
IMPROVED STUDY OF SIDE-CHANNEL ATTACKS

USING RECURRENT NEURAL NETWORKS

by

Muhammad Abu Naser Rony Chowdhury

A thesis

submitted in partial fulfillment

of the requirements for the degree of

Master of Science in Computer Science

Boise State University

December 2019



c© 2019
Muhammad Abu Naser Rony Chowdhury

ALL RIGHTS RESERVED



BOISE STATE UNIVERSITY GRADUATE COLLEGE

DEFENSE COMMITTEE AND FINAL READING APPROVALS

of the thesis submitted by

Muhammad Abu Naser Rony Chowdhury

Thesis Title: Improved Study of Side-Channel Attacks Using Recurrent Neural Net-
works

Date of Final Oral Examination: 19 August 2019

The following individuals read and discussed the thesis submitted by student Muham-
mad Abu Naser Rony Chowdhury, and they evaluated the presentation and response
to questions during the final oral examination. They found that the student passed
the final oral examination.

John Stubban, Ph.D. Chair, Supervisory Committee

Marion Scheepers, Ph.D. Member, Supervisory Committee

Casey Kennington, Ph.D. Member, Supervisory Committee

The final reading approval of the thesis was granted by John Stubban, Ph.D., Chair
of the Supervisory Committee. The thesis was approved by the Graduate College.



To my parents and my wife, who always believe in me.

iv



ACKNOWLEDGMENTS

First I would like to express my gratitude to the Almighty for allowing me to

finish my work. I cannot express enough thanks to my committee for their continued

support and encouragement: Dr. John Stubban, my major professor; Dr. Marion

Scheepers and Dr. Casey Kennington, my honorable committee members. I offer

my sincere appreciation for the learning opportunities provided by my committee. I

would like to express my heartiest thanks to Dr. John Stubban for going extra miles

by scrutinizing my works and making it look solid. A special thanks to Dr. Yantian

Hou and Dr. Gaby Dagher for providing important insights about my work. My

completion of this thesis work could not have been accomplished without the support

of my wife, Emu. To Emu - thank you for allowing me time away from you to research

and write. Thanks to my parents as well, Mr. and Mrs. Chowdhury, for their love

and blessings. Last, but not least, I would like to thank Ahnaf and Ahiyan, my two

sons, who have been a continuous inspiration for my work.

I am very much thankful to the Computer Science Department for giving me the

opportunity to flourish myself as a researcher by providing financial and advisory

support. I would like to thank Dr. Jerry Alan Fails, graduate coordinator, Jordan

Morales, and Susie Gillikin for their tremendous support and help towards me.

v



ABSTRACT

Differential power analysis attacks are special kinds of side-channel attacks where

power traces are considered as the side-channel information to launch the attack.

These attacks are threatening and significant security issues for modern cryptographic

devices such as smart cards, and Point of Sale (POS) machines; because after careful

analysis of the power traces, the attacker can break any secured encryption algorithm

and can steal sensitive information.

In our work, we study differential power analysis attacks using two popular neural

networks: Recurrent Neural Network (RNN) and Convolutional Neural Network

(CNN). Our work seeks to answer three research questions(RQs):

RQ1: Is it possible to predict the unknown cryptographic algorithm using neural

network models from different datasets?

RQ2: Is it possible to map the key value for the specific plaintext-ciphertext pair

with or without side-band information?

RQ3: Using similar hyper-parameters, can we evaluate the performance of two

neural network models (CNN vs. RNN)?

In answering these questions, we have worked with two different datasets: one is a

physical dataset (DPA contest v1 dataset), and the other one is a simulated dataset

(toggle count quantity) from Verilog HDL. We have evaluated the efficiency of CNN

and RNN models in predicting the unknown cryptographic algorithms of the device

under attack. We have mapped to 56 bits key for a specific plaintext-ciphertext

pair with and without using side-band information. Finally, we have evaluated

vi



our neural network models using different metrics such as accuracy, loss, baselines,

epochs, speed of operation, memory space consumed, and so on. We have shown the

performance comparison between RNN and CNN on different datasets. We have done

three experiments and shown our results on these three experiments. The first two

experiments have shown the advantages of choosing CNN over RNN while working

with side-channel datasets. In the third experiment, we have compared two RNN

models on the same datasets but different dimensions of the datasets.
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CHAPTER 1

INTRODUCTION

Security in our lives is important, for our private information too. Cyberattacks, data

breaching, illegal intrusion etc. are making our life hazardous and awful. More and

more research should be done to cope with changes of exchanging information and to

protect us from outsiders.

In this era, industries, businesses, and the general population generate, share,

and exchange information as a form of data. These data values may reside in a

computer, or a server or the cloud. Communication between two computers or two

persons needs a secure channel, as people want their information to be secured and

private. Securing communication, with different cryptographic implementations being

used all over the world, is a matter of concern that information is being leaked by

cyber-attackers. The main goal of these attackers is to break any security and to

recover sensitive and private information that is supposed to be hidden, such as the

passwords of individuals, credit card information, and device keys used for encryption

or decryption. The problem does not rely on cryptographic algorithms. Instead, it

relies on the cryptographic implementations of the devices or the systems. Side-

channel attacks are the most popular kinds that attackers conduct to recover secret

information from a device or a system without gaining full access to it. As the name

suggests, side-channel attacks exploit side-channel leakage in the form of noise, the
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power consumption of a device, the behaviors of the registers, and so on. After getting

any of these side-channel leakage information, the attackers search for methods to

conduct the attack into the implementations of the device.

