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In recent years, the evolution of artificial intelligence techniques has widely grown such that it gives new ways to improve
human life, not only at work but also living. Nowadays, to the human being, physical human-robot interactions (PHRIs) have
been presented very important and present itself as a major challenge for the current engineering.*erefore, this work designs
and analyses a two-degree-of-freedom robotic arm with flexible joints driven by a DC motor. Due to the interaction between
the robot links and flexible joints, the arm may present overshoots when it is moved such that it becomes difficult to
manipulate the arm.*erefore, Magnetorheological dampers (MR damper or MR brake) are attached to the links of the arm in
order to control such overshoot and provide a way to adjust the mechanical limitations of the arm.*e dynamics of the system
will be investigated, showing the appearance of chaotic behavior due to the coupling of the manipulator to the motors. After
that, the feedback control is obtained through the state-dependent Riccati equation (SDRE) aiming the control of the
positioning of the manipulator and the torque applied on the MR damper. Numerical results showed that the proposed control
using hybrid actuators, DC motor, and MR brake was effective to control the position and behavior of the flexible joints of
the manipulators.

1. Introduction

Although in recent years, the human interaction with in-
telligent systems, such as voice or video recognition devices,
has grown exponentially due to the evolution of artificial
intelligence techniques, physical human-robot interaction
(PHRI) presents itself as a major challenge for current
engineering. Nowadays, the fact that an industrial that works
only with robots is not feasible, much less the industry that
works only with human workers in activities that cause the
degradation of health. *erefore, a model of integration,

physical, and cognitive logic between devices and people
sharing the workspace is very important.

PHRIs have being designed to coexist and collaborate
with operators in handling, assembling, cutting, and other
tasks, without presenting a risk in this interaction [1–6].

*ere are several attempts to ensure the safety of humans
within a workspace shared withmachines. A large number of
research studies have focused on the development of ma-
nipulators that are intrinsically safe. *at is, manipulators in
which can guarantee some level of collision safety in the
absence of a controller through their mechanical properties.
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In particular, vibrations which appear during the posi-
tioning of the robotic arm should be controlled to improve
safety PHRI, which is also important for increasing efficiency
and operation precision.

Many researchers have concentrated their efforts to study
about manipulators with flexible links due to their advantage
related to rigid ones. Such advantages include faster response,
lower energy consumption, smaller actuators, less overall
mass, and in general, smaller final cost [7–9]. Due to its
natural flexibility, control of these systems takes into account
both rigid body and elastic degree of freedom, so that their
mathematical models have to consider the interactions be-
tween the actuators and load to be handled.

*erefore, to improve the efficiency of using the ma-
nipulators, control strategies are required.*e SDRE control
is being applied in many nonlinear systems due to its easy
application and advantage of considering the influence of
nonlinearities of the system, i.e., there is no need to linearize
the system to be applied [10–14]. Such control has been
widely used in rigid and flexible robotic manipulators as the
works of authors [8, 14–23].

In addition, the links of the manipulators generally are
driven by a DC motor; however, another kind of actuator
which has demonstrated to be a good alternative to suppress
vibrations or even be used as a drive device is the magne-
torheological (MR) brake. According to [1, 24], the MR
device consists of a MR fluid composed of microsized
magnetic particles, located inside a liquid carrier, which
forms chain-like structure when an external magnetic field is
applied, resulting in an increase of the apparent viscosity of
the fluid. *e MR actuator is usually used as a damper and
may be used as a passive or semiactive actuator.

In [25], the authors demonstrated the efficiency of the
application of the magnetorheological (MR) brake in the
positioning control of the two-degree-of-freedom robotic
arm designed with flexible joints. *e considered control is
composed of two controls: a feedforward and a feedback by
using the SDRE, and the torque of the MR damper is
modelled by means of a neural network.

*e present paper is a continuation of the previous
developments [25]; however, the modelling of the MR
damper is performed by the use of the explicit mathematical
model. In this way, this work considers the positioning
control of the dynamical behavior of a robot manipulator
armwith flexible joints driven by a DCmotor andMR brake,
controlled for a feedback control obtained by the SDRE
control, and considering a nonideal load carrying, and the
control of the chaotic behavior. *e MR brake torque is
modelled by considering the behavior of a Bingham fluid.
*e main objective here is to study and control of the dy-
namics of a robot manipulator arm with flexible joints
driven by a DC motor and MR brake, controlled by the
SDRE control. *e main contribution and new approach of
this work is the inclusion of the flexible cables, and a new
degree of freedom was included to the force on the load.

