e. , every 1 hour) streamlines through the virtual buoys are computed

assuming a stationary velocity field within this time step, and the buoys

are advected along the streamlines (Blanke & Raynaud, 1997); the virtual

buoys are reinitialized every 24 h on the EGPS grid; velocity gradients and

deformation rates are calculated from the drift of the virtual buoys by finite

differences. Both EGPS data and the sampled LLC4320 model data set agree

exactly in the regional coverage and the observation period (Sept. 13, 2011

to Apr. 8, 2012). The integration of daily trajectories emulates the EGPS

sampling procedure of determining sea ice drift by tracking single points in

the ice. In both cases, the EGPS and the retrieved LLC4320 composite, the

final product is sea ice drift and deformation on an Eulerian grid.

2.3 Methods

2.3.1 Scaling Analysis

Except for Herman & Glowacki (2012), who used gridded Eulerian data in a

spatial scaling analysis, scaling analyses of sea ice deformation are based on

Lagrangian trajectories, either derived from satellite images (Marsan et al.,

2004; Stern & Lindsay, 2009), recorded by buoys (Rampal et al., 2008; Hutch-

ings et al., 2011, 2012), or modeled in a Lagrangian framework (Rampal

et al., 2016). Both Lagrangian and Eulerian approach should, in theory, lead

to the same spatial scaling results (if small time scales are considered where

the advection of ice between two time steps is negligible), but the temporal

scaling properties depend on the deformation history of individual ice flows.

Eulerian averaging over a fixed box in space neglects the advection of this de-

formation history, so that this memory effect can only be taken into account

by following one parcel of ice over time. Hence, the temporal scaling analysis

requires a Lagrangian approach. However, the computation of strain rates
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from Lagrangian trajectories is known to introduce errors by the choice of

cell boundaries and the discontinuities in ice motion (Lindsay & Stern, 2003).

These errors lead to an overestimation of the scaling exponents (Bouillon &

Rampal, 2015a). Because both the LLC output and the EGPS data set are

provided on Eulerian grids, the integration of trajectories from the gridded

fields will introduce errors for each position on the trajectory. This position

error is especially pronounced for the EGPS data, because the single data

sets of the composite are recorded during different time periods leading to

differences in the mean drift in the composite (see Fig. S1 in supporting infor-

mation). These differences in mean drift will result in spurious deformation

lines along the boundaries of single data sets. The model fields do not include

these artificial velocity gradients because all velocities are computed in the

same time interval, so that a Lagrangian approach will generate differences

in the scaling analysis between observations and model that are not in the

data but derive only from the analysis method.

We developed a method that combines both the Lagrangian tracking of

ice and the computation of deformation rates on the original Eulerian grid.

In doing so, trajectories of virtual buoys starting at the vertices of averag-

ing boxes are integrated. The partial velocity derivatives computed on the

Eulerian grid via finite differences are averaged in the advected boxes. Af-

ter computing the deformation rates from the averaged velocity derivatives,

this Lagrangian Sampling of Eulerian gridded data (LSE) provides a data

set that combines the benefit of Eulerian gridded velocity data to precisely

determine the deformation rates and the necessity of tracking the ice motion

for temporal scaling. Fig. 2.2 illustrates the three different methods.

The virtual buoys defining the LSE averaging boxes are initialized on

the corner points of the Eulerian grid of the EGPS composite. Because the

EGPS data is provided as a set of drift vectors, we compute the trajectory

by interpolating the drift vector at the position of the trajectory for each

time step and by advecting the position accordingly. The model trajectories

are computed in the same way using the retrieved LLC data to minimize

sampling uncertainties. All virtual buoy positions that are closer than 150 km

to the coast, or lie in regions with sea ice concentration lower than 0.15 are

removed from the data, because we are only interested in the deformation of

the dense ice pack. For each time step the position of each drifted averaging

box in the Eulerian grid is determined. The partial velocity derivatives of all

Eulerian grid cells that overlap partly or fully with the LSE averaging box
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Figure 2.2: Overview of the three different methods of determining the velocity
gradient in the scaling analysis. (a) In a Eulerian representation each box coincides
with a grid box and the velocity gradient is computed by finite differences from the
Eulerian gridded velocity data. The Lagrangian and LSE method use trajectories
integrated from the velocity data that are given as dashed lines to define the
displaced boxes. (b) In the Lagrangian method the velocities at the vertices
of a displaced box are reconstructed from the trajectories and the gradient is
determined by a line integral over the boundary of box (shaded in dark blue). (c)
For the LSE method the gradients computed on the Eulerian grid are averaged over
all grid cells that overlap with the averaging box (shaded in pale blue) weighted
by the area of overlap (shaded in dark blue).

are averaged weighted by the overlapping area (see Fig. 2.2). As we use the

corner points of the EGPS grid and four vertices per box, all LSE averaging

boxes coincide with one EGPS grid cell at time zero. In the following time

steps the network of averaging boxes will constantly drift and deform. The

final output of the LSE method is a data-set of velocity gradients at the

spatial scale of the EGPS grid of L = 10 km and a temporal resolution of

τ = 1day that follows the ice parcels that are enclosed by the averaging

boxes. The computation of deformation rates at larger spatial and temporal

scales is then performed by the following scaling analysis.

To account for the coupling between temporal and spatial scales, we de-

veloped a method that simultaneously computes temporal and spatial scaling

characteristics. To this end, a temporal component is added to the spatial

scaling analysis of Marsan et al. (2004). In Marsan et al. (2004) strain rates

are averaged in squares of size L⋆ × L⋆, to obtain strain rates at the spatial

scale L . Please note that there is a difference between the nominal spatial

scale L⋆ determining the size of the box and the effective spatial scale L as-

sociated with the box, as the box may not be entirely filled with data points
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due to filtering and data coverage.

Prior to the spatial averaging we average the strain rates of each LSE

box over the temporal scale τ ⋆. Strongly deformed LSE boxes are filtered by

removing boxes that (1) are smaller than half the area of the initial EGPS

cells Ai < 0.5Aorg, (2) are larger than twice the area of the initial EGPS

cells Ai > 2Aorg, or (3) no longer form a quadrilateral box. The time covered

by all unfiltered points is given by T = N∆t, where N is the number of

unfiltered data points and ∆t the temporal resolution of the data. After

averaging, all grid points are removed, for which the time T is below the

threshold T < 0.5 τ ⋆. In the next step, we compute the mean of all remaining

temporally-averaged strain rates inside the L⋆×L⋆ box. We define the L⋆×L⋆

boxes in the first time step as a set of L
∆x

⋆ × L
∆x

⋆
neighboring LSE boxes,

where ∆x defines the EGPS grid resolution. The position and shape of the

averaging boxes will change with time as the defining LSE boxes will be

advected and deformed by the ice motion.

Again due to filtering, the L⋆ × L⋆ box may not be not completely

filled with valid data. If the area with valid data falls below the threshold√∑
Ai < 0.5L⋆, the average strain rate of this box is removed. The effective

scales associated with the average strain rate of the cuboid are given by the

coverage of the data after filtering, that is, for the effective temporal scale

τ = T and for the effective spatial scale L =
√∑

Ai.

The sampling of deformation rates following the ice motion is only nec-

essary for scaling analyses that include temporal averaging of deformation.

Whenever spatial scaling at the initial temporal scale of the drift data is com-

puted, the tracking of single ice parcels is not necessary, and we can compute

spatial averages on the Eulerian grid as done in Herman & Glowacki (2012).

The second part of this paper evaluates only the spatial scaling properties

of the LLC model results and all analyses will be performed on the Eulerian

grid to reduce computational costs.

2.3.2 Evaluation of the Analysis Method

To evaluate the new scaling analysis for gridded Eulerian data, we quantify

the sensitivity of the scaling properties to the method of computing spatial

gradients. This information helps to assess our results and to compare them

to previous results that were obtained by Lagrangian and Eulerian methods.

To this end, we integrate trajectories of virtual buoys initialized on the EGPS
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CHAPTER 2. SCALING PROPERTIES OF SEA ICE DEFORMATION

Figure 2.3: Scaling analyses for three different ways to compute strain rates
that are LES, line integrals on trajectories (Lagrangian), and finite differences on
Eulerian grid (Eulerian). (a) Spatial scaling analysis of Arctic sea ice deformation
for the month January, February and March 2012 at a temporal scale of 1 day
computed from the EGPS composite. (b) Temporal scaling analysis of Arctic sea
ice deformation for the month January, February and March 2012 at a spatial scale
of 10 km computed from the EGPS composite.

grid using the EGPS drift data as described above. Every 7 days a new set of

virtual buoys is initialized for the time period from Jan. 1, 2012 to Mar. 31,

2012. The drift of each set of virtual buoys is computed for 14 day intervals.

We perform the above introduced scaling analysis with (1) strain rates that

are averaged using the LSE method, and (2) strain rates that are computed

from the trajectories using line integrals Lindsay & Stern (2003). In addition,

we compute spatial scaling at the initial temporal scale of τ = 1day using

strain rates computed on the Eulerian grid (Fig. 2.3.).

As expected (Lindsay & Stern, 2003; Bouillon & Rampal, 2015a), the

mean deformation rate computed from the Lagrangian trajectories is larger

than the one computed on the Eulerian grid for all analyzed spatial scales.

The lower mean deformation rates of LSE compared to the ones computed on

the Eulerian grid are also plausible, because the partial velocity derivatives

computed by LSE are averages of the Eulerian partial velocity derivatives

and thereby smaller.

All three approaches lead to a power-law scaling of sea ice deformation
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with regard to spatial and temporal scale. The higher spatial scaling expo-

nents of the Lagrangian approach compared to the Eulerian approach can be

explained by the overestimation of deformation rates due to the use of line

integrals, and by the spurious shear lines due to the integration of compos-

ite velocity fields. Bouillon & Rampal (2015a) found that the Lagrangian

method may overestimate the spatial scaling coefficient by up to 60%; we

observe 57%. Due to the reduction of mean deformation rates, the spatial

scaling exponent determined with LSE underestimates the Eulerian scaling

exponent by 55%. The temporal scaling exponents of LSE underestimate

the exponents of the Lagrangian analysis by 47%.

With this we can relate the scaling exponents of the LSE analysis to the

results of other RGPS and buoy studies performed on a Lagrangian and an

Eulerian grid. Although the underestimation of scaling exponents of LSE

compared to the Lagrangian method complicates the comparison to previous

results, we believe it is the appropriate method to analyze the Eulerian data

in this study, because it avoids spurious overestimation of deformation rates

and reduces the effect of varying mean drift within one time step of the EGPS

composite.

2.4 Results

At first glance, the very high resolution VP simulation is very different from

model results with coarser resolution: the deformation rates (divergence (b)

and shear (c) in Fig. 2.4) concentrate along failure lines in the ice pack. These

failure lines are characterized by low sea ice concentration (Fig. 2.4 (a)).

We do not observe smooth variations of deformation rates over large areas

as presented in Girard et al. (2009). In addition, the Probability Density

Functions (PDF) of simulated deformation rates show power-law tails (see

Fig. S3 in the supporting information). Compared to results of VP models

with 4.5 km resolution (Losch et al., 2014; Spreen et al., 2016), there is a

clear increase in the amount of detail with resolution.

2.4.1 Model-Observation Comparison

In the first part of our analysis we compare the model results directly to

the EGPS data set. The comparison is confined to the region where the

EGPS data set provides drift data for at least 14 consecutive days, that is,
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Figure 2.4: Sea ice concentration (a), divergence rate (b), and shear rate (c) of
the LLC4320 run for Sept. 21, 2011, 2pm. The deformation rates concentrate along
the leads seen in the sea ice concentration and mark Linear Kinematic Features
(LKF).

the Central Arctic North of Greenland (green-shaded area in Fig. 2.1). In

analogy to other scaling comparisons between model and observations (Gi-

rard et al., 2009; Rampal et al., 2016), our scaling analysis is limited to the

winter months January, February, and March when the Arctic is fully ice

covered with a dense ice pack. For April and May, satellite data are not

available. We use the LSE scaling analysis on virtual buoy trajectories for

this comparison, which are initialized every 7 days on the EGPS grid and last

14 days.

Broadly speaking, model results and observations agree on the order of

magnitude of the deformation, but the observed deformation rates are slightly

higher (Fig. 2.5). The spatial scaling exponent of the EGPS data ranges from

0.09 (τ = 1day) to 0.06 (τ = 14 days). For the same temporal scales, the

scaling exponents of the model data are around 0.06 and show no clear de-

pendence on the temporal scale. Although the model reproduces the spatial

scaling characteristics observed from EGPS for large temporal scales, there is

no coupling of spatial and temporal scales in the modeled sea ice deformation.

With the power-law scaling of the moments (Eq. 2.1) we assess the multi-

fractal characteristics of the modeled and observed sea ice deformation. For

the temporal scale of τ = 1day, moments of the order q = 0.5, 1, 1.5, 2, 2.5,

and 3 are computed (Fig. 2.6). The structure function β (q) is determined

by a power-law fit to each moment. The structure function is quadratic

β (q) = aq2 + bq + c with a positive curvature of a = 0.06 for the satellite

observations and a = 0.08 for the model, so that β(q) is convex, indicating

multi-fractal characteristics for both data sets.

The good agreement of the spatial scaling characteristics between model
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Figure 2.5: Spatial-temporal scaling properties of model output compared to
EGPS data. The comparison is confined to the area of the EGPS composite for
each day and to the period of Jan. 1, 2012 to Mar. 31, 2012.

Figure 2.6: (a) Spatial scaling analysis for different moments |ϵqL| ∼ L−β(q) for
model output and EGPS data. (b) Structure function β (q) computed from linear
fits to left panel. The fit to a quadratic function is given in dashed (EGPS) and
solid (model) lines. Comparison is limited to the area of the EGPS data set.
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and satellite data does not carry over to the Eulerian temporal scaling: for

the EGPS data, the temporal scaling exponents range from 0.17 (L = 10 km)

to 0.13 (L = 185 km), but the temporal scaling exponents of the model are

lower with 0.9 (for both L = 10 km and L = 185 km) and again show no

dependence on the spatial scale (Fig. 2.5). The low scaling exponents imply

that the model does not fully represent the intermittent character of sea ice

deformation. This corresponds to our observation that leads develop slowly

in the model in contrast to spontaneous failure observed from satellite, and

once formed persist too long in the ice cover (see Fig. S6 in the supporting

information). We note, however, that the comparison is limited to one winter

and a small region North of Greenland. This region contains fast ice at the

coast and high drift velocity in the export regions through Fram Strait and

the comparison may be biased by the representation of these very specific

sea ice states in the model.

2.4.2 Pan-Arctic Scaling Properties

After showing that the model at least in part reproduces the scaling charac-

teristics observed in the EGPS data, we extend the spatio-temporal scaling

analysis to the entire LLC4320 simulation. The entire model domain (blue-

shaded area in Fig. 2.1) and all seasons are taken into account to study

the influence of different ice conditions and the seasonal cycle of sea-ice de-

formation. In addition, the model-only analysis includes scales as small as

L = 1km and τ = 1h.

A spatio-temporal scaling analysis tests the effect of reproduced leads on

the scaling characteristics of sea ice deformation. We apply the LSE method

described in Sec. 2.3.1 to all data between Dec. 1, 2011 to Apr. 30, 2012 in

the entire model domain. To define the LSE boxes we integrate trajectories

of virtual buoys that are initialized every 30 days on the model grid with

a separation of roughly 10 km. The deformation rates averaged by LSE are

computed on the model grid with a horizontal grid spacing of 1 km and a

temporal resolution of 1 hour.

Figure 2.7 shows the results of this scaling analysis with the mean defor-

mation at different spatial and temporal scales as well as the induced scaling

exponents α and β.

The spatial scaling exponent β ranges from 0.21 (τ = 3hour) to 0.19

(τ = 6days). Between this range, it varies approximately linearly with tem-
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Figure 2.7: Spatio-temporal scaling of total deformation of the model output
in the period between December and April 2012. Total deformation for different
spatial and temporal scales are indicated by dots. Power-law fits to this data are
presented as lines in the left panels (a) and (c). The right panels (b) and (d)
shows the power-law exponents of the fit with respect to the spatial scale and
the temporal scale respectively. The error bounds of the scaling exponents are
determined by the minimum and maximum slope between to successive points of
the power-law fit.
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poral scale. This shows that deformation is strongly localized for small tem-

poral scales, whereas for larger temporal scales the averaging over different

deformation events leads to a less heterogeneous deformation field.

The least square fit to the power laws of Eq. (2.2) in the temporal scaling

analysis (Fig. 2.7 (a)) is restricted to scales larger than τ ≥ 1 day. For

smaller temporal scales the power-law flattens, which might be an imprint

of the temporal resolution of the wind forcing of 6 hours. The flattening of

the power-law is also reflected in the uncertainties of the scaling exponents

in Fig. 2.7 (b). Less flattening would lead to smaller uncertainties in the

fitted exponents. The temporal scaling exponent does depend linearly on

the spatial scale, as it increases from 0.16 at 10 km to the maximum 0.17 at

46 km and decreases again to 0.12 at 908 km.

2.4.3 Seasonal Variation of Spatial Scaling

In the following three subsections, we restrict the discussion to spatial scaling

properties at a temporal scale of τ = 1h. Since no temporal scaling analysis is

used in this section and only the initial time step is used, temporal averaging

considering the advection of ice is not necessary. Therefore, we use deforma-

tion rates computed on the Eulerian model grid for the analysis within this

section instead of LSE. We examine the seasonal cycle, the regional varia-

tion, and the dependence on the ice condition in analogy to Stern & Lindsay

(2009). For this purpose, we analyze the entire LLC4320 simulation period

(Sept. 13, 2011 to Oct. 8, 2012). The Arctic model domain is subdivided in

boxes of size 500 km × 500 km with an overlap of 250 km. Within each box

with an ice coverage of at least 25%, a spatial scaling analysis is performed

for the temporal scale of 1 hour.

A clear seasonal cycle is seen in time series of both parameters of the

power-law fit, that is, the scaling exponent and the mean deformation at

1 km (Fig. 2.8): while ice is freezing and the ice cover increases, the scaling

exponent decreases to a minimum in April. With the onset of the melt-

ing season in May, the deformation and its heterogeneity (scaling exponent)

increases to a maximum in August.

The seasonality of the deformation parameters is linked to the vary-

ing extent of the ice cover, as indicated by the apparent anti-correlation

(R = −0.92) with the mean sea ice concentration in the model domain

(Fig. 2.8). This covariation reflects the coupling of ice strength with con-
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Figure 2.8: Seasonal vari-
ability of the power-law
parameters (spatial scal-
ing exponent (a) and to-
tal deformation at 1 km
scale (b)) derived from the
model output. In addition,
the mean sea ice concentra-
tion averaged over all Arc-
tic grid cells is given. The
curve represents a running
mean with an window size
of one month.

centration (in the model, strength is proportional to exp[−C∗(1 − A)]). A

closed ice cover at high concentration can, due to its high ice strength, sup-

port internal stress propagation over large distances. This “far field effect”

leads to smaller differences of the deformation rates across the scales (Stern

& Lindsay, 2009). In contrast, stress can not be redistributed in the loosely

packed summer ice, and the number of deformation events increases leading

to a very heterogeneous deformation field. In addition to the ice strength,

two other factors, namely (1) the effect of the coastline as a boundary for

an ice-filled Arctic and (2) the reduced atmospheric momentum transfer due

to more stable atmospheric conditions in winter, contribute to the seasonal

cycle (Kwok, 2006).

On top of the seasonal cycle, short term variations with a period of about

2weeks are observed. We attribute those fluctuations to various weather

systems passing the Arctic and initiating sea ice deformation. Herman &

Glowacki (2012) showed this short-term variability to be driven by synoptic

variability for RGPS data.

2.4.4 Scaling and Ice State

In a classical VP model, the ice strength P = P ∗ h exp [−C∗ (1− A)] is

defined by the ice condition and the two parameters P ∗ and C∗ (Hibler,
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1979); in our case these parameters are P ∗ = 27.5 kNm−2 and C∗ = 20.

To examine the influence of ice strength on the spatial scaling exponent and

test for different scaling behavior in multi-year and first-year ice, we study its

dependence on sea ice concentration A and thickness h. Figure 2.9 shows the

mean sea ice concentration and thickness within each 500 km×500 km box (as

defined in Section 2.4.3) and its corresponding scaling exponent as a scatter

plot, along with the mean scaling exponent given at a certain concentration

or thickness.

The lowest mean spatial scaling exponents are found for fully covered

boxes. Most points range around a sea ice concentration of one and a scal-

ing exponent of 0.08. For lower sea ice concentrations, the spatial scaling

exponent increases strongly and levels off towards very low concentrations,

as expected from the exponential form of the strength expression.

The mean spatial scaling exponent also decreases almost linearly with

increasing sea ice thickness from 0.4 for very thin ice down to 0.1 for ice

thicker than 2m. The impact of ice thickness, however, is smaller than

that of concentration and approximately linear. The variance of the spatial

scaling coefficient at a given thickness is higher than the variance at a given

concentration, as indicated by the wider spread of spatial scaling exponents

in Fig. 2.9, bottom panel.

The trend in both curves is consistent with the ice strength parametriza-

tion, showing that the model reproduces the influence of the ice strength on

the spatial scaling properties. The influence on the second scaling parameter

(mean deformation at 1 km) is similar (not shown). The higher correlation

coefficient between scaling exponent and concentration (R = −0.68) com-

pared to thickness (R = −0.33) can also be explained by the functional form

of the ice strength: ice strength varies exponentially with concentration, but

only linearly with thickness. The difference between the correlation coeffi-

cients computed for the mean concentration of single boxes (Fig. 2.9) and

of the entire Arctic (Fig. 2.8) shows that, in addition to the influence of ice

strength, there is an effect of lateral (land) boundaries in an ice-filled Arctic

(Kwok, 2006).

