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New statistical method identifies 
cytokines that distinguish stool 
microbiomes
Dake Yang1,5, Jethro Johnson  2,5, Xin Zhou  2,5, Elena Deych1, Berkley Shands1, 
Blake Hanson3, Erica Sodergren2, George Weinstock  2* & William D. Shannon1,4*

Regressing an outcome or dependent variable onto a set of input or independent variables allows the 
analyst to measure associations between the two so that changes in the outcome can be described by 
and predicted by changes in the inputs. While there are many ways of doing this in classical statistics, 
where the dependent variable has certain properties (e.g., a scalar, survival time, count), little progress 
on regression where the dependent variable are microbiome taxa counts has been made that do not 
impose extremely strict conditions on the data. In this paper, we propose and apply a new regression 
model combining the Dirichlet-multinomial distribution with recursive partitioning providing a fully 
non-parametric regression model. This model, called DM-RPart, is applied to cytokine data and 
microbiome taxa count data and is applicable to any microbiome taxa count/metadata, is automatically 
fit, and intuitively interpretable. This is a model which can be applied to any microbiome or other 
compositional data and software (R package HMP) available through the R CRAN website.

Researchers may want to know how microbiome composition (outcome or dependent variable) changes in rela-
tion to patient characteristics (inputs or independent variables) such as age, disease severity, or cytokine level. 
The value of this type of analysis is to understand how patient characteristics may directly impact microbial com-
positional and variability. For example, if we know the microbiome changes in a systematic way as patients age, 
those changes due to age can be accounted for and removed when studying disease processes and the differences 
between healthy and sick patients1–3. If the composition of the taxa population is different for changing levels of 
cytokines, these can be examined as a possible mechanism of disease or for treatment targets4.

Associating patient outcomes (dependent variable) with input covariates (independent variables) is often a 
regression analysis problem to statisticians. Regression methods from classical statistics have been developed 
such as linear regression for numerical outcomes like cholesterol levels, logistic regression for binary outcomes 
like responder versus non-responder, or proportional hazards regression for survival analyses like time to death5. 
As computing power increased over the years, new regression algorithms have emerged that apply to more com-
plex models and outcomes. These include nonlinear, mixed, and nonparametric regression (e.g., splines) models6, 
and nonparametric recursive partitioning to finds regions of the covariate space where the outcome is more 
homogeneous7,8. Within the recursive partitioning framework even more complex outcomes have been modeled 
such as survival models9 or Haseman-Elston models from genetic epidemiology to associate genetic markers in 
sibpairs with disease10.

However, these models won’t work off-the-shelf when the outcome (dependent variable) are the taxa counts 
and the inputs (independent variables) are the metadata since the mathematics and computing behind them 
don’t apply to microbiome taxa count outcomes. To get around this, researchers have developed ad hoc regression 
methods. For example, we regressed individual taxa proportions (Bacilli, Clostridia, and Gammaproteobacteria) 
onto day of life, days on antibiotics, breast milk, and C-section in a study of necrotizing enterocolitis in pre-term 
births to see how these variables impacted the levels of these taxa11. Since each taxon was regressed separately, this 
approach was suboptimal by not using the covariation information among the taxa and metadata in the analysis, 
and it was not possible to model how all three taxa changed simultaneously. A second approach uses random 
forests, however these models use the individual taxa as inputs or independent variables to predict an outcome 
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or dependent variable, such as a source of pollution12. While this is an important question, it is addressing the 
inverse problem of how does the microbiome composition change as vales of different meta-data (inputs) change. 
It also treats each taxon separately ignoring the information contained in the covariance structure of the taxa. 
A third approach is to cluster samples using distance measures calculated from the microbiome data and com-
pare the metadata distributions across subgroups, such as done to detect differences in microbiome composition 
between non-demented and demented patients13. The weakness of this approach is that the clustering and analysis 
metadata are independent and not using the joint information inherent in the multivariate taxa count/metadata 
data resulting in a less powerful statistical analysis.

In regression the analysis of microbiome compositions and metadata should be done jointly to make full 
use of the covariance information in the data. Further, we are interested in ‘regressing microbiome data onto 
metadata’ which identifies the taxa counts as the outcome or dependent variable, and the metadata as the input 
or independent data. One attempt to regress microbiome data onto metadata has been previously proposed14. 
However, the sparseness of the taxa count data makes estimating regression coefficients and error terms difficult, 
and often these cannot be estimated.