*e study of vibrations in robot arms is of utmost im-
portance. Robot arms are used for manipulations of objects,
tools, and even for surgical purposes, and sometimes, vi-
brations are not allowed due to the needed precision in the

manipulation operation. *en, the investigation and control
of such vibrations become very important to robot arms.

*is work is organized as follows: first section is the
introduction; second and third sections discuss the dy-
namics of the manipulator with the modelling of the system
and dynamical analysis through Poincaré maps and Lya-
punov’s exponent analysis; fourth section shows the control
proposal and development; fifth section shows the use of MR
brake with the DC motor to control the system; and last
section is the conclusions of this work.

2. Dynamics of the Manipulator with
Flexible Joint

*e dynamics of a robot manipulator is composed typically
by an open kinematic chain, where each segment of their
links, being rigid or flexible, has links from the base to the
extreme of the actuator. In this way, the positioning and
orientation of the coordinate system of the manipulator are
defined by a universal coordinate system, which is consid-
ered as a Cartesian plane coordinate system.

A vector position AP is established as a R3×1 (3-di-
mension) vector to define the motions of the robotic arm at
X, Y, and Z coordinates in a plane {A}. *e individual el-
ements of AP are defined by

AP �

px

py

pz

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (1)

*e graphical representation of the vector position is
illustrated in Figure 1.

In addition, the vector position can be rotated by
a matrix rotation represented byR in the following equation:

B
AR �

r11 r12 r13

r21 r22 r23

r31 r32 r33

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (2)

As the plane of reference {A} does not coincide with any
other coordinates in a plane {B}, the displacements between
such planes are called translation given by the vector DA,
where AQ represents the translation between {A} and {B}
planes, whose vectors are expressed in the following equation:

AQ �

qx

qy

qz

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

B
AD �

1 0 0 qx

0 1 0 qy

0 0 1 qz

0 0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(3)

*erefore, the translation of the coordinates can be
expressed in a new notation with both translation and ro-
tation of a vector, according to equation (4), where the
matrix DA is incorporated in the new notation.
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B
AP

1
⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦ �

A
BR

0 0 0

AQ
1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
􏼢 􏼣

􏽼√√√√√􏽻􏽺√√√√√􏽽
A
B
A

BP

1
⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦.

(4)

In equation (4), thematrix A
BA represents the homogeneous

transformation matrix, in this case, composed of the rotation
matrix A

BR and the translation matrix AQ. *e result of the
operation of equation (4) is graphically represented by Figure 2.

In the generalized form, the homogeneous trans-
formation i

0T can be expressed by successive rotations and
translations and can be found by calculating the product of
the successive transformations of i−1

0 Ai, as given by
i
0T �

0
1A

1
2A . . .

i−1
i A � 􏽙

i

j�1

j−1
i A, i � 1, 2, . . . , n

�
xi yi zi pi

0 0 0 1
􏼢 􏼣 �

i
0R

i
0P

0 1
􏼢 􏼣,

(5)

where i
0P is the orientation vector of the i reference related

to the base 0.
*e model of the manipulator with flexible joints

with a load, illustrated in Figure 3, consists of two rigid
links, l1 and l2, and two flexible joints with ks flexibility
coefficient. *e load of the manipulator is represented by
a nonideal coupling of the cable flexibility, which is
represented by kc.

*e flexibility behavior of the manipulator between the
DC motor θM � θ4 θ5􏼂 􏼃

T and the link of the system θM �

θ1 θ2􏼂 􏼃
T is given by the components of flexibility between

the motor and the motor reduction box or even the motor
axis. In addition, the magnetorheological dampers MR1 and
MR2 are coupled in the joints of the robotic arm, where they
will act to control the movement of the arms.

*e manipulator model is modelled through the energy
method of Lagrange, which uses the function of Lagrange,
which is based on kinetic and potential energies, and
Euler–Lagrange equation.

*e kinetic energy T is defined by the motion of the
links of the manipulator, as given by

T �
1
2
m1

1
0

_P
T1
0

_P +
1
2
m1

2
0

_P
T2
0

_P +
1
2
m1

3
0

_P
T3
0

_P, (6)

where the load coupling equation to the handler is given by
ℓ(t) + l3 representing the coupling with flexible cargo
characteristics.

*e kinetic energy in terms of the generalized co-
ordinates θi, where i � [1, 5], of the manipulator model, by
introducing the matrices P in equation (6), is given by the
following equation:

T � _θ1 _θ2l1l2 m2 + m3( 􏼁cos(α) + _θ1 _θ3l1m3 l3 − ℓ(t)( 􏼁cos(β)

+ _θ2 _θ3l2m3 l3 − l(t)( 􏼁cos(δ) + _l _θ1l1m3 sin(β)

+ _ℓ(t) _θ2l2m3 sin(δ) +
1
2

l
2
1 m1 + m2 + m3( 􏼁 _θ

2
1

+
1
2

l
2
2 m2 + m3( 􏼁 _θ

2
2 +

1
2

m3 l3 − ℓ(t)( 􏼁
2 _θ

2
3 + _d

2
2􏼒 􏼓,

(7)
where α � θ1 − θ2, β � θ1 − θ3, and δ � θ2 − θ3.

