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ARTICLE

The epigenomic landscape of transposable
elements across normal human development
and anatomy
Erica C. Pehrsson1,2*, Mayank N.K. Choudhary 1,2, Vasavi Sundaram 1,2,3 & Ting Wang 1,2,4*

Transposable elements (TEs) have deposited functional regulatory elements throughout the

human genome. Although most are silenced, certain TEs have been co-opted by the host.

However, a comprehensive, multidimensional picture of the contribution of TEs to normal

human gene regulation is still lacking. Here, we quantify the epigenomic status of TEs across

human anatomy and development using data from the Roadmap Epigenomics Project. We

find that TEs encompass a quarter of the human regulatory epigenome, and 47% of elements

can be in an active regulatory state. We demonstrate that SINEs are enriched relative to other

classes for active and transcribed marks, that TEs encompass a higher proportion of enhancer

states in the hematopoietic lineage, and that DNA methylation of Alu elements decreases

with age, corresponding with a loss of CpG islands. Finally, we identify TEs that may perform

an evolutionarily conserved regulatory function, providing a systematic profile of TE activity in

normal human tissue.
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Transposable elements (TEs) are repetitive sequences that
comprise approximately half of mammalian genomes due
to historic proliferation within the host. Although the vast

majority of human TEs have lost the ability to transpose, many
encode functional regulatory elements that can disrupt gene
regulatory networks if left unchecked. In consequence, most TEs
are epigenetically silenced by DNA methylation and/or repressive
histone modifications in normal somatic tissues1,2. For this rea-
son, this sizable component of the genome was excluded from
many genomic analyses in the past.

However, research from the past decade has demonstrated that
a subset of TEs has been co-opted by the host and performs
important roles in normal gene regulation and development. As
such, TEs are now recognized as a rich source of genetic material
for host regulatory innovation. TEs have contributed substantially
to the propagation of transcription factor binding sites3–5,
encoding 20% of the binding sites for 26 transcription factors
profiled by ENCODE6, and they can disseminate batteries of
synergistic transcription factor binding sites, suggesting that TEs
provide the cell with a mechanism of efficiently coordinating gene
regulatory networks7,8. Certain TE subfamilies (a collection of TE
copies that descended from a single insertion into the ancestral
genome) have been co-opted to rewire gene regulatory networks
involved in pregnancy and innate immunity9,10, and they help
disseminate CTCF (CCCTC-binding factor) binding sites and
establish chromatin boundaries11,12. They can also act as tissue-
specific enhancers1, in addition to their extensive contributions to
the transcriptome in both normal and diseased tissues13,14.
Overall, 18–31% of human transcription start sites derive from
TEs15,16, 35% of which have highly restricted temporal and
spatial expression, and 44% of open chromatin regions overlap
TEs17.

Although many examples of TE exaptation have been pub-
lished, a comprehensive profile of their epigenetic state and gene
regulatory contribution is not yet complete. Analyses based on a
single data type (e.g., transcription start sites15,16,18) or on a
particular tissue capture only one dimension of the activity profile
of TEs. However, large databases of epigenetic measurements
across tissues are now available. For example, the Roadmap
Epigenomics Project19 interrogated the epigenomes of 127
human tissues and cell types using complementary techniques,
including ChIP-seq (chromatin immunoprecipitation) on
numerous histone modifications (combined into a composite
epigenetic state assignment using chromHMM), whole genome
bisulfite sequencing (WGBS), DNase hypersensitivity (DHS)
assays, and RNA sequencing. Although this dataset has been used
to explore the cis-regulatory activity of TEs across tissues20, a
thorough profile of TE contribution to gene regulation across
multiple phylogenetic resolutions, using complementary epige-
netic measurements, and in rarely profiled tissues is not yet
complete.

Here, we use the dense, multidimensional data generated by
the Roadmap Project and other consortia21–23 to create a
quantitative epigenetic profile of human TEs across a wide
breadth of normal tissues and multiple stages of development.
By overlaying these datasets on the 4.4 million TEs in the
human genome, we show that half of TEs exhibit biochemical
activity typical of a gene regulatory element in at least one of
the Roadmap epigenomes. We explore the epigenetic dynamics
of tissue-specific active TEs and demonstrate both tissue- and
phylogeny-specific variations in TE epigenetic marks that have
potential functional implications. Finally, we investigate
alterations in TE repression mechanisms over time and explore
the conservation of TE regulatory signatures across species.
Together, these analyses provide a systematic profile of TE
activity across normal human tissues.

Results
Substantial contribution of TEs to the regulatory epigenome.
For an initial, high-level epigenetic profile of TEs across human
tissues, we first identified the total proportion of TE bases or
CpGs annotated with each epigenetic state across all Roadmap
epigenomes (Fig. 1a; Supplementary Fig. 1). In comparison to
genes (Supplementary Fig. 2a), TEs are depleted in active reg-
ulatory (1_TssA, 2_TssAFlnk, 3_TxFlnk, 6_EnhG, 7_Enh) and
transcribed (4_Tx, 5_TxWk) chromHMM states (Supplementary
Table 1), hypomethylated CpGs (<30% methylated), and DHS
and H3K27ac (histone 3 lysine 27 acetylation) peaks. Indeed, only
3% of TE bases are annotated with active regulatory chromHMM
states, compared to 32% of promoter bases, and only 15% are
annotated with transcribed states, compared to 42% of exon
bases. This pattern is effectively identical when considering the
average TE profile across all epigenomes (Supplementary Fig. 2b)
and is even more striking for protein-coding vs. non-coding genes
(Supplementary Fig. 2c).

The aggregate epigenetic profile of TEs also differs by class,
which includes DNA transposons, LINE (long interspersed
nuclear element), SINE (short interspersed nuclear element),
and LTR (long terminal repeat) retrotransposons, the primate-
specific SVA class (SINE-VNTR-Alu), and Other class TEs, older
elements whose sequence is too degraded to accurately classify
(Fig. 1b; Supplementary Fig. 3a–c). For instance, the SINE class
has a higher proportion of bases in the 4_Tx transcribed state and
most active regulatory states than other classes, while the SVA
class has more CpGs missing methylation data. The latter is likely
due to SVA length (median 1,151.5 bp vs. 232 bp for all TEs;
Supplementary Fig. 3d) and recent propagation in the genome,
which decreases mappability (i.e., the likelihood that a read is
correctly mapped). Indeed, the number of epigenomes in which
individual SVA elements are missing methylation data is
negatively correlated with mappability (Spearman correlation,
ρ=−0.38, P-value < 0.001). Interestingly, a higher proportion of
the LTR class is annotated with the 9_Het heterochromatin state,
but the SINE class is more hypermethylated than other classes,
suggesting that the two classes are subject to different mechan-
isms of epigenetic repression. Regression analysis on individual
TEs confirms that this difference is driven primarily by TE class,
not CpG density (Supplementary Discussion; Supplementary
Table 2).

Despite their depletion in active epigenetic states, TEs have
enormous representation in the genome, encompassing ~45% of
its length and ~50% of CpGs. As a result, TEs comprise 26% of
active regulatory and 44% of transcribed chromHMM states
across all Roadmap epigenomes, as well as 22% of DHS peaks and
24% of H3K27ac peaks (Fig. 1c). Some TE classes contribute a
disproportionate amount of each epigenetic state (Fig. 1d). For
instance, the SINE class contributes 37–53% of the active and
poised (10_TssBiv, 11_BivFlnk, 12_EnhBiv) chromHMM states
and 41% of H3K27ac peaks within TEs, although it encompasses
only 28% of TE bases. Therefore, although TEs are depleted in
active epigenetic states, their contribution to them is substantial,
and the extent of the contribution varies by TE class.