Regression, when the outcomes are microbiome taxa counts or compositions, will allow investigators to pre-
dict how taxa counts change for different values of covariates. In this paper we propose a novel and practical 
approach for regressing microbiome data onto metadata that analyzes the data jointly, is automatic and com-
putationally easy, and is intuitively interpretable. This method combines the Dirichlet-multinomial probability 
model which has been shown to apply to microbiome compositional data15, and the well-established nonpara-
metric recursive partitioning regression framework16. The Dirichlet-multinomial recursive partitioning model, 
DM-RPart, takes the taxa compositions as the output or dependent variable, and the metadata as the inputs and 
finds partitions of the metadata where the microbiome samples differ. The following sections describe the algo-
rithm and give an example showing how different cytokine values result in different microbiome composition. 
DM-RPart is available in the R HMP package as open source code through CRAN. In addition, the data and code 
to generate Fig. 1 are included as a vignette and can be used to reproduce our results and as a template for running 
other datasets.

Regression With Microbiome Composition as The Outcome
The method presented here has been developed for microbiome compositional data outcomes using recursive 
partitioning that separates samples into non-overlapping subgroups based on patient covariate values – samples 
within a subgroup are more similar to each other in their microbial composition than to samples in other sub-
groups. Similarity of a separation into two subgroups is measured by the Dirichlet-multinomial (DM) model 
loglikelihood ratio15,17. The Dirichlet-multinomial recursive partitioning algorithm (DM-RPart) allows the 
regression of the compositional data onto the covariates without having to resort to one-taxa-at-a-time, complex 
assumptions, or data reduction.

Dm-rpart application to ihmp data. To demonstrate the utility of DM-RPart for investigating host 
covariate—microbiome interactions we curated a longitudinal dataset generated as part of the iHMP to test the 
hypothesis that changes in cytokines representing one or more physiological processes produce changes in the 
composition of the gut microbiome. These data consist of host-serum cytokines and gut microbiome samples col-
lected from individuals during periods of self-reported viral upper respiratory infection. This work was supported 
by the NIH Common Fund Human Microbiome Project (HMP) 164(1U54DE02378901)18,19. Twelve cytokines 
were selected that may represent one or more physiological process associated with antimicrobial activity (IL-17F, 
IL-17A, IL-21, IL-22, IL-23, IL-12p40)20, autoimmunity (Eotaxin)21, allergy (IL-4, IL-13)22, and viral infection 
(IFNG)23, as well as cytokines related to obesity (Leptin)24 and regulation of inflammation (TGFB)25. Partitioning 
all 128 microbiome samples produced an optimal tree that first split samples based on leptin, then partitioned 
high-leptin microbiomes based on IFNG, and low-leptin microbiomes based on IL4/IL23 (Fig. 1A). Specifically, 
the DM-RP model partitions the 128 samples into 5 non-overlapping groups: 37 samples with Leptin < 1476 
and IL4 < 60 (Terminal Node 3); 10 samples with Leptin < 1476, IL4 > 60, and IL23 < 62 (Terminal Node 5); 
10 samples with Leptin < 1476, IL4 > 60, IL-23 > 62 (Terminal Node 6), 50 samples with Leptin > = 1476 AND 
IFNG < 66 (Terminal Node 8); and 21 samples with Leptin >  = 1476 AND IFNG > = 66 (Terminal Node 9). The 
percentages in each node represent the percent of all 128 samples. The terminal nodes at the bottom of the tree 
represent the subgroups. Selection of the variables and cut points is an automatic process based on optimizing a 
measure of homogeneity such that the samples in two child nodes, say the 57 samples with Leptin < 1476 and the 
71 samples with Leptin >1476 are more homogeneous compared to when these samples are combined in the par-
ent node above them. Figure 1B shows the composition of different genera in the terminal nodes, or subgroups, 
in Fig. 1. Note that DM-RP is data-driven and fully automatic with selection and order of the splits being optimal.