*e interaction between the engine and the handler
presents nonoptimal characteristic, expressed by the spring
component ks; hence, the potential energy is given by the

YA

ZA XA

A P

{A}

Figure 1: Vector related to the plane A{ }.

MR1

MR2

Payloadl1

l(t) + l3θ2

l2

θ5

θ1θ4

θ3

kc

ks

ks

Figure 3: Manipulator model with flexible joints, load, and
magnetorheological breaks coupled to the joints.

B P

B P

AQ

{A} {B}

ZA
^

YA
^

Y B^

XA
^

XB
 

ZB
^

Figure 2: Homogenous transformation of the point AP by the
rotation and translation operators.
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gravity force acting on each link and the torsional stiffness of
each link, denoted by the following equation:

V �
1
2
ks θ4 − θ1( 􏼁

2
+
1
2
ks θ5 − θ2( 􏼁

2
+ m1g

1
0Py

+ m2g
2
0Py + m3g

3
0Py.

(8)

Introducing the matrices P, the full equation of po-
tential energy V becomes
V � l1g m1 + m2 + m3( 􏼁sin θ1( 􏼁 + l2g m2 + m3( 􏼁sin θ2( 􏼁

−m3g ℓ(t)− l3( 􏼁sin θ3( 􏼁

+
1
2

ksθ
2
1 + ksθ

2
2 + kcℓ

2
+ ks θ24 + θ25􏼐 􏼑􏼐 􏼑

− ksθ1θ4 − ksθ2θ5.

(9)

Given kinetic and potential energies, Lagrange’s function is
defined, and Euler–Lagrange equation is applied to find the
equations of motion of the system, considering the derivation
of the coordinates as given by the following equation:

d

dt

zL

z _θi

􏼠 􏼡−
dL

dθi

� 0,

d

dt

zL

z_ℓ
􏼠 􏼡−

dL

dℓ
� 0,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(10)

where generalized coordinates are in function of θi and the
nonideal coupling ℓ.

*e equations of motion of the system can be expressed
in the matrix form, denoted by the following equation:

M(θ, ℓ)
€θ

€ℓ

⎧⎨

⎩

⎫⎬

⎭ + C( _θ, _ℓ, θ, ℓ)
_θ
_ℓ

⎧⎨

⎩

⎫⎬

⎭ + K(θ, ℓ)
θ

ℓ
􏼨 􏼩 + G(θ) � 0,

(11)

where the matrices M, C, and K are

M �

M11 M21 M31 M41

M12 M22 M32 M42

M13 M23 M33 0

M14 M24 0 m3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

C �

0 C21 C31 0

C12 0 C32 0

C13 C23 C33 0

C14 C24 C34 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

K �

ks 0 0 0

0 ks 0 0

0 0 0 −m3g sin θ3
0 0 0 kc

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(12)

where M11 � l21(m1 + m2 + m3), M21 � M12, M31 �

l1m3(ℓ − l3)sin(θ1 − θ2), M12 � l1l2(m2 + m3)cos(θ1 − θ2),

M22 � l22(m2 + m3), M32 � M23, M13 � l1m3(ℓ − l3)sin
(θ1 − θ3), M23 � l2m3(ℓ − l3)sin(θ2 − θ3), M33 � m3(l3 − ℓ)

2,
M14 � l1m3 cos(θ1 − θ3), M24 � l2m3 cos (θ2 − θ3), M41 � l1
m3 cos(θ1 − θ3), M42 � l2m3 cos(θ2 − θ3), C12 � −l1l2 _θ1
sin(θ1 − θ2), C13 � l1m3

_θ1(ℓ − l3)cos(θ1 − θ3), C14 � −l1m3
_θ1 sin(θ1 − θ3), C21 � l1l2(m2 + m3)sin(θ1 − θ2), C23 � l2
m3

_θ2(ℓ − l3)cos(θ2 − θ3), C24 � −l2m3
_θ2 sin(θ2 − θ3), C31 �

l1m3(
_θ3 + 2(l3 − ℓ)cos(θ1 − θ3) + 2_ℓ sin(θ1 − θ3)), C32 � l2

m3(
_θ3 + 2(l3 − ℓ)cos(θ2 − θ3) + 2_ℓ sin(θ2 − θ3)), C33 � −2m3

_ℓ(l3 − ℓ)
2, C34 � m3

_θ3(l3 − ℓ).
*emechanical equations of the DCmotor are described

as in [5], denoted by equation (13). To the DC motor model,
the flexible torque component is added; hence, the equation
of motion of the motor coupled to the manipulator can be
denoted by the following equation:

