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Abstract
In this paper, we first introduce a new family of polynomials, which are called the
truncated-exponential based Frobenius–Euler polynomials, based upon an
exponential generating function. By making use of this exponential generating
function, we obtain their several new properties and explicit summation formulas.
Finally, we consider the truncated-exponential based Apostol-type Frobenius–Euler
polynomials and their quasi-monomial properties.
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1 Introduction and preliminaries
Various families of polynomials play a key role in applied mathematics due to the fact that
they can be described in many different ways, for example, by orthogonality conditions,
by generating functions, as solutions to differential equations, by integral transforms, by
recurrence relations, by operational formulas, and so on. In light of their many important
properties, their extensions and generalizations with applications are also considered by
the researchers in mathematical and physical sciences. The resulting formulas are very
important and potentially useful, because they include expansions for many transcendent
expressions of mathematical physics in series of the classical orthogonal polynomials. The
developments bear heavily upon the work of many researchers who have earlier studied
the special polynomials with applications to p-adic analysis, q-analysis, umbral analysis,
and so on (see, for example, the recent work [3–22] and [23]).

Frobenius [10] (see also [4]) studied the polynomials Fn(x|u) in great detail by means of
the following exponential generating function:

∞∑

n=0

Fn(x|u)
tn

n!
=

1 – u
et – u

ext (
u ∈C \ {1}). (1.1)

Several identities and characterizations of the Frobenius polynomials Fn(x|u) can be found
in the works by Kim et al. [14–17]. In the case when u = –1 in (1.1), it reduces to the
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following relationship with the Euler polynomials En(x):

Fn(x| – 1) = En(x),

which are given in (1.4) below. Owing to their important properties, and in the honor of
Frobenius, the polynomials Fn(x|u) are called the Frobenius–Euler polynomials.

These polynomials are expressed recursively, in terms of the Frobenius–Euler numbers
defined by

Fn(u) := Fn(0|u),

as follows:

Fn(x|u) =
n∑

k=0

(
n
k

)
Fk(u)xn–k (n � 0), (1.2)

where the Frobenius–Euler numbers Fn(u) satisfy the following recurrence relation:

F0(u) = 1 and
(
F(u) + 1

)n – Fn(u) = (1 – u)δn,0, (1.3)

by simply replacing Fn(u) by Fn(u), δn,k being the Kronecker delta.
The classical Bernoulli polynomials Bn(x) and the classical Euler polynomials En(x) are

analogous to the Frobenius–Euler polynomials Fn(x|u). They are specified by the following
exponential generating functions:

∞∑

n=0

Bn(x)
tn

n!
=

t
et – 1

ext and
∞∑

n=0

En(x)
tn

n!
=

2
et + 1

ext . (1.4)

The two-variable special polynomials from application viewpoint are very important as
they allow the descent of a bunch of handy, advantageous and pragmatic identities in a
fairly simple way. They also prove to be handy in originating new clan of special polyno-
mials. The two-variable families of the Appell polynomials were originated by Bretti et al.
[3] with the usage of an iterated isomorphism. The two-variable truncated-exponential,
Hermite, Legendre and Laguerre polynomials along their extensions are investigated and
examined in [2, 5–7, 23] by several authors.

The properties of the truncated-exponential polynomials (TEP) are comparatively little
known, despite the fact that these polynomials prove to be very handy in solving many
problems of quantum mechanics and optics. The main definition of TEP [1] is given as
follows:

en(x) =
n∑

k=0

xk

k!
. (1.5)

It is noteworthy here that

lim
n→∞ en(x) = ex.
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The comprehensive investigation and examination for the first time of certain properties
of en(x) was made by Dattoli et al. [6].

The most remarkable properties of these polynomials can be established by using (1.5).
An integral representation of these polynomials is given by

en(x) =
1
n!

∫ ∞

0
e–ξ (x + ξ )n dξ , (1.6)

which is a notable consequence of the following well-flourished expression [1]:

n! =
∫ ∞

0
e–ξ ξn dξ . (1.7)

The TEP can also be written in terms of the ordinary generating function as follows [6]:

∞∑

n=0

en(x)tn =
ext

1 – t
(
t ∈C; |t| < 1

)
. (1.8)

A further extension of the TEP en(x) to two variables was given by Dattoli et al. [6]. The
TEP has shown to play a vital and key role in evaluating integrals containing products of
special functions. They also emerge in numerous problems of quantum mechanics and
optics, but their properties are not known in a way they should be.