This model makes biological sense. Leptin levels are associated with BMI24, and obesity has frequently been 
associated with changes in the composition of the gut microbiome. Interestingly, changes in leptin levels have 
also been associated with changes in the composition of CD4 + T cells. Increased leptin correlates with an 
increased Th1: Th2 ratio26,27, which may explain why we observe IFNG-related variation in the microbiome4 on 
a high-leptin background. By contrast, low leptin correlates with a decreased Th1:Th2 ratio, which may in turn 
explain why we observe IL4-related variation in the microbiome28 on a low-leptin background. The presence of 
IL23 partitioning in our model potentially indicates Th17 related variation in the gut microbiome29 may also be 
observed on a low leptin background. Our results therefore support an established relationship between obesity 
and the microbiome and, furthermore, allow us to generate novel hypotheses about leptin-dependent detection 
of CD4 +T cell interaction with the microbiome.
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Fitting DM-RPart trees. Splitting the 128 microbiome samples into five subsets based on Leptin, IFNG, IL4, 
and IL23 is a two-step process. In the first step, microbiome samples are recursively split into two groups based on 
a covariate and cut point such that samples above or below that cut point are more homogeneous. In this example, 
the parent node (i.e., the set of all 128 samples) is split into two children nodes based on the subjects Leptin value. 
Finding the cut point is described in the technical paper, but in brief, all cut points over all covariates (i.e., IL-17F, 
IL-17A, IL-21, IL-22, IL-23, IL-12p40, Eotaxin, IL-4, IL-13, IFNG, Leptin, and TGFB) are tested. The covariate/
cut point that splits the samples into two groups is selected and entered into the tree (Fig. 1A) that results in the 
microbiome samples in the two children node being more homogeneous compared to when the samples are 
combined in the parent node. This splitting step is repeated on the microbiome samples in each child node (i.e., 
recursively applied) until a small number of samples, say 5, remain in a node, or the taxa counts are identical in 
all the samples.

Figure 1. Results of applying DM-RPart to the iHMP microbiome and cytokine data. 1(A) (top) shows the 
optimal tree found by fitting the full tree and using cross-validation pruning to find the best fitting tree. 1(B) 
(bottom) shows the taxa frequency composition differences for the 5 terminal nodes.
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The second step of the DM-RPart algorithm is to find the right-sized tree after the first step of fitting a full tree 
partitioned down to a small number of samples within each terminal node. To avoid overfitting the data, the full 
tree is pruned back to a smaller right-sized tree by cross-validation and cost-complexity pruning. Cross-validation 
error is defined as the total squared Euclidean distance between validation data to the mean taxa of each ter-
minal node for a given subtree which is known as the PRESS statistic (see details in Methods section) which 
becomes smaller as the partition finds homogenous subgroups (see Breiman et al., Chpt. 11, Section 5)7. The 
cross-validation results for the Leptin/IFNG/IL4/IL23 tree is shown in Table 1. Column one is the number of 
terminal nodes or complexity of the subtrees, column two is the cost complexity parameter α for pruning, col-
umn three the number of splits in the tree, the fourth column the difference in error between nested trees (rows), 
and the last column is the mean of 100 times 10-fold cross-validation error for selecting the best size tree. The 
right-sized tree is selected as smallest mean cross-validation level which is five on the full iHMP data.

DM-RPart application to Insulin sensitivity data. We subsequently used DM-RPart to examine 
whether insulin sensitivity may influence host-microbiome interactions. We combined samples for 27 insulin 
resistant (IR) and 64 insulin sensitive (IS) based on steady state plasma glucose (SSPG) measurements. The same 
variables as above plus a categorical variable indicating if the sample was from an IR or IS subject were included. 
Notably, DM-RPart returned no significant tree when partitioning microbiomes from both IR and IS individuals 
which are shown in Table 2 where the smallest mean cross-validation error happened in the root node (Tree 
Complexity 1) which means no split on the insulin resistant/sensitivity data.

Application of DM-RPart to simulation data. In this simulation we assess the performance of 
DM-RPart under a range of sample size (number of microbiome samples), difference between DM parameters (π 
and θ), and normally distributed covariates (Table 3). For each simulation three microbiome datasets were gener-
ated using the Dirichlet-multinomial parameters θπ̂ ˆ( , ) from the HMP saliva, throat, and tongue body sites. Each 
body site was associated with a randomly generated normal covariate with mean −1, 0, and 1 for saliva, throat, 
and tongue, respectively. Three standard deviations were used to allow differing levels of overlap between the 
groups. The number of reads for each sample is 50,000. The datasets were generated under Dirichlet-Multinomial 
distribution using the function Dirichlet.multinomial in the R package HMP.