€θM � J
−1
M kti− bvω− τs θ, θM( 􏼁􏼈 􏼉, (13)

where the electric part of the DC motor is given by the
following equation:

d

dt
i � L
−1
a −Rai− kbω + v􏼈 􏼉. (14)

For a better relation between torque and velocity, the
motors have an engine reduction box; the schematic of the
reduction box model is illustrated in Figure 4, where JL is the
inertia of the link [5].

*e relation constant between the magnitudes of the
system is defined by the following equation:

κ �
N2

N1
. (15)

*us, it is explicit that the velocity ratio of the system is
given by JM � κJL. *e viscous friction constant and inertia
of the DC motor with the reduction box can be expressed by
equation (16), considering the reflection effect of the vari-
ables by the ratio of the gears N1 and N2 [5]:

Jeq � κ2JL + JM,

b � κ2bvL + bvM.

⎧⎨

⎩ (16)

*erefore, the equations of motion of the system with
mechanical and electrical parts of the DC motor coupled to
the manipulator are given by the following equation:

M(θ, ℓ)

€θ

€ℓ
€θM

€iM

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

+ C( _θ, _ℓ, θ, ℓ)

_θ
_ℓ

_θM
_iM

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

+ K θ, ℓ, θM, iM( 􏼁 + G(θ) � 0.

(17)

To demonstrate the interaction between the sub-
systems, manipulator, and tool or load, the energy ex-
change between each element will be analysed. For the
first model of the manipulator with nonideal load, it is
intended here to analyse the interaction between the ma-
nipulator and the coupled load, where the motor axis is
θM � θ4 θ5􏼂 􏼃

T at an arbitrary position such as θ4 � 1.2 rad
and θ5 � −1.2 rad.
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To obtain the steady-state energy of the model, it is
considered €θi � _θ � 0, where the steady-state energy is given
by E∗0 . A small perturbation will be added in the system to
analyse the interaction between the manipulator and load;
thus,E � E∗0 + ζ, where ζ is a small fraction ofE∗0 . Based on
E, the initial conditions to analyse the interaction between
the systems can be obtained.

*e kinetic energy exchange between manipulator and
load is shown in Figure 5. *e kinetic energy of the ma-
nipulator is shown in red and kinetic energy of the cargo/
load in black. It is observed that to the increase of energy of
the load entails in the reduction of the energy of the
manipulator, this event is given by the exchange of energy
between the systems, in addition, showing the nonideality
of the system.

*e nonideal coupling characteristic, which for the first
example of the manipulator is presented by the coefficient of
elasticity of the element connecting the load to the ma-
nipulator, brings a new dynamics to the system in com-
parison to the ideal system.

3. Dynamical Analysis

*e dynamic analyses of the system and all the numerical
simulations, which will be carried out in this work, con-
sidered the parameters of Table 1. Such analyses will con-
sider the use of tools such as Poincaré maps, phase planes,
and Lyapunov exponent analysis.

*e dynamical analysis consists of the interaction of
links with the axes where the DC motor is coupled.
*erefore, the axes θM � θ4 θ5􏼂 􏼃

T are fixed, and arbitrary is
chosen with an initial condition of θ4 � 1.2 rad and
θ5 � −1.2 rad.

Table 1 shows the whole nomenclature of the manipu-
lator system and control strategy, which will be developed in
the next section.

Figure 6 displays the phase plane of the two manipu-
lators links θ1 and θ2, with their velocities θ1

.

and θ2
.

, as
shown in Figures 7(a) and 7(b), respectively. A small var-
iation of steady-state energy was added to the initial con-
ditions as ζ � E0/100. *e surface of the Poincaré mapS for
Figures 6(a) and 6(b), in red, shows a quasiperiodic behavior.
*is behavior, demonstrated in Figure 6, expresses the
dynamics of the manipulator with flexible links without the
addition of the load at the end of the effector.

To analyse the system with the nonideal load coupled
to the manipulator, the same dynamical analysis of

Figure 6 is carried out; however, the load dynamics is
added. By setting the axes θ4 and θ5, the energy E � E0 + ζ
is defined, where ζ � E0/100. Figure 7 presents the system
dynamics with the nonideal load coupled to the end of the
manipulator. *ese Figures 7(a) and 7(b) show the non-
periodic orbits that represent the behavior of the system,
since the phase plane crosses the surface of Poincaré in
several different points. Such behavior, in the analysis of
dynamic systems, can be classified with evidence of chaotic
behavior; however, it is necessary to use another analytical
tool to verify the chaos.