Potential for individual TEs to be epigenetically active. We next
investigated the likelihood of each of the 4,430,788 human TE
fragments to be annotated with an active epigenetic state in a
Roadmap tissue. Within each epigenome, only a small fraction of
individual TEs are in each active epigenetic state (see Methods;
median ≤3% for all active regulatory states and DHS/H3K27ac
peaks; Fig. 2a). However, the majority of TEs are annotated with
an active epigenetic state in a Roadmap epigenome: 47% of
individual TEs are in an active regulatory chromHMM state and
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Fig. 1 Contribution of TEs to epigenetic states across all Roadmap epigenomes. a Proportion of bases within TEs, the entire genome, and RefSeq genic
features annotated with each chromHMM state, methylation state (proportion of CpGs), and overlapping DHS or H3K27ac peaks, summed across all
epigenomes with data for that technique (chromHMM states 127 epigenomes, methylation states 37, DHS 53, and H3K27ac 98). The color legend is below
b. Methylation states are defined as: hypomethylated, <30% methylated; intermediately methylated, 30–70%; hypermethylated, >70%; missing
methylation data, ≤3 reads covering the CpG. CDS: coding exon; UTR: untranslated region. c Proportion of bases within each TE class annotated with each
epigenetic state, summed across all epigenomes with data for that technique. c Total proportion of the epigenetic state within TEs across all epigenomes
with data for that technique vs. the total proportion of all genomic bases and CpGs within TEs. Bars are colored by state (y-axis). d The proportion of each
bar in c by TE class. The y-axis is shared with c.
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Fig. 2 Individual TE potential to be annotated with an epigenetic state. a Boxplots indicate the proportion of all TEs (4,430,788 TEs) annotated with the
state per epigenome (chromHMM states n= 127 epigenomes, methylation states n= 37, DHS n= 53, H3K27ac n= 98, expression RPKM >1 n= 56; see
Methods). Red dots are the fraction of TEs annotated with the state in at least one epigenome. For WGBS states, only TEs with CpGs are included
(3,200,428 TEs, 72% of all TEs). b For TEs annotated with the state in at least one epigenome (a, red dots), the proportion in each TE class. The color
legend is located below f. c For TEs annotated with the state in at least one epigenome (a, red dots), the proportion of all Roadmap epigenomes the TE is
annotated with the state. The b and c y-axes are shared with a. d Number of TEs annotated with the state in 100% of epigenomes. e Number of TEs
annotated with the state in ≥90% of epigenomes. f For TEs annotated with the state in ≥90% of epigenomes, the proportion in each TE class. The e and
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75% are in a transcribed state at least once. Specifically, 4% of TEs
are in the 1_TssA state (characterized by H3K4 tri-methylation,
H3K4me3), 44% in the 7_Enh state, and 33% and 24% overlap a
DHS or H3K27ac peak, respectively. In contrast, 82% of TEs are
in a repressed state (heterochromatin, 9_Het, or Polycomb
repressed, 13_ReprPC and 14_ReprPCWk) in at least one
Roadmap epigenome.

Despite the extensive quality control performed on the
Roadmap datasets, our results are dependent on variability
between similar epigenomes, and some fraction of the 47% of TEs
may be noise. The method of annotating TEs with chromHMM
states also has a moderate impact on this result. When TEs are
required to overlap the center of a 200 bp chromHMM
annotation window, the statistic decreases to 37%, dropping
further to 26% when TEs are required to overlap the center of a
chromHMM annotation block (Supplementary Fig. 4a, b;
Supplementary Discussion). Furthermore, although a TE must
overlap the summit of a DHS or H3K27ac peak (the predicted
binding location24) to be annotated with that state, we cannot say
with complete certainty that the TE is responsible for the peak.

However, the results are robust to the chromHMM model
used. With the 18-state model generated by the Roadmap Project,
which includes H3K27ac as well as the modifications included in
the 15-state model, the number of TEs in an active regulatory
state (states 1–4 and 7–11) in at least one epigenome increases
slightly to 48%, despite a 23% reduction in the number of
epigenomes under consideration (n= 98; Supplementary Fig. 5a,
b). The Roadmap Project also trained separate 50-state
chromHMM models on seven deeply profiled reference epigen-
omes (embryonic stem cells (ESCs), ES-derived cells, and IMR90)
using all available epigenetic marks. Using those state calls, a
median of 8% of TEs are in an active regulatory state in each
epigenome (based on the corresponding 18-state model state;
Supplementary Fig. 5c), as opposed to 3% with the 15-state
model. Therefore, more nuanced annotation models increase the
observed regulatory role of TEs.

The fraction of individual TEs ever in an active regulatory state
is slightly lower than expectation, as estimated by shuffling the
locations of all TEs ten times. On average, 49% (standard
deviation, 0%) of shuffled TEs are in an active regulatory state in
at least one epigenome. However, the particular TEs in an active
regulatory state in each epigenome are not random, and we
observe subfamily-specific patterns that are lost with shuffling
(see below).

Although LTR elements comprise 16% of TEs, they account for
27% of TEs ever in the 8_ZNF/Rpts state and 23% of those ever in
the 9_Het heterochromatin state, as well as 21–22% of TEs
overlapping DHS or H3K27ac peaks (Fig. 2b; Supplementary
Fig. 6a). SINE elements (40% of all TEs) represent 50–51% of TEs
ever in the transcribed 4_Tx state, the transcribed flanking
3_TxFlnk state, the genic enhancer 6_EnhG state, or expressed
RPKM >1 (reads per kilobase per million reads), likely due to
greater overlap with protein-coding introns (Supplementary
Fig. 6b).

TE regulatory signatures in the Roadmap epigenomes are
restricted rather than universal. A TE in an active regulatory state
or overlapping a DHS or H3K27ac peak remains in that state in
only 1–6% of epigenomes (median; Fig. 2c), while a TE remains
in a transcribed chromHMM state in 6–9% of epigenomes. The
degree of restriction also exhibits class-specific variation: for
example, SINE and SVA elements remain in the 5_TxWk state
longer than other TEs (Supplementary Fig. 6c). In contrast,
RefSeq promoters and exons exhibit a much more universal
activity profile (Supplementary Fig. 7a–d). 78% of promoters are
in the 1_TssA state and >92% overlap a DHS and H3K27ac peak
summit in at least one epigenome, while 93% of RefSeq exons are

expressed RPKM >1 at least once (vs. 32% of TEs). A substantial
proportion of promoters and exons (26–48%) also remain in
those states in ≥90% of epigenomes. These results demonstrate
that the ability of individual TEs to be regulatory elements, while
greater than previously expected, is dramatically less than that of
dedicated regulatory and genic elements.

To ensure that biological outliers did not skew our results,
we repeated the analyses excluding five cancer cell lines and
IMR90, which was identified as an epigenetic outlier in ref. 19

(Supplementary Fig. 7e, f). The results are very similar, except
that the number of TEs hypo- or intermediately methylated in
any epigenome decreases by 6–8% with the exclusion of IMR90,
which has a much higher proportion of lowly methylated CpGs
(Supplementary Fig. 1).

A small fraction of TEs is consistently annotated with the same
epigenetic state in all epigenomes, and most are repressed
(Fig. 2d). Of the 2% of TEs consistently in the same chromHMM
state (n= 106,228), 99.9% are in the 15_Quies quiescent state,
which lacks ChIP-seq signal for the five constituent histone
modifications. However, there are a few examples of TEs in an
active epigenetic state in all epigenomes (Supplementary Data 1;
Supplementary Discussion), and even more in 90% of epigenomes
(Fig. 2e). The latter are frequently enriched for SINE elements,
although LTR elements are enriched among TEs overlapping
DHS peaks (Fig. 2f). Many of these TEs overlap RefSeq promoters
and genes, including 92% of TEs expressed RPKM >1 in all
epigenomes (79% of which overlap protein-coding exons), but
others are intergenic. This includes 13 TEs overlapping a DHS
peak in all epigenomes that are >50 kb from the nearest RefSeq
gene and do not overlap a GENCODE annotation. They are
frequently in the 1_TssA promoter state, the 7_Enh enhancer
state, or the 8_ZNF/Rpts state and may represent uncharacterized
transcripts or enhancers.

Epigenetic state dynamics of TEs. Because most TEs exhibit
restricted regulatory activity, we next examined the dynamics of
their epigenetic profiles across Roadmap epigenomes. Each TE is
annotated with a median of four chromHMM and two methy-
lation states across all epigenomes, although nine TEs are anno-
tated with all 15 chromHMM states (Fig. 3a, b). However, the set
of states with which each TE is annotated varies (Fig. 3c, d). For
example, TEs in the poised promoter states (10_TssBiv and
11_BivFlnk) in any epigenome (<1% of TEs) spend an average of
10–16% of epigenomes in the corresponding active promoter and
promoter flanking states (1_TssA and 2_TssAFlnk) and 13–15%
of epigenomes in the Polycomb repressed state (13_ReprPC), a
pattern typical of a poised regulatory element becoming active in
a differentiating cell lineage. In contrast, the average TE spends
≤1% of epigenomes in those states.

Interestingly, TEs ever in repressed states are less dynamic than
those ever in active states (Supplementary Fig. 8a, b). However,
this may be partially due to long TEs that overlap multiple
chromHMM states within a single epigenome (Supplementary
Discussion; Supplementary Fig. 8c, d).