Tree Complexity Cost Complexity (α) Number of Splits Relative Error Cross-validation Error

1 0.0083 0 1.000 0.10704

2 0.0076 1 0.992 0.10893

3 0.0073 2 0.984 0.10792

5 0.0024 4 0.970 0.10508

6 0.0021 5 0.967 0.10827

8 0.0016 7 0.963 0.10903

9 0.0013 8 0.961 0.10948

10 0.0012 9 0.960 0.10928

11 0.0006 10 0.959 0.10907

12 0.0000 11 0.958 0.10932

Table 1. The complexity table of recursive partitioning on full iHMP data. Averaged cross-validation measure 
of the best tree of 100 iterations. Each cell shows the average measure of certain combination of the simulation 
parameters.

Tree Complexity Cost Complexity (α) Number of Splits Relative Error Cross-validation Error

1 0.01113 0 1.0000 0.08750

2 0.00622 1 0.9889 0.09051

3 0.00583 2 0.9826 0.09077

5 0.00551 4 0.9710 0.09060

6 0.00353 5 0.9655 0.09045

7 0.00291 6 0.9620 0.09040

8 0.00223 7 0.9591 0.09051

9 0.00081 8 0.9568 0.09138

10 0.00048 9 0.9560 0.09196

11 0.00001 10 0.9555 0.09227

12 0.00000 11 0.9555 0.09230

Table 2. The complexity table of recursive partitioning on insulin sensitivity data. Averaged misclassification 
error rate of the best tree of 100 iterations. The number in each cell is expressed as a percentage.
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The statistical assessment of DM-RPart is defined as the average of mean squared error in each terminal node 
for the right-sized pruned trees. The mean squared error is based on the distance of the samples in the node from 
the node mean (π) with the smaller distance indicates better fit of the data. Note that in the simulation, the group 
membership was never used for fitting the tree. Table 4 shows the mean results for 1000 iterations. As expected, 
the distance goes up as the amount of variability among microbiome samples increase (θ increases from 0.08 to 
0.6), as the sample size decreases (N from 360 to 120), and as the covariate standard deviation increases (SD from 
0.2 to 0.5).

Discussion
The Dirichlet-multinomial distribution was introduced previously for formal hypothesis testing in microbiome 
research15 and is extended here for microbiome regression. This paper introduces a novel approach of applying 
recursive partitioning to find covariates that separate and explain differences in microbiome taxa count data. The 
utility of this approach lies in discovering covariates associated with the microbiome taxa counts, and for forming 
hypotheses for future testing and patient stratification in clinical trials.

DM-RPart uses recursive partitioning to regress microbiome compositional data onto covariates. Microbiome 
taxa count data is compositional since a fixed number of sequence reads are sampled and an increase in one taxa 
must be accounted for by a decrease in one or more other taxa to ensure that the sum of the proportions always 
adds to 130. The Dirichlet-multinomial distribution analyzes microbiome compositional data using taxa counts 
avoiding the need to rarefy which is known to cause loss of information31, the reduction of multivariate taxa 
counts into a single number diversity measure which is difficult to interpret32, and the fallacy that systems biology 
can be learned by univariate statistics through one-taxa-at-a-time analyses33.

Any covariates can be used for fitting trees such as treatment or disease group, age, gender, or metabolites. In 
the first example we focused on cytokines in order to develop hypotheses about microbiome/cytokine associa-
tions. In the second example we were interested in whether insulin resistant versus insulin sensitive patients had 
different microbiomes.

The selection of the covariates is not limited, though we encourage covariate sets be selected that can be inter-
preted biologically versus adding hundreds or thousands of covariates that will be difficult to understand and 
result in spurious results due to the high dimensionality of the data34,35.

Two known limitations of recursive partitioning are the tendency to overfit the data, and binarizing of contin-
uous variables at each split of the tree into two levels. We address the overfitting problem using a cross-validation 
cost-complexity pruning algorithm. The issue of splitting continuous variables (binarizing) has been argued as a 
reason to avoid recursive partitioning algorithms. Nevertheless, RP is a commonly used exploratory analysis tool 
in the statistics community, and DM-RPart clearly provides insights into the relationship between covariates and 
the microbiome that cannot be quantified by other approaches. As an exploratory tool it also needs to be kept in 
mind that the results should be used to advise on the hypothesis testing and design of future studies. We believe 
the problem of binarizing covariates is outweighed by the insight this model provides.