2.4.5 Regional Variation of Spatial Scaling

The regional variation of the scaling exponent in January 2012 is shown

in Fig. 2.10. The Central Arctic is mainly characterized by very low scaling
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Figure 2.9: Spatial scal-
ing coefficient as function
of sea ice concentration (a)
and thickness (b). The
thick gray line shows the
running mean with an av-
eraging window of 1% for
sea ice concentration and
20 cm for sea ice thickness.
The thin lines show the
25th and 75th percentile.
Each dot represents the co-
efficient of an individual
grid box. The color indi-
cates their probability den-
sity and illustrates the vari-
ance of the results (for clar-
ity only 2% of the data are
shown for the density).

exponents (0 < β < 0.09) because the ice strength is high (high concentration

and thickness). At the coast of Alaska towards the Bering Strait, the scaling

exponents increase (0.13 < β < 0.21). The relatively thin ice in this region is

prone to deformation leading to very heterogeneous deformation fields. The

highest values are found in the Fram Strait and the Barent Sea, where scaling

exponents range between 0.17 and 0.5. In those regions opening towards the

Atlantic Ocean, the thin and mostly seasonal ice is continuously deformed

because of high sea ice velocity shear due to the high ice speed.

2.5 Discussion

Before putting our results into perspective, we note once again that the

LLC4320 simulation has not been adjusted or data-constrained in any way.

We therefore expect differences between observations and simulation not only

for the chaotic components of the circulation, for example, the location of

mesoscale eddies or of cracks in the ice, but also for larger-scale properties

such as sea ice concentration, thickness, and drift. The above limitations

need to be kept in mind when using the LLC4320 simulation to explore the

behavior of VP rheology at high spatial resolution.

The direct comparison of the model results to satellite observations is

restricted to the region North of Greenland during the winter months of Jan-
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Figure 2.10: Regional
variation of spatial scaling
exponent for January 2012.
The spatial scaling expo-
nent is given by different
markers and the color shad-
ing shows the mean sea ice
concentration.

uary, February, and March due to limited satellite data availability. Due to

the small area of satellite data the comparison could also be dominated by

local effects. Because of the this data limitation, the separate analysis of the

model results also needs to be taken into account when evaluating the abil-

ity of the model to reproduce scaling characteristics of sea ice deformation.

The differences between spatial scaling exponents for the model output and

satellite data range from 0.03 at a temporal scale of τ = 1day to perfect

agreement at τ = 14 days, due to the missing coupling between spatial and

temporal scaling.

The spatial scaling exponents derived from the EGPS dataset

(β (τ = 4days) = 0.08 ) agree well with published numbers for the RGPS

data set (β (τ = 3days) = 0.20, Marsan et al., 2004; Stern & Lindsay, 2009))

considering the underestimation of the used LSE method compared to La-

grangian based referenced studies. Recall that in Section 2.3.2 the La-

grangian scaling analysis for the EGPS data set yielded spatial scaling ex-

ponents of 0.22 for the 1 day temporal scale. We observe a dependence of

the spatial scaling exponents on the temporal scale in line with previous re-

sults (Rampal et al., 2008; Marsan & Weiss, 2010) for satellite observations.

In contrast, the model results do not show such a clear coupling in this re-

gion. Only in the Pan-Arctic scaling analysis for the model results a coupling

between spatial scaling exponents and temporal scale is seen, although the

coupling is weaker than for satellite observations (variation of 0.02 over a
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range of two orders magnitudes for the model results in contrast to a vari-

ation of 0.03 over one order of magnitude). The space-time coupling exists,

because deformation on a short timescale is likely to take place nearby as

a reaction to previous deformation (Weiss, 2017), so that averaging defor-

mation over short time periods leads to a strong localization of deformation

rates around a few deformation events. Therefore, the weaker coupling in

the model points to the model lacking a mechanism that links previous and

current deformation. This aspect will be discussed in further detail in the

discussion on the temporal scaling at the end of this section.

The spatial scaling for all moments of the modeled deformation rates

agrees with the satellite data. The curvature of the structure function of the

model (a = 0.08) and the satellite data (a = 0.06) are slightly lower than

previously reported (a = 0.13) (Marsan et al., 2004; Rampal et al., 2016),

which can be explained using LSE instead of a pure Lagrangian scaling anal-

ysis. In summary, the good agreement of the spatial scaling of the model

with satellite observations shows that the VP model can reproduce deforma-

tion rates that are strongly localized in space, but we observe only a weak

coupling to the temporal scale.

The sea ice deformation of the entire model domain is characterized by

spatial power-scaling with β = 0.20 for a temporal scale of 3 days compared

to RGPS-data-based estimates of β ≈ 0.2 for a timescale of 3 days without

filtering (Marsan et al., 2004; Stern & Lindsay, 2009; Girard et al., 2009;

Hutchings et al., 2011). Rampal et al. (2016) found the scaling exponent of

filtered RGPS data to be β = 0.16 for the shear rate. Taking into account

the smoothing by LSE method, the model overestimates the localization of

deformation. The smoothing effect of the LSE method may explain part

of the underestimation by the model in the restricted region of the model-

observation comparison.

We find that the model reproduces the seasonal cycle of scaling coef-

ficients observed by Stern & Lindsay (2009). The strong increase in the

scaling exponent in May and the drop to a quasi-steady state in November

are captured by the model. A comparison for the short summer period is not

possible due to the summer gap of RGPS. However, a maximum at the end

of August is plausible considering the minimum sea ice extent at this time.

We find that the seasonal cycle of the scaling coefficients is most likely

determined by the ice condition and the ice coverage of the Arctic. The

scaling coefficients depend on the ice condition through the ice strength
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parametrization. Stern & Lindsay (2009) evaluated the dependence of the

scaling exponent on the multi-year ice fraction and found lower exponents

for more multi-year ice. Comparing this trend to our thickness dependence,

the model seems to underestimate deformation rates for thin (presumably

first-year) ice, which implies that changing to a higher-order ice-strength pa-

rameterization, for example P ∼ h2 (Rothrock, 1975), might improve the

results. We did not analyze the influence of a more stable atmosphere in

wintertime on the seasonal cycle, which is the third effect identified by Kwok

(2006), but idealized model experiments (not shown here) show a high sen-

sitivity to changes in the wind forcing indicating that this effect should be

resolved in the simulation.

The regional distribution of scaling exponents shows that sea ice defor-

mation localizes strongly in less confined regions of high velocities and thin

ice, where the velocity gradients are largest and the low ice strength quickly

leads to plastic deformation of the ice cover. Stern & Lindsay (2009) also

observed the highest exponents in first year ice at the coast of Alaska and

North of the Lincoln Sea. The model underestimates the scaling in regions

of first year ice (coast of Alaska and Siberia), which could be addressed with

an adapted ice strength parametrization (see previous paragraph).

For temporal scaling exponents, the differences between model and satel-

lite data are larger. North of Greenland there is no coupling of the temporal

scaling exponent to spatial scales in the model. In contrast, the tempo-

ral scaling exponents of the Pan-Arctic analysis show a dependence on the

spatial scale. However, only for spatial scales L > 40 km the temporal scal-

ing exponent decreases with increasing spatial scale as found in satellite and

buoy data (Rampal et al., 2008; Weiss & Dansereau, 2017). This length scale

coincides with twice the wind forcing resolution indicating that the scaling

characteristics of the sea-ice model may be determined by the characteristics

of the forcing wind fields rather than by the details of the rheology. The

loss of temporal scaling for scales smaller than τ ≤ 1 day supports this hy-

pothesis. The spatial scaling also breaks down for spatial scales L ≤ 10 km.

This scale coincides with the spatial resolution of the wind forcing (∼ 15 km)

(see Eulerian spatial scaling analysis, Fig. S5 in the supporting information).

Our inferences are further supported by idealized model experiments with

viscous-plastic sea-ice models that showed a strong impact of wind forcing

resolution on scaling characteristics of sea ice deformation (Hutter, 2015).

The poor temporal scaling points towards deficits in the VP model physics,
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especially as both spatial and temporal scaling emerge from an EB-model

(Rampal et al., 2016). When a critical stress is reached in an EB-model, brit-

tle deformation damages the ice and instantaneously reduces the ice strength

locally. The damage information is kept over a certain healing time. In VP

models, exceeding the critical stress leads to plastic deformation. A perma-

nent weakening of the ice takes place only for large deformation events with

diverging ice motion, which result in a lead of at least grid scale. The re-

duction in sea ice concentration and thickness leads to a lower ice strength

in the next time step. Weaker ice invites more deformation at lower strain

rates and hence a positive feedback loop is generated. Compared to the in-

stantaneous failure processes in the EB-rheology, this reduction is slow so

that the temporal evolution of sea ice deformation is smooth and the scaling

exponents are smaller. To improve this, the ice strength of a VP model could

also be directly linked to plastic deformation occurring in a grid cell and by

this introduce a memory of old deformation to the ice. To this end, a damage

parameter in the ice strength parameterization could be introduced or the ice

strength could be coupled directly to the plastic deformation of the previous

time step. We further hypothesize that introducing a multi-category sea-ice

thickness distribution along with an appropriate ice strength parameteriza-

tion (Rothrock, 1975) would intensify the feedback-loop between ice strength

and deformation. Because the standard ice strength parameterization in ice

thickness distribution models (Rothrock, 1975) is determined to a large ex-

tent by the thin ice categories, the ice strength field is very heterogeneous

and can lead to more deformation (Ungermann et al., 2017).

Why do VP models start to reproduce leads at higher resolution? We

speculate that only at high resolution there is the potential of significantly

reducing sea ice concentration within a grid cell by divergent sea ice motion,

which is necessary to initiate the positive feedback cycle outlined in the

previous paragraph. A weaker cell leads to larger velocity gradients in the

surrounding cells and to plastic deformation. In this way, lines of grid cells

of reduced ice strength are produced, along which the deformation rates

localize.
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2.6 Conclusion

A sea ice model using the VP rheology with a horizontal grid spacing of

∼ 1 km reproduces LKFs along with many of the observed scaling proper-

ties of sea ice deformation. In contrast to previous studies with VP models

(Girard et al., 2009), there is appropriate spatial scaling in our model sim-

ulations. The spatial scaling agrees in the seasonal variation and regional

distribution with satellite observations. The VP model as configured in the

LLC4320 simulation underestimates temporal scaling exponents and the cou-

pling between spatial and temporal scaling when compared to the observed

temporal scaling of sea ice deformation. We note, however, that in this study

we have not made any attempt to obtain a more accurate temporal scaling

by, for example, careful adjustment of the ice strength parameterization (e.g.,

Bouchat & Tremblay, 2017) or application of more realistic atmospheric forc-

ing.

The new scaling analysis presented in this paper is based on Lagrangian

sampling of Eulerian gridded data (LSE) and determines spatial and tempo-

ral scaling properties simultaneously for data on Eulerian grids while taking

into account the advection of sea ice. With most recent sea ice deformation

data sets and the output of most sea ice models provided on Eulerian grids,

the LSE approach is a robust temporal scaling analysis method for gridded

Eulerian data. The method evaluation relates the obtained spatial and tem-

poral scaling to previous scaling results using either Lagrangian or Eulerian

gridded data.

The good agreement of the spatial scaling with satellite observations sug-

gests that the VP rheology, in spite of recent criticism (Girard et al., 2009),

is still suitable at high spatial resolution to reproduce the spatial character-

istics of sea ice deformation with its multi-fractal structure. Since subgrid-

scale damage is not parameterized in the VP model, the power-law scaling

is limited to scales L > 5 km, as some grid cells are required to resolve a de-

formation feature. We can not exclude that this limitation is a consequence

of the low spatial resolution of the atmospheric forcing. The underestima-

tion of scaling exponents in first year ice could be addressed with a higher

order dependence of the ice strength on sea ice thickness, which would re-

duce the stress propagation in these thin-ice areas. In general, the sensitivity

of the scaling properties to model tuning parameters such as maximum ice
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strength P ∗, shape of the yield curve, lead closing parameters, and similar,

should be studied. The scaling properties could be implemented into a tuning

mechanism as a measure to gauge realism of small-scale sea-ice deformation

in addition to other large-scale metrics such as ice extent, concentration or

mean thickness.

The temporal scaling analysis implies that the crack formation of the VP

model as configured in this study is too slow compared to observations. We

hypothesize that an adaptation of the ice strength parameterization, in which

previous plastic deformations — in analogy to the EB-rheology — induce a

reduction in ice strength over a certain time, may improve the temporal scal-

ing properties. Nevertheless, new metrics based on the temporal evolution of

individual deformation events and features would help to specify the short-

comings of the model. Without any modification relative to LLC4320 set-up,

the VP rheology can be used to simulate processes where the small-scale tem-

poral evolution of sea ice is not critical. For time-critical applications such as

short-term forecasts, however, the VP rheology as configured in the LLC4320

set-up appears inadequate.

Since the VP model reproduces localized deformation in space in agree-

ment with satellite observations but not in time, a detailed comparison with

the Maxwell-EB rheology in the same modeling framework would give valu-

able insight into how different parameterizations impact small-scale defor-

mation. Besides large-scale metrics, new ways of comparing simulations and

observations based on statistics of sets of individual leads such as density,

persistence, orientation, intersection angle, and length should be explored

to directly identify the differences between different rheologies and satellite

observations.
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3. Leads and ridges in Arctic

sea ice from RGPS data and

a new tracking algorithm 1

1The content of this chapter has been published in the journal The Cryosphere by
Hutter et al. (2019) under the title ‘Leads and ridges in Arctic sea ice from RGPS data
and a new tracking algorithm ’. I developed and implemented all modifications in the
LKF detection algorithm. I developed and implemented the LKF tracking algorithm. I
performed the parameter optimization and evaluation for both algorithm. I derived and
analyzed the LKF data set. M. Losch contributed to the analysis of the data set. L.
Zampieri rewrote the original version of the algorithm in python as a basis for further
developments. I prepared the manuscript with contributions from all co-authors.
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Abstract Leads and pressure ridges are dominant features of the Arctic sea

ice cover. Not only do they affect heat loss and surface drag, but also provide

insight into the underlying physics of sea ice deformation. Due to their elongated

shape they are referred as Linear Kinematic Features (LKFs). This paper intro-

duces two methods that detect and track LKFs in sea ice deformation data and

establish an LKF data set for the entire observing period of the RADARSAT Geo-

physical Processor System (RGPS). Both algorithms are available as open-source

code and applicable to any gridded sea-ice drift and deformation data. The LKF

detection algorithm classifies pixels with higher deformation rates compared to

the immediate environment as LKF pixels, divides the binary LKF map into small

segments, and re-connects multiple segments into individual LKFs based on their

distance and orientation relative to each other. The tracking algorithm uses sea-

ice drift information to estimate a first guess of LKF distribution and identifies

tracked features by the degree of overlap between detected features and the first

guess. An optimization of the parameters of both algorithms is presented, as well

as an extensive evaluation of both algorithms against hand-picked features in a

reference data set. An LKF data set is derived from RGPS deformation data for

the years from 1996 to 2008 that enables a comprehensive description of LKFs.

LKF densities and LKF intersection angles derived from this data set agree well

with previous estimates. Further, a stretched exponential distribution of LKF

length, an exponential tail in the distribution of LKF lifetimes, and a strong link

to atmospheric drivers, here Arctic cyclones, are derived from the data set. Both

algorithms are applied to output of a numerical sea-ice model to compare the LKF

intersection angles in a high-resolution Arctic sea-ice simulation with the LKF

data set.

3.1 Introduction

The Arctic sea ice cover is an aggregation of ice floes of different size that

changes continuously due to thermodynamic and dynamic processes. Ther-

modynamic processes slowly modify the shape of floes by freezing and melt-

ing, but rapid changes in floes shapes are caused by the deformation of the

brittle ice. The drivers of these events are mainly wind, ocean currents, tides

and interaction with coastal geometries.
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When the ice cover breaks, leads form along floe boundaries as strips of

open ocean. In such an opening of the ice cover there is strong upward heat

flux from the warm ocean to the cold atmosphere, causing new ice formation

and changes of the albedo. Colliding ice floes form pressure ridges and ice

keels that change both the atmosphere-ice and the ice-ocean drag coefficient.

Both leads and pressure ridges are usually elongated features with lengths

ranging from a few meters up to hundreds of kilometers.

Multiple studies used large amounts and and a great variety of satellite

imagery of the Arctic ocean to describe the characteristics of deformation

features and gain insight into the underlying physics. Lead densities were

derived from MODIS images in the thermal infrared for cloud-free parts

of the Arctic Ocean (Willmes & Heinemann, 2016), from AMSR-E passive

microwave brightness temperatures (Röhrs & Kaleschke, 2012), and from

CryoSat2 altimeter data (Wernecke & Kaleschke, 2015). Bröhan & Kaleschke

(2014) extracted Pan-Arctic lead orientations from passive microwave data

using a Hough transform. Kwok (2001) provided a qualitative description

of these deformation features based on drift observations derived from SAR

imagery, combining leads and pressure ridges under the term Linear Kine-

matic Features (LKFs) due to their dynamic nature. All these studies avoid

the problem of detecting individual LKFs by applying statistics over con-

tinuous fields such as sea ice deformation or concentration. Miles & Barry

(1998) presented a 5-year climatology of lead density and orientation based

on manual detection in thermal- and visible-band imagery. Manual detec-

tion was also used to study the intersection angles of LKFs and its inferences

on the rheology describing sea-ice deformation (Erlingsson, 1988; Walter &

Overland, 1993).

All of these studies are limited either to specific information (density or

orientation) or to a short time-series due to laborious manual detection. First

attempts to automatically extract LKFs from satellite data were based on

skeletons to describe LKFs (Banfield, 1992; Van Dyne & Tsatsoulis, 1993;

Van Dyne et al., 1998), but Van Dyne et al. (1998) suggested “knowledge-

based techniques” to further divide a skeleton into individual branches. This

idea was picked up in an algorithm that automatically detects LKFs as ob-

jects in sea-ice deformation data (Linow & Dierking, 2017). Only 10 RGPS

snapshots were analyzed in this way, but many more snapshots are necessary

for a comprehensive description of LKFs. As the method of Linow & Dierking

(2017) does not contain a tracking algorithm for LKFs, important temporal
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characteristics such as lifetimes cannot be derived from their detected LKFs,

but only spatial statistics.

With increasing resolution of classical (viscous-plastic) sea ice models

(Hutter et al., 2018) or with new rheological frameworks (e.g. Maxwell elasto-

brittle, Rampal et al., 2016; Dansereau et al., 2016), sea-ice models start to

resolve small-scale deformation with larger floes and leads. Typical mea-

sures for evaluating the modeled LKFs include scaling properties of sea-ice

deformation (Hutter et al., 2018) or lead area density (Wang et al., 2016).

An evaluation of these simulations based on individual features would be far

more comprehensive and thorough and would help to improve model physics.

The objective of this study is to develop an open-source algorithm that

automatically detects deformation features in regular gridded sea-ice defor-

mation data and then tracks them using drift data. For this purpose, we

present a modified version of the detection algorithm of Linow & Dierking

(2017) and introduce an automatic tracking algorithm that takes into account

the advection of deformation features with the overall sea-ice drift as well as

growing and and shrinking features. Both algorithms are applied to the entire

RADARSAT Geophysical Processor System (RGPS) drift and deformation

data set to produce a multi-year LKF data-set that makes a comprehensive

description of spatio-temporal characteristics of LKFs possible.

3.2 Data

One main requirement of the LKF detection algorithm presented in this study

is that it should be applicable to both satellite observations and output of nu-

merical sea-ice models. Thus, we use deformation data to detect LKFs rather

than passive microwave data (Bröhan & Kaleschke, 2014) or thermal infrared

imagery (Willmes & Heinemann, 2016), which is usually not simulated in a

sea ice model. Sea ice deformation, which is derived from sea-ice drift, can

be observed by satellite, ship radar, and buoys and it is also simulated by

numerical models.

3.2.1 Deformation data

In this study, we use deformation data provided by the RADARSAT Geo-

physical Processor System (RGPS) (Kwok, 1998, data obtained from https:

//rkwok.jpl.nasa.gov/radarsat/index.html). This data set is based on
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sea ice drift derived by tracking ice motion in SAR images. In each freezing

season points are initialized on a regular 10-km grid that are tracked over

the winter until the on-set of the melting season. A Lagrangian deformation

data set is computed from these trajectories using line integral approxima-

tions (e.g. Lindsay & Stern, 2003). Data is available for the years 1997 to

2008 with varying spatial coverage of the Amerasian Basin. We use the grid-

ded version of the RGPS data-set for our analysis, which is interpolated on

to a regular grid with 12.5 km grid spacing.

3.2.2 Drift data

To track features detected by the LKF detection algorithm in RGPS deforma-

tion data, the drift between two RGPS records is required for an a-priori guess

of the temporal continuation of the individual feature. In the RGPS data

set the derived deformation data is published along with the original drift

data that is used for the deformation rate computation. Since RGPS drift

is only provided as a Lagrangian data set (Kwok, 1998, data obtained from

https://rkwok.jpl.nasa.gov/radarsat/index.html), we interpolate the

drift to the same regular 12.5-km grid on which the deformation data is

provided.

3.2.3 Evaluation data-set

Automated object detection requires an evaluation against validation data.

For this purpose, we use the data set of hand-picked LKFs presented in Linow

& Dierking (2017). This data set comprises 1411 LKFs detected by human

eye for 12 RGPS snapshots (December 29, 2005 to February 2, 2006). The

intrinsic localization uncertainty of the visually detected features was shown

to be 0.75 pixels with 1 pixel corresponding to a grid cell of size 12.5×12.5 km

and the uncertainty in the line length 8% (Linow & Dierking, 2017).

Since this data set only provides LKFs for single snapshots but does not

include information about the temporal evolution of LKFs between different

snapshots, we need to expand the data set in this regard. In doing so, we

advect the hand-picked LKFs of one snapshot using the RGPS drift to get an

a priori guess of LKF position in the next snapshot. We visually compare the

advected LKFs from the previous snapshot to LKFs of the next snapshot.

If two LKFs overlap and agree in the entire overlapping area in position,
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shape, and orientation, they are marked as tracked LKF. Furthermore, each

tracked LKF is described by probability, degree of overlap, and type of shape

change (no change, growing, shrinking, and branching), which are all visually

estimated. In total 392 LKFs were tracked within these 12 RGPS snapshots,

which corresponds to ∼ 28% of the LKFs in the evaluation data set. For the

remaining 1019 LKFs no matching LKF in the next record is found. Thus,

these LKFs have a lifetime that is shorter than the temporal resolution of

3 days if errors in the manual tracking are not considered.