Side-channel attacks are alarming for this world because every walk of our lives

depends on the usage of technology and sharing information to it. Nowadays, our

information is preserved in the cloud, and we have no idea about the security of this

information. We all want our information to be private and safe. Manufacturers

of electronic devices come forward to make their products secure from side-channel

attacks. Security experts and cryptologists are trying to come up with a solution

to prevent these types of attacks on cryptographic implementations or devices to

protect an individuals private information from leaking or being abused. This field

of research is not only of academic interest but also manufacturers of cryptographic

devices demand it, because there have been many examples of attacks on real-world

cryptographic devices such as the bit-stream encryption in Xilinx FPGAs [1], the

KeeLoq remote entry system [2], the YubiKey multi-factor authentication token [3],

Mifare DESFire contactless payment cards [4], etc. These attacks made the manu-

facturers of these cryptographic devices and security experts aware of them.

We find very much interest in this area of research because there are lots of

things to be done in this field of study. In our work, we have focused on differential

power analysis attacks, which are the most popular form of side-channel attacks. In

this work, we have used deep learning techniques to conduct our research on power

consumption datasets, which are collected from cryptographic devices. As we know,

deep learning is an advanced technique which is so efficient at learning by example.

We have selected two popular models of deep learning neural networks. One is the

Convolutional Neural Network (CNN), and the other one is the Recurrent Neural
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Network (RNN). The short description of CNN and RNN models are given in the

terminologies chapter.

The reason behind choosing these two models of deep learning techniques are:

• The characteristics of the datasets e.g., time series

• The volume of the datasets. RNN and CNN networks can handle large volumes

of datasets efficiently.

• RNN and CNN, both work well with sequential data having various lengths.

• We want some predictive result from our datasets.

1.1 Thesis Statement

The main goal of this thesis work is to study side-channel attacks, especially dif-

ferential power analysis attacks in a device which is using cryptographic algorithms

implementation. Using deep learning techniques, we are interested in evaluating the

performance of our neural network models in predicting the power traces (power

consumption values) patterns to identify the known cryptographic algorithms such

as Data Encryption Standard (DES). We know that DES algorithms have 16 rounds,

so we want our models to predict the DES rounds and to differentiate datasets from

non-DES. Moreover, after predicting the DES rounds and also classifying into DES

and non-DES, we design our neural network models to guess on the keys. We have

used the RNN model to recover the keys.

To research side-channel attacks, we answer the following important research

questions (RQs):
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RQ1: As an attacker, analyzing the datasets and feeding into the neural network,

is it possible to detect which encryption algorithm the device is using?

RQ2: Is it possible to get the keys from the neural network model for a given

plaintext-ciphertext pair?

RQ3: Using similar hyper-parameters, can we evaluate the performance of two

neural network models (CNN vs. RNN)?

1.2 Our Major Contributions

In answering the above research questions, we have built two neural network models

(CNN and RNN) to detect the underlying cryptographic algorithm of the device under

attack. We have shown the comparison of the performance of these two networks.

Our goal is to detect the underlying cryptographic algorithm that the target device

is using and predict the keys for the encryption/decryption.

In our thesis work, we have several contributions.

• Comparison between CNN and RNN models on DPA contest Dataset: We have

compared our two neural network models to predict the DES rounds from the

power traces. Our datasets are DPA contest datasets in both cases. We are very

interested in comparing two models using various performance metrics such as

accuracy, speed, memory occupied, and loss of the models.

• Comparison between CNN and RNN models on Toggle Count Quantity Dataset:

We have compared our models on toggle count quantity dataset. Using these

toggle count values, we are interested to see how well the model performs. We

also consider the same metrics that we use for DPA contest dataset.
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• Comparison between CNN and RNN models in classifying the DES and non-

DES algorithms: We have developed two network models (RNN and CNN) for

binary classification of two classes: DES and non-DES. We want to evaluate

the performance of each of the network models to see how well they can classify

the two classes of cryptographic algorithms.

• Comparison between key mapping with and without toggle count quantity

values: Using the RNN model, we compare the performance of key mapping with

toggle count values and without toggle count values. For the first RNN model,

our inputs are 64bit plaintext, 64 bits ciphertext, and one bit for encryption

or decryption. We expect the output to be mapped with a specific key for a

specific plaintext-ciphertext pair. For the other one, our inputs to the model

are 64 bits plaintext, 64 bits ciphertext, one bit for encryption or decryption,

and toggle count values. In each case, we are mapping our input to 56 bit key

values. We evaluate the performance of each of the models using metrics such

as the accuracy of the model, loss of the model, speed of execution.

For key detection for a given plaintext-ciphertext pair value, we have showed how

accurately we can detect the key values.

1.3 Outline

The paper is organized as follows:

Chapter 2 discusses the background of the thesis work. In this chapter, we briefly

describe the basic preliminaries or terminologies of Side-Channel Attack types, Data

Encryption Standard (DES) algorithms, Basics of Digital Signal Processing (DSP),

Deep learning techniques etc.
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Chapter 3 discusses the related work in this field, and how our work is different

from other work.

Chapter 4 broadly describes our methodologies of the thesis work.