Although all TEs exhibit similar chromHMM dynamics
regardless of class (Fig. 3a), SINE and SVA elements have less
dynamic methylation profiles (Fig. 3b; Supplementary Fig. 8e).
They are less likely to be hypo- or intermediately methylated in
any epigenome (Supplementary Fig. 6a), and they remain
intermediately methylated in fewer epigenomes (median 3–5%
of epigenomes vs. 8–14% for other classes). This may be due to
the tendency of SINE and SVA elements to overlap CpG islands
(1% of SINE and 35% of SVA elements vs. <0.5% for other
classes), which have greater coordination of CpG methylation
levels and may result in a more bimodal distribution of average
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methylation. Taken together, these results suggest that some TEs
have biochemical activity specific to particular tissues or
developmental states, and that TE phylogeny contributes to this
profile.

Compared to background (ten iterations of shuffled TEs), true
TEs are slightly less dynamic than expected, although the results
are almost identical (Supplementary Fig. 9a, b; Supplementary
Discussion).

Finally, we confirmed the concordance of the five experimental
techniques used to query TE epigenetic status (Supplementary
Fig. 10a–e). TEs are significantly more likely to overlap a DHS or
H3K27ac peak, be in an active regulatory chromHMM state, or be
hypo- or intermediately methylated when also in one of the other
states (pairwise by-technique Chi-squared tests, P-value= 0). In
fact, although only 2% of TEs overlap a DHS peak and 0.7%
overlap an H3K27ac peak (of the TE-by-epigenome instances
with data for both metrics), 0.2% are annotated with both peaks,

ten times the expected number if the peaks were independent.
Furthermore, the proportion of TEs overlapping both peaks
increases to 3–4% when the TE is also in the 1_TssA or 7_Enh
state. However, because the epigenetic marks are not completely
redundant, we have included all in our analyses.

Differences in TE activity by tissue classification. In our ana-
lyses across all Roadmap epigenomes, we established that TEs
contribute different proportions of each epigenetic state to the
genome (Fig. 1c), and that this pattern differs by TE class
(Fig. 1d). Figure 4a demonstrates that there is also variation
between epigenomes in the contribution of TEs to epigenetic
states. Besides CpGs missing methylation data, the 8_ZNF/Rpts
state exhibits the largest variation, ranging from 21% of the state
within TEs (E002, ES-WA7 Cells) to 71% (E051, Primary
hematopoietic stem cells G-CSF-mobilized Male). Indeed, TEs
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Fig. 3 Epigenetic state dynamics of TEs. a For all individual TEs in each class, the total number of chromHMM states the TE is annotated with across all
epigenomes (DNA n= 456,948 TEs, LINE n= 1,480,369, LTR n= 708,210, SINE n= 1,769,839, SVA n= 3,608, Other n= 11,814). b For all individual TEs
in each class, the total number of methylation states the TE is annotated with across all epigenomes (TEs overlapping CpGs only: DNA n= 275,140 TEs,
LINE n= 952,459, LTR n= 532,571, SINE n= 1,430,171, SVA n= 3,519, Other n= 6,568). a, b Histograms are colored by class (facet). c For TEs in
chromHMM State 1 in at least one Roadmap epigenome (see Fig. 2a, red dots), the average proportion of epigenomes in which they are annotated with
chromHMM State 2 (represented by color scale below c, d, 0 to 100% of epigenomes). d For TEs in methylation State 1 in at least one Roadmap
epigenome (see Fig. 2a, red dots), the average proportion of epigenomes in which they are annotated with methylation State 2 (represented by color scale
below c, d, 0 to 100% of epigenomes).
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Fig. 4 Variation in TE contribution to epigenetic states by epigenome classification. a Proportion of the epigenetic state within TEs by epigenome. Each
epigenome is represented by a circle, colored by Roadmap group. Solid black lines represent the proportion of the epigenetic state within TEs across all
epigenomes (contribution; see Fig. 1c). Dashed and dot-dashed lines represent the proportion of genomic bases and CpGs within TEs, respectively. Red
stars represent Bonferroni-corrected Kruskal–Wallis test P-value < 0.05 across epigenome groups (chromHMM states n= 127 epigenomes, methylation
states n= 37, DHS n= 53, H3K27ac n= 98; see Supplementary Data 3 for group assignments). b Proportion of the epigenetic state within each TE class by
epigenome, colored by Roadmap groups. Solid black lines represent the proportion of the epigenetic state within the class across all epigenomes. Dashed
and dot-dashed lines represent the proportion of genomic bases and CpGs within the TE class, respectively. c The ratio of the average RPKM over TEs to
the average RPKM over the entire genome, colored by Roadmap group. d The ratio of the average RPKM over each TE class to the average RPKM over the
entire genome, colored by Roadmap group. c, d The solid black bar is the median for all epigenomes (n= 56 epigenomes with RNA-seq data).
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can be either enriched or depleted in this state compared to their
genomic representation (dashed line) depending on the
epigenome.

This variation across epigenomes is driven in part by tissue.
The proportion of most epigenetic states within TEs is
significantly different across the group classifications assigned
by the Roadmap Project (P-value < 0.05, Kruskal–Wallis test,
Bonferroni correction; Supplementary Discussion). As expected,
ESCs are enriched among the samples with a higher contribution
of TEs to the 1_TssA state than the total across epigenomes (solid
black lines; ESC mean 16%; P-value < 0.1, permutation test with
1,000 permutations, FDR (false discovery rate) correction;
Supplementary Data 2)25–27. Interestingly, blood groups (Blood
& T-cell and HSC (hematopoietic stem cell) & B-cell) are also
enriched among epigenomes with a higher contribution from TEs
to the weakly transcribed (5_TxWk) and enhancer (6_EnhG and
7_Enh) states, while Brain epigenomes are depleted (mean
5_TxWk: 48–49% vs. 45%; 6_EnhG: 30–32% vs. 21%; 7_Enh:
37–38% vs. 25%). Other trends can be observed using additional
Roadmap-assigned classifications (Anatomy and Type) or other
epigenome metadata (e.g., donor age, germ layer of origin, and
cancer cell lines; Supplementary Data 3), including that cancer
cell lines are enriched among epigenomes with a higher
proportion of many active and poised regulatory states in TEs
(P-value < 0.05, Kruskal–Wallis test, Bonferroni correction;
Supplementary Fig. 11).

The proportion of each epigenetic state within TE classes also
shows tissue-specific patterns (Fig. 4b). For instance, only the
LTR class shows enrichment of ESCs among epigenomes with a
higher contribution of TEs to the 1_TssA, 2_TssAFlnk, 3_TxFlnk,
7_Enh, and H3K27ac states (P-value < 0.1, permutation test with
1,000 permutations, FDR correction). Similarly, only the SINE
class shows enrichment of both HSC & B-cell and Blood & T-cell
epigenomes among those with a higher contribution of TEs to the
enhancer states (6_EnhG and 7_Enh). Thus, the patterns
observed in Fig. 4a are not evenly distributed across TE classes.

Finally, we compared the average genome-wide expression
level to the TE expression level, which recapitulates the results
observed with epigenetic marks (Fig. 4c). The median ratio of TE-
to-genome expression is 14% across all epigenomes, but the range
is 2–45%, with blood, brain, and ESC epigenomes exhibiting a
much higher TE expression level relative to the rest of the
genome. All classes exhibit higher relative expression in blood
and brain, while the ESC pattern is observed only for LTRs
(Fig. 4d). Together, these results point to a potential biological
role for specific TE subgroups in specific organs, which may be
facilitated by tissue-specific expression of transcription factors
whose binding sites are encoded by various phylogenetic lineages
of TEs.

Tissue-specific subfamily enrichment in epigenetic states. We
next asked whether the tissue specificity we observed at the class
level was present at the finer phylogenetic resolution of the TE
subfamily. The vast majority of TE subfamilies overlap all 15
chromHMM states (759 subfamilies, 78%), all four methylation
states (100% of subfamilies with CpGs), and DHS and H3K27ac
peak summits (965 and 963 subfamilies, respectively) in at least
one Roadmap epigenome (Fig. 5a; Supplementary Fig. 12a), and
most subfamilies are in most states in ≥75% of epigenomes
(Supplementary Fig. 12b). These numbers generally match
expectation (ten iterations of shuffled TEs; Supplementary
Fig. 12a), except that 92% of shuffled subfamilies overlap all 15
chromHMM states (n= 894, standard deviation= 6). Supple-
mentary Fig. 12b suggests that this is due to more overlap with
the small active and poised regulatory states, possibly due to

exclusion of true TEs from developmentally important gene
promoters.