N2

kvM

kvL

JL

JM

N1

Load

Motor

Figure 4: Schematic of the motor and load connected by a re-
duction box.
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3.5 4 4.5 5

25

Figure 5: Kinetic energy exchange between load and manipulator
with nonideal load.

Table 1: Parameters of the robot manipulator arm system.

Symbol Description Value Unit
Ra Motor armature resistance 1.5 Ω
La Motor inductance 0.0015 H
kt Motor torque constant 0.0185 Nm/A
kb Motor electromotive force 0.0185 V/rpm
bv Equivalent viscous friction 0.018 Nms
κ Gear ratio 20.68 —
θM Angular position motor ηθM (t) rad
θ Angular position — rad
τf Total friction force 0.0021 Nm
J Equivalent inertia load — kgm2

JM Motor inertia 0.0185
i Armature electrical current — A
v Voltage armature motor — Volts
τs Cubic spring force 0.087 Nm3

ks
Flexibility of the transmission of

the motor 350 Kg/s2

kc Flexibility of the arm-load cable 150 Nms
l1 Link 1 length 0.8 m
l2 Link 2 length 0.8 m
m1 Link 1 mass 0.4 kg
m2 Link 2 mass 0.4 kg
m3 Payload mass 0.6 kg
x State vector — —
xd Setpoint vector — —
e Position error — —
A State matrix — —
B Input matrix — —
Q State weights matrix — —
R Input weights matrix — —
CO Controllability matrix — —
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*e Lyapunov exponent method consists of the anal-
ysis of the sensitivity of the initial conditions of a dy-
namical system being able to show if a system has periodic,
quasiperiodic, or chaotic behavior. Applying this method
to the model of manipulator with nonideal load coupled to
its end, Figure 8 shows the three most relevant exponents.
*e system showed to be very sensitive to their initial
conditions due to the existence of a positive exponent,
which is λ1 � 3.2 in red. In addition, as there is at least one
positive exponent, the behavior of the system is charac-
terized as chaotic.
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Figure 6: Phase planes (in black) and Poincaré Map (in red) for nonloaded-free system. (a) Poincaré section of θ1 and (b) Poincaré
section of θ2.
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Figure 8: *ree most relevant Lyapunov exponents to nonideal
loaded manipulator.
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Figure 7: Phase planes (in black) and Poincaré map (in red) for nonideal loaded manipulator. (a) Poincaré section of θ1 and (b) Poincaré
section of θ2.
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Next, a control strategy is proposed to suppress the
chaotic behavior.

4. Control Strategy

*e control strategy to be considered is the SDRE (state-
dependent Riccati equation). *e well-known SDRE con-
troller has become very popular within the control com-
munity in the last decade, providing a very effective
algorithm solution to synthesize nonlinear feedback controls
by allowing nonlinearities in the states of the system in
addition to offer great design flexibility through that of the
dependent-state weighting matrices.

4.1. Discrete Time SDRE Controller Design. *e control
strategy proposed here is based on continuous time SDRE;
however, in this actual application, it is necessary to in-
corporate the control into a digital device; thus, one should
adjust the design to the DSDRE (discrete-time state-de-
pendent Riccati equation) topology.

*e first step is to define the error vector in which it
should be minimized. In this work, typically, the error vector
is composed of the states related to a new coordinate in
which the manipulator must reach; thus, the error equation
should be defined as

e(t) � x(t)− xd(t), (18)

where e(t) is the error vector, xd(t) represents the desired
coordinate, and x is obtained by finding the static equilib-
rium point for the positioning coordinates.

*e optimal control problem for the system with co-
efficients of the state matrix and infinite horizon condition
can be formulated as a function of the new error coordinates,
as in the following equation:

Jk �
1
2

􏽚
∞

0
e(t)

TQe(t) + u(t)
TRu(t)􏽨 􏽩dt. (19)

*e solution of the optimal control problem is obtained
by the Riccati equation, given by the following equation:

A(e(t), t)
TP + PA(e(t), t)−PBR−1BTP + Q � 0. (20)

Although the solution of equation (20) provides an
optimal control solution, in the SDRE control, this solution
is presented as suboptimal because each interaction recal-
culates the local optimal value for the control, based on the
error state arrays A(e(t), t) and B.