Other methods are used in microbiome research to associate microbiome data with covariates such as 
PERMANOVA36 or multiple co-inertia analysis (MCIA)37. However, these methods differ from DM-RPart in 
terms of the type of outcome (e.g., PERMANOVA regresses pairwise differences of diversity onto covariates) or 
how the results are presented (e.g., MCIA presents ordination plots based on taxa counts and covariates). Because 

Parameters Value

Sample size per body site 40, 80, 120

Expected taxa abundances per body site

π from saliva1

π from throat2

π from tongue3

Dispersion parameter 0.08, 0.2, 0.6

Mean of covariate Mean of G1 = −1, G2 = 0, 
G3 = 1

Standard deviation of covariate 0.2, 0.35, 0.5

Table 3. Summary of parameters in simulation studies. Averaged misclassification error rate of the validation 
data of 100 iterations. The number in each cell is expressed as a percentage.

Total sample size

SD = 0.2 SD = 0.35 SD = 0.5

θ θ θ

0.08 0.2 0.6 0.08 0.2 0.6 0.08 0.2 0.6

120 1.24 3.18 11.23 1.32 3.22 12.64 1.59 3.62 14.26

240 1.08 2.98 9.65 1.12 3.1 10.52 1.35 3.33 11.91

360 0.97 2.69 9.23 1 2.93 9.78 1.25 3.25 10.23

Table 4. Averaged of mean squared error (E-03) of the best tree. The complexity table of Gibbs-RPart on 
Parkinson’s disease data. The red row (row 4) indicates the best size tree with 6 terminal nodes.
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these methods and DM-RPart are using different data and approaches a benchmarking comparison was not felt 
appropriate.

Models fit using the DM-RPart function in R can be used to predict the terminal node assignment and micro-
biome for new data with the same covariates. The ability to predict in R can be used to validate the models as well 
and provide independent test data estimates of accuracy.

Methods
introduction to Dirichlet multinomial distribution. The Dirichlet Multinomial (DM) probability dis-
tribution on the set of microbiome taxa count samples is defined as:
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j1  is a vector of the expected taxa proportions, and the parameter θ ≥ 0 is the overdisper-
sion which is a measure of the between sample variability. The interpretation of π θP x( ; , )i  is the probability of 
observing a sample Xi in a group given the parameters π θ( , ). In practice, π θ( , ) are unknown so can be estimated 
using either the maximum likelihood estimation (MLE) or the method of moments (MoM). In this paper, MoM 
is chosen since MLE is time consuming. Mathematical details on the Dirichlet-multinomial and MoM calcula-
tions are presented in La Rosa et al.15.

Log-likelihood ratio (LLR) statistic. In DM-RPart, we use the likelihood ratio statistic from the DM 
model to partition the covariate space into non-overlapping homogeneous subregions. Let θπ …ˆ ˆL x x x( , ; , , , )N1 2
be the likelihood function of the observed microbiome samples … ∈x x x X, , , N1 2  given the method of moments 
(MoM) parameter estimates θπ̂ ˆ( , ). The larger the likelihood the more confidence that the data were generated 
from the model with parameters θπ̂ ˆ( , ). The likelihood function is calculated as the product of the probabilities of 
each observed sample,

∏θ θπ … = π .ˆ ˆ ˆ ˆL x x x P x( , ; , , , ) ( ; , )N i1 2

In classical statistics a likelihood ratio test is routinely used for testing alternative models, and was used to test 
if two sets of microbiome samples come from the same DM model or from different DM models15. Formally, the 
likelihood ratio test (LRT) of the hypothesis, π πθ θ=H : ( , ) ( , )0 1 1 2 2  is performed by calculating three likelihood 
functions: θ= π … ∈ˆ ˆL L x x Group( , ; , , 1)1 1 1 1 1 2  where the samples come from one group, say treated, 