To identify subfamilies exhibiting coordinated epigenetic
profiles, we calculated the log odds ratio (LOR) enrichment of
each TE subfamily in each epigenetic state in each epigenome
compared to genomic background (Equation (1)). In total, there
are 32,947 enrichments with LOR > 1.5 (approximately a three-
fold enrichment over genomic background), 70% of which are in
the 8_ZNF/Rpts and 9_Het states. Shuffling TE locations
abrogates the vast majority of enrichments and enriched
subfamilies (Supplementary Fig. 12c, d), confirming that many
subfamily elements have coordinated epigenetic profiles.

Subfamily enrichment in epigenetic states can differentiate
epigenome categories. Principal component analysis (PCA)
performed on chromHMM state enrichments clearly separates
Roadmap groups, including ESCs/iPSCs (induced pluripotent
stem cells) and blood epigenomes along the second principal
component (PC2) (Fig. 5b). Brain and digestive epigenomes and
other organs form a large cluster in the center of the plot. This
analysis closely recapitulates the results observed using genome-
wide epigenetic profiles of the Enh and ReprPC states, which also
separated these major epigenome groups19 . Interestingly, in our
analysis, fetal epigenomes form a subcluster within the tissue-
based clusters, suggesting that developmental stage influences the
epigenetic profile of TE subfamilies. Similar results are observed
for different epigenetic assays (Supplementary Fig. 13a–d) and
epigenome classifications (Supplementary Fig. 13e–h), including
that cancer cell lines cluster to one side of PC1. Subfamilies can
also be distinguished by their epigenetic profiles (Fig. 5c;
Supplementary Fig. 13i–k).

To identify TE subfamilies that may perform tissue-specific
coordinated regulatory functions, we next identified subfamilies
that are enriched LOR > 1.5 more often than expected in an
epigenome category in an active state (active regulatory or
transcribed chromHMM state, hypo- or intermediately methy-
lated states, or DHS or H3K27ac peak overlap; FDR-corrected
P-value < 0.05, permutation test; Fig. 5d; Supplementary Data 4;
Supplementary Discussion). As in ref. 1, we observe enhancer
state (7_Enh) enrichment of LTR77 in blood and UCON29 in
brain, as well as numerous subfamilies with ESC/iPSC-specific
enrichment. However, the diversity of anatomical sites sampled
by the Roadmap Project also allows us to identify subfamilies with
previously uncharacterized tissue-specific activity. For example,
LTR22A, a relatively young ERVK subfamily, is preferentially
enriched in the 7_Enh enhancer state and in DHS and H3K27ac
peak overlap in digestive system epigenomes. Although 69–74%
of LTR22A elements in those states when the subfamily is
enriched are intergenic, many overlap lincRNAs (long intergenic
non-coding RNAs) and antisense RNAs, and others are within
genes with digestive system-specific expression, including DDC
and GPR160. Individual elements annotated with 7_Enh in
epigenomes where the subfamily is enriched are also more likely
to encode binding sites for HNF4a, a transcription factor
implicated in intestinal development, compared to elements
never in the state (60% vs. 37% of elements, binomial test,
Benjamini-corrected P-value= 0.0002; HOMER; Fig. 5e)28.

Despite comprising 52% of subfamilies, LTR subfamilies
represent ≥70% of those enriched at least once in many of the
active states, and the number of enrichments in these states
decreases with subfamily age (median Jukes-Cantor evolutionary
distance to the subfamily RepBase consensus) and loss of
promoters (P-value < 0.001, Spearman correlation; Supplemen-
tary Fig. 14a, b). In contrast, the oldest SINE subfamilies,
AmnSINE1, AmnSINE2, MamSINE1, and LFSINE_Vert,
together account for 90% of the 279 enrichments of SINE
subfamilies in active states. All four subfamilies are enriched in
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DHS peak overlap in >30% of epigenomes. AmnSINE1 is
preferentially enriched in 7_Enh in epigenomes of ectodermal
origin, particularly epithelial epigenomes, while MamSINE1 is
preferentially enriched in epithelial epigenomes for DHS peak
overlap. Interestingly, AmnSINE1 is preferentially enriched in
fetal epigenomes for H3K27ac peak overlap. LFSINE and
AmnSINE1 have been previously implicated as enhancers in
brain formation1,29,30, and AmnSINE1 elements in 7_Enh when

the subfamily is enriched are enriched for Gene Ontology (GO)
Biological Processes involved in differentiation, development, and
morphogenesis (Supplementary Fig. 14c)31.

The DNA subfamily MER121 is enriched in the 7_Enh state in
a group of primary cultures of mesodermal origin, including
mesenchymal stem cells, adipocytes, chondrocytes, fibroblasts,
osteoblasts, myoblasts, and myosatellites. 65% of the elements in
the state when the subfamily is enriched are intergenic, and they
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Fig. 5 Tissue-specific enrichment of TE subfamilies in epigenetic states. a The total number of epigenetic states with which each TE subfamily is
annotated across all epigenomes (see Methods; n= 968 TE subfamilies, n= 965 for methylation states). b PCA on Roadmap epigenomes (n= 127
epigenomes), using the LOR enrichment of each TE subfamily in each chromHMM state (13,716 subfamily-by-state combinations) as variables. Color
is based on group (see legend above Fig. 5b), and shape is based on epigenome age (non-fetal and unknown age are not distinguished). c PCA on
TE subfamilies (n= 937 subfamilies), using the LOR enrichment of the subfamily in each chromHMM state in each Roadmap epigenome (1,904 state-by-
epigenome combinations) as variables. Color is based on class (see legend below Fig. 5d), and shape is based on TE family (only Alu and L1 are
highlighted). b, c The amount of variation explained by each PC is listed in parentheses. d The proportion of epigenomes each TE subfamily is enriched
LOR > 1.5 in the epigenetic state (chromHMM states 127 epigenomes, methylation states 37, DHS 53, H3K27ac 98). Each subfamily is represented by a
circle and is colored by TE class (see Methods). The n below each state on the y-axis indicates the number of subfamilies enriched in the state in at least
one epigenome. e The percentage of LTR22A elements that contain a binding motif for the transcription factor. Active TEs: elements annotated with the
7_Enh enhancer state in epigenomes where the subfamily is enriched in the state (n= 103 TEs); Inactive TEs: elements never in the state (n= 68 TEs). The
top 5 most significant transcription factors as predicted by HOMER are shown (binomial FDR-corrected P-value < 0.0001 for each).
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Fig. 6 SINE and Alu methylation as a function of age. a Scaled density plot of Jukes-Cantor evolutionary distance (age) for SINE elements (n= 1,430,171
SINE elements with CpGs). b Generalized additive models of the proportion of epigenomes (total 37 epigenomes) in which individual SINE elements are
annotated with each methylation state vs. age, smoothed using cubic regression splines. c Generalized additive models of SINE element characteristics vs.
age, smoothed using cubic regression splines. The pink line represents a logistic regression model of the likelihood a SINE element overlaps a CpG island
vs. age. d Scaled density plot of Jukes-Cantor evolutionary distance (age) for Alu elements (n= 1,105,597 Alu elements with CpGs). e Generalized additive
models of the proportion of epigenomes (total 37 epigenomes) in which individual Alu elements are annotated with in each methylation state vs. age,
smoothed using cubic regression splines. f Generalized additive models of Alu element characteristics vs. age, smoothed using cubic regression splines.
The pink line represents a logistic regression model of the likelihood an Alu element overlaps a CpG island vs. age.
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are associated with several GO Biological Processes involved in
embryonic morphogenesis and development, driven by their
proximity to genes such as SOX9, BMP4, and FGF10 (GREAT;
Supplementary Fig. 14d).

We also observe several TE subfamilies with fetal-specific DHS
enrichment, including MER131 (Other class). MER131 elements
annotated with the state in epigenomes where the subfamily is
enriched are enriched in several GO Biological Processes,
including embryonic morphogenesis (Supplementary Fig. 14e).
MER41C and MER39B are enriched in several active states in
placenta or trophoblast epigenomes, and several LTR subfamilies,
primarily from the ERV1 family, are preferentially enriched in
active regulatory states in cancer cell lines, including LTR7C.