3.3 LKF detection

3.3.1 Method description

Our LKF detection algorithm consists of three parts: (1) a preprocessing

step that transforms the input deformation data into a binary map of pixels

that mark LKFs by using different filter steps, (2) a detection routine that

splits the network of LKF pixels in the binary map into the smallest possible

segments, and (3) a reconnection instance that estimates the probability of

different segments belonging to one feature and then connects all segments

of a LKF. The general structure of the algorithm follows Linow & Dierk-

ing (2017), although individual parts have been modified substantially. The

main enhancements of the algorithm are a parallel detection of segments with

a stronger constraint on the curvature and the introduction of a probability

based reconnection. Further, the entire algorithm was rewritten in Python

(Python Software Foundation, http://www.python.org) to avoid license is-

sues with the previous code that was based on the commercial software IDL.

Data preprocessing and filtering

The standard input data of the LKF detection algorithm is the total de-

formation rate of sea ice ϵ̇tot =
√

ϵ̇2I + ϵ̇2II , where ϵ̇I is the divergence and

ϵ̇II shear that can be derived from both satellite data and model output

(Fig. 3.1a). LKFs are defined by regions of high deformation rates, because

they are located along the boundaries of ice floes where most deformation

takes place. The actual magnitude of deformation along an LKF, however,

varies with the background deformation and the spatial scale, because of its

multi-fractal properties (Weiss, 2013). Thus a simple thresholding of defor-

46

http://www.python.org


3.3. LKF DETECTION

mation rates is not sufficient to filter LKFs. Instead, we are interested in

detecting deformation that is notably higher than the local environment. As

LKFs are lines of high deformation, we need to detect edges in the deforma-

tion field.

Prior to the edge detection, we take the natural logarithm of the input

field (Fig. 3.1b) and perform a histogram equalization (Fig. 3.1c). Both

highlight the local differences across different scales and enhance the contrast

in regions of low deformation rates.

We use a Difference of Gaussian filter (DoG) following Linow & Dierking

(2017) for the edge detection (Fig. 3.1d). The DoG filter subtracts two

filtered versions of the same input data: the first is smoothed with a Gaussian

kernel of radius r1 = 1pixels corresponding to a half-width σ1 = 0.5, and

the second is smoothed with a Gaussian kernel of radius r2 = 5pixels (half-

width σ2 = 2.5), where r1 < r2. The smaller radius r1 corresponds to the

smallest scale of features that will be detected by the DoG and the second

radius r2 provides the upper limit of the scales detected. Note that this scale

limitation applies to the width of the LKFs as well as to their lengths. For

edges of scale r1 < L < r2, the DoG-filtered values are positive because the

local deformation rate is higher than in the environment of radius r2. Pixels

are marked as LKFs when the DoG-filtered pixels are larger than a positive

threshold dLKF. The result is a binary map where pixels with value 1 belong

to LKFs (see Fig. 3.1e for a threshold of 15). The threshold dLKF does not

have a unit as it describes the difference of two histogram equalized images,

where the highest deformation rate corresponds to a pixel value 255 and the

lowest to value of 0.

At this point, LKFs in the binary map are still represented in their origi-

nal width. To detect which pixels belong to which LKF we add a further level

of abstraction and reduce the width of all LKFs to one pixel (Fig. 3.1f). To

this end, a morphological thinning algorithm reduces the binary map to its

skeleton. We use the skeletonize function of the open-source python pack-

age scikit-image (van der Walt et al., 2014) based on Zhang & Suen (1984).

Skeletonization was used before to detect leads in original or classified, that

is, preprocessed and charted, SAR images (Banfield, 1992; Van Dyne & Tsat-

soulis, 1993; Van Dyne et al., 1998).
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Figure 3.1: Filter sequence from (a) input field total deformation to (f) final out-
put of the morphological thinned binary map of LKF pixels. Intermediate steps are
(b) logarithmic deformation, (c) histogram equalization, (d) Difference of Gaus-
sian filter, and (e) the thresholded output of the DoG filter. RGPS deformation
data for January 1st, 2006 is used for this example.

Segment detection

We detect small segments of pixels that contain parts of one LKF in the

binary map. Based on the morphological thinned binary map, groups of

pixels that form a line are detected. In this first detection step, we want

to guarantee that all pixels of a detected segment belong to the same LKF.

Therefore, we detect the smallest segments possible that are in the simplest

case the points in between intersections of lines in the binary map (Fig. 3.1f).

As a starting point of the segment detection we use LKF pixels that

have only one neighbouring cell also marked as LKF. Within each iteration,

the detection algorithm proceeds to the LKF neighbour and checks again

the number of neighbouring cells for LKFs. If the new cell has also only one

neighbouring LKF cell (neglecting the cell from the prior iteration) the search

is continued. If the new cell has more than one neighbouring LKF cell, that is,

it is a junction, the detection cycle is stopped and these neighbouring points

become the new starting points. Besides the number of neighbouring LKF
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Figure 3.2: (a) Detected segments and the results of (b) the first reconnection
step and (c) the second reconnection step for RGPS deformation data from Jan-
uary 1st, 2006. Each color denotes a different segment or LKF. Due to a limited
amount of colors, different segments or LKFs can have the same color. The output
of the second reconnection step is the final output of the LKF detection algorithm.

cells, a change in direction compared to the orientation of the last 5 pixels can

also terminate the detection cycle: if the angle between the line connecting

the centres of the potential new cell and the current cell and the linear fit

to the previous 5 pixels of the segment exceeds 45◦, the detection cycle is

interrupted and the new cell is marked as a new starting point. If the segment

is still shorter than 5 pixels, all available pixels are taken into account. We

use 5 pixels in contrast to 2 pixels used by Linow & Dierking (2017) to impose

a stronger constraint on the curvature. As in the 2 pixel case, a 90◦ shift of

direction is possible within 2 steps of the detection. Within each cycle of the

detection algorithm pixels that have been assigned to a segment are removed

from the input binary map to prevent double assignments. This procedure

is repeated until no new starting cells are found.

After removing all linear segments, the remaining binary map contains

only non-LKF pixels or LKFs forming closed contours with no starting points.

The closed contours are opened by arbitrarily marking pairs of two neigh-

bouring LKF-pixels (every (i · 100)-th and (i · 100 + 1)-th LKF-pixel for i =

1, 2, 3, . . . ) as starting points. Then the segment detection is repeated until

no new starting points are found. The initialization step to open closed con-

tours is then repeated until all LKF-pixels in the binary map are assigned to

a linear segment. All segments that were detected are shown in Figure 3.2 (a)

for January 1st, 2006.
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Reconnection

The reconnection instance is designed to connect multiple detected segments

that belong to the same LKF. Two segments belonging to the same LKF

should have a similar orientation and deformation magnitude and they should

be in close proximity to each other. Thus, we compute the probability for

all possible pairs of segments to be part of the same LKF based on their

distance, their orientation, and their deformation rates. The two segments of

the pair with the highest probability are connected and the probabilities of

pairs containing one of the two are updated. These steps are iterated until no

new matches are found. This part of the algorithm represents a new feature

compared to Linow & Dierking (2017).

The central element of the reconnection step is the probability matrix

P ∈ IRN×N that stores the probabilities for all pairs of segments with N

being the number of segments. The rows and columns correspond to single

segments, where P (m,n) gives the probability of segment m and n being

part of the same LKF. The probability is given by

P (m,n) =

√((∆D (m,n)

D0

)2

+

(
∆O (m,n)

O0

)2

+

(
∆ log10 ϵ̇ (m,n)

ϵ̇0

)2
)
,

(3.1)

with the elliptical distance ∆D between the two segments, the difference in

orientation ∆O, and the difference of the logarithm of the total deformation

rate ∆ log10 ϵ̇. We here use the common logarithm, i.e. log base 10, in con-

trast to the natural logarithm used in Section 3.3.1 to directly describe the

difference in the order of magnitude in the total deformation of two segments.

The difference in orientation ∆O is determined by the angle between the two

segments, which are represented in this computation by a line connecting

the start and the end point. The elliptical distance describes the distance

between both segments, but takes also into account the alignment of the

segments. In doing so, we decompose the vector connecting both ends of the

segments va→b into a orthonormal basis with one vector parallel to the first

segment a∥ and one vector perpendicular to it a⊥ as shown in Fig. 3.3. In

the same way, vb→a is decomposed in a basis for the second segment b∥,b⊥,

va→b =
(
a∥, a⊥

)
·α !

= vb→a =
(
b∥,b⊥

)
· β, (3.2)
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v
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b‖
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A
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Figure 3.3: Sketch of two segments A and B illustrating the principle behind
the elliptical distance. In the distance computation the component pointing in
the direction perpendicular to the segment is weighted by a factor of e. Within
the shaded area the elliptical distance is below a threshold D0. If the endpoints
of both segments lie within the area where both shaded half-ellipses overlap, they
are considered for reconnection. The dotted lines indicate the orientation of lines
connecting the start and end points of both segments and the angle ∆O is the
difference in orientation. v is the vector connecting the endpoints of both segments
as defined in Eq.3.2. a∥ and a⊥ are basis vectors aligned in the direction of the
segment A, respectively b∥ and b⊥ for B.

where α and β are the coefficients of the vector decomposition. In the

computation of the length of the connecting vector v, the component per-

pendicular to the segment is weighted with an elliptical factor e > 1 and

the distance computed by both bases is averaged to obtain a symmetrical

elliptical distance, that is, v = va→b = vb→a:

∥v∥e =
1

2
(∥va→b∥e + ∥vb→a∥e)

=
1

2

⎛⎝
√αT ·

(
1 0

0 e

)
·α+

√βT ·

(
1 0

0 e

)
· β

⎞⎠
= ∆D. (3.3)

We consider only pairs of segments where the starting point of one segment

lies in the direction of the other segment, that is, α (0) ≥ 0 or β (0) ≤ 0.

Thus points with same elliptical distance lie on a half ellipse centered at the

endpoint of the segment as denoted in Fig. 3.3. The computed probability

for a generic pair of segments P (m,n) = P (n,m) is symmetric, because

both the elliptical distance, the orientation difference and the deformation

rate difference are symmetric. Thus, we only compute P (m,n) with m < n,

where P is simplified as an upper diagonal matrix.

The parameters D0, O0, and ϵ̇0 not only normalize the individual compo-

nents of Eq. (3.1) but also serve as an upper threshold for these components.
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If for one pair the elliptical distance ∆D, the difference in orientation ∆O,

or the deformation rate ∆ϵ̇ exceed the threshold D0, O0, and ϵ̇0 it is not

considered for the reconnection. The threshold values will be determined in

Section 3.3.2 and are given in Table 3.1.

After initializing the matrix P, the pair of segments with the highest

probability P (m,n) is connected and the connected segment (m ↭ n) re-

places the old segment m. Thereby the number of segments is reduced by one

and the n-th row and n-th column are removed from the probability matrix

P. The elements of the probability matrix that correspond to the segments

m need to be updated and thus the m-th row and m-th column of P are

reevaluated based on the new connected segment (m ↭ n). This process is

iterated, where in each iteration the pair of segments with highest probability

is connected, until no pair is left that satisfies the threshold values D0, O0,

and ϵ̇0.

In the final step of the LKF detection algorithm, features that fall below

a minimum length lmin are removed, because most small features are arti-

facts of the thinning algorithm and do not represent LKFs. With increasing

minimum length, the number of detected LKFs decreases and the field of the

detected LKFs shows a higher degree of abstraction. The minimum resolu-

tion of the detected LKFs, however, is determined by the minimum length

used for the DoG filtering.

The presented reconnection procedure shows better results for longer seg-

ments, because the orientation and mean deformation is more sensitive for

smaller segments. In theory, the best input would be segments containing all

the points in the binary map that lie in between ”junctions” of the lines, as-

suming that all those points belong to the same LKF. The segment detection

instance, however, yields smaller segments due to the parallel detection that

has been implemented to increase computational efficiency. Thus, we apply

the reconnection algorithm twice: the first instance is meant to compensate

for the tendency of the segment detection algorithm to divide segments into

smaller pieces although they actually belong to the same inter-junction seg-

ment. Thus, we use very a restrictive set of threshold values (maximum

distance D0 = 1.5 pixels, maximum difference in orientation O0 = 50◦, max-

imum difference in deformation rate ϵ̇0 = 0.75 log (1/day), elliptical factor

e = 1, and minimum length lmin = 2pixels) to ensure that only segments are

reconnected that are not separated by more than one pixel and no segments

are removed because they are short (Fig. 3.2b). The second reconnection in-
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Table 3.1: List of parameters used in the LKF detection algorithm. For
each parameter the lower and upper bound of the optimization is given along
with the final choice of the parameter value.

Parameter name Symbol
Lower Upper Final

Unit
bound bound choice

DoG filtering
dLKF 0 30 15c −

threshold

max. elliptical
D0 1 7 4b pixels

distance

elliptical factor e 1 5 2 −

max. difference in
O0 25 65 35 ◦

orientation

max. difference in
ϵ̇0 0.5 1.25 1.25 log

(
day−1

)
deformation

min. length lmin 3 7 3 pixels

min. radius of DoG r1 1ab pixels

max. radius of DoG r2 5ab pixels

a parameters that have not been optimized but taken from Linow & Dierking
(2017). b parameters are related to length scales and need to be scaled with
the spatial resolution of the input data. c parameters are used to suppress
noise in the input data and need to be adapted individually to input data

stance with a different set of parameters is then used to reconnect segments

across junctions, and to generate the final LKFs shown in Fig.3.2 (c). The

choice of the set of parameters used in the second reconnection instance is

discussed in Section 3.3.2.

3.3.2 Parameter selection

There are a number of parameters in the detection algorithm. For some of

them the range of possible choices can be narrowed down with information

from field and satellite observations as well as theory of ice fracture, but none

of them is strictly constrained. Therefore, we attempted an optimization of

the set of parameters, mainly of the reconnection step, given in Table 3.1.

The main challenge of the optimization is the strong nonlinearity of the

detection algorithm. The main source of non-linearity is the fact that whether

a feature is detected or not can depend sensitively on small changes of a
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parameter. Another source of non-linearity is the small amount of reference

data. The strong non-linearity of the problem constrains both the definition

of the cost function and the optimization method to make sure that the

optimized solution is the global minimum of the cost function.

We constructed different cost functions, ranging from simple counts of

falsely undetected features by the algorithm to a cumulative Modified Haus-

dorff Distance (MHD) between all detected and hand-picked features as a

cost function, in an effort to smooth the strong non-linearity. In addition,

we used different non-linear optimization routines including basin-hopping

(Wales & Doye, 1997) and a nested brute-force implementation. No combi-

nation of cost function and optimization method lead to a satisfying result,

because in all cases the cost function was very sensitive to smaller variations

of the parameters. We concluded that finding a global minimum of the cost

function is impossible. Therefore, we use a set of parameters estimated with

a simple brute-force algorithm that minimizes the number of not-detected

features for the range of parameters given in Table 3.1, where for each pa-

rameter five equally spaced values within its range are used. We do not

regard this set of parameters as the global optimum, but rather as a useful

working basis given the strong non-linearity of the problem and the limited

amount of reference data. The performance of the detection algorithm with

this set of parameters is evaluated in detail in Section 3.3.3.

3.3.3 Evaluation

In the evaluation we use all data for January 2006 (11 snapshots) from the

hand-picked LKF data set, the LKFs detected by the algorithm presented

in this study, and LKFs detected by the original version of this algorithm

(Linow & Dierking, 2017). The reference data of the original algorithm is

generated with the parameters used in the evaluation section of Linow &

Dierking (2017). In this way, we evaluate the overall ability of the method

to properly detect LKFs but also check whether the modifications and new

additions improve the performance of the algorithm. We determine to what

degree the algorithms can detect the same features that were recognized by

visual inspection and furthermore provide detailed information about the

similarity and differences between automatically detected and hand-picked

features in an element-wise comparison.

The principal idea behind this evaluation is that we compare the features
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θO A
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B
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3-pixel distance

LKFs

overlapping parts

Figure 3.4: Illustration of overlap between two LKFs A and B.

pairwise: one LKF from the hand-picked data with the best-matching au-

tomated detected LKF. We find the best matching automatically detected

feature for each hand-picked feature by minimizing the Modified Hausdorff

Distance (MHD) (Dubuisson & Jain, 1994) between the hand-picked features

and all automatically detected features. Next, we categorize all pairs by the

degree of overlap of the hand-picked feature with its closest matching de-

tected feature. The overlap between two features is illustrated in Fig. 3.4.

The number of pixels for which the distance to the closest pixel in the match-

ing feature is smaller than dO = 3pixels is defined as overlap, labeled as OA

and OB in Fig. 3.4. To distinguish between the overlap of feature pairs that

have similar shape but are displaced and pairs that overlap only due to in-

tersection of both features, we compute the angle between overlapping parts

of the matching pairs θO. If this angle is smaller than θO < 25◦, the over-

lap of a matching pair is defined by the minimum of overlapping pixels of

both matching partners normalized by the maximum length of both matching

partners:

O = min(len(OA), len(OB))/max(len(A), len(B)), for θO < 25◦. (3.4)

Given this definition of overlap, we distinguish between three different classes

of pairs: (1) fully matching pairs that have an overlap larger than 60%,

(2) partly matching pairs that have an overlap smaller than 60% but larger

than 0%, and (3) not matching pairs with overlap equal to 0%.

The overall performance of the algorithm with respect to the overlap of

the detected features with the reference data-set is given in Fig. 3.5 along with

the number of pairs within each class. We find that the features detected with
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Figure 3.5: Evaluation of detection algorithm presented in this study and original
algorithm (Linow & Dierking, 2017) against hand-picked LKFs. The cumulative
frequency of occurrence of the overlap is given in the center plot. The amount of
features is given in the bar plots for each class (fully matching, partly matching,
and not matching).

our new algorithm overlap significantly more with the hand-picked reference

data than the features detected with the original version of the algorithm

(Fig. 3.5). The original version of algorithm is run with the same parameters

used in the evaluation section of Linow & Dierking (2017). Our modifications

to the algorithm increase the number of fully matching LKFs by 66% (from

314 to 522), along with a similar amount of partly matching LKFs (from 635

to 657), and a clear decrease of 66% for the not matching LKFs (from 347

to 117). This indicates a significant improvement of the original algorithm.

We analyze the similarity of features of all pairs within each class to test

whether these improvements are made at the expense of the quality of the

detected features. In doing so, we define three metrics to determine the

similarity of the features: (1) the mean endpoint distance, (2) the line length

error, and (3) the MHD as metrics, where the first two were introduced by

Linow & Dierking (2017). The MHD is a measure of the general agreement of

two shapes. It takes into account changes in both orientation and length, but

also a complete change in shape. In the sea ice context, the MHD is applied,
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for example, to evaluate the ice edge position in sea ice forecasts (Dukhovskoy

et al., 2015) or to assess the predictability of LKFs (Mohammadi-Aragh et al.,

2018). We here only focus on the class of full matching pairs.

For the mean endpoint distance, we determine the distance between both

endpoints of the detected and the hand-picked feature for each pair and

average them. For all full matching pairs with features detected by our new

algorithm the endpoint distance tends to be smaller compared to features

detected by the original version of the algorithm, which is indicated by the

shift in the distribution towards smaller errors (Fig. 3.6a). The improved

match because of the modifications to the original algorithm is also reflected

in the smaller mean error (1.47 pixels as opposed to 1.96 pixels of the original

algorithm). For 75% of the features detected with our algorithm, the mean

endpoint distance is smaller than 2 pixels whereas this is only the case for

60% of features detected by original version.

The line length error is determined by the difference in length of the two

features in a pair normalized by length of the smaller feature of the pair.

For both algorithms, the distributions are similar with similar mean errors

∼ 18% (Fig. 3.6b). For half of the pairs the line length error is also lower

than 15% in both cases.

We find that our modifications to the original algorithm also reduce the

average MHD from 1.58 pixels to 1.17 pixels (Fig. 3.6c). 73% of these pairs

lie within the 5th to 95th percentile of the background MHD defined as the

MHD of the reference data and the morphological thinned binary LKF field

(Fig. 3.1f). Since all LKFs consist of sets of pixels from this binary field, the

background MHD is an upper limit of how accurate a reconnection algorithm

can get using this binary field as an input value.

In conclusion our new version of the algorithm improves the original al-

gorithm in that it detects more features and also increases their agreement

with the hand-picked reference data.

3.3.4 Discussion

Our adapted detection algorithm greatly improves the original version. The

total number of hand-picked features that is reproduced by the algorithm

increased by 66%. In addition, the quality of the detected features with

respect to their mean endpoint distance, the error in line length and the

MHD is improved. We attribute these improvements to two changes that
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Figure 3.6: Statistics of all full matching pairs computed for the algorithm pre-
sented here and the original version (Linow & Dierking, 2017): (a) the mean
endpoint distance, (b) the line length error, and (c) the Modified Hausdorff Dis-
tance (MHD). The background MHD refers to MHD calculated for the hand-picked
features and the morphological thinned binary field (Fig. 3.1f).

stand out besides smaller adjustments in the code: (1) the introduction of a

probability based reconnection and (2) the optimization of the DoG threshold

dLKF , which showed the highest sensitivity in the optimization. We use this

threshold to filter LKFs as regions that have high deformation rates compared

to the local environment. The deformation rates in RGPS are known to be

prone to grid scale noise and uncertainties caused by tracking and geolocation

errors (Lindsay & Stern, 2003; Bouillon & Rampal, 2015a), which can lead

to a false classification of a pixel as LKF. Increasing the threshold slightly

suppresses this noise, albeit at the expense of loosing features with smaller

deformation rate differences. Thus the threshold needs to be optimized to

balance both effects; we found dLKF = 15 to be the best parameter choice

for the RGPS data set.