Recalling that the two-variable TEP en(x, y) are determined by means of the generating
relation (see [6])

∞∑

n=0
[2]en(x, y)tn =

ext

1 – yt2 (1.9)

and possess the following series definition:

[2]en(x, y) =
[ n

2 ]∑

k=0

ykxn–2k

(n – 2k)!
. (1.10)

Recalling also that the higher-order two-variable TEP en(x, y) are determined by the gen-
erating relation given by (see [6])

∞∑

n=0
[s]en(x, y)tn =

ext

1 – yts , (1.11)

which satisfy the following formula:

[s]en(x, y) =
[ n

s ]∑

k=0

ykxn–sk

(n – sk)!
. (1.12)

In view of Eqs. (1.8), (1.9) and (1.11), we find that

[2]en(x, y) := e(2)
n (x, y) and en(x) := e(1)

n (x, 1).
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We note that

Un(y) = [2]en(0, y), (1.13)

where Un(y) represents the Chebyshev polynomials of the second kind, which is deter-
mined by the following ordinary generating relation [1]:

∞∑

n=0

Un(x)tn =
1

1 – 2xt + t2

(|t| < 1; x � 1
)
. (1.14)

Furthermore, under the operation of the multiplicative operator M̂ and the derivative
operator M̂, we get

M̂e(s) = x + syDyyDs–1
x (1.15)

and

P̂e(s) = Dy, (1.16)

respectively. It follows from (1.15) and (1.16) that the higher-order two-variable TEP
[s]en(x, y) are quasi-monomial ([24] and [23]).

The idea of the monomiality principle traces back to the year 1941, when Steffenson [25]
introduced the concept and method of poweroid. Subsequently, this method was modi-
fied by Dattoli [5]. According to the hypothesis of monomiality, the operators M̂ and P̂
occur and perform as multiplicative and derivative operators for a given polynomial set
{qn(x)}n∈N, that is, they satisfy the following relations:

qn+1(x) = M̂
{

qn(x)
}

(1.17)

and

nqn–1(x) = P̂
{

qn(x)
}

. (1.18)

The set {qn(x)}n∈N operated upon by the multiplicative and derivative operators is then
called a quasi-monomial set and must obey the following relation:

[P̂ ,M̂] = P̂M̂ – M̂P̂ = 1̂, (1.19)

which obviously exhibits a structure of the Weyl group.
If the underlying set {qn(x)}n∈N is quasi-monomial, its properties can be obtained from

those of the operators M̂ and P̂ . Specifically, the following properties hold true:
(i) qn(x) exhibits the differential equation given by

M̂P̂
{

qn(x)
}

= nqn(x) (1.20)

if M̂ and P̂ have differential realizations.
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(ii) qn(x) can be explicitly formulated as follows:

qn(x) = M̂n{1} (1.21)

with the initial condition q0(x) = 1.
(iii) The exponential generating relation of qn(x) can be put in the following form:

etM̂{1} =
∞∑

n=0

qn(x)
tn

n!
(|t| < ∞)

(1.22)

by using of the identity (1.21) (see, for details, [5, 6] and [23]).
There is ongoing use of the above-mentioned operational methods in such fields of re-

search as classical optics, quantum mechanics and many areas of mathematical physics.
Thus, clearly, these methods provide efficient and powerful means of investigation of var-
ious families of polynomials.

This article is organized as follows. In Sect. 2, the truncated-exponential based Fro-
benius–Euler polynomials are introduced and their several interesting properties are ob-
tained. In Sect. 3, summation formulas are established for these types of polynomials. In
the last section (Sect. 4), the truncated-exponential based Apostol-type Frobenius–Euler
polynomials are introduced and their quasi-monomial properties are derived.

2 Truncated-exponential based Frobenius–Euler polynomials
With a view to generating the truncated-exponential based Frobenius–Euler polynomials
(TEFEPs) denoted by e(s) Fn(x, y|u), we first prove the following result.

Theorem 2.1 The exponential generating function for the TEFEP e(s) Fn(x, y|u) is given by

∞∑

n=0
e(s) Fn(x, y|u)

tn

n!
=

1 – u
(et – u)(1 – yts)

ext . (2.1)

Proof Upon replacing x in Eq. (1.1) by M̂e(s) , that is, by the multiplicative operator of the
polynomials [s]en(x, y), we have

1 – u
et – u

exp(M̂e(s) t){1} =
∞∑

n=0

Fn(M̂e(s) |u)
tn

n!
. (2.2)

Now, if we first make use of the expression for M̂e(s) given by (1.15) and then decouple
the exponential term in the left-hand side of the resulting equation by means of the Crofton
identity:

f
(

z + mμ
dm–1

dzm–1

)
{1} = exp

(
μ

dm

dzm

){
f (y)

}
, (2.3)

we get

1 – u
et – u

e(yDyyDs
x)ext =

∞∑

n=0

Fn
(
x + syDyyDs–1

x |u) tn

n!