*e matrices Q and R are semidefinite and positive,
Q> 0, R> 0, guaranteeing that the system is asymptotically
stable [26]. *erefore, the dynamic equation of the error can
be rewritten as follows:

_e(t) � [A(e(t), t)−BK(e(t), t)]x(t). (21)

*e matrix of controller gains is given by K(e(t), t),
defined by the following equation:

K(e(t), t) � R−1BTP. (22)

Besides, the choosing of the parameter of performance
matricesQ andR is an important factor to ensure optimality,
a dynamic system does not always have full controllability of
the states; in this way, it should be verified the controllability
matrix for each interaction, according to the controllability
theorem.

A dynamic system such as equation (21) is completely
controllable if and only if the controllability matrix station is
equal to n, which is defined by

CO � rank B A(x(t), t)B · · · An−1(x(t), t)B􏼂 􏼃( 􏼁, (23)

where n represents the dimension of the state matrix
A(x(t), t)n×n.

However, the proposal presented above applies to
continuous time (t); thus, the controller must be adapted to
be shipped in a digital device.

In a digital device, the time relationship is limited to the
physical characteristics of a microcontrollable device; for
example, the conversion time from the analogue to the
digital system can set the minimum time of operation of the
variables for a real-time representation. At this discrete time
unit, the denomination of sampling time is given by (Ts).

According to [15], since there is a u(t) for kTs ≤
t< kTs + Ts, where k � 0, 1, 2, N− 1, it can be substituted to
u(t) ≈ u(kTs). In this way, the discretization of a system of
dynamic equations can be rewritten by

xk+1 � e
ATsxk + 􏽚

Ts

0
e
AcBuk dc, (24)

with t � kTs, where c � Ts − t, consequently, the trans-
formation matrix for discretization of the system is given by
the following equation:

Ak � e
ATs ,

Bk � 􏽚
Ts

0
e
Ac

􏼠 􏼡B.
(25)

For Ts significantly small in reaction to the dynamics of
the system, it is obtained the discretized system matrix
through the first order of the Taylor series, given as

Ak ≈ ATs + I,

Bk ≈ BTs,
(26)

where I is an identity matrix.
Once the matrices of the discretized system are defined,

it is possible to state the minimization function of the
controller error for discrete time, which is

Jk �
1
2

􏽘

N−1

k�0
eT

kQek + uT
kRuk􏽨 􏽩. (27)

*e solution of equation (27) can be obtained through
the DARE (algebraic solution of the Riccati discrete equa-
tion), which is demonstrated by the following equation:

Pk � Q + AT
kPk−1Ak −A

T
kPk−1Bk R + BT

kPk−1Bk􏽨 􏽩
−1
BT

kPk−1Ak.

(28)
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*e equation of controller gainsKk for each discrete time
interaction k is then defined by the following equation:

Kk � R−1BT
k AT

k􏼐 􏼑
−1

Pk −Q􏼂 􏼃. (29)

For a better visualization of the controller calculation
steps, the control Algorithm 1 is shown. *e Algorithm 1
recalculates the control vector Kk at each interval of Ts,
obtaining the local optimal value of the system.

Considering the dynamics of the manipulator, the DC
motor is coupled in the axis θM � θ4 θ5􏼂 􏼃

T, giving the
equations of motion of the controlled system denoted by the
following equation:

M(θ, ℓ)

€θ

€ℓ
€θM

€iM

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

+ C( _θ, _ℓ, θ, ℓ)

_θ
_ℓ

_θM
_iM

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

+ K θ, ℓ, θM, iM( 􏼁

+ G(θ) � U(v).

(30)

For the application of state-space control, it is necessary
to isolate the system acceleration vector of equation (30)
described by the following equation:

€θ

€ℓ
€θM

€iM

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

� M(θ, ℓ)−1 −C( _θ, _ℓ, θ, ℓ)

_θ
_ℓ

_θM
_iM

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

−K θ, ℓ, θM, iM( 􏼁−G(θ) + U(v)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (31)

After isolating the accelerations, the system is trans-
formed in state-space notation, being that x is x �

θ1 _θ1 θ2 _θ2 θ3 _θ3 ℓ _ℓ θM1
_θM1

θM1
_θM1

iM1
_iM1

􏽨 iM2

_iM2
], whose system in state-space notation in the matrix

form is given by the following equation:
_x(t) � A(x(t), t)x(t) + Bu(t) + G(x), (32)

where A is the state matrix, B is the control matrix, andG(x)
is the gravitational change. *e controller design matrices
are presented by the following equation:

Q � 100 · I10×10
,

R � 0.001 · I2×2
,

(33)

where I is the identity matrix.
*e closed-loop control represented in block diagrams is

illustrated in Figure 9.
Defining the positions of the desired coordinates as

xd � θ1 θ2􏼂 􏼃, where θ1 � π/2 rad(90°) and θ2 � 0 rad, the
results of the control can be observed in Figure 9. It should
be noted that the goal of xd refers to the final position of the
axes θ1 and θ2, where the inclusion of the nonideal load ℓ has
a disturbing effect on the system.