In our algorithm we reconnected segments to LKFs based on a probability

computed from the characteristics of the segments. Thereby those segments

are reconnect that fit “the best” and in contrast to Linow & Dierking (2017)

the reconnection does not depend on the order in which the reconnection

algorithm runs over the list of segments. In doing so, we improve the quality

of the detected features and obtain a unique and consistent solution. Both

uniqueness and consistency are necessary ingredients for the ensuing appli-

cation of a tracking algorithm.
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In this context, we found the elliptical distance ∆D and the orientation

∆O to be the important contributers to the probability function. The opti-

mized threshold ∆ϵ̇0 = 1.25 for differences in deformation rates is very high

(as it is applied to the difference of the common logarithm of the deforma-

tion rates, a difference between deformation rates of a factor 101.25 = 17.78 is

possible), so that differences in deformation rates are normalized by a large

value and do not contribute much to the probability function. Omitting the

deformation related part in Eq.3.1 (equivalent to setting ∆ϵ̇0 = ∞) does

not change the results of the evaluation of the optimized solution very much

(not shown here). The small influence of the threshold for deformation rates

∆ϵ̇0 on the performance of the algorithm may also be caused by the noise in

the RPGS data along LKFs (Bouillon & Rampal, 2015a). Especially smaller

segments are affected by the noisy RGPS data so that segments that belong

to the same LKF may have different deformation rates.

3.4 LKF tracking

The dynamic nature of the ice pack with spontaneous fracture, fast propaga-

tion of failure lines, and discontinuous drift fields makes tracking of deforma-

tion features in the ice a challenge. Because most of these processes occur on

time scales from seconds to days, the temporal resolution of the RGPS data

set of 3 days makes feature tracking even more challenging. In this section,

we present an algorithm that automatically tracks features and we compare

the tracked features to hand-tracked features.

3.4.1 Method description

The tracking of deformation features, in fact any feature, between two time

records is always a two-step problem: first, the deformation features are

detected for both records separately and second, the features of both time

records are connected in time by identifying features of the first record with

those of the second record.

Between two RGPS time records (3 days) a deformation feature will be

advected and can undergo the following changes: (1) it can become inactive,

(2) it can grow, or (3) shrink, or it can undergo a combination of growing

and shrinking. Thus, on top of two time records, tracking requires drift

information between these records. From the same drift fields that were used
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to derive the deformation data we estimate a first-guess position of each

feature from the first record in the second record that neglects all effects

but advection. We compute the drift first-guess position in pixel space (each

feature in the first record is described by integer pixel indices) by normalizing

the drift speed with the grid resolution. Thus, the computed first-guess

positions are given in floating point indices of the input field of the detection

algorithm.

For the following description, a tracked feature is a feature from record

two with an associated feature in record one; a matching pair is a pair of

associated features from records one and two; and all matching pairs are

called the tracks.

A tracked feature in the second record is required to overlap at least in

part with the first-guess position after growing and shrinking in between the

time records is taken into account. We define a search window around the

first-guess position of the feature to test for an overlap of the features with

the first-guess position. The search window consists primarily of pixels for

which the floating point indices of the first-guess position are rounded up

and down by the python functions ceil and floor. To take into account the

position uncertainty caused by the morphological thinning algorithm, we also

add all neighboring pixels of the pixels with rounded indices using the mean

background MHD of the morphological thinned field (Fig. 3.6c) of 0.78 pixels

as an estimate for this uncertainty. All features in the second record that

include a minimum number of pixels omin = 4 of the search window are

marked as potentially tracked features. If we consider a feature that changes

shape only due to advection without any growing or shrinking, the tracked

feature from the subsequent time record should lie completely within the

search window.

During the course of three days, however, many features grow or an open-

ing closes at one or both ends of the detected feature. Also, in rare cases, only

parts of a feature close and a new branch is formed within the position of the

old feature. This will be referred to as branching. Our algorithm is designed

to take into account only growing and shrinking, because to our experience

there are rather few branching LKFs (10%) and because branching is very

complex to track. Thus, a feature that is considered as a tracked feature is

allowed to grow at both ends compared to the first record or to shrink to only

a part of the original feature. To translate this into an algorithm, we define

a search area that is the area enclosed by two lines through the endpoints of
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Figure 3.7: Principle of the tracking algorithm showing the search area and
search window. A is the original feature (dashed blue) and Ad (blue) the first-
guess position considering only drift. B and C are two features in the second
record, where B is marked as a successfully tracked feature.

the first-guess position. These lines are perpendicular to the orientation of

the first-guess position (see grey shaded area Fig. 3.7). For a tracked feature,

all points of this feature that lie within the search area need also to lie within

the search window. Here, we implement a threshold value pw/a that defines

the fraction of points within the search window and points within the search

area for the feature to be considered as a tracked feature. Features, for which

more pixels lie within the search area but not in the search window, have

likely undergone branching or just intersect with the first-guess position but

have a different orientation.

The last step of the tracking algorithm filters small features inside the

search window that intersect with the first-guess position. Due to their short

length all of their points in the search area also lie in the search window. To

exclude those we compute the overlap as defined in Sec. 3.3.3 between the

first-guess position and the potentially tracked feature. We use a maximum

distance of pixels of dO = 1.5 and an angle threshold of θO = 25◦ for the

computation of the overlap. All potentially tracked features with a non-zero

overlap are marked as tracked features.

For all features of the first record this procedure is repeated iteratively:

(1) advect the feature using the drift information to obtain the first-guess

position (2) check for features that share omin pixels with the search window,
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Table 3.2: List of parameters used in the LKF tracking algorithm. For each
parameter the lower and upper bound of the optimization is given along with
the final choice of the parameter value.

Parameter name Symbol
Lower Upper Final

Unit
bound bound choice

min. overlap in
omin 2 6 4 pixels

search window

fraction of pixels in
pw/a 0.5 1 0.75 −search window and

in search area

max. distance of
dO 0.75 2.25 1.5 pixels

pixels for overlap

max. angle for
θO 15 35 25 ◦

overlap

(3) compute the fraction of pixels in the search window and in the search area

pw/a, and (4) test for non-zero overlap. The output of the tracking algorithm

is a list of matching pairs of always one feature from the first record and a

tracked feature from the second time record.

3.4.2 Parameter optimization

In the tracking algorithm the four parameters omin, pw/a, dO, and θO are

not very well constrained, so we attempt to optimize them within plausible

bounds. As we want to optimize the tracking algorithm independently of the

detection algorithm, we use the hand-picked features as input for the tracking

algorithm and compare the output to the hand-tracked features. We perform

the same very basic optimization as in Sec. 3.3.2 facing similar problems with

limited amount of reference data and a non-linear cost function. We choose

equally spaced values in the range given in Table 3.2 for all four parameters

and determine the number of correctly tracked features, the missed tracks,

and false positives. We find that decreasing omin and increasing pw/a, dO,

and θO leads to an increase in correctly tracked features along with a large

increase of false positives. To balance both effects, we define the cost function

as the number of correctly tracked features subtracted by the number of

missed tracks and the number of false positives. The final parameter set that

maximizes this difference is given in Table 3.2.
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3.4.3 Evaluation

To separate the two steps of feature tracking, and to enable an independent

evaluation of the tracking algorithm, we apply the tracking algorithm on two

different LKF data-sets: the hand-picked features and the features extracted

by the detection algorithm for the same time span. Then, we compare both

results to the hand-tracked features described in Sec. 3.2.3.

We evaluate the tracking algorithm independently by applying it to the

hand-picked features and test whether the algorithm reproduces the hand-

tracked features of the next time record, hereafter referred to as ”only track-

ing”. The algorithm picks 336 (85.7%) of the overall 392 hand-picked tracked

features correctly and only misses 56 (14.3%). Besides the missed tracks, the

algorithm detects 89 false positives. We use the information describing the

type in change of shape (no change, growing, shrinking, and branching) pro-

vided for the hand-picked tracks to test the performance of the algorithm for

those different types of change (Fig. 3.8a). The performance of the algorithm

ranges from 85% to 88% for the different types with the branching type being

an exception, for which only 56% of the features are tracked correctly. This

is not surprising as the algorithm is not designed to track this type of change.

In the evaluation of both the detection and tracking algorithm, we distin-

guish between missed tracks that were not tracked by the tracking algorithm

and tracks that were missed, because the detection algorithm was not able

to detect the corresponding features in both time records. First, we test

whether the detection algorithm picks both features of a hand-picked match-

ing pair. In doing so, we separate both features into the parts that both

features share and a non-overlapping part, to account for varying shapes in

the non-overlapping part of detected and hand-picked feature. Then, we

check whether detected features correspond to the hand-picked features us-

ing the overlap as in Sec. 3.3.3. If for one of the two hand-picked features no

corresponding detected feature is found, this hand-picked tracked feature is

marked as a missed tracked feature caused by the detection algorithm. Oth-

erwise, we test whether the tracking algorithm tracks the detected features

appropriately. In total, 54.1% of the hand-picked matching pairs are detected

and tracked correctly, whereas 21.6% are not captured by the tracking al-

gorithm, and for 24.4% of the tracked features the corresponding features

are not detected. Interestingly, these fractions do not change significantly if
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Figure 3.8: Eval-
uation of (a) only
tracking algorithm
on the hand-picked
features and (b) com-
bination of detection
and tracking algorithm.
The colored segments
of each bar show the
different combinations
of changes in shape
(no change, growing,
shrinking, and branch-
ing) that are labeled
by the black lines next
to the bar. The missed
tracks in (b) are sepa-
rated into not detected
or not tracked features.
Above the bars the
percentage compared to
all hand-picked tracks
is given for all types
and for all types except
branching, which is
given in brackets.

sub-sampled to individual types of change. Only for the branching type of

tracks, the rate of tracked features missed by the tracking algorithm exceeds

the one for the detection algorithm, which is in line with the low amount of

matching pairs captured by the tracking algorithm for this type of change

found in the evaluation of the tracking algorithm alone.

Since not all hand-picked tracked features are tracked automatically by

the presented algorithm, we need to make sure that this does not change the

temporal characteristics of the automatically generated tracked features. In

doing so, we compare the distributions of lifetimes (Fig. 3.9) and growth rates

(Fig. 3.10) of the hand-picked tracked features (hand-picked), the automat-

ically tracked features of the hand-picked features (only tracking), and the

automatically tracked features of the automatically detected features (track-

ing and detection). At the beginning of the evaluation period, all features

are initialized with a lifetime in the class of 0 to 3 days, where the range of

the class is given by the temporal resolution of the input data. The following
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Figure 3.9: Distribution of lifetime of all features in the first 12 RGPS snap-
shots in 2006 in the hand-picked reference data (left column), the automatically
tracked features of the hand-picked features (middle column), and the automat-
ically tracked features of the automatically detected features (right column).
The lower row shows the absolute number of features for a certain lifetime class,
whereas the upper row is normalized by the total number of features for this time
record.

time steps, all features that are marked as tracked features are assigned to

the next lifetime class compared to the class of their tracking partner in the

previous time record. All other features are initialized again in the lowest

category 0 to 3 days. For all three different data sets, more than 99% of

features have a lifetime smaller than 12 days, which can be thought of as the

average spin-up time needed by the tracking algorithm. In the following, we

consider only the period after those 12 days.

The distribution of lifetimes for the hand-picked tracks and automatically

generated tracks of hand-picked features are very similar: (1) the number of

features in the lowest lifetime category increases in absolute and relative

numbers to the end of the evaluation period in a equal manner (70% to 81%

(hand-picked) and 67% to 78% (only tracking)), (2) 17% (hand-picked) and

18% (only tracking) of the features have a lifetime of 3 to 6 days, and (3) in

both cases the remaining 9% of the features have a lifetime over 6 days. In
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Figure 3.10: Probability distribution function for growth rates in (a) the hand-
picked reference data, (b) the automatically tracked features of the hand-picked
features, and (c) the automatically tracked features of the automatically detected
features separated into growth for positive growth rates and shrink for negative
values.

a feature-by-feature comparison for both data sets, only 10% of the features

vary in their lifetime due to uncertainties in the tracking algorithm. The

root mean square error of the lifetime is estimated to be 1.55 days. For the

automatically detected and tracked features the average lifetime reduces to

3.9 days compared to 4.2 days for the hand-picked features, which is driven

by an increase in the amount of features in the lifetime class 0 to 3 days to

81%. The fractions of the remaining classes are reduced accordingly, but do

not change significantly relative to each other.

Besides the lifetime as the main temporal characteristic, we compute

the growth rates of all tracked features, to check whether the shape of the

tracked features changes in a similar manner. The growth rate is defined

as the difference of the number of pixels of the feature in the second record

compared to the feature of the previous record. In our analysis, we divide the

growth rate into two regimes depending on its sign: growth of the feature

for positive values and shrinking of the feature for negative values. The

distributions of the growth rates for the “hand-picked”, “only tracking”,

and “tracking and detection” data sets all have an exponential distribution

(Fig.3.10) with half of the features changing by less than 3 pixel per day.

The high order of similarity of the distributions indicates that the usage

of the detection and tracking algorithm does not distort the characteristics

of tracked features, even though the total number of features detected and
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tracked increases by a factor of 2.3 for the detection and tracking data-set.

3.4.4 Discussion

The large time difference of 3 days between records of the RGPS data set

significantly complicates the tracking of deformation features because they

change shape and positions on shorter time-scales. With this background,

the overall percentage of 85.7% of hand-picked tracked features that were

correctly identified by the algorithm is more than satisfying. The missed

tracks and the false positives of the algorithm lead to a lifetime RMSE of

1.55 days, which is smaller than the uncertainty given by the 3 day temporal

resolution of the input deformation data. The low percentage of correctly

identified branching features is also acceptable because they only make up

10% of all hand-picked features. We hypothesize that relaxing the constraints

in the algorithm to also track branching features will most likely lead to a

strong increase in false positives.

Also the combination of tracking and detection algorithm reproduces

more than half of the hand-picked tracks. This exceeds the 40% of features

that were fully detected by the detection algorithm and might hint at a bet-

ter performance of the algorithm for long-lived features. The hand-picking of

features and tracks by only one individual also leads to a bias in the reference

data. To accurately separate the uncertainty caused by the subjectiveness of

the reference data from the uncertainty of the algorithm, more individuals

would need to repeat the hand-picking procedure, which would exceed the

scope of this manuscript. Especially, small LKFs and LKFs in regions of

low deformation are harder to catch by eye (Linow & Dierking, 2017), which

explains that the automatic detection picks 2.3-times more features than in

the reference and the number of tracked features increases by 65%. We as-

sume that this bias towards small and therefore most probably short-lived

features is responsible for the slightly higher percentage of features in the

class with the lowest lifetime (0 to 3 days). Besides this small increase, the

distributions of lifetimes for the automatically detected and tracked features

are very similar, which suggests that there is no significant cumulative bias

caused by the application of both algorithms. This is backed by the similar

growth rates observed for both data sets.
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3.5 LKF data-set

3.5.1 Generation of LKF data-set

In this section, we introduce a data-set of LKFs generated by applying the

detection and tracking algorithm to all available RGPS data. The RGPS

data covers the time from November 1996 to April 2008. Here, we use the

available winter data from late freezing season (November/December) to the

start of the melt onset (April/May). The Lagrangian drift information that

is also provided in the RPGS data set is interpolated to the regular grid used

for the RGPS deformation data to be used as input in the LKF tracking.

First, we apply the detection algorithm with the optimized parameters

given in Table 3.1 to all deformation data. The output of the detection

algorithm is a list of LKFs for each time record that includes one array for

each LKF. The array stores the position (as index in the RGPS grid and in

lat/lon-coordinates) and deformation (divergence and shear rate) information

of all points of the LKF. Next, we feed the interpolated drift information and

the detected LKFs of each year to the tracking algorithm and determine the

linkages between LKFs for successive time records. The tracking algorithm

with the optimized parameters given in Table 3.2 provides a list of tracked

pairs. Each pair contains the indices of the LKFs in record one and two.

Overall 164 698 LKFs were detected and 35 855 tracked features were

found. The yearly detection numbers range from 11 002 LKFs for the winter

2006/07, the year of a sea-ice minimum, to 16 774 LKFs in winter 2001/02. If

the number of detected features is normalized by the number of observations

of sea-ice deformation, we find the maximum for winter 1996/97 and the

minimum in 2002/03. The number of tracks vary from 2 012 tracks in winter

2003/04 to 4 127 tracks in winter 2001/02.

The deformation, more precisely the divergence rate, which is saved for

each LKF, can be used to distinguish leads from pressure ridges in the gen-

eration of an LKF. In general, leads form in divergent and pressure ridges in

convergent ice motion and the converse of this relation can be used to label

newly formed LKFs. Persistent LKFs can also be labeled in this way, as

long as the sign of divergence does not change during the lifetime of an LKF.

Consider an LKF, initially labelled as a lead in divergence, that encounters

convergent motion. Depending on the magnitude of convergence, the lead

may either only partly close and continue to be an open lead, or it may close
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completely and even evolve into a pressure ridge, making differentiating be-

tween leads and ridges difficult. Thus, we refrain from labeling all LKFs in

the data-set into leads and pressure ridges, but provide the deformation rates

for each LKF and leave this classification and its evaluation to the informed

user. As an approximate first-guess, we estimate that 46% of the LKFs in

the data-set are leads, 41% are pressure ridges, and 13% are unclassified

(because the associated mean divergence rate along the LKF changes sign

over the lifetime of the LKF). For the classified leads and pressure ridges

the sign of divergence does not change over the lifetime. Please note, that

these estimates especially for short LKFs are likely contaminated with grid-

scale noise in the divergence data of RGPS (Lindsay & Stern, 2003; Bouillon

& Rampal, 2015a). Combining the LKF data-set with sea-ice thickness and

concentration data would allow to clearly distinguish between leads and pres-

sure ridges by using these additional constraints: (1) along a lead the sea-ice

concentration decreases within the time step, and (2) along pressure ridges

the sea-ice thickness increases.

3.5.2 Applications and Discussion

In this section, we present a few illustrative statistics of the LKF data-set.

In doing so, we intend to demonstrate the usefulness of the data-set but also

to check it for consistency with other studies on leads and sea-ice deforma-

tion. The statistics (Fig. 3.11) range from spatial properties such as LKF

length, LKF density and intersection angles, to temporal properties such as

LKF lifetimes. In case of the intersection angle, we give an example for a

model-observation comparison with the presented algorithms by comparing

the RGPS LKF data-set to LKFs that were detected and tracked in a 2-km

model simulation with a numerical sea-ice ocean model. In addition, we link

the number of deformation features and its corresponding deformation rates

to atmospheric drivers, in particular to Arctic cyclones.

The density of LKFs is computed for the all years of the LKF data set

as the incidences when a pixel is crossed by a LKF normalized by the overall

number of RGPS observations for this pixel. In Fig. 3.11 (a) only pixels

that have more than 500 RGPS observations are shown. We observe a fairly

homogeneous LKF density throughout the entire Amerasian basin, with a

slight increase in the Beaufort Sea. The fast ice regions in the East Siberian

Sea have the lowest densities with the fast ice edge showing up as a sud-
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den increase in LKF density. The highest LKF densities are found around

the New Siberian Islands, Wrangel Island, and at the coastlines along the

Beaufort Sea. This agrees very well with studies on lead densities derived

from MODIS thermal-infrared imagery (Willmes & Heinemann, 2016) and

CyroSat-2 data (Wernecke & Kaleschke, 2015) that show high densities in the

Beaufort sea and highest values close to the coastline. A direct comparison

of density values is not possible as those studies are limited to leads that are

identified as an opening in the ice cover, whereas our algorithm picks regions

of high deformation rates that can also include pressure ridges.

The distributions of LKF length of all single years are very similar and

range from ∼ 50 km to 1000 km (Fig. 3.11c). For LKF lengths between

100 and 1000 km, a stretched exponential, p (x) = Cxβ−1e−λxβ
with C =

βλeλx
β
min (Clauset et al., 2009), accurately describes the PDF. The param-

eters β = 0.719 and λ = 0.0531 are determined by finding numerically the

maximum likelihood estimate. We perform a goodness-of-fit test for power-

law distributed data that is based on the Kolmogorov-Smirnov (KS) statistic,

which is the maximum distance between the cumulative distribution func-

tions (CDF) of two different distributions (Clauset et al., 2009). We draw

random samples from the fitted distribution and compute the KS of the ran-

dom samples and the fitted distribution. This simulation is repeated 1000

times. We find that the KS of the observed length scales is smaller than

the 95% percentile of the random samples and thereby the observed LKF

lengths are described by the fitted distribution. The stretched exponential

distribution belongs to the family of heavy-tailed distributions, and is the

transition of an exponential and a power-law distribution. It describes many

natural phenomena that are dominated by extreme events but in contrast

to power-law distribution have a natural upper limit scale (Laherrère & Sor-

nette, 1998). We limit the range of the fit to 1000 km due to the varying

coverage and especially smaller gaps in the RGPS data that might divide

long features into multiple smaller segments. We set the lower bound to

100 km to account for the discrete character of the LKF length that disturbs

the distribution at lower LKF lengths. As LKFs here are collections of pix-

els, their length is set by a linear combination of
(
i+

√
2j
)
· 12.5 km with

i, j ∈ N.
The intersection angle between two deformation features formed at a simi-

lar time is related to the rheology describing the deformation of sea-ice. From

satellite imagery in the visible range for 14 days in 1991, the intersection an-
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gle was found to range between 20◦ and 40◦ (Walter & Overland, 1993),

which can be linked to the angle of internal friction using a Mohr criterion

for failure (Erlingsson, 1988). The distribution of intersection angles of two

LKFs that formed in the same time record is given in Fig. 3.11 (d), where

only LKFs larger than 10 pixels=125 km are taken into account to reduce the

effect of a preferred direction (45◦ and 90◦) originating from the rectangular

grid. We perform this analysis on the RPGS LKF data-set and LKFs that

were detected in a 2-km Arctic numerical model simulation, whose details

are given in Appendix B.1. For the RGPS data, we find that the distribution

peaks at an angle of 40◦−50◦. Angles larger 50◦ occur more often than angles

below 40◦, and angles between 0◦−20◦ have the lowest occurrence. The broad

distribution indicates that there is not only one specific fracturing angle, but

that heterogeneities in the ice cover and temperature variations (Schulson &

Hibler, 2004) as well as the dilatancy effect (Tremblay & Mysak, 1997) may

influence the deformation on an Arctic-wide scale. The LKFs in the model

simulation intersect at larger angles with local maxima in the range 60◦ to

90◦. The difference in the sample size might cause these strong variations

for larger angles, as we find five times fewer features in the model simulation

than for RGPS within the same period of time. In general, the model under-

estimates the probability of intersection angles smaller 55◦ and overestimates

those of angles larger than 55◦. We attribute these differences to the usage

of the elliptical yield curve with normal flow rule in the simulation, because

this yield curve does not have a “preferred” direction of fracture in contrast

to yield curves with a Mohr-Coulomb criterion. The intersection angle may

be improved by an appropriate choice of model parameters (Ringeisen et al.,

2019).