In addition to tissue-specific patterns, a few subfamilies are
enriched in an active state in all epigenomes. MER57E3, an ERV1
family LTR subfamily, is enriched in all epigenomes in the 1_TssA
promoter state and hypomethylated CpGs and in the DHS state in
70% of epigenomes. On average, 28% of MER57E3 elements are in
the 1_TssA state in each epigenome. Of its 238 members, 156 are
on chromosome 19 (66%), and 18 overlap promoters, including
KRAB-ZNF (Krüppel-associated box-zinc finger) genes, which play
important roles in repressing TEs32. Interestingly, in most cases, the
TE is in the same relative position slightly downstream of the core
promoter. We therefore speculate that MER57E3 elements were
propagated along with KRAB-ZNF genes during primate evolution,
rather than propagating independently.

By calculating subfamily enrichment using the 50-state
chromHMM models generated for seven reference epigenomes
(Supplementary Fig. 15), we further explored the coordinated
regulatory role of TEs. MER121 is enriched in E017 (IMR90) in the
7_Enh enhancer state, as well as five enhancer-like states (E26, E30-
32, E37) from the 50-state model. Although three of the states are
characterized by numerous histone modifications, E30 is character-
ized primarily by H3K4me2, DNase, and H2BK5ac, while E37 is
characterized by H3K4me1, H4K5ac, and H3K18ac. Further
research could determine whether these epigenetic differences
correspond to different roles for subsets of MER121 elements.

Finally, we observe tissue-specific enrichment in active epigenetic
states in very young subfamilies, suggesting that they are not
universally repressed (Supplementary Discussion). This includes
LTR5_Hs, the LTR of the HERVK (HML-2) group of endogenous
retroviruses (ERVs), in pluripotent epigenomes. HERVK (HML-2)
is the most recent ERV to enter the human genome and the only
one still theoretically capable of retrotransposition33. We also
observe subfamilies representing >1% of an active epigenetic state in
the genome despite a LOR < 1.5 (Supplementary Fig. 16a–d;
Supplementary Discussion), underscoring the contribution of large
Alu, MIR, and L1 subfamilies to the epigenome.

TE epigenetic profiles as a function of age. Having observed
extensive variation in the epigenetic profile of TEs, we next
identified factors that correlate with the epigenetic state of
individual TEs. As expected, the chromosome on which a TE
resides impacts its epigenetic profile (Supplementary
Fig. 17a–e), as does overlap with genes (Supplementary Fig. 18a;
Supplementary Discussion). Indeed, 18% of TEs ever in the
1_TssA state overlap RefSeq promoters (vs. 2% of all TEs), and
89–90% of TEs ever in the 4_Tx and 6_EnhG states are within
RefSeq introns (vs. 45% of all TEs). Interestingly, while most
TEs in the 4_Tx state appear to be intronic passengers (Sup-
plementary Fig. 18b), more TEs overlapping DHS peaks or in
the 7_Enh state in only a few epigenomes are intergenic and
thus more likely to be independent regulatory elements. Active
LTR elements are also more likely to be intergenic than are
other classes.

The frequency with which a TE is hypo- or intermediately
methylated is slightly positively correlated with evolutionary age,
while the opposite is true for hypermethylation (Spearman
correlation; Supplementary Fig. 19a–d). This pattern is most striking
for SINE elements (Fig. 6a, b). Interestingly, SINE TEs decrease not
just in length but in CpG density with age, which would not be
expected if CpGs were evenly distributed across the TE (Fig. 6c).
Indeed, older SINE TEs are significantly less likely to overlap CpG
islands (logistic regression, Jukes-Cantor evolutionary distance
predictor coefficient P-value < 0.001), and the median age of SINE
elements that overlap CpG islands is much lower than those that do
not (0.04 vs. 0.17). Taken together, these results indicate that SINE
elements with CpG islands are subject to greater levels of repressive
DNA methylation, but that the CpG islands are eliminated from the
TEs as they age.

To confirm that the trends observed for all SINE elements are
not the result of bimodal age distribution between the older SINE
families (MIR, Deu, tRNA, and SINE, median Jukes-Cantor
evolutionary distance 0.37 ± interquartile range (IQR) 0.10; Fig. 6a)
and the younger Alu subfamilies (median distance 0.13 ± IQR
0.07; Fig. 6d), we repeated the analysis with only Alu elements
(66% of SINE TEs), which recapitulated the results (Fig. 6e, f;
Supplementary Table 3).

Evolutionary conservation of TE regulatory signatures. Finally,
we investigated whether the regulatory signatures we observed in
human TEs are evolutionarily conserved by comparing them to
orthologous TEs in the mouse genome. Although human and
mouse diverged approximately 90 million years ago34, 6% of hg19
TEs have an identifiable corresponding region in the mm10
genome (n= 269,096) and overlap an mm10 TE from the same
subfamily (n= 269,801), which we consider orthologous pairs
(Supplementary Fig. 20a).

We profiled the methylation level and chromHMM state of
the orthologous TEs in twelve samples interrogated by the
mouseENCODE project21–23 that anatomically matched human
Roadmap epigenomes (Supplementary Table 4). Although only
a small fraction of orthologous TEs is hypomethylated in either
human or mouse, those hypomethylated in one species are
significantly more likely to be hypomethylated in the other in
the corresponding tissue than expected by random chance (P-
value < 0.001, Chi-squared test for seven human-mouse
epigenome pairs with WGBS data; Cramer’s V 0.10 to 0.14;
Fig. 7a, b). This result holds true when all methylation states are
considered (Cramer’s V 0.16 to 0.23). Thus, the DNA
methylation level of orthologous TEs is more conserved than
expected between human and mouse.

The histone modification profile of orthologous TEs is also
conserved across species. Although the human and mouse
epigenomes were annotated with different chromHMM models,
there is a non-random distribution of orthologous TEs in each
human/mouse chromHMM state combination (P-value < 0.001,
Chi-squared test for twelve epigenome pairs; Cramer’s V 0.22 to
0.26). Figure 7c demonstrates a clear enrichment of the promoter
state (TssA) in mouse for TE orthologs annotated with the
promoter state (1_TssA) in human, as well as an enrichment in
multiple active regulatory mouse chromHMM states (mouse:
TssA, TssAFlnk1, TssAFlnk2, Enh, EnhLo1, and EnhLo2) for
orthologs in human active regulatory states (human: 1_TssA,
2_TssAFlnk, 3_TxFlnk, 6_EnhG, 7_Enh). The epigenetic profile
of shared TE subfamilies (578 of 968 human subfamilies;
Supplementary Fig. 20b) is also conserved across species
(Supplementary Fig. 20c–e).

We next identified TEs that exhibit conserved tissue-specific
epigenetic profiles (Fig. 7d). Of the TEs with tissue-specific promoter
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state (1_TssA) annotation in humans (n= 162), 0–29% also exhibit
tissue-specific promoter state (TssA) annotation in mouse in the
same tissue. When considering all active regulatory states (n=
7,442), 3–14% of tissue-specific TEs exhibit the same profile in
mouse. All TEs with conserved tissue-specific promoter annotations
(n= 19) are located within or near human RefSeq genes, and in
many cases, their conserved epigenetic profile likely stems from
overlap with the promoter region of a gene whose tissue-specific
expression profile is conserved between the species. For example,
two conserved MIR elements (chr12:57443327–57443493 and
chr19:39302694-39302815) overlap MYO1A and LGALS4 or their
promoters, which have high intestinal expression. However, 54 of
the TEs with conserved active regulatory annotations are >50 kb
from the nearest RefSeq gene, including 28 that are >100 kb. Four
such elements are displayed in Supplementary Fig. 21, including
three brain-specific enhancers and an intestine-specific element that
is an enhancer in human and a promoter in mouse. These include a
UCON29 element, a subfamily that has been shown to have brain-
specific enhancer activity in this paper and others1.

Discussion
In this study, we use multidimensional epigenomic data pro-
duced by the Roadmap Epigenomics Project to quantify the

substantial contribution of TEs to active epigenetic states in the
human genome across >100 diverse tissues and developmental
timepoints. As suggested by Britten and Davidson35, TEs
represent a unique opportunity for the host to efficiently bring
distant regions under the control of the same gene regulatory
network. In this model, the ancestral TE disseminates a battery
of transcription factor binding sites throughout the genome,
and those that insert in favorable locations for the host are
conserved, while others are neutralized through mutation.
Thus, TEs allow the host to circumvent the independent evo-
lution of multiple adjacent binding sites7. Conversely, some of
the TE-derived regulatory activity we observe may have no
impact on the host, but rather represents regulatory elements
that have not yet been eliminated. TEs are also repressed by a
variety of specialized mechanisms, including KRAB-ZNF
genes32, which may restrict TE activity in a manner that does
not affect non-TE-derived regulatory elements.