θ= π … ∈ˆ ˆL L x x Group( , ; , , 2)2 2 2 2 1 2  where the samples come from a different group, say controls, and 
θ= π … ∈ˆ ˆL L x x Group and( , ; , , 1 2)0 0 0 0 1 2  where the samples from the two groups are assumed to come from 

the same group, such as when the treatment is ineffective and the same as the control. For statistical hypothesis 
testing the likelihood ratio statistic =

×
LR L

L L
0

1 2
 has well-known statistical properties and is the basis that used to 

calculate a P value for hypothesis testing.
Instead of hypothesis testing to calculate a P value, in the DM-RPart algorithm LR is used as a measure of how 

similar and dissimilar subsets of microbiome samples are to each other. In practice for computational accuracy, 
the log-likelihood π πθ θ… = ∑LL x x x P x( , ; , , , ) log( ( ; , ))N i1 2  is used in place of the likelihood function but 
behaves mathematically the same way. The LR is therefore replaced with the log-likelihood ratio (LLR),

π π πθ θ θ= … − … + …+ ( )( ) ( ) ( )LLR LL x x x LL x x x LL x x x, ; , , , , ; , , , , ; , , , ,N N N N0 0 0 1 2 1 1 1 1 2 2 2 2 1 21 2 1 2

with ≈LLR 0 indicating the two groups are similar. The further LLR is from 0 the stronger the evidence that the 
samples come from two groups. In DM-RPart the loglikelihood functions for the microbiome samples combined 
in a single group LL0 and split into two subgroups LL LL,1 2 are used to decide how strong the evidence that the 
samples should be partitioned into two subgroups (see below for details).

introduction to recursive partitioning. The general framework of recursive partitioning for a binary 
(Yes/No) outcome is introduced to illustrate the method. A dataset with N = 100 random observations was gen-
erated with two predictor (independent) variables X and Y simulated from a Uniform distribution between 0 and 
1, and a binary outcome (dependent) variable Z = 1 with probability = 0.95 if Y ≤ 0.5, probability = 0.05 if Y > 0.5, 
X ≤ 0.5, and probability = 0.70 if Y > 0.5, X > 0.5. Otherwise Z = 0. The simulated data is shown Fig. 2 along with 
the boundaries partitioning the covariate space into non-overlapping subregions with different probabilities of 
Z = 1.

The goal of recursive partitioning is to automatically find boundaries such as those in Fig. 2 over many covar-
iates. The algorithm does this by calculating how well every possible split along X and Y, defined as the midpoints 
between ordered values improves the homogeneity of the data in the two subsets relative to the unsplit set. Each 
possible split is scored according to a defined measure of homogeneity, which for binary outcomes is often the 
Gini diversity index which is minimized if all the outcomes in a subset are the same. In practice the first and last 
few cut points would not be tested to ensure a minimum, say 5, samples are in each subgroup. After each cut 
point along X is scored, the same procedure is applied to the other covariates. After all possible splits over all 
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covariates are scored, the split with the best score is selected and the data in a (parent) node are partitioned into 
two non-overlapping (child) nodes.

The algorithm proceeds recursively by repeating this step on each child node until all the Z (outcome) vari-
ables within a node have the same value, or there are less than some minimal number of observations need for 
splitting, say 5. The order of the splits defines a tree structure with the top node containing all the data, and the 
terminal nodes containing subregions of the covariate space defined by splits along the covariates.

For the simulated data in Fig. 2, 65 samples belong to class 1 and 35 to class 0. Using a majority rule, the data 
in the parent node would be classified as 1 with a misclassification rate of 35% (i.e., the 35 class 0 samples incor-
rectly classified as class 1). The first split occurs at ≥ .Y 0 505 sending 61 of the 100 samples to the left child node, 
and < .Y 0 505 sending the remaining 39 samples to the right child node. The samples in the right child node were 
not further split with high homogeneity of 38 class 1 samples and 1 class 0 sample for a misclassification rate of 1 
out of 39, or 2.5%. The samples in the left child node were classified by majority rule as class 0 since 34 out of 61 
were class 0, incorrectly classifying the 27 class 1 samples as class 0 samples, a 44.3% misclassification rate. This 
node was further split along < .X 0 488 to the left child node, and ≥ .X 0 488 to the right child node, with misclas-
sification rates of 2 out of 26 (7.7%) and 10 out of 25 (40.0%), respectively (Fig. 3). While the misclassification rate 
of this last node is high, the overall misclassification rate is 2 class 1 samples misclassified as 0, and 10 + 1 = 13 
class 0 samples classified as 1, for a total misclassification rate of 13%, a large improvement over the 35% misclas-
sification from not partitioning the data.