The distribution of lifetimes determined by the tracking algorithm shows

an exponential tail with a rate parameter of 0.34 day−1 (Fig. 3.11e). Kwok

(2001) described some LKF systems that were persistent in the Arctic over

a period of a month for the winter of 1996/97. We also find lifetimes as high

as this, but show that the majority of LKF are active in much shorter time

intervals. We assume that the rapid changes in external forcing (mainly wind

stress) are the reason for the high amount of short-lived LKFs.

Last, we study the link between the detected features and the wind forcing

being the main driver of ice fracture. To do so, we combine a data-set of

cyclones in the Northern Hemisphere (Serreze, 2009) with the distribution

of LKFs in different deformation rate classes for, as an example, the winter
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of 2002/03 (Fig. 3.11 b). In the freezing season, we find more deformation

features (with generally higher deformation rates) caused by the thinner and

therefore weaker ice during this period. With thicker ice the number of

deformation features decreases followed by an increase from April onwards

which we attribute to the onset of melting and the resulting weakening of

the ice. This overall seasonal cycle is interrupted by a set of four strong

cyclones that pass through the Arctic Oceans in March and lead to a sudden

increase of the number deformation features. This confirms that weather

systems with high wind speeds are a main driver of sea-ice deformation in

the Arctic Ocean. The deformation rates associated with the LKFs co-varies

with the seasonal cycle of the number of LKFs, which is in agreement with

the seasonal cycle of the mean deformation rate (Stern & Lindsay, 2009).

3.6 Conclusions

The new detection algorithm presented in this study follows the structure of

the original algorithm (Linow & Dierking, 2017) with classifying LKF pixels

in the input deformation rates and then detecting single deformation fea-

tures. In doing so, an additional degree of abstraction is added compared

to studies using only skeletons of leads (Banfield, 1992; Van Dyne & Tsat-

soulis, 1993; Van Dyne et al., 1998). This enables not only the extraction

of feature-based information such as intersection angles and LKF length but

also the tracking of the features. In addition, avoiding classified, that is,

preprocessed and charted, SAR imagery (Banfield, 1992; Van Dyne & Tsat-

soulis, 1993; Van Dyne et al., 1998) provides the opportunity to apply the

algorithm to both model output and satellite observations. For instance,

Koldunov, Danilov, Sidorenko, Hutter et al. (2019) apply the algorithm di-

rectly to sea ice thickness as an input field to study the impact of solver

convergence on the cumulative effect of deformation features. Still, the al-

gorithm can also be applied to classified imagery, if the first filtering steps

are skipped and the classified imagery is used as the binary LKF map (like

Fig 3.1e).

The evaluation of the detected features shows that introducing a prob-

ability based reconnection instance improves both the number of correctly

detected features and their quality. Here, the input of distance and differ-

ences in orientation are the most important contributions if we consider the

74



3.6. CONCLUSIONS

high threshold for difference in deformation resulting from the parameter op-

timization. We only performed a brute-force optimization of the parameters

of the detection algorithm for a small parameter space limited by the strong

non-linearity of the detection itself and the small amount of reference data.

For a thorough optimization a larger reference data-set is required.

The design of a new tracking algorithm is outlined. The tracking algo-

rithm handles the dynamic nature of sea ice as well as the low temporal reso-

lution of satellite drift data. The algorithm takes advection as well as growth

and shrinking of deformation features appropriately into account (86% of the

hand-picked tracks are found correctly). The algorithm recognizes the open-

ing of secondary leads (branching) at a lower rate (56%), but one needs to

bear in mind the higher uncertainty of those features in the hand-picked data

set and their generally smaller number. The performance of the combination

of detection and tracking algorithm is also satisfactory and does not bias

the statistics of the features. Roughly 20-30% of the detected features are

tracked. Consequently, the remaining 70–80% of the features persist for less

than 3 days. Sea-ice deformation at higher sampling rates, for example, de-

rived from ship radar with a sampling rate of up to 10 minutes (Oikkonen

et al., 2017), would be necessary to study LKF lifetimes at these shorter time

scales.

We split the task of finding a deformation feature and following it with

time in a spatio-temporal deformation data-set into two subroutines: (1) de-

tection features in the deformation field of one time step and (2) finding

the temporal connection between individual detected features of subsequent

time steps. In doing so, both subroutines are independent of each other,

although we speculate that information of the temporal evolution of sea ice

deformation could in turn improve also the detection of features. For this

task, machine learning techniques, which have recently attracted attention

in the climate science context (see for instance Ashkezari et al., 2006, for

oceanic eddy detection), are a promising tool to explore.

The LKF data-set generated by automated LKF detection and tracking

from the RGPS sea-ice deformation data includes ∼ 165 000 LKFs from

12 winters. These are significantly more deformation features than can be

found in previous, hand-picked lead data sets (e.g. Miles & Barry, 1998).

Due to the use of drift observation derived from SAR-imagery, the data-

set is also not limited to clear-sky conditions. This object-based data set

enables statistics of both the overall LKF field, like LKF density, and of
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single LKFs, like length, intersection, curvature, etc. In addition, all of these

statistics can be combined, linked and used as filter criteria. Along with the

age estimated by the tracking algorithm, the data-set makes a comprehensive

and quantitative description of deformation features in Arctic Ocean possible

and complements qualitative studies (Kwok, 2001).

The algorithms are designed in a flexible way so that they can be applied

to any sea-ice drift and deformation data, or classified imagery. For example,

the current RGPS LKF data-set could easily be extended until today with

operational drift data derived from Envisat and Sentinel-1 (Pedersen et al.,

2015). Also, resolved leads in high-resolution Arctic model simulations can

be analyzed to compare LKF properties to the LKF data set. We have

shown a first example of comparing intersection angles of LKFs. Comparing

the characteristics of deformation features directly makes a thorough eval-

uation of lead-resolving sea-ice models possible instead of focusing on only

one property such as lead density (Wang et al., 2016) and also facilitates the

complicated interpretation of scaling analysis of sea-ice deformation that has

been used for this purpose so far (Rampal et al., 2016; Hutter et al., 2018).

Code and data availability The LKF data set derived from RGPS data

is available on pangea: https://doi.org/10.1594/PANGAEA.898114 (Hut-

ter et al., 2019). The code of the LKF detection and tracking algorithm is

available on github: https://github.com/nhutter/lkf_tools.git (Hut-

ter, 2019)
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4. Feature-based evaluation of

sea-ice deformation in lead-

resolving sea-ice simulations1

1This chapter is based on a manuscript by Hutter & Losch (2019) submitted to the
journal The Cryosphere under the title ‘Feature-based comparison of sea-ice deformation
in lead-resolving sea-ice simulations ’. I performed both model simulations and derived
the LKFs data sets of the simulations. I developed and implemented the LKF statistics
and the scaling analysis. I and M. Losch analyzed and discussed the results of the LKF
statistics. I prepared the manuscript with contributions from M. Losch.
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Abstract The sea-ice modelling community progresses towards Pan-Arctic

simulations that explicitly resolve leads in the simulated sea-ice cover. Evaluating

these simulations against observations poses new challenges. A new feature-based

evaluation of simulated deformation fields is introduced and the results are com-

pared to a scaling analysis of sea ice deformation. Leads and pressure ridges –

here combined into Linear Kinematic Features (LKF) – are detected and tracked

automatically from deformation and drift data. LKFs in two Pan-Arctic sea-ice

simulations with a horizontal grid spacing of 2 km are compared with an LKF data

set derived from the RADARSAT Geophysical Processor System (RGPS). One

simulation uses a 5-class Ice Thickness Distribution (ITD). The simulated sea-ice

deformation follows a multi-fractal spatial and temporal scaling as observed from

RGPS. The heavy-tailed distribution of LKF lengths and the scale invariance of

LKF curvature, which points to the self-similar nature of sea-ice deformation fields,

is reproduced by the model. Interannual and seasonal variations of the number

of LKFs, LKF densities, and LKF orientations in the ITD simulation are found

to be consistent with RGPS observations. The lifetimes and growth rates follow

a distribution with an exponential tail. The model overestimates the intersection

angle of LKFs, which is attributed to the model’s viscous-plastic rheology with an

elliptical yield curve. In conclusion, the new feature-based analysis of LKF statis-

tics is found to be useful for a comprehensive evaluation of simulated deformation

features, which is required before the simulated features can be used with confi-

dence in the context of climate studies. As such it complements the commonly

used scaling analysis and provides new useful information for comparing deforma-

tion statistics. The ITD simulation is shown to reproduce LKFs sufficiently well

to be used for studying the effect of directly resolved leads in climate simulations.

The feature-based analysis of LKFs also identifies specific model deficits that may

be address by specific parameterizations, for example, a damage parameter, a

grounding scheme, and a Mohr-Coulombic yield curve.

4.1 Introduction

Current efforts in the sea-ice modeling community push sea-ice models to

Pan-Arctic lead-resolving sea-ice simulations. In these simulations, the Arc-

tic ice cover consists of individual “floes” that are formed by strongly localized
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deformation along the emerging floe boundaries. There are two approaches to

obtain such a behaviour: (1) a very fine grid-spacing (< 5 km) and the classic

viscous-plastic (VP) rheology (Hutter et al., 2018; Wang et al., 2016; Spreen

et al., 2016) or (2) new rheological frameworks (e.g. Maxwell elasto-brittle

(MEB), Dansereau et al., 2016). The emergence of deformation features,

which can be identified as leads and pressure ridges, calls for a proper evalu-

ation of model simulations against observations. This is challenging because

ice mechanics are non-linear and chaotic. A direct comparison of deformation

fields bears similar issues as comparing eddy resolving ocean model simula-

tions to high-resolution satellite observations. Therefore, it should not be

attempted (Mourre et al., 2018). Still, proper LKF characteristics in sea ice

models are important in the context of Arctic climate.

Resolving leads in sea-ice simulations opens up new possibilities in Arctic

climate research and sea-ice forecasting. Leads are openings in the sea-ice

cover where direct atmosphere-ocean processes are strong. A sea-ice compo-

nent including leads allows for the direct simulation of these interactions in

regional or global climate models. The distribution of leads also has a strong

impact on the local drift field. Reliable short-term sea-ice drift forecasts will

therefore depend on the model’s capacity to simulate and initialize fields with

localized deformation. The increasing economic interest in the Arctic (e.g.

shipping, Egúıluz et al., 2016) requires skillful predictions in these remote

regions (Jung et al., 2016) to prevent environmental catastrophes and to or-

ganize search and rescue operations. A realistic representation of deformation

features in sea-ice models is the prerequisite of both applications.

In the past, high-resolution sea-ice simulation were mostly evaluated with

respect to their simulated deformation fields. Here, calculating scaling char-

acteristics of sea-ice deformation was the most common method (Girard

et al., 2009; Rampal et al., 2016; Spreen et al., 2016; Bouchat & Tremblay,

2017; Hutter et al., 2018). The scaling statistics make use of the observed

power-law scaling of sea-ice deformation (Marsan et al., 2004) and deter-

mine the degree of heterogeneity and intermittency of sea-ice deformation

for satellite observations and model simulations (Rampal et al., 2016; Hut-

ter et al., 2018). The underlying idea of these metrics is that the presence

of extreme values and strong localization in sea-ice deformation indicates a

realistic representation of deformation features.

While scaling characteristics give insight into the underlying material

properties of sea ice, their interpretation with respect to deformation features
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is not straightforward (Bouchat & Tremblay, 2017; Hutter et al., 2018), so

that these metrics cannot be used for evaluating the simulated deformation

features themselves. A comprehensive description of deformation features re-

quires the detection of single deformation features to extract statistics such

as density, orientation, intersection angle, and persistence. A new LKF de-

tection and tracking algorithm (Hutter et al., 2019) identifies single LKFs

in deformation data both derived from satellite observations and simulated

by sea-ice models. The resulting data set provides ample opportunity to

compare various spatial characteristics and the temporal evolution of LKFs.

The objective of this paper is to establish a feature-based evaluation of

sea-ice deformation in lead-resolving sea ice simulations. We apply the LKF

detection and tracking algorithm of Hutter et al. (2019) to two different sea-

ice simulations with a horizontal grid-spacing of 2 km, of which one uses an Ice

Thickness Distribution (ITD). We compare the extracted LKFs to an LKF

data set derived from RADARSAT Geophysical Processor System (RGPS)

deformation data (Hutter et al., 2019) with respect to their Pan-Arctic distri-

bution (density and orientation), their spatial properties (length, curvature,

and intersection angle), and their temporal characteristics (persistence and

growth rates). In addition, we test which inferences for the overall appear-

ance of LKFs can be made from a spatio-temporal scaling analysis (following,

e.g. Rampal et al., 2016; Hutter et al., 2018) of sea-ice deformation. By an-

alyzing two different model simulations, we study how changes to the model

physics, in our case the explicit ridging processes in an ITD model, affect

the simulated LKFs, and how the different analysis methods pick up that

difference.

4.2 Methods

4.2.1 LKF detection and tracking algorithms

Our LKF detection and tracking algorithms (Hutter et al., 2019) splits the

detection of LKFs in sea-ice deformation fields into three steps: (i) the algo-

rithm classifies pixels with locally higher deformation rates as LKF pixels, (ii)

it separates the LKFs in a global binary map into minimal LKF-segments,

and (iii) it re-connects multiple minimal segments into individual LKFs based

on a probability that is determined by their distance, their orientation rela-

tive to each other, and their difference in deformation rates.
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The tracking algorithm combines the detected LKFs of two subsequent

time records with the drift information between the two records to track

individual LKFs over time. First, the algorithm advects the LKFs from

the first time record according to the drift information to obtain a first-

guess positions for the LKFs. Then, tracked LKFs in the second record

are identified by the degree of overlap between the advected LKFs and the

detected LKFs of the second time record.

4.2.2 RGPS LKF-dataset

The deformation data of the RADARSAT Geophysical Processor System

(RGPS, Kwok, 1998) was processed by the LKF detection and tracking al-

gorithms (Hutter et al., 2019) to produce a comprehensive data set (https:

//doi.org/10.1594/PANGAEA.898114, Hutter et al., 2019). The data set

contains LKFs in the winter months (November to May) from 1996 to 2008

and covers large parts of the Amerasian Basin in the Arctic Ocean. In total

the data set contains 165 000 detected LKFs and 36 000 tracked LKFs.

4.2.3 Model simulations

Model configurations

Both simulations in this paper are based on a regional Arctic configuration

(Nguyen et al., 2012) of the Massachusetts Institute of Technology general

circulation model (MITgcm, Marshall et al., 1997; MITgcm Group, 2017),

but with a refined horizontal grid spacing of 2 km. The number of vertical

layers is reduced to 16 with the first five layers covering the uppermost 120m

to decrease computational cost associated with the ocean model component

as we are only interested in sea-ice processes. The Refined Topography data

set 2 (RTopo-2) (Schaffer & Timmermann, 2016) is used as bathymetry for

the entire model domain. The lateral boundary conditions are taken from the

globally optimized ECCO-2 simulations (Menemenlis et al., 2008b). We use

the 3-hourly Japanese 55-year Reanalysis (JRA-55, Kobayashi et al., 2015)

with a spatial resolution of 0.5625° for surface boundary conditions. In the

baseline simulation, the ocean temperature and salinity are initialized on

January 1st, 1992 from the World Ocean Atlas 2005 (Locarnini et al., 2006;

Antonov et al., 2006). The initial conditions for sea-ice are taken from the

Polar Science Center (Zhang et al., 2003). Ocean and sea ice parameteriza-
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tions and parameters are directly taken from Nguyen et al. (2011a) with the

ice strength P ⋆ = 2.264 · 104 Nm−2. The baseline simulation uses the classi-

cal discrimination of two ice classes: thin and thick ice (Hibler, 1979). The

momentum equations are solved by an iterative method and Line Succes-

sive Relaxation (LSR) of the linearized equations following Zhang & Hibler

(1997). In each time step (∆t = 120 s), 10 non-linear steps are made and

the linear problem is iterated until an accuracy of 10−5 is reached, or 500

iterations are performed. The baseline simulation is run from January 1st,

1992 to December 31st, 2012. The analysis is based on daily averages of sea

ice drift, ice thickness and concentration.

On October 17th, 1995 we branch off a simulation with an ice thickness

distribution (Thorndike et al., 1975) with 5 thickness categories separated

by boundaries at 0.0m, 0.64m, 1.39m, 2.47m, and 4.57m. In doing so,

the initial sea-ice thickness and concentration of all thickness categories need

to be determined from the 2-category simulation for each grid-cell. Most

commonly this conversion is done by assigning all ice in one grid cell to the

category with the same ice thickness. Then, some years of spin-up time are

used to redistribute the ice into different categories (Ungermann & Losch,

2018). Due to the high resolution in our simulation a multiyear spin-up is not

affordable. Therefore, we describe the ITD of each grid-cell by a log-normal

distribution with a mode of 2/3 of the mean thickness. The mean thickness

and concentration over all categories remain unchanged. With this initial-

ization of the ITD-simulations, the spin-up of the ice thickness distribution

is reduced to one year. We use the ice strength formulation of Rothrock

(1975) and the smooth partition and redistribution functions of Lipscomb

et al. (2007). The simulation with ITD is integrated from October 17th,

1995 to December 31st, 2012. In the following we refer to this simulation as

ITD and to the baseline simulation as noITD. Both models provide data in

the RGPS period of 1996 to 2008.

Sampling and LKF extraction

The RGPS data set is originally provided as a Lagrangian data set that con-

sists of trajectories of points that were followed throughout a winter season

in consecutive SAR imagery. For each time record in this data set, vertices

are constructed for four neighboring trajectories to approximate the defor-

mation rates from the drift of a vertex by using line integrals. This results in
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Lagrangian deformation rates. Then, the Lagrangian data are interpolated

onto a regular Eulerian grid that is the basis of the RGPS LKF data set.

This Lagrangian nature of the RGPS data set confounds the comparison

to Eulerian model output. Different approaches have been used to overcome

this issue: (1) generate Lagrangian trajectories by on- or offline advection

of artificial buoys in the model simulation that are initialized at the initial

position of RGPS trajectories (Rampal et al., 2016; Hutter et al., 2018),

(2) interpolate simulated drift speeds to the position of the RGPS vertices

(Spreen et al., 2016), or (3) just compare directly Eulerian gridded deforma-

tion rates with RGPS (Wang et al., 2016; Bouchat & Tremblay, 2017). If one

is interested in the accurate magnitude of the deformation rates and in par-

ticular in its temporal scaling, only the most sophisticated option (1) can be

used as it takes the advection of ice into account and handles the boundary

definition error (Lindsay & Stern, 2003) consistently for model and RGPS.

The LKF detection algorithm used here does not depend directly on the

magnitude of deformation rate itself but on the local variations of the defor-

mation rates (Hutter et al., 2019). Therefore, the detection algorithm can be

applied directly to the deformation rates on the output grid assuming it is

a regular grid. Thus we avoid complicated sampling strategies that involve

expensive post-processing of model output. The advection of ice is taken into

account by the tracking algorithm.

Deformation rates are computed from daily mean velocity output follow-

ing the spatial discretization of strain-rates as formulated in the model code

(Losch et al., 2010). We reduce the spatial resolution of the input fields of

the detection algorithm by a factor of 3 to 6.75 km by taking only every third

pixel into account to reduce computational costs. As deformation features

in the simulations show a width of ∼ 5 pixels this can be done without miss-

ing features in the detection. We detect features every three days to agree

with the temporal resolution of RGPS. The parameters used in the detec-

tion algorithm are the same as in Hutter et al. (2019, their Tab. 1), where

all parameters marked with b are scaled to the reduced model resolution by

multiplying with a factor of 12.5 km/6.75 km = 1.85. The detected features

are tracked with the tracking algorithm using the parameters of Hutter et al.

(2019, their Tab. 2). The drift required for the tracking of LKFs is obtained

by the integration of the mean daily velocities over a three day period.
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4.2.4 Spatio-temporal scaling analysis

Sea-ice deformation is known to depend on spatial and temporal scales fol-

lowing a power-law (Weiss, 2013),

|ϵ̇ (T, L)| ∼ Lβ(T ), (4.1)

|ϵ̇ (T, L)| ∼ T α(L), (4.2)

where |ϵ̇ (T, L)| is the mean deformation rate for the temporal scale T and

the spatial scale L. These scaling properties have been used to compare

the self-similarity of sea-ice deformation in satellite observations and various

model simulations (Rampal et al., 2016; Spreen et al., 2016; Hutter et al.,

2018; Bouchat & Tremblay, 2017). Higher moments of the deformation rate

also follow a power-law scaling (Marsan et al., 2004; Weiss & Dansereau,

2017),

|ϵ̇ (T, L)q| ∼ Lβ(q), (4.3)

|ϵ̇ (T, L)q| ∼ T α(q), (4.4)

with q being the order of the moment. Here, the scaling exponents vary with

the moment order and follow quadratic structure functions β (q) = aq2 + bq

and α (q) = cq2+dq to show the multi-fractal intermittency and localization,

that is, larger deformation events are more localized and intermittent that

low deformation rates (Rampal et al., 2019).

The spatio-temporal scaling analysis performed in this paper is based on

the offline integration of trajectories from daily averaged velocity output of

the model. Trajectories are initialized on the RGPS grid on November 1st of

each year covered by RGPS (1996-2007). The artificial buoys are advected

until mid-May of the following year and daily positions are recorded. Note

that the trajectories agree with RGPS drift data in their initial position but

not in their entire path. We use the initial position of the trajectories on

the regular RGPS grid to define rectangular cells of 4 buoys to compute

deformation rates. These cells are followed over the entire winter. The

deformation rates at the finest (initial) scales of L0 = 10 km and T0 = 3days

are determined from the drift of the vertices using line integrals (Lindsay &

Stern, 2003). In this computation, cells are removed that change their size

by a factor of two or more.
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The deformation rates for larger spatial and temporal scales are obtained

by averaging the original deformation rates — a method referred to as coarse-

graining (Marsan et al., 2004). First, we average n∗ deformation rates in the

temporal domain to obtain the deformation rates for ϵ̇ (T, L0). The actual

temporal scale of this average is determined by the number of valid deforma-

tion rates at initial scale n ≤ n∗ with T = nT0 ≤ n∗T0. Averages for which

n ≤ n∗/2, that is, less than half of the deformation rates in the interval, are

available, are removed. Next, the deformation rates are averaged in space.