By comparing the epigenetic profile of TEs to shuffled TE
locations, we confirm that TEs are slightly depleted from
active epigenetic states, consistent with the reported overlap
between TEs and transcription factor binding sites6. However,
this also confirms that TEs are not universally repressed, a
relatively new mode of thinking. We also demonstrate that the
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specific TEs in active regulatory states are not random and
represent coordinated subfamily activity (Supplementary
Fig. 12c–d).

In our results, TEs belonging to the Other class dis-
proportionately contribute active regulatory states to the genome
(Fig. 1d). These TEs are much older (Supplementary Fig. 3d),
affording more opportunity for the host to co-opt their regulatory
sequences or neutralize them to the point where they are no
longer annotated as TEs. The oldest SINE subfamilies also have
higher regulatory signatures than the younger Alu subfamilies,
which are repressed via DNA methylation. In contrast, younger
LTR subfamilies are more often enriched in active regulatory
states (Fig. 5d; Supplementary Fig. 14b). ERVs comprise an entire
viral genome on insertion and retain intact regulatory elements
even after LTR recombination eliminates the intervening exons36.
They are also more likely to be intergenic, potentially reducing
their impact on existing gene networks and increasing tolerance
of their activity by the host. Furthermore, LTRs undergo a switch
in repression mechanism from DNA methylation to H3K9 his-
tone methylation with evolutionary age, which could influence
their activity profile37. Thus, diverse origins and structures
influence the epigenetic profile of TE classes and subfamilies.

Neuronal cells have been previously reported to have a higher
level of TE retrotransposition38, and we demonstrate a higher
relative expression level of TEs in brain than in other epigenomes.
However, this is not matched by increased TE biochemical
activity. In contrast, we observe a striking enrichment of TE
expression and epigenetic signatures of regulatory activity within
TEs in blood. Blood is relatively depleted in the 5_TxWk state
(Supplementary Fig. 1), such that TEs with a constant level of
5_TxWk annotation can represent a higher proportion of the
state in those cell types. However, this is not true for the 6_EnhG
and 7_Enh states, suggesting that TEs are preferentially active as
enhancers in those epigenomes.

An outstanding question in the field has been whether TE-
derived regulatory elements are conserved or species-specific. In a
minority of cases, we observe that intergenic orthologs with a
tissue-specific activity profile in humans retain the same profile in
mouse, suggesting that regulatory activity that developed before
the human-mouse split was maintained in both species inde-
pendent of overlapping genes. However, the mouse samples used
in our comparison are significantly younger than the human
samples, and we may observe greater conservation using age-
matched tissues. Other potential confounders that could artifi-
cially reduce the concordance between species include differences
in tissue collection, processing, and storage protocols, as well as
epigenetic assays, between laboratories and consortia; sequencing
batch effects; the use of multiple chromHMM models; and a
limited ability to computationally identify orthologous TEs.
Recent evidence has also suggested that TEs can be involved in
turnover events, wherein TEs encoding a transcription factor
binding site can step in when a nearby binding site is lost, pre-
serving the function of the region using novel or lowly conserved
sequence39.

As mentioned above, Cao et al.20 used a machine learning
model trained on ENCODE histone modification data to
demonstrate that 35% of TEs have signatures of cis-regulatory
elements. Although this is moderately lower than our estimate,
they reveal via saturation analysis that more TEs may perform
regulatory functions in additional cell types. They also confirmed
that TE enhancer activity is highly tissue-specific and can be used
to distinguish cell types, and they profiled the tissue-specific
enrichment of TE families as enhancer- or promoter-like ele-
ments in Roadmap tissues. Interestingly, they found that TEs with
ESC/iPSC enhancer activity had highly conserved epigenetic
profiles in primates, but less so in less related species, and they

uncovered widespread 3D interactions between MIR and L2
elements that modulate their enhancer activity.

An additional study that identified TE-derived promoters and
enhancers using FANTOM5 CAGE-seq (cap analysis gene
expression) data18 determined that 45% of enhancers and 5% of
promoters overlap TEs, lower than random expectation, with
more tissue-specific enhancers overlapping TEs, particularly those
specific to blood and testis. Older TE families had more members
overlapping enhancers, as did ERVs. Additionally, they found
that although enhancers are biased toward overlap with mammal-
specific and ancient TEs, enhancers that overlap younger TEs are
more likely to be active in only a single tissue. Villar et al.40 also
identified an enrichment of younger repeat families in recently
evolved enhancers, although ancient ERV families are more likely
to be exapted as recently evolved promoters.

An important caveat to our results is the exclusive use of
uniquely mapped, short (36 bp) reads to generate chromHMM
state assignments and peak calls. TEs present a mappability
challenge due to their repetitive nature, particularly for short
reads and young TE subfamilies that have not accumulated
sequence changes over time, such as the SVA subfamilies, young
Alu and L1 subfamilies, and some ERVs. Although we capture
enrichment of very young subfamilies with low mappability
in active regulatory states, it is possible that using multimapped
reads assigned at the subfamily level would reveal additional
TE activity and that our results represent a lower bound. In
particular, many SVA and SINE elements have low mappability
due to a combination of age, length, and prolific expansion
(Supplementary Fig. 3d), and these classes may be dis-
proportionately affected by mappability. However, mappability is
not correlated with the number of epigenomes a TE is annotated
with the 15_Quies state (Spearman correlation, rho= 0.01,
P-value < 0.001), and the TEs in each chromHMM state exhibit
histone modification, chromatin accessibility, and DNA methy-
lation profiles characteristic of that epigenetic state (Supple-
mentary Fig. 22a).

In cancer, the genome undergoes global DNA hypomethylation
and exhibits dysregulated chromatin41. The enormous number of
TEs with narrowly restricted regulatory profiles suggests that they
are subject to tight epigenetic control and could be rapidly de-
repressed during malignant transformation. In line with this
hypothesis, we observe greater contribution of TEs to active
regulatory states in cancer cell lines. Aberrantly activated TEs can
alter the expression of nearby genes, serve as alternative pro-
moters that form chimeric or immunorestricted transcripts, or
even drive oncogene expression36. However, epigenetic therapies
may also potentiate cancer immunotherapy through the activa-
tion of TEs, which increase tumor immunogenicity by forming
double-stranded RNA and immunogenic proteins42–46. Resources
such as this study could inform predictions of which TEs are
activated in cancer and in response to epigenetic therapies,
including in normal tissues to prevent potential off-target effects.

In conclusion, this study represents an important synthesis of
epigenetic data in the context of TEs that could serve as a
resource for investigations of this underexplored aspect of the
human genome in healthy and diseased states.

Methods
Data download. Data from the Roadmap Epigenomics Project were downloaded
from the data portal (http://egg2.wustl.edu/roadmap/; see Data Availability). For
this study, all consolidated epigenomes were included (n= 127), although not all
epigenetic marks were profiled for each epigenome. chromHMM state assignments
for the 15-state model are presented with the same colors in this paper as in the
original Roadmap paper (https://egg2.wustl.edu/roadmap/web_portal/
chr_state_learning.html#core_15state), with the exception of 15_Quies (light gray
instead of white). Colors for the 18-state chromHMM model are from the Road-
map data portal (https://egg2.wustl.edu/roadmap/web_portal/chr_state_learning.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-13555-x ARTICLE

NATURE COMMUNICATIONS |         (2019) 10:5640 | https://doi.org/10.1038/s41467-019-13555-x | www.nature.com/naturecommunications 13



html#exp_18state). Supplementary Fig. 4 of ref. 19 provides the 18-state
chromHMM model state for which each 50-state model state is most enriched,
which was used to assign colors and broader state categories to each of the 50-state
model states. The figure was also used to identify histone modifications that
characterize each state. Epigenome Group assignments also use the same colors as
in the Roadmap paper. TE class colors are those used in the RepeatBrowser track of
the WashU Epigenome Browser, except for SVA (Other on the track).

mm10 chromHMM assignments and CpG methylation levels were downloaded
from the ENCODE data portal (https://www.encodeproject.org/) (see
Supplementary Table 4 for accessions). Human epigenomes from the Roadmap
Epigenomics Project and mouse epigenomes from ENCODE were paired based on
anatomy. Mouse chromHMM state assignments were generated with a different
15-state model incorporating 8 epigenetic marks (the five core histone
modifications used in the hg19 state assignments plus H3K27ac, H3K9ac, and
H3K4me2)21–23. Although the promoter and active regulatory states are not
identical between the hg19 and mm10 chromHMM state assignments, we
confirmed that characteristic histone modifications are similar for each (e.g.,
1_TssA and TssA, 2_TssAFlnk and TssAFlnk1/TssAFlnk2, and 7_Enh and Enh/
EnhLo1/EnhLo2). Colors were assigned to mm10 chromHMM states based on
similarity to hg19 chromHMM states.

hg19 chromosome sizes; RepeatMasker annotations for hg19 and mm10; hg19
RefSeq genic feature locations; hg19 CpG island locations (cpgIslandExtUnmasked.
txt); the hg19 36 bp mappability track (wgEncodeCrgMapabilityAlign36mer.bw);
and GENCODE v19 comprehensive genes were downloaded from the UCSC
Genome Browser.