Figure 10 shows e1 � θ1 −xd1 and e2 � θ2 − xd2. It can be
seen that response of Figure 10 has a steady-state error. *e
disturbance oscillation ℓ was absorbed by the manipulator.

5. Magnetorheological Actuator

*eMRfluids belong to a family of rheological materials that
undergo phase change under the application of magnetic
fields. Typically, MR fluids are composed of ferromagnetic or
soft paramagnetic particles (0.03 to 10 μm) dispersed in
a carrier fluid. Due to design issues, magnetizable particles
must have low levels of magnetic coercivity, and then,
various types of materials have been applied to coat the ER
(electrorheology) fluid [27] with ceramics and metal alloys.

*e dynamic behavior of the MR fluids, from the theory
of fluid mechanics, shows that with the absence of a mag-
netic field on the fluid, it is classified as a Newtonian fluid,
whereas when exposed to a magnetic field exhibits Bingham
[28] viscoelastic behavior, as represented in Figure 11. *e
electromagnetic field is typically generated by electric coils.

*e equation that defines the behavior of a Bingham
fluid is given by equation (34):

τc � τy(·) + η
dv

dz
, τc > τy, (34)

where τc represents the shear stress, η is the Newtonian
viscosity coefficient, c is the shear rate, τy is the stress
related to the dynamic behavior of the fluid MR, and
dv/dz is the velocity gradient in the direction of the
magnetic field.

Data: Continuous time variables A, B, Q, R, Pk−1
Results: Kk control vector
Initiating;
Read the arrays A, B, Q, R, Pk−1;
CO � rank B A(x(t), t)B . . .An−1(x(t), t)B􏼂 􏼃( 􏼁

if CO� n then
while |det(Pk−1)− det(Pk)|< 0.01 do
Calc Matrix Ak and Bk;
Calc Pk in equation (28);
Find the controller gains;
Kk � R−1BT

k (AT
k )−1[Pk −Q]

end
else
Kk � Kk−1

end

ALGORITHM 1: Calculation of control vector Kk for control
DSDRE.
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As previously mentioned, when a magnetic field is ap-
plied in the fluid, the shear stress ratio can change; hence, the
function τy has a dependence on the intensity of the
magnetic field, defined by H. *e multidisc composite MR
brake is adopted here, such approach is due to the lack of
several discs increasing the contact region with the oil,
allowing the reductions of spacing lf.

*erefore, equation (34) is rewritten as equation (35),
considering the magnetic field H and the radius r of the
circumference of the disk:

τc � τy(H) + η _c(r), where _c(r) �
ωr

lf
, (35)

where the term ω represents the speed of rotation of the
disk.

*e variation of torque produced by a circumferential
element of the rotational brake of the MR of radius r is given
by the following equation:

dTMR � 2πr
2τc dr. (36)

*e geometric relation of r is given by the relation
r�R2 –R1. In this way, it is possible to integrate equation
(35) as a function of the circle radius of the disk, according to
the following equation:

TMR � 2N􏽚
R1

R22π τy(H)r
2

+ η
ωr3

lf
􏼠 􏼡dr

� 4Nπ
τy(H) R3

2 −R3
1( 􏼁

3
+
ηω R4

2 −R4
1( 􏼁

4lf
􏼠 􏼡,

(37)

where N represents the number of disks in the engine.
*e above equations present the dynamics related to the

MR fluid mechanics; however, for this work, the hybrid

x∗

e(t) u(t)

Controllability test

B(x)
x(t)x(t)

∫

A(x(t), t)

A(x(t), t)n–1B)A(x(t), t)B(B

A(x(t), t)T P + PA(x(t), t) – PBR–1BTP + Q = 0

sat(u(t))

k(t – 1)

k(t)
P

R–1BTP

Ricatti solution

Rank ()
1

0
≥6

Model

Figure 9: Block diagram of the system with control applied to the DC motor.
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Bingham

Dilating

Pseudoelastic

Newtonian

τc

γ·

Figure 11: Fluid behavior.
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actuator composition will be considered, being that the MR
actuator aims at damping undesired vibrations in the robotic
manipulator, as well as the coupling of the motor for po-
sitioning of the manipulator.

*e equation that couples the MR actuator to the system
is denoted by the following equation:

€θMR � J
−1
eq kti− bω− τs θ, θM( 􏼁−TMR( 􏼁

� J
−1
eq􏼢kti− b + 4Nπ

η R4
2 −R4

1( 􏼁

4lf
􏼠 􏼡ω

− 4Nπ
τy(H) R3

2 −R3
1( 􏼁

3
􏼠 􏼡− τs θ, θM( 􏼁􏼣.