In doing so, we average m∗ ×m∗ temporal averages of deformation rates to

ϵ̇ (T, L). The spatial scale L of the average is determined by the square-root

of the area that is covered by valid deformation rates where L ≤ m∗L0. All

cells that are less then half filled L < L0/2 are removed.

4.2.5 Irregular temporal sampling of RGPS

The RGPS drift data sets consists of a set of points that are followed in time

in consecutive images of RADARSAT. Therefore, the temporal sampling of

position updates depends on when the satellite passes over a particular area.

The RADARSAT repeat cycle is 3 days during which it covers the Arctic

Ocean. The repeat cycle is also the general temporal resolution of RGPS.

Each time an image is available in a region (smaller than the entire Arc-

tic) with RGPS drifters, the drifter positions are updated. The time stamp

of the record of all RGPS drifters within one image is the same, but the

time stamp of the next (subsequent) image is slightly delayed by the time

it takes the satellite to fly to this neighboring region. Note that in this way

the positions of drifters that are on both images are updated twice within a

time period much shorter than 3 days. The time difference within one over-

fly, called a stream in RGPS data, is small compared to the time difference

between those streams. This irregular time sampling complicates the com-

putation of deformation rates using line integral approximations on polygons

constructed of RGPS drifters, because all vertices (RGPS drifters) contained

in the polygon need to have position records at the same time.

Comparing the deformation rates of RGPS data to model output leads

to a second problem: we use trajectories initialized at RGPS positions and

advected with daily mean model velocities as described in Sec. 4.2.4. The

positions of these trajectories are saved in 3-day intervals, so that all defor-

mation rates computed from model data cover a 3-day period and start and

85



CHAPTER 4. EVALUATION OF DEFORMATION FEATURES

end at the same time. The deformation rates computed from RGPS data,

however, have varying start and beginning time and varying time intervals.

Hence, the RGPS deformation rates need to be converted to regular 3-

day intervals to set-up a common framework for a comparison. Rampal et al.

(2019) used simple nearest neighbor interpolation to do so and glosses over

temporal details. For a more accurate conversion, we take the following

processing steps for each stream: (1) we form rectangles from all RGPS

drifters using their initial position. (2) For each rectangle, we check the time

records of all vertices for time records that are shared by all four vertices

with a tolerance of ±3 h. (3) From these common time records we compute

velocity gradients if the time between two common records is larger than

1.75 days and smaller than 7 days. (4) The computed velocity gradients are

then averaged in the fixed 3-day intervals weighted by the time they overlap

with the fixed 3-day interval. The set of 3-day grided deformation rates for

each stream is merged into a composite for the Arctic. In a region where two

streams overlap, we choose the data of the stream that has a larger temporal

coverage and remove the data of the other stream.

4.3 Scaling in sea-ice deformation

The mean deformation rates in the RGPS data set and both simulations

decrease with the increasing spatial scale (Fig. 4.1a). This decrease follows a

power-law (Eq. 4.3) showing that the deformation is strongly localized. The

ITD simulation shows higher deformation rates than the RGPS data across

all spatial scales, whereas the noITD simulation underestimates deformation

rates. The spatial scaling exponents of the ITD simulation agree very well

with RGPS observations. The noITD simulation shows a slightly weaker

localization of deformation rates than the RGPS data. The scaling exponent

increases with the moment order following a quadratic structure function for

all three data sets (Fig 4.1b). This shows that strong deformation events

are more strongly localized than weak deformation events, which indicates

multi-fractal spatial scaling of deformation rates. The structure functions

have curvatures of c = 0.14 (RGPS) and c = 0.15 (both model simulations)

consistent with previously published results (c = 0.13− 0.14; Marsan et al.,

2004; Rampal et al., 2016). The remarkable agreement of the curvature

in RGPS data and model simulations implies that not only do the model

86



4.3. SCALING IN SEA-ICE DEFORMATION

Figure 4.1: (a) The first three moments of sea-ice deformation rate as a function
of the spatial scale for RGPS and both model simulations. (b) The spatial scaling
exponents as a function of the moment order. A quadratic structure function
β (q) = aq2 + bq is fitted (dashed lines). The curvature of the fit is given in the
legend. The error bounds of the scaling exponents are determined by the minimum
and maximum slope between successive points of the power-law fit.

simulations reproduce the spatial heterogeneity of deformation rates, but

also the stronger localization of extreme deformation events.

The temporal scaling analysis (Fig. 4.2) shows that the sea-ice defor-

mation is governed by the multi-fractal temporal scaling: (1) the moments

of sea-ice deformation decrease with increasing temporal scale following the

power-law of Eq. (4.4). (2) The temporal scaling exponents vary quadrati-

cally with the order of the moments. Again, the structure functions of the

model simulations resemble the structure function found for RGPS data and

the obtained curvatures c = 0.13 (ITD) and c = 0.11 (RGPS, noITD) agree

with previous studies (c = 0.12, Weiss & Dansereau, 2017). Again, a positive

curvature of the structure function implies that the high deformation events

are more strongly localized in time than small deformation events.

The multi-fractal scaling properties of sea-ice deformation imply a space-

time coupling for both the RGPS data and model simulations, that is, the

degree of localization changes with temporal scale and the degree of inter-

mittency changes with spatial scale (Fig. 4.3). We find that for model simu-

lations the curvature of the structure function of the spatial scaling exponent

decreases with increasing temporal scale at a rate similar to the RGPS data

(Fig. 4.3a). Note, that this was not possible with the MEB-rheology (Ram-

87



CHAPTER 4. EVALUATION OF DEFORMATION FEATURES

Figure 4.2: (a) The first three moments of sea-ice deformation rate as a function
of the temporal scale for RGPS and both model simulations. (b) The temporal
scaling exponents as a function of the moment order. A quadratic structure func-
tion α (q) = cq2 + dq is fitted (dashed lines). The curvature of the fit is given
in the legend. The error bounds of the scaling exponents are determined by the
minimum and maximum slope between successive points of the power-law fit.

pal et al., 2019). The curvature of the structure function of the temporal

scaling exponent also decreases with increasing spatial scale (Fig. 4.3b). The

curvature of the structure function of the temporal scaling exponent follows

a power-law (Fig. 4.3b) as suggested by Rampal et al. (2019), but for the

spatial scaling this fit is not as good (Fig. 4.3a).

Comparing the spatio-temporal scaling of both model simulations, we

find that deformation rates as well as spatial and temporal scaling exponents

for the first moment of scaling deformation are higher in the ITD simulation

compared to the noITD simulation. This supports the hypothesis of Hutter

et al. (2018) that the ice strength formulation in the ITD run intensifies

the feedback cycle of ice strength and deformation. This intensification in

the ITD simulation is caused by the ice strength being more dependent on

the concentration of the thinnest ice class. In the case of divergence, newly

formed ice in open water fills this thinnest class and reduces the ice strength.

In summary, the spatio-temporal scaling analysis shows that both model

simulations reproduce the observed multi-fractal heterogeneity and intermit-

tency of sea-ice deformation (Marsan et al., 2004; Rampal et al., 2008; Weiss

& Dansereau, 2017; Oikkonen et al., 2017) equally well as more sophisti-

cated models that were specifically designed to generate these characteristics
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Figure 4.3: Spatio-temporal coupling of multi-fractal scaling: (a) The curvature
of the structure function of the spatial scaling exponent as a function of temporal
scale for RGPS data and both model simulations. (b) The curvature of the struc-
ture function of the temporal scaling exponent as a function of spatial scale. The
dashed lines provide power-law fits to the decay of the curvature.

(Girard et al., 2011).

4.4 LKF statistics

We split the analysis of the detected and tracked LKFs into three different

parts: (1) the Pan-Arctic distribution of LKFs that describes the overall

number of LKFs, the density and orientation of LKFs, (2) spatial properties

of LKFs, that is, the length and curvature of LKFs as well as the angle at

which they intersect, and (3) the temporal evolution of LKFs as described

by their persistence and their growth rates. Each metric is presented and

discussed in a separate subsection for RGPS data and both model simula-

tions. The overall quality of LKFs in the simulations and the link between

LKF statistics and scaling analysis is discussed in the separate Section 4.5.

This comparison includes some metrics that are sensitive to the coverage

of the LKF data set. While the coverage of the model is Pan-Arctic and

constant in time, the coverage of the RGPS data varies with time. We

mask the LKFs of the model simulations with the RGPS coverage of the

corresponding record. As some LKFs are removed in part or entirely, this

filtering affects also the tracking of the features. The tracking algorithm

is, therefore, run once again on the filtered features. We label the masked
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version of model LKFs in the legend of the corresponding plots.

4.4.1 Pan-Arctic distribution of LKFs

In the following section we test whether the model simulations reproduce

(1) the number of features for different years and seasons, (2) the regional

distribution of deformation features, and (3) the mean orientation compared

to the RGPS LKF data set.

Number of LKFs

The first and most obvious metric for testing whether a model simulates LKFs

in agreement with observations is the number of features detected in model

simulations and observations. This metric was used for the optimization of

solver parameters (Koldunov et al., 2019) and provides some valuable first

insights. The number of detected features in RGPS data and both model

simulations are given in Fig. 4.4. We, here, use the version of the LKF data

set for both model simulations that has been filtered by the RGPS coverage

and normalize the number of LKFs by the number of RGPS observations to

account for the varying RGPS coverage.

The RGPS LKF data set shows a decrease of deformation features for

the period from 1996 to 2004 (from 0.015 to 0.0125 LKFs per RGPS obser-

vation). In the winter of 2004/2005 the number of features increases again

to 0.0135 and levels off. There is no significant seasonal variability in fea-

ture numbers for the RGPS data (Fig. 4.4b). The cumulative length of all

LKFs, defined as the sum of all LKF lengths in one record, shows seasonal

variations (Fig. 4.4d). The cumulative length decreases as the ice advances

and reaches a minimum in mid March implying that in this season the area

is smaller where atmosphere-ice-ocean interaction processes take place. This

difference in the seasonal cycle shows that in the freezing season (November

to January) LKFs tend to be larger than in the remaining part of the year.

The number of detected LKFs in the ITD simulation agrees on average

very well with RGPS except for the last two winters (Fig. 4.4a). The interan-

ual variability in LKF numbers, however, is larger by a factor of 2 compared

to the RGPS data (shaded standard deviation in Fig. 4.4b). The number

of features is higher than for the RGPS data in the early freezing period in

November and after mid April. Starting in late spring, the ice cover seems to
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Figure 4.4: (a) The number of LKFs detected for entire observing period (1996 to
2008). The lines are running means with a window size of 17 days of the individual
daily numbers represented by the light-colored dots. (b) Seasonality of the number
of LKFs. The lines are running means with a window size of 5 days. The shaded
areas show the standard deviation of the individual years. (c) Same as (a) but
showing the cumulative length of the system of all LKFs, defined as the sum of
all LKF lengths in one record. (d) The seasonal cycle of the cumulative length of
the LKF system. For the analysis presented in this Figure the LKF data sets of
both simulations are filtered for RGPS coverage.

be too weak in the simulation so that there are more LKFs and a generally

too large LKF network.

In the noITD-simulation, there are ∼ 30% fewer detected features than

for the RGPS data set and the cumulative LKF length is shorter by ∼ 20%.

This simulation reproduces the weak seasonal cycle of the numbers of LKFs

in the RGPS data, but numbers are generally too low and then they slightly

increase in April (Fig. 4.4b and d). For the cumulative LKF length, however,

the magnitude of seasonal cycle is twice as strong for the model than for the

RGPS data (Fig. 4.4c), which shows that the average LKF length in the

simulation is more variable. The noITD simulations shows a higher average
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LKF length compared to RGPS data before March and a lower average LKF

length afterwards.

LKF density

The number of LKFs only provides insight about the temporal development

of LKFs, but the LKF densities (i.e. their relative frequency of occurrence)

show how the simulated LKFs vary in space compared to the RGPS data.

In the RGPS data (see also Hutter et al., 2019), we find the highest den-

sities along the shorelines of islands such as the New Siberian Islands and

Wrangel Island (Fig. 4.5a; for geographical reference see Fig. 4.5b). The

highest densities within the ice pack are found in the Beaufort Sea. Low

densities stand out in the fast-ice region in the East Siberian Sea with a

sharp fast-ice edge. Similar distributions were found for lead densities de-

rived from MODIS thermal-infrared imagery (Willmes & Heinemann, 2016)

and CryoSat-2 data (Wernecke & Kaleschke, 2015).

In both simulations, the regions of high LKF densities are similar, but

the ITD simulations has generally higher densities. Here, LKFs concentrate

along small islands and coastlines as in the RGPS data. Besides Wrangel

Island and the New Siberian Islands, Severmaya Zemlya and Franz Josef

Land are preferred starting points of LKFs. The highest densities along the

coastlines are found at Barrow (Alaska) and at North-Eastern tip of Green-

land, consistent with remote sensing data estimates (Willmes & Heinemann,

2016). These high densities along the coast of Alaska are not resolved in the

RGPS data set, because the detection algorithm cannot identify LKFs that

are located at the edge of the RGPS coverage. The general overestimation

of coastal deformation in the model simulations combined with an underesti-

mation in the pack-ice compared to RGPS data suggests stress propagation

to the coast in the model due to a lack of inhomogeneities in the pack-ice

that serve as seeding points for failure.

In both simulation we observe distinct fast-ice regions with low LKF

densities only in the Eastern Laptev Sea, but not in the East-Siberian Sea.

Further, the simulated LKFs do not accumulate at the Hanna Shoal as the

RGPS LKF densities. In this shallow region, keels of pressure ridge fre-

quently ground which initiates the formation of leads (Mahoney et al., 2012).

Both the missing landfast ice in the East-Siberian Sea and the missing ef-

fect of grounded ice may be improved by implementing a grounding scheme
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Figure 4.5: (a,c,e) The density of LKFs in the RGPS data set and the two
model simulations for the winters between 1996 and 2008. The absolute frequency
of LKF pixels in a cell is normalized by the number of deformation observations.
Only cells with more than 500 deformation observations are shown. (d,f) The
difference in density between both model simulations and RGPS. (b) The geo-
graphical locations that are referenced in the text.

(Lemieux et al., 2015).

For the RGPS data, a band of enhanced LKF activity connecting Hanna

Shoal and Wrangel Island (Fig. 4.5) is consistent with results based on Ad-

vanced Very High Resolution Radiometer (AVHRR) (Mahoney et al., 2012).

In the RGPS data, we observe lower LKF densities north of this band. Nei-

ther the band nor the region of low LKF densities can be found in either

simulations. We speculate that in the model there are no stress locators in

the form of grounded ice, which leads to a spatially broader distribution of
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failure and LKFs.

The elevated LKF densities in the Beaufort Sea in the RGPS data are

another prominent feature within the pack ice. These have been attributed to

the shear induced by the Beaufort Gyre circulation (Willmes & Heinemann,

2016). We do not observe the increased probability in LKF formation in

either simulations, which may suggest too weak Beaufort Gyre circulation

or issues with the simple ice-ocean drag parameterization that does not take

into account keels and sails in deformed multi-year ice (Tsamados et al.,

2014; Castellani et al., 2018).

LKF orientation

A preferred LKF orientation indicates frequently occurring forcing condi-

tions. We compute the orientation of LKFs clustered in 200 km × 200 km

boxes in the Arctic. Within each box, the orientation of the part of each

LKF that overlaps with the box is determined. From these orientations we

compute the mean orientation (Fig. 4.6a-c) following Bröhan & Kaleschke

(2014). In addition, we determine the modes of the orientation distribu-

tion within each box (Fig. 4.6d-f), as the mean orientation is misleading for

multi-modal distributions. We find the modes of multi-modal distributions

of LKF orientations by determining local maxima in the Probablitiy Density

Function (PDF). First, we estimate the PDF of the distribution using a Ker-

nel Density Estimation (KDE) with von-Mises kernels that can be seen as

the analogue of the Gaussian distribution on a circular domain (Borradaile,

2003). The modes of the distribution are given by the local maxima of the

PDF estimated by the KDE. To test whether the obtained orientation dis-

tributions are significantly different from a random distribution, we draw

10,000 random orientation samples of the same size and perform a χ2-test

(Bröhan & Kaleschke, 2014). We mark points where the mean probability of

the χ2-tests is less than 1% as statistically significant. We take into account

only LKFs with an average total deformation rate of 0.5 day−1 to agree with

visually identified LKFs (Kwok, 2001).

Both the mean orientation and the first mode of orientation are gener-

ally parallel to the coastline (Fig. 4.6a and d). The LKFs orientated in this

direction are most likely flaw leads between the fast ice along the coast and

the mobile pack ice. The model simulations reproduce this behavior along all

coastlines. The parallel orientation to coastlines is consistent with lead ori-
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(a) RGPS (b) MITgcm 2km (c) MITgcm 2km itd

0.0 - 22.5
22.5 - 45.0
45.0 - 67.5
> 67.5

Angular standard
deviation

(d) RGPS (e) MITgcm 2km (f) MITgcm 2km itd

0.0e+00 - 5.5e-03
5.5e-03 - 7.5e-03
7.5e-03 - 1.0e-02
> 1.0e-02

PDF of mode

Figure 4.6: (a,b,c) Mean orientation of LKFs for RGPS and two model simula-
tions. We follow the definition of mean and standard deviations for circular data
from Bröhan & Kaleschke (2014) for lead orientations. The line width indicates
the standard deviation of the distibrution within the cell. Orientation distribu-
tions that are statistically significantly different from a random distribution are
marked by a black dot. Only cells that contain more than 500LKFs are shown.
(d,e,f) Modal orientation of LKFs for RGPS and two model simulations. The
three largest modes of the distribution of orientation are plotted for cells with
including more than 500 LKFs. The probability (PDF) of each mode is shown by
the line length, where a PDF value of 5.5 · 10−3 corresponds to the mean PDF
value of a random distribution.

entations reported earlier (Miles & Barry, 1998; Bröhan & Kaleschke, 2014).

In the east Siberian Sea the mean LKF orientation is from east to west

in the RGPS data as well as in both model simulations. This is also the ori-

entation of the local fast-ice edge. The mean orientation shifts towards the

north-south direction in the Beaufort Sea, again for the observations and both

simulations. This general pattern of LKF orientation is consistent with the

orientations derived from visually detected leads in thermal- and visible-band

imagery of the years 1979–1985 (Miles & Barry, 1998). Interestingly, there

are substantial differences to more recent results with predominantly east-

west orientations in the Beaufort Sea (Bröhan & Kaleschke, 2014). These

differences may appear because Bröhan & Kaleschke (2014) used data from a

different time period (years 2002–2011) or because they used a more sophis-

ticated statistical method (Hough transform). We note that although RGPS

data and simulations agree in the mean LKF orientation in these regions,

the model shows a spread in the modal values, which points towards too
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large LKF intersection angles that lead to two peaks in the distribution of

orientations.

In the Central Arctic, the mean orientation of LKFs in the RGPS data

suggests a circular deformation pattern that originates in North-East Green-

land, circles the North Pole and heads towards Severnaya Zemlya. The pat-

tern is reminiscent of a basin-scale ice arch formed by the main sea ice export

pathway through the Fram Strait. In the modal representation of LKF ori-

entations, this arch is barely visible in the model simulations. In the Fram

Strait, we find modes parallel and perpendicular to the outflow direction,

indicating the build-up of flow blockages similar to ice arches together with

shearing zones between the exported sea ice and the fast-ice along the coast

of Greenland.

4.4.2 Spatial LKF properties

LKF length

LKFs in the Arctic have length scales from a few meters up to the basin-

scale (1000 km). Given that automated lead detection is challenging and

hand-picked lead data sets have a limited sampling size, the first quantita-

tive estimates of LKF length have been published only very recently (Linow

& Dierking, 2017; Hutter et al., 2019). From 10 RGPS records Linow &

Dierking (2017) inferred an exponential distribution of LKF lengths. Length

measurements of lead skeletons, again from a small sample-size, were also

distributed exponentially (Van Dyne et al., 1998). The distribution of LKF

lengths from the entire RGPS data set contains more extreme values (Hut-

ter et al., 2019) and is described by a stretched-exponential distribution:

p (x) = Cxβ−1e−λxβ
with C = βλeλx

β
min (Clauset et al., 2009). Stretched-

exponential distributions belong to the family of heavy-tailed distribution,

but in contrast to the power-law distribution have a natural upper limit scale

(Laherrère & Sornette, 1998). Here, the upper limit scale is the finite size of

the Arctic Ocean.

We determine the PDF of LKF lengths from RGPS data and both model

simulations (Fig. 4.7a). We fit a stretched exponential distribution to all data

sets using Maximum Likelihood Estimators and perform a goodness-of-fit test

(Hutter et al., 2019). We find that all distributions are accurately described

by stretched exponentials (RGPS: λ = 1.69 · 10−2, β = 0.719, noITD: λ =
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Figure 4.7: (a) PDF of LKF lengths for RGPS data and both simulations along
with fits to stretched exponential distributions. (b) Absolute frequencies of LKF
lengths in RGPS data and both simulations. For the analysis presented in this
Figure the LKF data sets of both simulations are filtered for RGPS coverage.

0.90 · 10−2, β = 0.761, and ITD: λ = 1.38 · 10−2, β = 0.741). The PDF of

the ITD simulation agrees remarkably well with the RGPS PDF; only for

LKFs longer than 150 km, the probabilities are slightly higher. In the noITD

simulation large LKFs (> 300 km) have a higher probability than in the

RGPS data or in the ITD simulation. From the absolute frequencies of LKF

lengths (Fig. 4.7b), it becomes clear that these high values in the (normalized)

PDF are to a large extent a consequence of too few small LKFs. From the

deficit in small-scale deformation features in the noITD simulation one may

infer that there are too few inhomogeneities in the ice cover that can initiate

failure. The ITD sub-grid model allows for more small-scale variations in the

ice thickness distribution that are reflected in the ice strength and in turn

lead to stronger localized deformation.