Epigenome metadata. In addition to the Group, Anatomy, and Type metadata
assigned to each epigenome by the Roadmap Project, we assigned three additional
categories, Cancer, Age, and Germ layer (Supplementary Data 3). Cancer: Cancer
and cancer cell lines were designated “yes”; all other epigenomes designated “no”.
Age: Epigenomes were split into age categories based on the age of the donor or
presence of the words “fetal” or “adult” in the epigenome name. ENCODE cell lines
were assigned to “Unknown” or “Cell line” based on whether they were listed as
“primary cells” or “cell line” in the epigenome name or in ref. 21. Germ layer:
Epigenomes were split into germ layer of origin, including endoderm, ectoderm,
and mesoderm, “mixed” (organs with multiple germ layer origins), “pluripotent”
(ESC/iPSC cells plus mesendoderm cells), and “other” (placenta/trophoblast).

Feature pre-processing. All analyses were restricted to chromosomes 1–22, X, Y,
and M for hg19 and chromosomes 1–19, X, Y, and M for mm10. 31,580 TEs are on
chromosome Y (0.7%) and are missing from six Roadmap epigenomes without
chrY annotations.

RepeatMasker-annotated repeats were restricted to classes LTR, DNA, SINE,
LINE, Unknown, Unknown?, DNA?, LINE?, SINE?, LTR?, RC, RC?, and Other.
For hg19 by-class analyses, RepeatMasker class Other was renamed “SVA”, as it
includes only SVA subfamilies. Classes Unknown, Unknown?, DNA?, LINE?,
SINE?, LTR?, and RC were combined into a single category (“Other” class).

Promoters were generated by extending the region 2000 bp upstream of RefSeq
transcription start sites to 500 bp downstream using bedtools slop47. RefSeq
promoters and exons were collapsed by coordinate and strand to identify unique
features. Intergenic regions were generated by taking the complement of RefSeq
genes using bedtools complement. RefSeq features were split into protein-coding
and non-coding features based on accession (NM vs. NR).

The Jukes-Cantor evolutionary distance for each TE was calculated from the
substitution rate compared to the RepBase consensus sequence. A mappability
score for each TE was calculated in6 using the 36 bp mappability track from the
UCSC Genome Browser, as all ChIP-seq reads were trimmed to 36 bp for use in
chromHMM state assignment.

Intersection with Roadmap data. Features were intersected with epigenetic data
or other features using bedtools intersect without regard to strand, except where
noted (Supplementary Fig. 2a). Features were considered overlapping if they
overlapped by ≥1 bp. CpGs where one base did not overlap the feature were
included in the total as half a CpG. As in the Roadmap Epigenomics Project, CpGs
whose read coverage was ≤3 reads were considered missing values.

The proportion of the entire genome, chromosome, TEs, TE classes, TE
subfamilies, and RefSeq features in each state or overlapping another feature was
calculated as the proportion of all unique bases or CpGs within the feature that
were (1) annotated with the chromHMM state, (2) at that methylation level
(WGBS, divided into four methylation states), (3) overlapping a DHS or H3K27ac
peak (not limited to peak summits), or (4) overlapping the second feature. The
exceptions are chromosome and subfamily enrichment analyses, where the number
of unique DHS/H3K27ac peak summits overlapping the feature were counted
(Supplementary Fig. 17c, d; Fig. 6b–d). The average expression level over the entire
genome, all TEs, and each TE class was calculated as the average read coverage over
the feature.

The contribution of TEs to the DHS and H3K27ac states (Figs. 1c and 4a) is
roughly equivalent whether total bases overlapping peaks or number of peaks is
considered. TEs overlap 27% of DHS peak summits across all epigenomes, with a

range of 19% vs. 35% per epigenome, and 26% of H3K27ac peaks, with a range of
17% vs. 38% per epigenome.

For Roadmap analyses, an individual TE or promoter was considered annotated
with a state if it overlapped the center of a 200 bp chromHMM state annotation or
the summit of a DHS or H3K27ac peak. Additionally, TEs located between 200 bp
chromHMM window centers (18% of TEs) were assigned the state with the largest
overlap with the TE, such that every TE was assigned to at least one chromHMM
state. The same rules were applied for the 15-state, 18-state, and 50-state
chromHMM models. Because there is variation in the number and average width
of chromHMM blocks and DHS/H3K27ac peaks by epigenome, a TE is more likely
to be annotated with a state in some epigenomes because there are more peak
summits available to overlap (Supplementary Fig. 22b; Supplementary Discussion).
A TE or promoter was considered in a methylation state if the mean methylation
level (calculated over all CpGs overlapping the TE/promoter with >3 reads) fell
within the range of that state. Features not overlapping CpGs were not considered
for methylation analyses. The expression level of individual TEs and exons was
calculated as the average read coverage over the feature, normalized by the
normalization factors provided by Roadmap. RNA-seq coverage on chromosome Y
in epigenomes lacking that chromosome (n= 6) was not included in the analyses.

Two alternative methods of annotating individual TEs with a chromHMM state
were explored: (1) counting only TEs overlapping the center of a chromHMM
annotation block and (2) counting only TEs overlapping the center of a 200 bp
chromHMM annotation window (Supplementary Fig. 4a, b). The number of TEs
annotated with the state per epigenome and in any Roadmap epigenome were
calculated in a manner identical to that for the standard annotation rules.

Across all instances of an individual TE overlapping a DHS peak summit in an
epigenome, 93% overlap only one peak, but they can overlap up to 17 DHS peaks
in a single epigenome. Similarly, 97% of TEs overlapping H3K27ac peak summits
overlap only one peak, but they can overlap up to 14 H3K27ac peaks in a single
epigenome.

The chromHMM state of mm10 TEs was any state the TE overlapped by 1 bp or
more. Methylation states were calculated as for hg19 TEs.

Shuffled TEs. The genomic positions of all TEs were shuffled using bedtools shuffle
with default arguments, excluding chrM, contigs, and genome gaps. Ten iterations
of shuffled TEs were generated. Individual shuffled TEs were annotated with epi-
genetic states using the same rules as for real TEs. Epigenetic dynamics, including
the total number of states per TE across all epigenomes and aggregate profiles of
epigenetic states across epigenomes (Supplementary Fig. 9), and subfamily
potential and enrichment (Supplementary Fig. 12) were calculated in an identical
manner as for real TEs. For subfamily enrichment in methylation states, the
number of CpGs per subfamily was recalculated using the shuffled subfamily.

Permutation tests. To identify epigenome categories (i.e., Group: ESC) with
enriched representation among the epigenomes with a higher or lower proportion
of the state within TEs or a TE class than the cross-epigenome total, we permuted
the category labels 1,000 times and compared the true representation to this dis-
tribution. Tests were performed simultaneously across all categories (e.g., Group,
Germ layer; Supplementary Data 2), and epigenomes with proportions higher and
lower than the cross-epigenome total were tested separately. FDR correction was
performed only on epigenome categories with any epigenome higher or lower than
the cross-epigenome total.