(
Dz :=

d
dz

)
. (2.4)
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Denoting the TEFEP in the right-hand side of Eq. (2.4) by e(s) Fn(x, y|u), we find that

Fn
(
x + syDyyDs–1

x |u)
= e(s) Fn(x, y|u). (2.5)

Also, upon expanding the first exponential in the left-hand side of Eq. (2.4) by using the
following binomial expansion:

(1 – z)–λ =
∞∑

�=0

(λ)�
�!

z�, (2.6)

the assertion (2.1) is established, (λ)� being the familiar Pochhammer symbol. �

The next result is proved in order to frame the TEFEP e(s) Fn(x, y|u) in the context of the
monomiality hypothesis.

Theorem 2.2 The following succeeding derivative and multiplicative operators for the
TEFEP e(s) Fn(x, y|u) hold true:

P̂e(s)F = Dx (2.7)

and

M̂e(s)F = x + syDyyDs–1
x –

eDx

eDx – u
, (2.8)

respectively.

Proof Differentiating both sides (2.2) with respect to t partially, we have

(
M̂e(s) –

et

et – u

)
1 – u

(et – u)
exp(M̂e(s) t) =

∞∑

n=0

Fn+1(M̂e(s) |u)
tn

n!
. (2.9)

If we first substitute from (1.15) and (2.5) into both sides of Eq. (2.9) and then use the
following identity:

Dx

{
1 – u

(et – u)(1 – yts)
ext

}
= t

{
1 – u

(et – u)(1 – yts)
ext

}
(2.10)

in the resulting equation, we get

(
x + syDyyDs–1

x –
eDx

eDx – u

) ∞∑

n=0
e(s) Fn(x, y|u)

tn

n!
=

∞∑

n=0
e(s) Fn+1(x, y|u)

tn

n!
. (2.11)

Equating the coefficients of like powers of t on both sides of Eq. (2.11), we are led to the
first result (2.8) asserted by Theorem 2.2.

Next, by using Eq. (2.1) on both sides of the identity (2.10), we have

Dx

{ ∞∑

n=0
e(s) Fn(x, y|u)

tn

n!

}
=

{ ∞∑

n=0
e(s) Fn–1(x, y|u)

tn

(n – 1)!

}
. (2.12)
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Comparing the coefficients of like powers of t on both sides of the above equation (2.12),
we obtain the second result (2.7) asserted by Theorem 2.2. �

Remark 2.1 Using Eqs. (2.7) and (2.8) in Eq. (1.15), we find the following differential equa-
tion for the TEFEP e(s) Fn(x, y|u):

(
xDx + syDyyDs

x –
eDx

eDx – u
Dx – n

)
e(s) Fn(x, y|u) = 0. (2.13)

We next turn to the series definitions of the TEFEP e(s) Fn(x, y|u) by proving Theorem 2.3.

Theorem 2.3 The following expansion:

e(s) Fn(x, y|u)
n!

=
n∑

k=0
[s]en–k(x, y)

Fk(u)
k!

(2.14)

or, equivalently,

e(s) Fn(x, y|u)
n!

=
n∑

k=0

Un–k(y)
Fk(x|u)

k!
(2.15)

holds true for the TEFEP.

Proof Using Eq. (1.1) with x = 0 and (1.11) in the left-hand side of Eq. (2.1), we find that

∞∑

n=0
e(s) Fn(x, y|u)

tn

n!
=

( ∞∑

k=0

Fk(u)
tk

k!

)( ∞∑

n=0
[s]en(x, y)tn

)
. (2.16)

Thus, by using the Cauchy product rule in the right-hand side of Eq. (2.16), the assertion
(2.14) is established.

Similarly, by using Eqs. (1.1) and (1.11) with x = 0 in the left-hand side of Eq. (2.1), we
get

∞∑

n=0
e(s) Fn(x, y|u)

tn

n!
=

( ∞∑

n=0

Fn(x|u)
tn

n!