LKF curvature

As their name implies, Linear Kinematic Features are mostly linear with

only little curvature (Kwok, 2001). Linow & Dierking (2017) introduced the

dependence of the distance between both endpoints on the LKF length as

a metric for the curvature of an LKF. This ratio is 1 for perfectly linear

features and 0 for circular ones. We apply this metric to all LKFs detected

in the RGPS data and both simulations and plot the distance between LKF

endpoints against the LKF length (Fig. 4.8). For perfectly linear LKFs, all
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Figure 4.8: The distance between the endpoints of an LKF plotted over its
length. We find that all observations fit a linear line. The slope of the fitted linear
relationship is given next to the fitted line.

points converge to a line with a slope of 1 (the diagonal of the plot). We find

that all LKFs clearly fall on a line with slopes of 0.91 (RGPS and noITD)

and 0.90 (ITD) for all length scales from up to 1700 km. Thus, the shape of

the LKFs does not change with spatial scale, which agrees very well with the

self-similar properties of sea-ice shown for the size of ice floes (Stern et al.,

2018) and deformation features (Weiss, 2003; Marsan et al., 2004; Wernecke

& Kaleschke, 2015). Both simulations reproduce the curvature of the features

itself and its scale invariance. We, here, note that this fairly simple metric

does not allow further inferences about the shape of LKFs, but it has the

advantage that it can be applied in a straightforward manner to a large

variety of LKFs.

LKF intersection angles

The intersection angle of LKFs is strongly related to the material properties,

more precisely to the yield curve of the rheology (Erlingsson, 1988; Wang,

2007), but only intersection angles of conjugate faults, where intersecting

LKFs form instantaneously under the same forcing conditions, provide di-

rect information about the yield curve. Therefore, we limit the analysis of

intersection angles to pairs of LKFs that form in the same time record. In

addition, we require the length of both LKFs to be larger than 125 km to

exclude the effect of a preferred direction along the pixels of the image.

The PDF of intersection angles for RGPS data peaks around 40°–50°
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Figure 4.9: The PDF
of intersection angles of
LKFs in RGPS data
and both simulations.
The analysis is limited
to pairs of LKFs that
formed in the same time
record and have a length
larger 125 km. Individ-
ual years are plotted as
colored points and the
multi-year mean is given
as a solid line.

(Fig. 4.9). This peak agrees with typical intersection angles of 30°–50° in-

ferred from satellite imagery (Walter & Overland, 1993; Schulson & Hibler,

2004; Wang, 2007). We find the lowest probabilities for angels smaller than

20°. Angles larger than 50° occur more often than angles smaller than 40°.
The distributions of intersection angels in both model simulations are very

different from the RGPS data and peak at 90°. Intersection angles smaller

than 60° are less frequent in the model simulations than in the RGPS data.

The differences between both simulations are small.

According to theoretical considerations, the intersection angle is deter-

mined by the slope of yield curve (Pritchard, 1988; Wang, 2007). As both

simulations use the same elliptical yield curve with a normal flow-rule (Hi-

bler, 1979) similar intersection angles of LKFs are expected. We attribute

the small differences in Fig. 4.9 to sea ice fields with a different amount of

LKFs. Ringeisen et al. (2019) derived for idealized compression experiments

that it is impossible to obtain intersection angels smaller than 60° with an

elliptical yield curve. This explains the deficit of small intersection angles in

our simulations.

4.4.3 Temporal evolution of LKFs

The temporal evolution of LKFs has not been studied very much. In-situ

field observations of individual leads breaking individual floes (e.g. Dempsey

et al., 2012) suffer from space and time limitations. Qualitative evaluations

of the persistence of lead patterns on the order of a month (Kwok, 2001)

did not focus on individual leads to deduce these temporal characteristics
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Figure 4.10: (a) The relative frequency of lifetime of LKFs in RGPS data and
both simulations. The LKFs detected and tracked in the simulations are reduced
to the RGPS coverage. The dashed line are fits to exponential tails. The rate of
the exponential tail in day−1 is given in the legend. (b) Lifetime of modeled LKFs
reduced to the RGPS coverage (dots and dashed lines) and unfiltered (crosses and
dash-dotted lines).

of LKFs and are necessarily inaccurate. Hutter et al. (2019) combined the

large coverage of the RGPS data with a tracking algorithm to provide first

qualitative estimates of LKF lifetimes. Here, we use the same method to

study the persistence and the growth rates of LKFs.

LKF persistence

We determine the lifetime of an LKF by counting how many times we track

a feature. The lifetime estimates are binned into 3-day intervals, that is,

the temporal resolution of the deformation data. We compute the lifetime

of LKFs in RGPS data and in both simulations. For the simulations we

provide two calculations each: one after reducing the simulation data to

the RGPS coverage (Fig. 4.10a) and one for the full data sets (Fig. 4.10b).

All lifetime distributions have an exponential tail. For the comparison with

LKF lifetimes in the RGPS data we use the reduced versions of the model

simulations (Fig. 4.10a). The lifetime distribution of the noITD simulation

and the RGPS data have the same rate of the exponent tail of 0.34 day−1.

The ITD simulations overestimates the lifetime of LKFs with an exponential

tail decaying with the rate of 0.21 day−1.

The long LKF lifetimes in the ITD simulation can be caused either by too
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homogeneous forcing fields or a too strong memory of past deformation, both

of which favor continuous deformation of ice. Given the high temporal and

spatial resolution of the atmospheric forcing data, too homogeneous forcing

fields are unlikely to be the only cause. In the ITD simulation, deformation

events imprint on the ice thickness distribution of a grid cell, which has an

effect on the ice strength and hence leads to fast feedbacks on the deformation

itself. In this sense, these changes in the ice thickness distribution can be

regarded as a memory in the ice. Interestingly, this extra memory with the

ice strength of Rothrock (1975) improves the agreement with the number of

LKFs (Sec. 4.4.1) and the LKF density (Sec. 4.4.1) in the RGPS data set,

but reduces the agreement with the RGPS data set in terms of LKF lifetimes.

This suggests to improve the sea-ice model by decoupling the ice memory in

the model from the ice thickness distribution.

The varying spatial coverage of the RGPS data introduces an unknown

bias in LKF lifetimes. With our simulations we can estimate this bias by

comparing the lifetimes of filtered LKFs to unfiltered LKFs (Fig. 4.10b).

The difference for the noITD simulation, which agrees almost perfectly with

RGPS data when masked by RGPS coverage (Fig. 4.10a), suggests that the

amount of long lifetimes is reduced by the varying coverage with the rate

of the exponential tail decreasing to 0.21 day−1, which corresponds to an

increase in mean lifetime of ∼ 50%. For the ITD simulation the effect is

similar.

LKF growth rates

Failure propagates quickly through the sea ice cover. This propagation can be

modified or even stopped by changing forcing conditions. The growth rates

of persistent LKFs provide information about these processes. We define the

growth rate as the change in length of an LKF divided by the time between

two records. In detail, we compute the area where both LKFs of a tracked

pair overlap following the definition of overlap from Hutter et al. (2019) to

determine how much of the change in length is attributed to growth and

shrinking. This overlapping area is the part of the LKF that is seen in both

time records. All parts of the LKF from the first time record that do not lie

in the overlapping area are parts of the LKF that become inactive in the next

time record. We associate the shrinking rate to these changes. Analogously,

the LKF grows by the parts of the LKF in the second time record that
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Figure 4.11: Mean (symbols) and standard deviation (vertical bars) of the growth
rates of LKFs in RGPS data and both simulations. We differentiate between the
growth rate, the shrinking rate, and the growth rate of newly formed LKFs. The
dashed lines are fits to exponential tails, the rate parameter of which is given in
the legend. For the analysis presented in this Figure the LKF data sets of both
simulations are filtered for RGPS coverage.

lie outside of the overlapping area. These changes are associated with the

(positive) growth rate. For completeness we also compute the growth rates of

newly formed LKFs as their initial length divided by the temporal resolution.

All three growth rates follow an exponential distribution for the RGPS

data and both model simulations (Fig. 4.11). Positive growth has the largest

growth rates and the slowest decay of the exponential tail. The growth rate

distributions of newly formed LKFs have the steepest exponential tails, but a

higher probability of small growth rates (< 50 km/day). This implies that it

is more likely for an existing LKF to grow longer than for a new one to form.

From a physical point of view, this is plausible because an existing LKF is

a weakness in the ice, where, with constant forcing, stress can accumulate

which facilitates further deformation. Both model simulation contain this

effect.

The shrinking rates of persistent LKFs are smaller than their growth

rates and larger than the growth rate of newly formed LKFs. The physical

interpretation is that the fracture of ice acts on much smaller time scales

than the healing of the ice cover. Therefore, breaking the ice and opening

a lead takes less time than closing the lead by refreezing or convergent ice

motion.

Both mechanisms — higher growth rates of persistent LKFs and slower

closing of LKFs — are present in RGPS data and both model simulations.

However, only the ITD simulation reproduces the higher rate parameters of
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the exponential tails of RGPS observations. The tails for the noITD simula-

tion decay more slowly for all three growth rate distributions. We attribute

these differences to two effects: (1) the feedback between deformation and

thickness that accelerates the formation of LKFs is slower without the ITD

due to the different strength formulation. Therefore, higher stress builds

up before plastic deformation takes place, and consequently larger LKFs are

formed. (2) The low LKF density in the noITD simulation leaves enough

space for LKFs to grow larger. There are two plausible ways of stopping

an LKF from growing: either the stress is too small for further growth, or

the LKF intersects another LKF. Thus, higher LKF densities lead to lower

growth rates.

The low temporal resolution of 3 days cannot resolve true growing or

shrinking rates of the LKFs, because the formation or destruction of a defor-

mation features may take place on much shorter time scales. Therefore, the

growth rates computed here cannot be compared to fracture speeds of sea ice

determined from acoustical measurements. These fracture speeds range from

100 to 1100m/s (Stamoulis & Dyer, 2000) and can be regarded as an upper

limit of the LKF growth rates. In-situ measurements of lead propagation

times can also be used as an upper limit: Dempsey et al. (2012) recorded a

time of 10 s to break a 80m ice floe which corresponds to a fracture speed of

∼ 690 km/day. A higher temporal sampling rate is needed to directly com-

pare our LKF growth rates with fracture speeds, which could be achieved

by a higher output frequency for the model but is not possible for satellite

observations.

4.5 Discussion

In this section we discuss how the new feature-based evaluation of LKF

statistics is linked to the scaling analysis and what insights can be gained

from LKF statistics for further model development.

Both simulations with and without ice thickness distribution (ITD) model

agree remarkably well with satellite observations with respect to the repre-

sentation of LKFs and spatio-temporal scaling analysis of sea ice deforma-

tion. We find that the simulated sea-ice deformation reproduces the multi-

fractality in both spatial and temporal scaling, as well as the spatio-temporal

coupling of multi-fractal characteristics, which remained a challenge even for
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simulations with the MEB-rheology (Rampal et al., 2019). Hence, our simu-

lated sea ice deformation is characterized by strong heterogeneity and inter-

mittency. Our present analysis is the most extensive scaling analysis so far

for simulations with the VP-rheology and completes a set of previous scal-

ing analyses (Bouchat & Tremblay, 2017; Spreen et al., 2016; Hutter et al.,

2018) that show that previous findings about VP-simulations not being able

to reproduce observed scaling properties at coarse grid resolution (Girard

et al., 2009) cannot be generalized (especially not to high grid-resolution

simulations). For mean sea-ice deformation (first order moment q = 1) the

simulation with an ITD leads to scaling exponents closer to the ones retrieved

from RGPS, that is, sea-ice deformation is more strongly localized in space

and time compared to the simulation without an ITD. We attribute this re-

sult to the ice strength parameterization of Rothrock (1975) in the ITD run

that favors a fast evolution of plastic deformation.

Consistent with the scaling analysis in Section 4.3, we find that the ITD

simulation has a larger number of LKFs compared to the noITD simulation.

In general, the LKFs in the ITD simulation agree better with RGPS data

in terms of the LKF statistics. The LKF lifetime is the only exception. We

note that both simulations reproduce all observed characteristics: heavy-

tailed distribution of LKF lengths, exponential tails in the distribution of

LKF lifetimes and growth rates, and scale invariance of the LKF curvature.

The distribution of intersection angles, however, is not reproduced in either

simulations.

By combining the scaling analysis and the feature-based evaluation, we

test which inferences from the scaling properties can be made about the

representation of LKFs. We discuss in the following how the results of both

analyses are linked in our special case, but stress that one analysis cannot

replace the other. Nevertheless, their combined use may provide new insights

from previous scaling studies.

The largest difference in LKFs between the simulations is that the noITD

simulation produces considerably fewer LKFs compared to the ITD simula-

tion. In Sec. 4.4.2, we discussed how this overall underestimation influences

LKF properties such as LKF length and growth rates. In addition, defor-

mation fields that include fewer features of localized deformation obviously

will be smoother in both space and time. We attribute the lower scaling

exponents for the noITD simulation largely to the lower numbers of LKFs.

The multi-fractal spatial scaling for both simulations is consistent with the
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heavy-tailed distribution of LKF lengths and the scale invariance in LKF

shapes that suggest self-similar deformation patterns.

The difference in temporal scaling exponents also seems to be largely

caused by the difference in LKF numbers because the noITD simulation re-

produces the distribution of LKF lifetimes remarkably well (Fig. 4.10a) in

spite of a lower temporal scaling exponent (Fig. 4.2). In contrast, the rate

parameter of the LKF lifetime distribution in the ITD simulation is too

low (Fig. 4.10) despite the better temporal scaling exponent. The absolute

number of short-lived LKFs in the ITD simulation, however, is higher and

thereby closer to estimates from RGPS data just because of the higher num-

ber of LKFs. In this case, linking the results of the temporal scaling analysis

to the representation of LKF lifetimes as attempted in Hutter et al. (2018)

appears to be incorrect.

With the LKF statistics, we identified some issues in the simulated de-

formation fields that could be addressed by specific parameterizations. A

general theme in the discussion of LKF characteristics is the low LKF den-

sity in the simulations, which we attribute to too few inhomogeneities in the

ice that can act as a starting point for fracture. With an ITD, the num-

ber and density of LKFs increase significantly. In the ITD simulation shear

and divergence have a strong impact on the thin thickness classes which im-

mediately feeds back into the ice strength facilitating further deformation.

Therefore, inhomogeneities introduced by deformation in the thickness fields

are much stronger compared to the standard VP simulation.

Simulated LKF densities in the pack ice away from the coast are too low

compared to RGPS data and the distribution of LKF lifetimes is biased to-

wards long-lived LKFs. The results imply that introducing inhomogeneities

by using an ITD model may be one way of improving the model, but not

necessarily the best one. The increased presence of long-lived LKFs in the

ITD simulation suggests that one should reduce the strong feedback between

ice thickness change and ice strength and instead introduce a damage param-

eter. This damage parameter would act as the memory of past deformation

and would also feed back into the ice strength, similar to the one used in

EB/MEB models (Girard et al., 2011; Dansereau et al., 2016). In doing so,

a properly parameterized healing time could be tuned independently from

parameters of the ITD formulation. We stress that a systematic parameter

optimization (e.g. Massonnet et al., 2014; Ungermann et al., 2017) is be-

yond the scope of this paper and also not possible due to limited computing
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resources.

The underrepresentation of fast-ice and LKFs that start from anchor

points at shoals could be addressed with a grounding scheme (e.g. Lemieux

et al., 2015). As the missing anchor points at shoals lead to an overestimation

of LKF densities in the Chukchi Sea, this parameterization may also have an

impact beyond improving the representation of fast-ice and LKFs at shoals.

Although the model reproduces most LKF statistics, it completely fails to

simulate the observed distribution of LKF intersection angles. This deficit

can be traced back to the yield curve. The result motivated a dedicated

study about the dependence of the intersection angle on the yield curve

(Ringeisen et al., 2019), which showed that, with a VP-rheology and classical

elliptical yield curve, it is impossible to simulate intersection angles below

60° in compression, and hence to reproduce the observed intersection angles.

Ringeisen et al. (2019) suggested to use a Mohr-Coulomb yield curve, but

also note numerical implementation hurdles. We hypothesize that the density

of LKFs could also increase by improving the simulated intersection angle,

because with sharper intersection angles more LKFs can be accommodated

in the same area.

4.6 Conclusion

The LKF statistics in this paper provide valuable information about which

characteristics of LKFs are reproduced by the model and which modifica-

tions to the model are necessary to further improve these simulations. The

model simulations, especially the one with an ITD, have LKF fields that

are in remarkable agreement with satellite observations from RGPS. This

reproduction of realistic deformation features is the prerequisite for regional

climate studies that directly resolve atmosphere-ocean interaction processes

along leads. In general, our model configuration could be used to predict

deformation features in the ice. When the orientation of leads is of special

interest, for example for navigation, modifications to the rheology seem in

place to obtain more realistic intersection angles.

So far, scaling analyses are the main tool found in the literature to

evaluate lead-resolving sea-ice models and provide insight into the material

properties that govern ice dynamics. With our simulations it becomes clear

that these analyses cannot discriminate between significantly different model
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physics in Pan-Arctic simulations (i.e., by comparing our scaling analysis re-

sults to Rampal et al., 2019). This suggests that in these scaling analyses the

effect of different physics is confounded by external factors such as wind and

ocean forcing or interactions with coastlines. Hence, we propose idealized

experiments (e.g. as in Dansereau et al., 2016; Weiss & Dansereau, 2017) to

study and isolate individual mechanical properties. For the evaluation of de-

formation features in Pan-Arctic simulations, the direct comparison of these

features should be the first choice.

We find that the computed spatio-temporal scaling exponents are mainly

linked to the number of LKFs, whereas other direct inferences on other LKF

properties are not obvious. For example, high temporal scaling exponents

imply high intermittency, but we find that the simulation with higher scaling

exponents also tends to have longer LKF lifetimes, which at first glance

suggests lower intermittency. Therefore, we do not see our new method

as a substitute for existing scaling analyses, but as a complement. The

presented LKF statistics offer the opportunity to directly evaluate simulated

deformation features. A scaling analysis tests for the material properties of

ice dynamics. The decision about an appropriate metric or a combination of

both metrics will always depend on the application.
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5. Summary, conclusions and

outlook

Summary

Chapter 2 focuses on the statistics of sea-ice deformation in a lead-resolving

sea-ice simulation. With a spatio-temporal scaling analysis I show that the

simulated sea-ice deformation is strongly localized in failure zones and domi-

nated by spontaneous fracture, i.e. that it is heterogeneous and intermittent.

From the comparison with deformation data observed from satellite, I find

that the observed degree of heterogeneity is reproduced by the model. De-

formation is more strongly localized in summer and in regions with high drift

speeds. In thick winter ice and in the Central Arctic, fewer deformation fea-

tures are simulated due to the higher ice strength. The temporal variability

of deformation is underestimated in the simulation. I attribute this underes-

timation to the lack of feedback mechanisms in the model that would allow

for progressive damage in the ice. This could be addressed by the implemen-

tation of a damage parameter that reduces the ice strength based on previous

deformation.

Chapter 3 explores new ways of evaluating deformation features that ac-

count for the chaotic nature of fracture and the strong anisotropy in sea-ice

deformation fields. I describe two algorithms that detect and track leads

and pressure ridges, which are combined as LKFs. The detection algorithm

identifies areas of high deformation rates and extracts individual LKFs. The

second algorithm tracks the detected LKFs using additional drift informa-

tion. Both algorithms can be applied to any drift data on a regular grid.

I find that the results of both algorithms agree with hand-picked reference
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data. I process all available wintertime RGPS data and compile the first

multi-year data set of leads and pressure ridges in the Arctic. This LKF

data set makes a comprehensive description of LKFs possible: as examples

I present the distributions of LKF length, lifetime and density. A strong

link of the number of LKFs to atmospheric drivers, here Arctic cyclones,

is also found. Furthermore, I show the potential of these metrics of being

used in model evaluation: I compare the intersection angles of LKFs in a

high-resolution Arctic sea ice simulation with the RGPS LKF data set.

Chapter 4 evaluates two high resolution sea-ice simulations in depth with

the newly developed LKF metric. One of the simulations uses an active

ITD model that differs in the ice strength formulation from the classical VP

model. This formulation is known to lead to more heterogeneous strength

fields and I test if that also results in more simulated fracture. The other sim-

ulations uses the classical two ice-class VP-model. LKFs are automatically

extracted from both simulations using the algorithms presented in Chapter

3 and their spatial properties and temporal evolution are compared to the

RGPS LKF data set. Interannual and seasonal variations of the number of

LKFs, LKF densities, and LKF orientations in the ITD simulation are found

to be in line with RGPS observations. The heavy tail of the LKF length

distribution and the scale invariance of LKF curvature in both model and

RGPS observations point to the self-similarity of the LKF system, which

is in line with the results of a scaling analysis that show multi-fractal spa-

tial and temporal scaling. The model overestimates the intersection angle of

LKFs, which is attributed to the viscous-plastic rheology with an elliptical

yield curve. The new feature-based analysis of LKF statistics is found to be

useful for a comprehensive description of deformation features. As such it

complements the commonly used scaling analysis, as it provides additional

valuable information when comparing deformation statistics. In summary, I

show that the ITD simulation reproduces the LKFs sufficiently well to study

the effect of directly resolved leads in climate simulations.
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Figure 5.1: Leads in the 1-km sea-ice simulation presented in Chapter 2. The
opacity of the ice cover illustrates its concentration and sea ice thickness is il-
lustrated by shadowing. NASA blue marble high resolution images1are used as
background.