Subfamily enrichment. The enrichment of a TE subfamily i in a state j in an
epigenome k was calculated as the log odds ratio (LOR) as in ref. 6, as follows:

log2 1e�20 þ
ijk;bp;peak summits; or CpGs in subfamily in state in epigenomeð Þ

ik;bp or CpGs in subfamily in epigenomeð Þ
jk;bp; peak summits; or CpGs in state in epigenomeð Þ

k;bp or CpGs in epigenomeð Þ

0
@

1
A ð1Þ

A pseudocount of 1e−20 was included to avoid –Inf values. For chromHMM
states, ijk and jk were calculated as the total bp in the state overlapping the
subfamily or in the entire genome; for WGBS, total CpGs; and for DHS and
H3K27ac, total peak summits. ik and k refer to the lengths of the subfamily and
genome. The LOR enrichment of each subfamily in the 50-state chromHMM
model states was calculated using the same rules and thresholds as for the
15-state model.

For subfamily potential analyses, a subfamily was considered annotated with a
state if ijk was greater than zero (Fig. 5a).

PCA was performed using the prcomp() function on variables with variance >0
between the epigenomes/subfamilies. Only subfamilies with >30 members (>30
members with CpGs for WGBS) were included. Matrices were scaled and centered
before PCA was performed.

Only subfamilies with >30 total members and >10 members in the state in the
epigenome were considered enriched (LOR > 1.5). With these thresholds,
31 subfamilies were excluded from chromHMM/DHS/H3K27ac enrichment
analysis (plus 2 additional subfamilies in epigenomes where chrY was absent). For
WGBS analyses, only members overlapping CpGs were considered, which excluded
23 additional subfamilies. Three TE subfamilies (Charlie1b_Mars, CheshMITE,
and HAL1N1_MD) overlap no CpG. 34,892 enrichments were excluded by the
second threshold, 10,757 of which were 8_ZNF/Rpts.
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To identify subfamilies preferentially enriched in an epigenetic state in an
epigenome category (e.g., Group: ESC), we performed permutation tests as above
(Supplementary Data 4), testing whether epigenome categories were unusually
represented among all enriched epigenomes for that state/subfamily combination.
FDR multiple hypothesis correction was performed only on subfamily-by-state-by-
category combinations with at least one epigenome with enrichment LOR > 1.5 and
only on active states, and only categories with a corrected P-value < 0.05 were
considered.

For candidate subfamilies, GREAT analysis was performed on all TEs in the
state in epigenomes where the subfamily was enriched in the state. The default
basal plus extension model (5 kb upstream, 1 kb downstream, 1,000 kb distal) was
used, and only GO Biological Processes were considered. Terms were considered
significant if the FDR-corrected P-value < 0.05 for both binomial and
hypergeometric tests with a minimum region-based fold enrichment of 2. The
default genomic background was used.

HOMER (findMotifsGenome.pl) was performed on candidate subfamilies to
identify enriched known transcription factor motifs. TEs in the state in epigenomes
where the subfamily was enriched in the state were compared to TEs from that
subfamily that are never in the state in any Roadmap epigenome as background,
with flags -size given –nomotif.

Epigenetic profile modeling. To test the relative contribution of class and CpG
density to the mechanism of TE repression, quasi-Poisson generalized linear
regression models were constructed for the number of epigenomes a TE is in the
9_Het or hypermethylated states (function glm(), quasipoisson family; Supple-
mentary Table 2). Class (LTR vs. SINE) and CpG density (CpGs per kbp) were
included as predictors. ANOVA (analysis of variance) with F tests for significance
was performed to test differences in performance between models.

Generalized additive models of TE length, mappability, CpG density, and the
number of epigenomes a SINE or Alu element is in each methylation state were
constructed using Jukes-Cantor evolutionary distance as the predictor (function
gam(); Supplementary Table 3). Logistic regression models of the likelihood a SINE
or Alu element overlaps a CpG island were constructed using Jukes-Cantor
evolutionary distance (JC) as the predictor (function glm(), binomial family). All
SINE elements with CpGs (n= 1,430,171) or Alu elements with CpGs (n=
1,105,597) were included in the model.

Orthologous TEs. The mm10 genome has 3,663,513 TEs and 1,134 TE subfamilies.
Orthologous TEs were identified by converting hg19 TE coordinates to mm10 using
liftOver (−minMatch= 0.1), then identifying overlapping hg19 -to-mm10 and
mm10 TEs with identical subfamily names using bedtools intersect. 29% of hg19 TEs
(n= 1,265,775) lift over to mm10. See the Supplementary Discussion for more
detail on overlap between mm10 and hg19 TEs.

Chi-squared test effect size was calculated using Cramer’s V (from the R
package rcompanion).

Epigenetic profile of TEs in chromHMM states. For each chromHMM state, for
all instances of a TE in that state in an epigenome, the average histone modification
ChIP-seq/DHS signal fold enrichment ratio over input for several epigenetic marks
was calculated in 50 bp bins over a 10 kb region centered on the TE (excluding 26
TEs that would extend beyond the end of the chromosome). The epigenetic marks
include the five core histone modifications used to generate chromHMM
(H3K4me1, H3K4me3, H3K9me3, H3K27me3, and H3K36me3), H3K9ac,
H3K27ac, and DHS. The average methylation over the same window was calcu-
lated for epigenomes with WGBS data.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
All relevant data supporting the key findings of this study are available within the article
and its Supplementary Information files or from the corresponding authors upon
reasonable request. All datasets used in this manuscript were made publicly available as
part of previous publications. Data from the Roadmap Epigenomics Project were
downloaded from the data portal, including: epigenome metadata [http://egg2.wustl.edu/
roadmap/web_portal/meta.html]; chromHMM state assignments using the 15-state
model, 127 epigenomes [http://egg2.wustl.edu/roadmap/data/byFileType/
chromhmmSegmentations/ChmmModels/coreMarks/jointModel/final/all.mnemonics.
bedFiles.tgz]; chromHMM state assignments using the 18-state model, 98 epigenomes
[http://egg2.wustl.edu/roadmap/data/byFileType/chromhmmSegmentations/
ChmmModels/core_K27ac/jointModel/final/all.mnemonics.bedFiles.tgz]; chromHMM
state assignments using separate 50-state models, 7 epigenomes [http://egg2.wustl.edu/
roadmap/data/byFileType/chromhmmSegmentations/ChmmModels/
class1Models_50states/] (file format [EID]/[EID]_50_segments.bed.gz); WGBS fractional
methylation, 37 epigenomes [http://egg2.wustl.edu/roadmap/data/byDataType/
dnamethylation/WGBS/FractionalMethylation.tar.gz]; DHS narrow peaks, 53
epigenomes [http://egg2.wustl.edu/roadmap/data/byFileType/peaks/consolidated/
narrowPeak] (file format [EID]-DNase.macs2.narrowPeak.gz); H3K27ac narrow peaks,

98 epigenomes [http://egg2.wustl.edu/roadmap/data/byFileType/peaks/consolidated/
narrowPeak/] (file format [EID]-H3K27ac.narrowPeak.gz); strand-agnostic,
unnormalized mRNA signal coverage [http://egg2.wustl.edu/roadmap/data/byDataType/
rna/signal/unnormalized_wig/strandagnostic/] (file format [EID].wig.gz) and
normalization factors [http://egg2.wustl.edu/roadmap/data/byDataType/rna/signal/
unnormalized_wig/all.EGID.N.readlength], 56 epigenomes; and histone modification
ChIP-seq and DHS signal fold enrichment ratios over input [http://egg2.wustl.edu/
roadmap/data/byFileType/signal/consolidated/macs2signal/foldChange/] (file format
[EID]-[mark].fc.signal.bigwig) for H3K4me1, H3K4me3, H3K9me3, H3K27me3, and
H3K36me3 (127 epigenomes each), H3K9ac (62 epigenomes), H3K27ac (98
epigenomes), and DHS (53 epigenomes). mm10 chromHMM assignments and WGBS
CpG methylation levels were downloaded from the ENCODE data portal [https://www.
encodeproject.org/]; see Supplementary Table 4 for unique accessions. The source data
underlying all figures is provided in the source data file (SourceData.tar.gz), except for
Supplementary Fig. 21. A reporting summary for this Article is available as a
Supplementary Information file.

Code availability
Software used in this study includes R version 3.3.0 and R packages plyr (1.8.4), reshape2
(1.4.3), ggplot2 (3.1.0), gridExtra (2.2.1), RColorBrewer (1.1.2), scales (1.0.0), mgcv
(1.8.24), extraFont (0.17), and rcompanion (2.0.10); python versions 2.7, 3.6.5, and 3.7;
bedtools (2.27.1); bedops; kentsrc; kentUCSC; htslib; numpy; pandas; HOMER (4.9); and
GREAT (v3). Custom code used in this study is available at https://github.com/
epehrsson/TE_landscape.
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