)( ∞∑

k=0

Uk(y)tk

)
. (2.17)

Thus, if we apply the Cauchy product rule in the right-hand side of the above equation
(2.17), the assertion (2.15) is established. �

3 Summation formulas
In this section, we give several implicit summation formulas for the TEFEP.

Theorem 3.1 The following addition property for the TEFEP holds true:

e(s) Fn(x + v, y|u) =
n∑

k=0

(
n
k

)
e(s) Fn–k(x, y|u)vk . (3.1)
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Proof Upon setting x �→ x + v in Eq. (2.1), we find that

1 – u
(et – u)(1 – yts)

e(x+v)t =
∞∑

n=0
e(s) Fn(x + v, y|u)

tn

n!
. (3.2)

Expanding the exponential term in Eq. (3.2) and then on using the Cauchy product rule in
the resulting equation, we get

∞∑

n=0

n∑

k=0

(
n
k

)
vk

e(s) Fn–k(x, y|u)
tn

n!
=

∞∑

n=0
e(s) Fn(x + v, y|u)

tn

n!
. (3.3)

Exchanging the sides and comparing the coefficients of like powers of t in the resulting
equation, the assertion (3.1) is established. �

Upon setting v = 1 in (3.1), we get the following corollary.

Corollary 3.1 It is asserted that

e(s) Fn(x + 1, y|u) =
n∑

k=0

(
n
k

)
e(s) Fn–k(x, y|u). (3.4)

Theorem 3.2 The TEFEPs e(s) Fn(x, y|u) satisfy the following implicit summation formula:

e(s) Fn+k(η, y|u) =
n∑

l=0

k∑

m=0

(
n
l

)(
k
m

)
(η – x)l+m

e(s) Fn+k–l–m(x, y|u). (3.5)

Proof By setting t �→ t + w in Eq. (2.1), we find that

1 – u
(et+w – u)(1 – y(t + w)s)

ex(t+w) =
∞∑

n=0
e(s) Fn(x, y|u)

(t + w)n

n!
. (3.6)

Using

∞∑

M=0

f (M)
(u + v)M

M!
=

∞∑

i,j=0

f (i + j)
ui

i!
vj

j!
(3.7)

in Eq. (3.6) and shifting the exponential term to the right-hand side in the resulting equa-
tion, we get

1 – u
(et+w – u)(1 – y(t + w)s)

= e–x(t+w)
∞∑

n,k=0
e(s) Fn+k(x, y|u)

tn

n!
wk

k!
. (3.8)

Upon letting x = η in Eq. (3.8) and then comparing the resulting equation with Eq. (3.8)
itself, we obtain

∞∑

n,k=0
e(s) Fn+k(η, y|u)

tn

n!
wk

k!
= e(η–x)(t+w)

∞∑

n,k=0
e(s) Fn+k(x, y|u)

tn

n!
wk

k!
. (3.9)
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In view of Eq. (3.7), by expanding the exponential term in Eq. (3.9), we have

∞∑

n,k=0
e(s) Fn+k(η, y|u)

tn

n!
wk

k!
=

∞∑

l,m=0

(η – x)l+m tl

l!
wm

m!

∞∑

n,k=0
e(s) Fn+k(x, y|u)

tn

n!
wk

k!
. (3.10)

Finally, if we apply the Cauchy product rule in the right-hand side of Eq. (3.10) and com-
pare the coefficients of like powers of t in the resulting equation, the assertion (3.5) is
established. �

For n = 0 in (3.5), we deduce the following corollary.

Corollary 3.2 It is asserted that

e(s) Fk(η, y|u) =
k∑

m=0

(
k
m

)
(η – x)m

e(s) Fk–m(x, y|u).

Replacing η by η + x and setting y = 0 in (3.5), we get the following corollary.

Corollary 3.3 It is asserted that

e(s) Fk(η + x, 0|u) =
n∑

l=0

k∑

m=0

(
n
l

)(
k
m

)
ηm+l

e(s) Fn+k–l–m(x|u).

For η = 0 in (3.5), we get the following corollary.

Corollary 3.4 It is asserted that

e(s) Fk(0, y|u) =
n,k∑

l,m=0

(
n
l

)(
k
m

)
(–x)l+m

e(s) Fn+k–l–m(x, y|u).

4 Concluding remarks and observation
Various other allied families of the Apostol-type polynomials are investigated by several
researchers in an organized way (see, for example, [9, 20] and [21]). We recall here the
Apostol-type Frobenius–Euler polynomials (ATFEPs) Fn(x|u,λ) which are given by the
following definition.