Chapter 5 summarizes this thesis work with a conclusion section and possible

direction for future studies.
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CHAPTER 2

TERMINOLOGIES

2.1 Side-Channel Attack

Side-channel attacks can be defined as an attack where an attacker can gain sensitive

information from the physical implementation of a cryptosystem. So, we can say

that side-channel analysis is a branch of cryptography where information can be

gained from the implementation of a electronic system, rather than the flaws in the

cryptographic algorithms used. In this attack, attackers can gain information by

exploiting the various sources such as timing information, power consumption, sound

of the device, and electromagnetic leaks. There are many classes of side-channel

attacks like cache attacks, electromagnetic attacks, timing attacks, software imple-

mentation attacks etc. Figure 2.1 shows the basic diagram of a side-channel attack in a

cryptosystem. The attacker has generally no idea about the cryptographic algorithms

used in the system or device, but getting ideas about the physical implementations,

the attacker gains valuable information about the target.

In our thesis work, we work on power analysis attacks, which is one of the very

special classes of side channel attacks. We discuss the power analysis attack in the

next section.
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Figure 2.1: A typical diagram of Side Channel Attack

2.2 Power Analysis Attack

Power analysis attack is a class of side-channel attacks where an attacker uses the

power consumption of the device or the system as the leaked information to ex-

ploit the target device or the system. The idea is that when the execution of

a cryptographic algorithm (DES, AES, RSA etc.) on an electronic device occurs,

then the device will consume power with a specific signature. The computation of

the cryptographic algorithms takes a considerable amount of power. The attacker

measures the power consumption of the device during the computation execution.

These power consummations are then stored in a computer as power traces to do

deeper analysis. The attacker tries all possible ways to retrieve information about

the secret key in the algorithm from the captured power traces. After careful analysis

using various methodologies, the attacker becomes successful in identifying all the

sensitive information about the cryptosystem, as well as the devices key.

From Figure 2.2, we see the setup of a typical power analysis attack. Power

analysis attacks usually consist of a target device under attack, a digital oscilloscope

and a personal computer. The attacker hooks up an oscilloscope to the target
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device using probes. This target device is essentially executing one of the encryption

schemes and running some kind of cryptosystem. The attacker measures and captures

the power consumption of the target device at a determined sample rate. They

get the collection of points which contains the voltage level measurements. Each

of these measurements is called a power trace. These collection of power traces

are stored into a personal computer. Using popular data processing applications

(Python, MATLAB,etc), the attacker can analyze and process the collected power

traces. The good thing is that the attacker does not to have any knowledge about

the cryptographic algorithm being used by the target device. He/she only needs to

make educated guesses and properly analyze the power traces to learn about the

cryptosystem perfectly so that he/she can be able to conduct an attack.

Figure 2.2: A depiction of Power Analysis Attack

Power analysis attacks are of different types such as simple power analysis (SPA),

template-based analysis, differential power analysis (DPA) and horizontal power anal-

ysis (HPA). We discuss briefly to introduce two important types to the reader.
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2.2.1 Simple Power Analysis (SPA)

SPA is the basic form of side-channel power analysis attack. In this attack, the

attacker will observe and analyse one or more power traces and will try to get all

possible information and reasoning of these traces. The attacker also tries to get

information about the target system or the target device. Then, using the gathered

information, he/she can be able to determine all the operations which are executed

by the target device. Finally, he/she can be able to determine the cryptographic key.

Figure 2.3 shows the single power trace of an encryption algorithm. We can see

the pattern of the dataset.

Figure 2.3: A single power trace of DES algorithm [19]

SPA is the technique to determine the knowledge about the target system and the

secret key directly by analyzing one or a few power traces.

2.2.2 Differential Power Analysis Attack (DPA)

A DPA attack is also known as a non-profiled attack. Non-profiled attacks occur in

closed devices such as smart cards of financial institutions, where an attacker does

not have full control of the device. Hence, he/she can have a limited number of

side-channel power traces of a cryptographic operation with a fixed unknown secret
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key value. In this attack, the attacker can have the following information from the

device under attack:

1. A fixed secret key k where k belongs to a key space.

2. Random inputs/ Message

3. Random outputs/ Cipher-text

The attacker collects the side-channel traces and then combines all of this infor-

mation to do mathematical analysis or key hypotheses using various well-known data

analysis tools or algorithms to infer information to get the key.

In our thesis work, we will be working with differential power analysis attacks.

We have our two datasets: one is physical data and the other is simulation data.

Figure 2.4 shows the basic structure of a differential power analysis attack in a

cryptographic device.

In our dataset, we have closed device information that means side-channel traces

that have fixed unknown keys, known messages, and known ciphertext.We analyze the

traces and using two very well-known neural network techniques (RNN and CNN),

we predict the pattern of the information to guess about the algorithm. We map the

message-ciphertext pair with a specific key value in the key space.

2.3 Deep Learning Techniques

Deep learning is a very popular technique for machine learning algorithms. In deep

learning, a model can learn by example and can imitate a human brain to get efficiency

in doing or achieving something. Recent examples of deep learning are driver-less cars

[20], digital image processing, pattern recognition, face recognition etc.



12

Figure 2.4: Differential Power Analysis Attack overview

In this section, we talk about deep learning neural networks. We have applied two

neural networks (RNN and CNN) in our work.
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2.3.1 Artificial Neural Network

An artificial neural network (ANN) is a network of artificial neurons. It is a structure

where at least one input layer and one output layer should be presented. This input-

output layer makes a neural network. Typically, there are other layers, named as

hidden layers that may be present. When all the neurons of a neural network are

connected to each other, we call it a fully connected neural network. There are basic

terms to know to understand a neural network.

• Neuron: A neuron is a basic unit of the neural network. It takes input and

multiplies the input by a specific weight and then adds bias values. After that,

it passes the result through an activation function.