As an exploratory data analysis method38, additional attractions of recursive partitioning models are the intui-
tiveness of the decisions rules defined by the order of the splits down any path, and the ability to fit many variables 
in the model which otherwise could not be easily displayed visually by other graphical methods.

Figure 2. Simulated data to illustrate classical recursive partitioning.

Figure 3. Optimal recursive partitioning tree fit to the simulated data in Fig. 2.
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cost complexity and pruning. To determine the right-sized tree such as shown in Fig. 3, the recursive 
partitioning algorithm fits a full tree, TFull until a user-defined stopping criterion such as a minimum number of 
samples is reached, or a node is found with all outcomes being identical. In the example the full tree shown in 
Fig. 4 has 9 terminal nodes. To avoid overfitting the data this tree is pruned back using a cost-complexity parame-
ter to eliminate branches that balances predictive accuracy with the size (complexity) of the tree16. Let TFull denote 
the full tree with 9 terminal nodes from 8 splits (for this example), and T  denote a pruned subtree of TFull obtained 
by cutting off branches and collapsing samples in children nodes into a higher parent node. The complexity of any 
tree, T , is the number of nodes in T , where ≤ ≤T1 9 with =T 9Full  and the root node (no splits) =T 1Root . 
Other trees obtained from pruning TFull will have complexity ranging between these two extremes.

The cost complexity for any subtree T  is

∑ α= +α
=

C T S T T( ) ( ) ,
n

T

n
1

where α ≥ 0 is the cost complexity parameter (CP), T  is the complexity of the tree, and ∑ = S T( )n
T

n1  is the sum 
over all terminal nodes in T  of a measure of homogeneity, which in the case of binary outcomes is usually Gini 
diversity. The α for each subtree is calculated as the differences of the relative errors of two nested trees, ⊂T Ti j, 
where Ti is obtained by pruning Tj. α is a tuning parameter that balances the tree size T  and goodness of fit to the 
data ∑ = S T( )n

T
n1 .

For a categorical response, the relative error is calculated based on the misclassification rate for each split, with 
α calculated as the difference of relative error divided by the reduction in complexity. For example, for the tree 

=T 31 , α = = .. − .
−

0 0430 371 0 286
5 3

. The optimal α has the smallest cross-validation estimate of error rate. In the 
example α = .0 043 has the smallest estimated error rate of 0.429 giving the size of the optimal tree as 2 splits and 
3 terminal nodes (Table 5 and Fig. 2). Because pruning uses a nested algorithm there exists only one pruned tree 
with 2 splits and 3 terminal nodes so a unique tree is obtained.

An alternative method of selecting the right size tree is the 1 SE rule. Sometimes the cross-validation errors 
rapidly decrease for the first splits, followed by a long flat tail with small random fluctuations. When the position 
of the minimum in the flat tail is unstable, the 1 SE rule provides the simplest tree whose accuracy is comparable 

Figure 4. Unpruned full recursive partitioning tree fit to the simulated data in Fig. 2.

Tree Complexity Cost Complexity (α) Number of Splits Relative Error Cross-validation Error

=T 10 0.314 0 1.000 1.000

=T 31 0.043 2 0.371 0.429

=T 52 0.007 4 0.286 0.514

=T 9Full 0.000 8 0.257 0.743

Table 5. The complexity table of recursive partitioning on simulated data. Pairwise p-value between terminal 
nodes. The diagonal of the table is one because the pairwise p-value of the terminal node itself is one.
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to the tree with the smallest cross-validation estimate of error rate. The 1 SE rule is implemented as follows: First 
define the tree Tk0  with the smallest cross-validation error R T( )k0 . Second, the tree Tk1 is selected, where Tk1 is the 
simplest tree such that ≤ +R T R T SE R T( ) ( ) ( ( ))k k k1 0 0 . Researches could choose either of the smallest 
cross-validation estimate of error rate or the 1 SE rule to select the right size tree.