(38)

At last, finalizing equation (38), it is necessary to define
the relation between τy and the magnetic field generated by
the coils of the MR actuator. In this context, there are two
fundamental laws of magnetic field and flux: Ampere’s law
and Gauss’ law. *is deduction is made typically for a MR
project, where it can be related to the magnetic field lines
that pass through theMR fluid; however, the described curve
of authors in [29] was adopted, where the fluid dynamics is
found by the following equation:

τy � αH
β
, (39)

where α and β are obtained from the experimental curve of
the MR fluid.

*en, equation (39) is rewritten, denoted by the fol-
lowing equation:

€θMR � J
−1
eq

⎡⎣kti− b + 4Nπ
η R4

2 −R4
1( 􏼁

4lf
􏼠 􏼡ω

− 4Nπα
R3
2 −R3

1( 􏼁

3
􏼠 􏼡H

β − τs θ, θM( 􏼁⎤⎦

d

dt
iM � L

−1
a −Rai− kbω + v􏼂 􏼃.

(40)

*eMR actuator has two control inputs: v(t), the motor
voltage for positioning, and H(t), for control of the viscosity
component in order to eliminate the vibration of the system.

As a proposal to improve the manipulator for nonideal
loading, the model where the MR actuator is coupled is
presented, according to the following equation:

M(θ, ℓ)

€θ

€ℓ
€θMR

€iM

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

+ C( _θ, _ℓ, θ, ℓ)

_θ
_ℓ

_θMR

_iM

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

+K θ, ℓ, θMR, iM( 􏼁 + G(θ) � U v, TMR( 􏼁.
(41)

For the application of state-space control, it is necessary
to isolate the system acceleration vector, equation (41),
becoming

€θ

€ℓ
€θMR

€iM

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

� M(θ, ℓ)−1 −C( _θ, _ℓ, θ, ℓ)

_θ
_ℓ

_θMR

_iM

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

−K θ, ℓ, θMR, iM( 􏼁−G(θ) + U v, TMR( 􏼁

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (42)

In this way, after isolating the accelerations, the system is
transformed state-space form, being that x � θ1 _θ1 θ2􏽨
_θ2 θ3 _θ3 ℓ _ℓ θMR1

_θMR1
θMR1

_θMR1
iM1

_iM1
iM2

_iM2
]. *e

state-space system in the matrix form is given by equation
(43), where A is the state matrix, B is the control matrix, and
G(x) is the gravitational change:

_x(t) � A(x(t), t)x(t) + Bu(t) + G(x). (43)

*e controller design matrices are presented by the
following equation:

Q � 100 · I10×10
,

R � 0.001 · I4×4
,

(44)

where I is the identity matrix.
*e closed-loop control for the MR brake represented in

block diagrams is illustrated by Figure 12.

*e values for the desired trajectory xd are maintained as
in the previous case. Likewise, the goal of xd refers to the final
position of the axes θ1 and θ1, where the inclusion of the
nonideal load ℓ is presented as a perturbation effect to the
system. *en, the system response is shown by Figure 13.

It can be seen that the MR utilization caused the system
to not oscillate and caused less error in the steady-state
regime, as Figure 14.

In Figure 15, the robot displacement trajectory in 5(s)
can be seen, considering the robot displacement trajectory
by control without and with MR brake.

Figure 16 shows the DC motor control input.
Figure 17 shows the control torque to joints.
*e current curves to be applied to theMR can be seen in

Figure 18.
As can be observed in the simulation results, with the use

of the MR brake, it was possible to reduce the oscillations of
the suspended mass.
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Figure 12: Block diagram of the system with control applied to the DC motor and MR brake.
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Figure 15: Robot displacement trajectory (5(s)). Robot displacement trajectory by control (a) without MR and (b) with MR.
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Figure 16: Voltage control of motor for control (a) without MR brake and (b) with MR brake.
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Figure 17: (a) Torque control MR brake joint one. (b) Torque control MR brake joint two.
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6. Conclusions

*is work presented the efficiency of the SDRE controller
technique using a DC motor and the DC motor with a MR
brake coupling to control a robot manipulator of flexible
links and joints with a free load at its end.

Using only the DC motor, it was possible to control the
system leading the manipulator arms to the desired trajectory,
and the error was very small. Using the DC motor and MR
brake, the arms also led to the desired trajectory; however, the
error was minimized almost to zero, showing that using
multiple actuators improve the control performance and
minimize the interference of external disturbances.
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