• Activation Function: Each neuron has an activation function. This function

helps the neural network to achieve non-linearity. Having non-linearity, a model

can create complex mappings of the data or can operate on complex input

data such as videos, speech, and electrical signals. There are different types of

activation functions. We have used four activation functions such as Sigmoid,

TanH (Hyperbolic Tangent), ReLU (Rectified Linear Unit), and Softmax in our

study.

• Epoch: An epoch is defined as a measure of the number of times we will pass

our training input vectors through the learning algorithm or the model. In our

work, we see that when we use fewer number of epochs, we achieve unexpected

results due to under-fitting. So, we try to limit our epochs to 50-100 times. In

each epoch, the weights are being updated and providing us better and better

results. Input data values are passed forward and backward through the model

in each epoch.



14

• Gradient Descent: Gradient descent algorithms are used to train the neural

network by updating the weights [14]. In each iteration, using backpropagation,

we calculate the derivative of the loss function with respect to each weight.

Then, we subtract it from the weights. In this way, we update the weight

values and train the model step by step.

• Learning Rate: Learning rate is a method to overcome the problem of overfitting

in neural network model training. When we use gradient descent algorithms,

our weights are updated, but the weights will change too far and will lead

the model to overfit the training data. At the time of backpropagation, if we

multiply learning rate with the derivative from of the gradient descent and then

subtract it from the weights, we will get good results. We use learning rate

value 0.02. In our work, keeping learning rate 0.02, we get good results when

we train our model.

• Optimization Algorithm: These algorithms perform the gradient descent. While

updating the weights and passing through the cost function or activation func-

tions each time we calculate the error (actual data - predicted data). Our

goal is to minimize the error. Optimization functions work to minimize the

error by changing the parameters of the gradient descent of the neural network

model. The most commonly used optimization algorithms are Adam, Adagrad,

RMSprop, AdaMax, Nadam etc. In our work, we use Adam optimization

algorithms, as we get more accurate results using it.

Figure 2.5 shows a structure of a typical neural network where there is one input

layer and one output layer. There is no hidden layer.
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Figure 2.5: A simple Artificial Neural Network Structure

2.3.2 Convolution Neural Network (CNN)

Convolutional neural networks (CNN), or convNet in other terms, are very popular

and widely used in image processing, analyzing images, data analysis and classifying

different problems [13]. What makes CNN more unique than other neural network

models is that it has convolutional layers instead of having typical hidden layers.

These convolutional layers transform the input data to the model and pass it through

the next convolutional layers. These transformation operations are called convolution

operations. The assumption that a CNN model makes about the input is: the input

are images and it encodes the properties from these inputs.

Each convolutional layer uses a series of filters or kernels to detect features in our

intended images or patterns. These filters are n-dimensional arrays. The convolution

operations make use of these kernels or filters. The filters are overlaid on the input

data values and calculate the product of the filter and the input data to pass the

output to the next neuron in the neural network. The output of the convolution

operations are stored in an n-dimensioanl array called a feature map or an activation

map. The more filters we apply, the more features we can detect and extract from

the input data. This is the basic idea of how CNN works using convolutional layers
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to detect features from images.

When our data volume is large, such as when we have many images, then the

operation of the convolution layers will be very time-consuming. In that case, we can

apply pooling layers for convolution operation by reducing the number of parameters.

Different pooling layers we can use are max pooling, average pooling and sum pooling.

Figure 2.6 demonstrates the operation of a CNN network. This figure is collected

from paper [15].

Figure 2.6: Overview of Convolutional Neural Network Operation

2.3.3 Recurrent Neural Network (RNN)

A recurrent neural network is a type of neural network model that was proposed in the

80s to model time series or to make use of sequential information. Why is this model

so popular today? The answer is straightforward: for bigger data volume and bigger

computation, RNN achieves a higher accuracy than machine learning techniques [12].

This network is called recurrent because, for every element of a sequence, it

performs the same task where the output is dependent on the previous computations.

The difference between the RNNs and CNNs is that any RNN-LSTM (long-short

term memory) has a memory through which it can capture the information about

what has been calculated so far.
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A Recurrent neural network has a state and it basically receives input (input

vectors) through time so that at every single time step we can feed an input vector

into the network and it has some state internally and then it can modify that state

as a function of what it receives at every single time step. There are synaptic weights

inside the RNN which refer to the amplitude or strength of a connection between two

nodes in a neural network layer. When we tune those weights, the RNN will have

different behavior in terms of how its state evolves as it receives these inputs.

The formula for an RNN is:

ht = fw(ht−1 + xt)

Here, Ht is the new state and Ht-1is the old state and Xt is the input vector as

some time step t. Fw is denoted as a fixed function with weights (w) parameters.

The working procedure of an RNN model is generally the following:

• First, we provide input (input matrix) to the network (input could be anything).

• This input will be multiplied by the weight matrix and will also add a bias

value.

• Then, this will pass through an activation function to activate the result of

that layer and the result or output will feed into the next layer. The activation

functions can be a sigmoid, tanH or reLu (rectifier linear unit). Actually, the

output of the hidden layers is the result of a dot product operation and followed

by a bias value. Bias values in a neural network are used to make a node in a

layer always on. Bias values are set to 1 regardless of the data in a given pattern.
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Backpropagation works by calculating gradients (multi-variable generalization of

the derivative), which are needed in the calculation of the weights in a neural network.

Every time, an RNN model goes through this process until it predicts the actual target

output. If an error occurs in predicting, then we usually do back-propagation [10] to

solve the error.