Microbiome recursive partitioning. We presented recursive partitioning using a simple example with a 
binary outcome to illustrate the method and introduce the mathematics. This method can be used with categori-
cal or continuous outcome variables, and has been extended to more complex models such as linear regression39 
and genetic epidemiology10. Most standard statistical packages now contain versions of recursive partitioning.

In this section, microbiome recursive partitioning is presented that extends classical recursive partitioning to 
microbiome taxa counts as the outcome variable with splitting based on the Dirichlet-multinomial log-likelihood 
ratio (LLR) and cross-validation cost-complexity pruning to avoid overfitting. The goal is to find partitions of the 
covariate space by recursive partitioning so microbiome samples within terminal nodes are more similar to each 
other than they are to microbiome samples in other terminal nodes.

Consider a set of taxa count data on N …x x xsubjects { , , , }J1 2 . For each subject, a set of m covariates 
…c c c{ , , , }m1 2  have been measured (e.g., age, gender). Note that recursive partitioning can accommodate missing 

covariates. Consider a parent node A. For covariate cm, let cpcm
be a cut point defined by the midpoints  

between adjacent values for cm, such that microbiome of subjects with ≤c cpm cm
 go into the left child node,  

and all others into the right child node. As in standard recursive partitioning, the process is repeated for  
all cut points and covariates, with each split of a parent node scored by the loglikelihood ratio 

= − +LLR LL LL LL( )Parent Node Left Child Node Right Child Node . For each parent node, the split with the largest absolute 
value of LLR is selected as the split for that node. This process is repeated recursively being applied to each child 
node to fit TFull. This parameter is specified by the user.

The cost complexity in DM-RP for any subtree T  is

∑ α= +α
=

C T S T T( ) ( )
n

T

n
1

where ∑ = S T( )n
T

n1  is the sum of the LL over all terminal nodes in the subtree T  and α adjusts for the size of the tree. 
When α = 0, the largest tree is selected, because α T  part is dropped. As α → ∞, the root tree will be selected 
since larger trees result in larger cost-complexity values. For a given α, a subtree αT( ) which minimizes 

α = ∑α
α

≤ =C T S T( ( )) min ( )T T n
T

n1
( )

FULL
 can be found because there are finite number of subtrees of TFULL.

A 10-fold cross-validation method for selecting the right sized tree is developed. In any node we can calculate 
the MOM estimate of the Dirichlet-multinomial parameter π̂( ) as the average taxa proportions of taxa samples 
contained in that node. For a new taxa sample, it will fall into a node based on its covariates and the splitting rules 
defined by the tree. The Euclidean distance between the sample’s taxa frequency and π̂ is calculated. The mean of 
the squared Euclidean distance of all the new test samples to the π̂ of the terminal nodes they fall into is calculated 
as a measure of fit and used for cross-validation pruning. The procedure is implemented as follows:

 1. Fit TFull, and calculate all cost complexity parameters α
 2. Randomly partition the data into 10 equal sized subsets.
 3. For each subset = …i i( 1, 2, , 10):

 a. Set the ith subset (Di) as the validation dataset

 b. Fit the TFull from step 1 to the remaining 90% of the data, called TFull 90%

 c. Obtain the pruned trees of TFull 90% at each α level from step 1 and calculate MOM π̂ for each terminal 

node of each pruned tree, called παˆ 90%

 d. Compute the predicted class for all observations in Di at each α level
 e. For each pruned tree, calculate the cross-validation error as the mean of squared Euclidean distances 

from Di to παˆ 90%

 4. Repeat step 3 for all = …i i( 1, 2, , 10).
 5. Claculated the averaged cross-validation error at each α level of the 10 iterations in step 4.
 6. Repeat step 2–5 = …M M( 1, 2, ) 100+ times to obtain the consensus result
 7. The subtree with the smallest averaged cross-validation error of step 6 or follows the 1 SE rule is selected as 

the right sized tree

Statements of ethics approval. (I). Participants provided informed written consent for the study under a 
research study protocol #23602 approved by the Stanford University Institutional Review Board. (II). All research 
was performed in accordance with relevant guidelines and regulations. Informed consent was obtained from all 
participants and/or their legal guardians.
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Data availability
DM-RPart is available in the R HMP package as open source code through CRAN. In addition, the data and code 
to generate Fig. 1 are included as a vignette and can be used to reproduce our results and as a template for running 
other datasets.
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