Definition 4.1 The ATFEPs Fn(x|u,λ) are determined by the following generating rela-
tion:

1 – u
λet – u

ext =
∞∑

n=0

Fn(x|u,λ)
tn

n!
(u ∈ C; u �= 1), (4.1)

which, upon setting x = 0, reduces as follows:

1 – u
λet – u

=
∞∑

n=0

Fn(u,λ)
tn

n!
(4.2)

for the Apostol-type Frobenius–Euler numbers Fn(u|λ).
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Putting u = –1, the ATFEP gives the Apostol–Euler polynomials En(x;λ) (see [18]),
which (for λ = 1) reduces to (1.4). Also, for λ = 1 and u = –1, the ATFEPs reduce to the
classical Euler polynomials En(x) in (1.1).

Here, in this last section, we examine the truncated-exponential based Apostol-type
Frobenius–Euler polynomials (TEAFEPs) represented by e(s) Fn(x, y|λ, u) by demonstrating
the following result.

Theorem 4.1 The TEAFEPs satisfy the following exponential generating function:

∞∑

n=0
e(s) Fn(x, y|λ, u)

tn

n!
=

1 – u
(λet – u)(1 – yts)

ext . (4.3)

Proof Changing x in Eq. (4.1) by the multiplicative operator of the two-variable truncated
polynomials [s]en(x, y), we get

1 – u
(λet – u)

exp(M̂e(r) t){1} =
∞∑

n=0

Fn(M̂e(r) |λ, u)
tn

n!
. (4.4)

By applying the expression forM̂e(s) given by (1.15) and decoupling the exponential term
in the resulting equation by means of the identity (2.3), we get

1 – u
(λet – u)

e(yDyyDs
x)ext =

∞∑

n=0
e(s) Fn

(
x + syDyyDs–1

x |λ, u
) tn

n!
. (4.5)

Now, if we denote the TEAFEP in the right-hand side of Eq. (4.5) by e(s) Fn(x, y|λ, u), we
obtain

e(s) Fn
(
x + syDyyDs–1

x |λ, u
)

= e(s) Fn(x, y|λ, u). (4.6)

Also, in view of Eq. (2.6), by expanding the first exponential in the left-hand side of
Eq. (4.5), we get the assertion (4.3). �

In order to frame the TEAFEP e(s) Fn(x, y|λ, u) in the context of the monomiality hypoth-
esis, we demonstrate the following result.

Theorem 4.2 For the TEAFEP e(s) Fn(x, y|λ, u), the following relationships involving the
derivative and multiplicative operators hold true:

P̂e(s)F = Dx (4.7)

and

M̂e(s)F = x + syDyyDs–1
x –

λeDx

λeDx – u
, (4.8)

respectively.

Proof The proof of Theorem 4.2 can be given as in Theorem 2.2. So we omit the details
involved. �
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Remark 4.1 Substituting from Eqs. (4.7) and (4.8) into Eq. (1.15), we arrive at the following
differential equation:

(
xDx + syDyyDs

x –
λeDx

λeDx – u
Dx – n

)
e(s) Fn(x, y|u) = 0.

Remark 4.2 By using an approach as that already applied in this paper, we can derive sev-
eral summation formulas, symmetry identities, recurrence relations and other types re-
sults for the TEAFEP e(r) Fn(x, y|λ, u). We leave the details involved as an exercise for the
interested reader.

Before finalizing this paper, we give the following definition which seems to be a multi-
dimensional version of the TEAFEP e(r) Fn(x, y|λ, u).

Definition 4.2 Multi-dimensional (or multivariable) of truncated based exponential
based Apostol-type Frobenius–Euler polynomials are determined by the generating se-
ries:

∞∑

n=0
e(s) Fr

n(
−→
X , y|λ, u)

tn

n!
=

(
1 – u

λet – u

)r et
∑r

i=1 xi

1 – yts , (4.9)

where
−→
X = (x1, x2, . . . , xr).

In the case λ = 1, we get a multi-dimensional version of the TEFEP e(r) Fn(x, y|u) as fol-
lows:

∞∑

n=0
e(s) Fr

n(
−→
X , y|u)

tn

n!
=

(
1 – u
et – u

)r et
∑r

i=1 xi

1 – yts .

Corollary 4.1 Taking r = 1 in (4.9) reduces to Eq. (2.1).

In our forthcoming investigation, we plan to establish further results and properties
associated with some generalized forms of the above-mentioned families of polynomials.
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