2.3.4 Long-Short Term Memory (LSTM) Network

These are the special types of neural networks which can solve the limitation of

recurrent neural networks (RNNs). A typical RNN network faces difficulties in

resolving the long-term dependencies in the input sequence. Using LSTMs, we can

easily solve this problem because an LSTM network has capability to memorize the

previous input for a long period of time. LSTM can learn long-term dependencies.

This feature makes the LSTMs very useful when we want our RNN model to work

with language modeling or text sequence processing.

A typical RNN has a chain-like, repeating structure. LSTMs also have this

structure, but instead of having a single network layer, it utilizes four gate-like

layers. These gates are very useful for avoiding vanishing gradient problems. These

gates store information of backpropagation for future use and resolves long term

dependencies.

2.3.5 Keras

Keras [16] is a library written in Python for high-level neural networks. It supports

CPU and GPU acceleration libraries and enables a neural network model for fast

prototyping. Using Keras, one can easily understand the structure of the model and
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build a model within a short period of time. Keras is compatible with Python version

3.6. We are using Keras version 2.2.4.

2.3.6 Tensorflow

Tensorflow [17] is a very useful framework for backends in a neural network. It is

an open source platform for machine learning and deep learning network models. It

enables us to easily build a model, to use complex machine learning functions, and

to conduct powerful experiments for research.

2.3.7 Data Encryption Standard

Data Encryption Standard (DES) is a symmetric-key algorithm, which means it uses

the same cryptographic key for encrypting a plaintext and decrypting a ciphertext.

It is known as the block cipher and it operates on 64 bits messages. DES algorithms

need a secret key of size 64 bits, where only 56 bits are used in encryption/ decryption

and 8 bits reserved for parity. The DES algorithm for encryption or decryption works

in the following way:

• First, 64 bits plaintext is run through an initial permutation (IP). After that,

64 bits messages break into two 32 bits halves.

• These two 32 bits halves will go through a Feistel network for 16 rounds.

• In the end, the final permutation will be done on the message, which is the

inverse of the initial permutation of the plaintext.

• Finally, we will get ciphertext of 64 bits as the output.
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Figure 2.7: A pictorial view of DES algorithm

Figure 2.7 shows the big picture of the DES algorithm execution. We use DES

algorithm in our work for side-channel data analysis, comparing the datasets with

different neural network models.

2.3.8 Advanced Encryption Standard (AES)

AES is another type of symmetric encryption algorithm and much faster than triple

DES. Like DES, AES also can be called a block cipher. It operates on 128 bits data

and uses 128-256 bits keys.

AES works in an iterative manner not like a Feistel cipher. It actually accomplishes

its computations on bytes rather than bits. Thats why plaintext messages of 128 bits
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block will be 16 bytes for AES and they are arranged in a 4x4 matrix format. The

number of rounds in AES is not fixed. For example, 128 bits keys are needed for 10

rounds, 192 bits keys for 12 rounds and 256 bits keys for 14 rounds.

A typical encryption process is given in the Figure 2.8.

Figure 2.8: A pictorial view of AES algorithm

The decryption process of the AES algorithm is just the reverse operation of the

encryption process. Nowadays, AES is used widely in both hardware and software.

So, we use AES data values while doing binary classification of DES and non-DES.
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2.4 The DPA Contest Dataset

Differential Power Analysis (DPA) contest [18] is a website where security researchers

and students from different parts of the world participate to publish their attack

modules in side-channel attack space. In this way, it is also a great source of publicly

available datasets the people who are interested in working with differential power

analysis attacks.

2.4.1 DPA Contest V1: DES Dataset

It is a contest organized and maintained by VLSI research group in France. This

contest used data encryption standard (DES) to research DPA. We have collected

the DES power traces from the DPA contest v1. We use the datasets in our thesis

work to compare between CNN and RNN models.
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CHAPTER 3

RELATED WORK

Recently, side-channel attacks have received much attention from researchers and

security experts around the world. They use different methods of breaking ciphers

to develop countermeasures, and after that they provide some ideas to strengthen

them. Some of the researchers use deep learning models to perform side-channel

attacks. Most of them used convolutional neural networks (CNNs) to demonstrate

their attacks and to present efficiency of the attacks.

Samiotis et al. [6] covered a variety of classification scenarios to study CNN’s

performance on side-channel data. They examined the performance of CNN’s on

four different datasets of side-channel data and then compared their models with

conventional machine learning (ML) algorithms and a CNN model from the literature.

In our work, we have worked with CNN and RNN models. We have shown the

difference between these two models in respect to performance and accuracy.

Maghrebi, Portigliatti, Prouff et al. [7] studied the application of deep learning

techniques in the context of side-channel attacks for the first time. To evaluate

their proposed attacks, they compared them to the most commonly used template

attacks and machine learning attacks. They conducted their attacks on three different

data-sets by evaluating the number of traces required. Finally, they showed their

attacks outperform the state-of-art profiling side-channel attacks. We have studied
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side-channel attacks using two different datasets. In the future, we will enhance our

research by conducting our research with more datasets.

Picek et al. [8] considered several scenarios for profiled Side-Channel Analysis

(SCA) and compared the performance of several machine learning algorithms. They

also suggested that if someone conducts profiled SCA, he should use convolutional

neural networks (CNNs) for good results. However, we have shown that one can find

an RNN model by changing hyper-parameters which will outperform the CNN model.