Conclusions

This thesis shows that sea-ice models using a classical viscous-plastic

rheology can resolve deformation features that not only appear strikingly

realistic (Fig. 5.1), but also agree in their characteristics with satellite ob-

servations. Two conditions are required for this: (1) very fine horizontal

grid spacing, in this thesis 1 to 2 km, and (2) a high accuracy in solving

the dynamic equations2. The good agreement between simulated deforma-

tion fields and satellite observations indicates that VP-models can be run at

such high resolutions that individual floes are resolved despite the underly-

ing continuum assumption (Question Q1, page 11). In Chapter 2, I show

that simulated sea ice deformation is scale invariant. This scale invariance

suggests that the common deformation physics model initially described for

large scales is also valid on smaller scales. Indeed, the geometry of fracture of

1NASA Visible Earth: https://visibleearth.nasa.gov/view_cat.php?

categoryID=1484 [Status: 10.4.2019]
2My solver settings for VP-rheology are described in Chapter 4. For the EVP-rheology,

which is more commonly used in climate models, converging solutions can be achieved
following Koldunov, Danilov, Sidorenko, Hutter et al. (2019).

111

https://visibleearth.nasa.gov/view_cat.php?categoryID=1484
https://visibleearth.nasa.gov/view_cat.php?categoryID=1484


CHAPTER 5. SUMMARY, CONCLUSIONS AND OUTLOOK

a multitude of floes resembles the cracking of a single floe or even laboratory

scale ice samples (Schulson & Hibler, 1991, 2004). Even higher resolution

simulations show reasonable results (Ringeisen, Losch, Tremblay & Hutter,

2019, Heorton et al., 2018). This suggests that the continuum assumption

does not set an upper limit for increasing the resolution, but it is likely that

the 2D assumption will do so in the future. For grid spacings in the range of

sea ice thickness, i.e. typically meters to tens of meters, also vertical forces

need to be taken into account.

The resolved deformation structures require a thorough validation to dif-

ferentiate between physically meaningful features and numerical artifacts. In

this thesis, I suggest a two level validation for lead-resolving sea-ice simula-

tions to answer Questions Q2 and Q3. Firstly, the sea ice deformation is

evaluated whether leads are formed by the correct physical processes. Sec-

ondly, the spatial characteristics and temporal evolution of leads and pres-

sure ridges themselves are deduced and compared to satellite observations.

In Chapter 3, I outline a detection and tracking algorithm for deformation

features. The various statistics of LKFs presented in Chapter 4 test spatial

and temporal properties of leads and pressure ridges that are believed to

be crucial for small-scale sea-ice predictions and simulating interaction pro-

cesses in climate studies. Both evaluation steps are complementary: I show

that the new feature-based evaluation approach also allows to discriminate

between simulations that agree in the scaling analysis, but show differences

in LKF characteristics that are important in climate simulations, e.g. LKF

density and lifetime.

The feature-based analysis of LKFs and the spatio-temporal scaling anal-

ysis indicate some model deficits: VP-models do not fully resolve the inter-

mittency of sea ice deformation (see Chapter 2) and LKFs densities are found

to be too low (see Chapter 4). Both can be attributed to a lack of inhomo-

geneities in the sea ice fields that seed the fracture of ice. An active ITD

model that introduces more small-scale variability in the ice and a faster

feedback between deformation and ice strength improves the intermittency

of sea ice deformation and LKFs densities, but also results in too persistent

deformation features. A further solution to enable progressive damage in

the VP-rheology may be a new damage parameter that increases in plastic

deformation and affects the ice strength as it was suggested for the MEB

rheology (Girard et al., 2011; Dansereau et al., 2016). The misfit of the in-

tersection angles of our simulated LKFs is caused by the standard elliptical
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yield curve used in this thesis. This overestimation motivated a study by

Ringeisen, Losch, Tremblay & Hutter (2019). They showed that it is im-

possible to reproduce the small intersection angles observed in satellite data

with an elliptical yield curve and suggested to use a Mohr-Coulomb yield

curve instead. In addition, I expect the implementation of grounding scheme

to improve the spatial distribution of deformation features and fast ice in

shallow and coastal regions in the Arctic.

The overall goal of this thesis to present a lead-resolving sea-ice simu-

lations that is ready to be used in climate simulations is achieved by the

comprehensive model evaluation presented in Chapters 2 and 4. In particu-

lar, the simulation using an active ITD model in Chapter 4 reproduces the

deformation features that are observed by satellites. Thus, sea-ice models

with similar configurations can be used in coupled climate models in order

to study interaction processes along the resolved features. Since the tempo-

ral evolution of deformation features becomes more important in short-term

forecast systems, modifications allowing for progressive damage will be key.

Future perspectives

Possible directions for future work with a focus on the sea-ice modeling

components in this thesis are as follows:

• The multi-fractal scaling characteristics of the simulations in Chap-

ter 4 agree with both RGPS and results presented for MEB (Rampal

et al., 2019). Note, that the MEB rheology was especially designed

to fit these characteristics (Girard et al., 2011), because Girard et al.

(2009) found that the VP-rheology is not able to reproduce observed

scaling properties at coarse grid resolution. Backed up by other scal-

ing analyses (Bouchat & Tremblay, 2017; Spreen et al., 2016; Hutter

et al., 2018) our results show that these findings cannot be generalized

(especially not to high grid resolution simulations). However, it also

poses the question which rheology actually represents the physics of

sea-ice deformation best. Up to now, there is no thorough compari-

son of the different rheologies that are used in climate models. The

Sea Ice Rheology Experiment (SIREx) in the framework of the Forum

of Arctic Modeling and Observational Synthesis (FAMOS) co-led by

Amélie Bouchat (McGill University, Montreal, Canada) and myself is
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designed to answer this question. Eleven models employing four differ-

ent rheologies (VP, EVP, MEB, and EAP) are compared with RGPS

following the two-level approach as suggested in this thesis: firstly by

means of their scaling properties (prelimiary results, Bouchat & Hutter,

2018) and secondly by the characteristics of the resolved deformation

features (prelimiary results, Hutter & Bouchat, 2018).

• Chapter 2 and 4 conclude that the sea-ice deformation simulated with

the VP rheology could be improved by adding a damage parameter.

This would allow for progressive damage in the VP models and increase

the number of LKFs. The effect of multiple differences between the VP

and MEB rheology could be disentangled by implementing this damage

parameterization in a VP model framework (if feasible together with

the implementation of the MEB rheology in the same framework).

• The model evaluation presented in this thesis is mostly limited to win-

tertime from November to May. Chapter 2 highlights that sea-ice de-

formation in summer differs from winter deformation. A new opera-

tional data set of sea-ice deformation based on Sentinel-1 data (Peder-

sen et al., 2015) has the potential to fill the summer gap and extend

the presented evaluation up to date.

• I made the LKF detection and tracking algorithms available as open-

source code offering the sea-ice model community the possibility to

use the new feature-based metric for the validation of simulations and

the tuning of model parameters. For example, Koldunov, Danilov,

Sidorenko, Hutter et al. (2019) used the detection algorithm to adjust

free parameters of the solver to fit the majority of LKFs. The new eval-

uation method could also be integrated in semi-automatic parameter

optimization routines to include information on small-scale deforma-

tion. Most current parameter estimates in sea-ice models are based

on coarse resolution configurations, although an increase in resolution

changes the dynamic model behavior for constant model parameters

(Hutter, 2015; Williams & Tremblay, 2018). Thus, lead-resolving sim-

ulations will call for such systematic parameter optimizations in the

near future.

• As indicated by the title of this thesis, “Resolving leads in sea-ice mod-

els”, I focus mainly on leads that are reproduced in high-resolution
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Figure 5.2: Pressure ridges in the 2-km sea-ice simulation presented using an
active 5-class ITD model in Chapter 4. Leads are shown as dark features and
pressure ridges as bright features.

configurations. The simple reason for this is that leads can be iden-

tified in lead-resolving simulations as both localized deformation and

reduced sea-ice concentration and thickness (see Fig. 2.4). Thickness

changes caused by pressure ridges, however, are not found as a localized

increase in the mean thickness field of the simulations using the stan-

dard two-ice-class model of Hibler (1979). Using an active ITD model,

I identified features that show higher mean thicknesses than their vicin-

ity and resemble pressure ridges (Fig. 5.2). These simulated features

could be compared to high-resolution thickness data (Haas et al., 2008,

2010; Lindsay & Schweiger., 2013), providing valuable insights in the

choice of redistribution functions and ice strength formulations in ITD

models. Furthermore, they would also allow direct roughness estimates

for drag formulations.

Sea-ice models that reproduce directly leads and pressure ridges have

many potential applications in regional climate studies and prediction sys-

tems. The most important are listed below:

• Reliable short-term forecasts at regional scale are crucial for tactical de-

cisions in Arctic shipping and economic operations. To forecast sea-ice

fracture and drift, prediction systems depend on the proper representa-
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tion of localized sea-ice deformation. Preliminary estimates of the pre-

dictability of deformation features (Hutter, 2015, Mohammadi-Aragh,

Goessling, Losch, Hutter & Jung, 2018) might need to be revisited in

the light of the reported short-comings in the temporal evolution of

simulated sea-ice deformation. Small-scale sea-ice forecasting requires

modern data-assimilation capabilities that provide initial conditions for

localized sea-ice deformations.

• Interaction processes between different climate components that are re-

lated to leads and pressure ridges are of major importance in the Arctic

climate. The opportunity to directly simulate these processes may have

a similar potential for sea ice modelling as first eddy-resolution simu-

lations had for ocean models. In high resolution climate simulations,

heat and moisture transport, propagation of shortwave radiation, new

ice growth and salt rejection would take place to a large part in leads.

The surface roughness estimated from the presence of leads and pres-

sure ridges could change the atmospheric and oceanic drag with feed-

backs on atmospheric and oceanic circulation. Climate simulations of

this kind require high-resolution in all components, which may become

computationally feasible within the next decade.

• In these climate simulations, the detection and tracking algorithms

presented in Chapter 3 could be used to detect the areas where the

interactions of different climate components take place. Such an anal-

ysis would allow to assess the interaction of sea-ice deformation with

its atmospheric and oceanic drivers.

These examples demonstrate that lead-resolving sea-ice simulations open

new perspectives and have bright prospects in future climate simulations and

prediction systems. This thesis provides instructions for configuring such

simulations and evaluating them with observational data.
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Overall summary

• Sea-ice models using the standard VP-rheology reproduce leads

and pressure ridges at high resolution.

• I have developed a new method to evaluate these deformation

features against satellite observations and combined it with the

commonly used scaling analysis of sea-ice deformation.

• Sea-ice deformation localizes in the resolved deformation features

showing multi-fractal heterogeniety and intermittency.

• The simulated leads and pressure ridges agree with satellite

observations in their spatial characteristics and temporal

evolution. Hence, simulations using an active ITD-model can be

used as prototypes for the configuration of the sea-ice component

in a climate model in order to directly simulate air-ice-ocean

interaction processes in the Arctic.
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A. Supporting Information to

Chapter 2 1

A.1 Introduction

In the supporting information, we provide additional information about re-

sults and the comparison of three different scaling analyses (computation on

a Eulerian grid, on a Lagrangian grid, and by using the LSE method pre-

sented in the paper). In addition, the different temporal evolution of sea-ice

deformation observed in the EGPS data and in the model is illustrated in an

example.

A.2 Comparison of Eulerian, Lagrangian, and

LSE scaling analysis

In the paper, we discuss three different approaches computing deformation

rates at different spatial and temporal scales: (1) by averaging the strain

rates computed on the Eulerian grid within fixed boxes in space and time

in the Eulerian grid (abbreviated as EUL), (2) by computing strain rates

from integrated virtual buoy trajectories using line integrals and thereby

considering the advection of sea ice in the temporal averaging (abbreviated

as LAG), and (3) by averaging the strain rates computed on the Eulerian

grid within averaging boxes that are advected with the sea ice (abbreviated

as LSE). For a detailed description please refer to the paper.

The total deformation fields for different time steps are shown in Fig. A.1.

1This is the supporting information to Chapter 2 which was published along with the
paper ‘Scaling properties of Arctic sea ice deformation in a high-resolution viscous-plastic
sea ice model and in satellite observations ’ by Hutter et al. (2018) in the journal Journal
of Geophysical Research: Oceans.
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The deformation fields of LSE and EUL (Eulerian) look very similar (some-

times the LSE method gives lower estimates), whereas larger deformation

rates for LAG (Lagrangian) are clearly visible in regions of high deforma-

tion. Due to the averaging of velocity gradients over one grid cell in LSE,

the velocity gradients are smoothened and the deformation rates are smaller,

and hence potentially underestimated. The temporal evolution of the mean

and the maximum total deformation along with the PDFs of all three ap-

proaches is shown in Fig. A.2. The mentioned spurious overestimation of

the divergence rates for LAG (Lindsay & Stern, 2003; Bouillon & Rampal,

2015a) is found for EGPS. The Lagrangian method LAG is known to overes-

timate the true divergence rates (Lindsay & Stern, 2003; Bouillon & Rampal,

2015a); we can see that indeed the LAG divergence rates for EGPS are the

largest. This overestimation might be intensified by the artificial deformation

lines caused by the inhomogeneous drift composite. The latter also results

in an overestimation of the shear rate for EGPS. In comparison the deforma-

tion rates computed by LSE generally agree well the original Eulerian data,

although they can be slightly lower. The comparison using the same three

methods on the model output is given in Fig. A.3. Please note that the

PDFs of the modeled deformation rates show clearly power-law tails, which

is another indication that deformation rates are strongly localized in high

resolution viscous-plastic sea-ice models.

A spatio-temporal scaling analysis based completely on Lagrangian grids

is provided in Fig. A.4 for both EGPS data and model results. Please note

that this analysis overestimated deformation rates especially for the EGPS

data due to the spurious velocity gradients in the EGPS composite. The

Lagrangian scaling analysis works as follows: First we define grid cells with

four virtual buoys as vertices. From the displacement of the buoys in one

time step the velocities of all four vertices are computed. Next, the velocity

gradients are determined using line integrals over the boundary of the cell as

described in the RGPS user handbook by R. Kwok (https://rkwok.jpl.

nasa.gov/documents/RGPS-users-handbook_v2.0.pdf, page 25). The ve-

locity gradients of one gird cell are then averaged over different temporal

scales T. To obtain strain rates at different spatial scales L, we average over

a set of neighbouring grid cells, i.e. for the spatial scale of 50 km we aver-

age 5 x 5 neighbouring cells as one grid cell is ∼ 10 kmx 10 km. Spatial and

temporal averages are computed with an overlap of T/2 and L/2.

An Eulerian spatial scaling analysis of the model output for the temporal
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A.2. COMPARISON OF EULERIAN, LAGRANGIAN, AND LSE
SCALING ANALYSIS

Figure A.1: Maps of total deformation computed by using the developed LSE
method, on Eulerian grids (EUL), and by using Lagrangian trajectories (LAG).
For the Lagrangian approach, the spurious deformation lines along the sub scene
boundaries of the composite are marked in red. Day 0 corresponds to January
15th, 2012.

121



APPENDIX A. APPENDIX OF CHAPTER 2

0 20 40 60 80 100

Time in days

10 2

10 1

100
T
o
ta

l 
d
e
fo

rm
a
ti

o
n
 [

1
/d

a
y
]

LSE mean

LSE max

EUL mean

EUL max

LAG mean

LAG max

LSE mean

LSE max

EUL mean

EUL max

LAG mean

LAG max

LSE mean

LSE max

EUL mean

EUL max

LAG mean

LAG max

LSE mean

LSE max

0 20 40 60 80 100

Time in days

10 2

10 1

100

A
b
so

lu
te

 D
iv

e
rg

e
n
ce

 [
1
/d

a
y
]

0 20 40 60 80 100

Time in days

10 2

10 1

100

S
h
e
a
r 

[1
/d

a
y
]

10 2 10 1 100

Total deformation [1/day]

10 3

10 2

10 1

100

101

P
D

F

10 2 10 1 100

Absolute Divergence [1/day]

10 3

10 2

10 1

100

101

102

P
D

F

10 2 10 1 100

Shear [1/day]

10 3

10 2

10 1

100

101

102

P
D

F

Figure A.2: Comparison of deformation rates for EGPS data computed by dif-
ferent methods.
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Figure A.3: The same comparison of deformation rates computed with three
different methods but for the model output. The upper row shows the time series
of maximum and mean deformation rates for January, February, and March. In
the lower row the PDFs for the complete time span are given. Day 0 corresponds
to January 1st, 2012.
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LAG

Figure A.4: Spatial-temporal scaling properties of model output compared to
EGPS data using a Lagrangian scaling analysis. The comparison is confined to
the area of the EGPS composite for each day and to the period of Jan. 1, 2012 to
Mar. 31, 2012.

scale of 1 hour is given in Fig. A.5. The power-law scaling flattens for spatial

scales smaller than L < 10 km. This flattening may reflect the spatial reso-

lution of the wind forcing resolution or that the model requires multiple grid

cells to properly represent a lead. This is discussed in the paper.

A.3 Temporal evolution of sea-ice deforma-

tion

Figure A.6 illustrates the temporal evolution of sea-ice deformation observed

in the EGPS data and in the model. Since the fracturing of sea ice is very

sensitive to changes in the ice condition and the wind forcing, finding the

“same” deformation line in the satellite and model data for comparison, i.e.

at a similar location, and with similar orientation and time of formation,

is difficult. We found a distinct feature of two parallel deformation lines

forming in both satellite data and the simulation at a comparable location

and time. These two parallel deformation lines are shown in the highlighted

regions for the EGPS data and the model output in the time between day
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Figure A.5: Spatial scaling properties of model output using a Eulerian scaling
analysis for the temporal scale of 1 hour. The analysis is confined to the months
December to April and covers th entire model domain.

25 and 36 of the simulation (Fig. A.6). In the EGPS data, the deformation

line forms within day 26 and 27. The feature persists for two days (day 28

and 29). In the following days, parts of the deformation line are reactivated.

In the model the formation of both features takes more time (day 26 to 31)

and it persists until day 34. Thus, the time for formation and the persistence

of these deformation features is roughly two times longer in the numerical

model than in the satellite observations.
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Figure A.6: Temporal evolution of total deformation for EGPS data and the
drift data set generated from the model output using the same sampling as EGPS.
Day 1 refers to the first day of the simulation that is Sept. 13, 2011.
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B. Appendix of Chapter 3 1

B.1 Details on the Arctic simulation

The Arctic simulation with a refined horizontal grid spacing of 2 km us-

ing the MITgcm is based on a regional Arctic configuration (Nguyen et al.,

2012). The number of vertical layers is reduced to 16 with the first five lay-

ers covering the uppermost 120m to reduce computational cost as we are

only interested in sea-ice processes. The Refined Topography data set 2

(RTopo-2) (Schaffer & Timmermann, 2016) is used as bathymetry for the

entire model domain. The lateral boundary conditions are taken from glob-

ally optimized ECCO-2 simulations (Menemenlis et al., 2008b). We use the

3-hourly Japanese 55-year Reanalysis (JRA-55) (Kobayashi et al., 2015) with

a spatial resolution of 0.5625◦ for surface boundary conditions. The ocean

temperature and salinity are initialized on January 1st, 1992 from the World

Ocean Atlas 2005 (Locarnini et al., 2006; Antonov et al., 2006). The initial

conditions for sea-ice are taken from the Polar Science Center (Zhang et al.,

2003). Ocean and sea ice parameterizations and parameters are from Nguyen

et al. (2011a) with the ice strength P ⋆ = 2.264 · 104 Nm−2. The momentum

equations are solved by an iterative method and Line Successive Relaxation

(LSR) of the linearized equations following Zhang & Hibler (1997). In each

time step (120 s), 10 non-linear steps are made and the linear problem is it-

erated until an accuracy of 10−5 is reached, or 500 iterations are performed.

1This is the appendix of Chapter 3 which was published along with the paper ‘Leads
and ridges in Arctic sea ice from RGPS data and a new tracking algorithm ’ by Hutter
et al. (2019) in the journal The Cryosphere.
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C. Co-author papers related to

this thesis

The work presented in this thesis has been used to address other scientific

questions outside the scope of this thesis. Here, I give a brief overview of

publications, to which I contributed in the course of my PhD and which are

related to lead-resolving sea ice simulations.

“Predictability of Arctic sea ice on weather time scales” by

Mohammadi-Aragh, Goessling, Losch, Hutter & Jung (2018) in the Journal

Scientific Reports : This study explores the potential of lead-resolving sea-ice

simulation to forecast sea ice deformation fields. The potential predictability

of Arctic wintertime deformation is determined by means of different metrics

and found to be strongly affected by the chaotic behavior of the atmospheric

forcing. I contributed to the design of the experiments with my expertise in

lead-resolving sea-ice simulations and my knowledge from preliminary studies

on the predictability of LKFs (Hutter, 2015). In addition, I contributed to

the discussion of the results with a focus on the physical processes of sea-ice

deformation and its representation in the model.

“Fast EVP solutions in a high-resolution sea ice model” by

Koldunov, Danilov, Sidorenko, Hutter et al. (2019) in the Journal Jour-

nal of Advances in Modeling Earth Systems : This study shows how accurate

solutions of the dynamic equations in sea-ice models can be obtained with

the Elastic Viscous Plastic (EVP) rheology in high resolution configurations.

The parameters of two modified versions of this solver are optimized with

respect to the number of resolved LKFs. I implemented a version of the LKF
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detection algorithm that uses the FESOM model output that is provided on

a unstructured grid. I contributed to the discussion of the obtained results

and their implications on choosing the appropriate model parameters.

“Simulating intersection angles between conjugate faults in sea

ice with different viscous–plastic rheologies” by Ringeisen, Losch,

Tremblay & Hutter (2019) in the Journal The Cryosphere: This study fo-
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yield curve. The simulated intersection angles are compared to the analytical

solutions. I contributed to the outline of this study and to the discussion on

LKFs in simulations and observations.

I contributed to the writing of all three papers.
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FAMOS SIREx together, and spending time on getting our heads in so many

tiny but important details. I thank Mischa Ungermann for accompanying

me so many years at AWI as a “sea-ice PhD”, for listening to me thinking

out loud, and just being such a good friend.

I would like to acknowledge Anne Hutter, Mischa Ungermann, and Martin

Losch for dedicated proof-reading parts of this thesis and supporting me with

helpful discussions. Thanks to Thomas Rackow and Mischa Ungermann for

their help with LATEX. Finally, I would like to express my gratitude to Prof.

Dr. Christian Haas for accepting to review my thesis.

Furthermore, I thank my colleagues: Mischa Ungermann, Camila Cam-
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