Kim, Picek, Heuser, Hanjalic, et al. [9] designed a CNN model with which they are

able to achieve high performance with the random delay countermeasure. They sug-

gested adding noise in the side-channel analysis evaluation while using deep learning

techniques. We work with recurrent neural networks (RNNs) as we learned that for

time series and sequential data, RNNs are the best fit [10]. So, we will evaluate our

results to compare with other work that was done using CNNs or machine learning

techniques.

Moreover, some of the researchers have applied machine learning (ML) techniques

to leak information from unprotected and protected cryptographic implementations.

Most of them focus on two popular methods, such as Support Vector Machine (SVM)

and Random Forest (RF). Hospodar, Gierlichs, De Mulder, Verbauwhede et al. [11]

studied the application of machine learning in the side-channel analysis. They focused

on power analysis where power traces leak meaningful amounts of information about

the processed cryptographic key. They also used LS-SVM as their classification

technique. We have used two popular neural networks (CNN and RNN) to study

power-analysis attacks.
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CHAPTER 4

METHODOLOGY

We have worked with CNN and RNN models and applied these to two different

datasets to compare the performance of the two models. We have evaluated our RNN

model performance in predicting the DES rounds in DES algorithms. After predicting

and getting an idea about the cryptographic algorithm, we have applied deep learning

techniques (neural networks) to get information about the keys. We divide our work

into three deep learning experiments and describe each of the experiments in this

chapter.

4.1 Big Picture of the Thesis Work

We have done four comparisons: RNN vs. CNN on DPA contest datasets, RNN

vs. CNN on toggle count quantity datasets, RNN vs. CNN on binary classification

and RNN vs RNN on mapping keys. These comparisons are described as three deep

learning experiments here.

Figure 4.1 shows the big picture of our work. We describe shortly each of these

tasks in the later sections.
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Figure 4.1: Overview of the hierarchical pattern of the thesis work

4.2 Datasets

We have worked with two datasets: publicly available datasets from DPA contest v1

and Simulated Toggle Count datasets from Verilog. We will be working on Physical

Datasets from an FPGA board in our future work.

4.2.1 Dataset Structure

First we will talk about our datasets pattern, how we preprocess them, and how we

prepare them for our model.
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Table 4.1: Power Traces values are shown in the table

Power Traces 0.015917 0.015416 0.01739 0.01903 0.019447
Time 9.55E-07 9.55E-07 9.55E-07 9.55E-07 9.55E-07

The above table shows a few values of the power traces out of 50,000 traces.

Here, we are only interested in the power traces values, and we will show how we

preprocessed these values for the model to work.

The characteristics of data-sets are:

• The data-values are time-series data.

• Power trace values are the power consumed by the operation.

• After extracting the files from the DPA Contest v1 data-sets, we get thousands

of CSV files containing power traces for a particular message, key, and ciphertext

pairs.

• We have extracted the CSV files by running a C-program code that was given

on the DPA contest website.

• Each CSV file has two columns: one is for time and the other is for power

consumption value. The time here is not significant, as we are only interested

in power traces, not in which time it was sampled.

The datasets we have used for our work are all time-series data. That means that

all our series data points are sampled successively at equally spaced points in time.

The sequences of the data points are related to the time it was sampled.

1. DPA Contest v1 Dataset: These are contained power traces values which are

measured by an acquisition platform. These traces are collected and stored
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by and belongs to Telecom ParisTech. The power consumption traces data

stored in ‘.bin’ format. They have also provided a C-program file named as

‘agilent bin reader.c’ to convert ‘.bin’ file into a ‘.csv’ file.

DPA Contest V1 Dataset
Filename Total Traces Count File Size
secmatv1 2006 04 0809.zip 81,089 4 Gbytes
secmatv3 20070924 des.zip 81,569 1 Gbytes
secmatv3 20071219 des.zip 67,753 6 Gbytes

Table 4.2: Information of DPA Contest Dataset

Power consumption traces are presented in the datasets as voltage. The voltages

are in nanovolts (nV 1e−9 ) units.

2. Simulated Dataset: We worked with simulated datasets from Verilog. These

datasets files contained time and toggle count. Dataset information is based on

specific plain-text, cipher-text pairs and also their corresponding keys.

Toggle Count Quantity Dataset
Filename Total Traces

Count
File Size

0 key message ciphertext.csv 49 5 KB
1 key message ciphertext.csv 49 5 KB
0 key message ciphertext.csv 49 5 KB
1 key message ciphertext.csv 49 5 KB
0 key message ciphertext.csv 49 5 KB

Table 4.3: Toggle Count Datasets from Verilog

In these datasets, filename is composed of encryption or decryption (0 or 1),

Plain-text, Cipher-text, Keys. The contents of the files are time and toggle

count data. In Table 4.1, the structure of the datasets is shown.
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3. Experimental Dataset: These datasets are collected from the Artix-7 FPGA

board. The evaluation kit of Artix-7 has single and double differential I/O

standards.

4.2.2 Dataset Cleaning (Munging) and Visualization

In this section, we will talk about the data cleaning process of our three datasets.

Our datasets contain noisy data values, irrelevant data points, etc. So, our target is

to clean our datasets before we will proceed training and validating these in neural

networks.

For cleaning the datasets, we have applied digital signal processing concepts. The

methods we used are Hamming, Hanning window functions.

The following figures show the effect of using digital signal processing methods in

our side-channel DPA contest datasets.

Figure 4.2: Initial condition Figure 4.3: After Cleaning

After applying Hamming, Hanning window functions we get Figure 4.4 of DPA

contest datasets. In the figure, the x-axis represents the power traces in voltage and

the y-axis represents the time. We see that most of the noise has reduced and the

leakage of the datasets are visible.
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Figure 4.4: DPA contest dataset after applying windowing functions

We need not apply the digital signal processing methods to the toggle count

datasets because they are simulated data values from Verilog HDL. The following

Figure 4.5 shows the toggle count datasets patterns. From the figure, we see that

when there is a change found in the data, it shows a high spike.

Figure 4.5: The toggle count dataset pattern
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4.3 Deep Learning Experiments

We have done three different deep learning experiments with DPA contest and toggle

count datasets. We have used CNN and RNN as our deep learning techniques.

1. Experiment 1: In this experiment, we show the comparison of RNN and CNN

models in prediction DES rounds from DPA contest and toggle count datasets.

We measure the loss and accuracy of the two models. We evaluate the speed of

the execution of these two models while processing the same amount of datasets.

2. Experiment 2: Here, we classify our datasets into two classes: DES and non-

DES. Doing so, we use RNN and CNN models. We evaluate the performance

of these two models and perform the comparison.

3. Experiment 3: In the last experiment, we evaluate the performance of two RNN

models in mapping the specific key for a plaintext-ciphertext pair based on with

or without side-band information.

4.4 Experiment 1: Prediction of DES rounds

We know that the DES algorithm operates with 16 rounds for encryption and decryp-

tion. In this section, we discuss the prediction of DES rounds using deep learning

techniques. We have predicted the DES rounds with both CNN and RNN models.

We predict DES rounds on DPA Contest and toggle count datasets. Finally, we

compare the model and model accuracy between CNN and RNN models. Again, we

are repeating that our main goal is not to get higher accuracy using an RNN model

rather than a CNN model. We are interested in how well our RNN model works, and

we try to get the accuracy closer to the CNN model.
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Here we consider that the attacker has only power traces. With only the power

traces of a cryptographic device, how can he/she be able to predict the DES rounds

and gain some knowledge about the cryptographic algorithms?

4.4.1 RNN Model to Predict on DPA Contest Data

We have developed a recurrent neural network model to predict the Data Encryption

Standard (DES) rounds. First, we consider 1000 samples of the data to see how it

can predict the subsequent rounds and what it looks like.

Figure 4.6 shows the DES rounds prediction on DPA contest datasets with only

1000 traces. The x-axis represents the number of traces and the y-axis represents the

values of the trace.

Figure 4.6: DES rounds prediction with 1000 traces

Then we predict the DES rounds with 5000 traces. Here, we split the dataset 67%

for training and 33% for validation and test purposes. We found that the attacker

can get an idea about the algorithm through a thorough analysis of the signals.
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Figure 4.8 shows the DES rounds prediction on DPA contest datasets with only

5000 traces. The x-axis represents the number of traces and y-axis represents the

values of the trace.

Figure 4.7: DES rounds prediction with 5000 traces

Finally, we operate our model on 50,000 trace values to have some idea about the

patterns of the datasets and also predict the DES rounds. In doing so, we split our

datasets in our RNN model, 67% for training and 33% for testing. We will show our

model accuracy and loss in the subsequent subsections.

Figure 4.8 shows the DES rounds prediction on DPA contest datasets with only

5000 traces. The x-axis represents the number of traces and y-axis represents the

values of the trace.

4.4.2 RNN model on Toggle Count Datasets

We have applied our RNN model to predict the subsequent rounds in the toggle count

datasets based on the toggle quantity and time. As these datasets are time series, we
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Figure 4.8: DES rounds prediction with 50000 traces

can easily apply the RNN model on these datasets to predict future values or more

patterns.

Figure 4.9 shows the DES rounds prediction on DPA contest datasets with only

5000 traces. The x-axis represents the number of traces and the y-axis represents the

values of the trace.

Figure 4.9: DES rounds prediction with 350 sets of Toggle Count traces
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4.4.3 Baselines

We compare the RNN and CNN models’ performance using several metrics such as

baseline, number of epochs, speed of execution, accuracy and loss of the model.

Here, we do not classify our datasets into different classes, so the random baseline

will be 100% based on the definition. According to random baseline definition, all

our 50,000 key, ciphertext and plaintext values are unique and random.

On the other hand, our most-common baseline will be 0% because we do not have

common key, ciphertext and plaintext values.

4.4.4 Result: Accuracy and Loss Evaluation in Predicting

In this section, we discuss the evaluation of the RNN model on the prediction of

DES rounds of both DPA contest dataset and toggle count datasets. We show a

comparison of value loss between and RNN and CNN models. We make the same

prediction with CNN models. We observe CNN and RNN model accuracy and loss

in predicting the subsequent DES rounds.

RNN Model Accuracy on Toggle Quantity Count Datasets

In this subsection, we show the accuracy and loss that we achieved after running our

RNN model on toggle quantity count datasets.

Figure 4.10 shows the DES rounds prediction accuracy of our RNN model on the

toggle quantity datasets. The x-axis represents the number of epochs and the y-axis

represents the accuracy in percentage.
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Figure 4.10: RNN Model Accuracy on Toggle Quantity Count Dataset

In Figure 4.10, we can easily see that while training the model it achieves almost

82.5% accuracy. For testing over the rest of the datasets, it achieves almost 80%

accuracy. We have run our model up to 100 epochs.

RNN Model Loss on Toggle Quantity Count Datasets

Here, we show the loss of the model in predicting the DES rounds in the toggle

quantity count datasets.

Figure 4.11 shows the DES rounds prediction loss of the RNN model on the toggle

Quantity datasets. The x-axis represents the number of epochs and y-axis represents

the loss in percentage.

From Figure 4.11 we can easily see that while training and testing the datasets,

the loss is decreasing depending on the number of epochs of the neural network model.

At the time of training, the loss of the model falls sharply. While testing the datasets,

the loss decreases frequently.
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Figure 4.11: RNN Model Loss on Toggle Quantity Count Dataset

RNN Model Accuracy on DPA Contest Dataset

In this subsection, we show the accuracy and loss that we achieved after running our

RNN model on DPA contest datasets.

Figure 4.12 shows the DES rounds prediction accuracy of our RNN model on

the DPA contest dataset. The x-axis represents the number of epochs and y-axis

represents the accuracy in percentage.

From Figure 4.12 we can easily see that while training the model it achieves

almost 78% accuracy. For testing over the rest of the datasets, it achieves almost

76% accuracy. We have run our model up-to 30 epochs. We have run our model for

DPA contest dataset up-to 30 epochs in order to make simple and save computation

time.
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Figure 4.12: RNN model accuracy on DPA Contest Dataset

RNN model loss on DPA contest Dataset

Here, we show the loss of the model in predicting the DES rounds in the DPA contest

datasets.

Figure 4.14 shows the DES rounds prediction loss of RNN model on the DPA

contest datasets. The x-axis represents the number of epochs and y-axis represents

the loss in percentage.

Figure 4.13: RNN model loss on DPA Contest Dataset
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From Figure 4.14 we can easily see that while training and testing the datasets,

the loss is decreasing depending on the number of epochs of the neural network model.

After 30 epochs, we see the value loss reduces to less than 47.5% for each training

and testing of the model.

Comparison of RNN and CNN model loss

Here, we discuss the efficiency of the RNN model and CNN model in predicting the

DES rounds with both toggle count datasets and DPA contest datasets.

Figure 4.14 shows the DES rounds prediction loss of the CNN model on the

toggle Quantity datasets. The x-axis represents the number of epochs and the y-axis

represents the loss in percentage.

Figure 4.14: CNN model loss on DPA Contest Dataset

From Figure 4.14 we can easily see that while training and testing the datasets,

the loss is decreasing depending on the number of epochs of the neural network model.

After 6 epochs, we see the value loss remains constant up-to 50 epochs. The loss of

the model is about 4%. In this case, it is better than our RNN model performance.
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Here, we see better accuracy and less loss during training and testing of the CNN

model, because CNNs can deal with misaligned traces, as proposed in [5].

While in our RNN model, we have used the LSTM network, whose next hidden

layer output mainly depends on what it sees in previous layers.

4.4.5 Discussion

We run 50 epochs for our RNN and CNN models. For each epoch it takes 1 second for

our CNN model and 2 seconds for our RNN model. So, we can say the CNN model’s

execution has better speed than the RNN model for predicting the DES rounds.

Figure 4.15 shows the comparison between the performance of our RNN and CNN

models.From the figure, we see that the CNN model performs better than the RNN

model in predicting DES rounds.

Figure 4.15: RNN and CNN model performance comparison

Table 4.4 represents the comparison of the CNN and RNN models in predicting

DES rounds with toggle quantity count and DPA contest datasets.
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Result Comparison I
Model Speed (Time per

epoch)
Training Accu-
racy

Validation Accu-
racy

Loss

CNN 51 seconds 98% 95% 4%
RNN 100 seconds 82% 78% 38%

Table 4.4: Comparison of CNN & RNN on different matrices

4.5 Experiment 2: Classification of Two Classes: DES and

Non-DES

In this section, we discuss the classification of DES and non-DES classes using the

side-channel datasets. Here, we assumed that the attacker is powerful enough to

get the plaintext, ciphertext, and key values for specific plaintext-ciphertext pairs.

Now, the attacker will get the traces from other cryptographic devices, and he is

interested in classifying his/her datasets into DES and non-DES classes using deep

learning techniques. We have chosen the RNN model and LSTM network to classify

the datasets into two classes: DES and non-DES.

4.5.1 Procedure of the Experiment

Here, we have 68,000 DES datasets and 55,000 non-DES datasets (AES datasets).

The main goal is to classify the datasets into two classes. For AES datasets we want

our model to label it as 0, which means non-DES. And for DES datasets the label

will be one (1), which means it is a DES dataset.

We have split our datasets into 60% for training and 40% for validation. Our

plaintext, ciphertext, and keys are in text format. So, using the embedding layer, we

have converted the text into vectors for computation into the neural network.
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Figure 4.16 shows the structure of the recurrent neural network for completing

the binary classification task.

Figure 4.16: Structure of the RNN model for Classification

The task is a binary classification task. We have used binary crossentrophy as our

loss functions and Adam optimizer as optimization functions. Here, we are interested

in the accuracy metrics. We have found almost 86.51% accuracy in classifying DES

and non-DES classes using our RNN model for binary classification. We have labeled

the datasets based on the feature that DES contains 16 characters hexadecimal values

in plaintext, ciphertext, and keys. The idea is if the length of the plaintext or

ciphertext is equal to 16, we labeled it as 1, which means DES, and 0 otherwise.

Binary classification accuracy for classifying the two classes: DES and non-DES is

good in this case.

4.5.2 Baselines

We consider two baselines: random and most common baselines of our datasets. The

metrics that we consider while comparing the two models’ performance are: speed of

execution, loss and accuracy of the models for a fixed number of epochs etc.
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• Random Baseline: The random baseline in this case is 50% because we are using

two classes: DES and non-DES. For DES, the model will classify it as 1 and for

Non-DES (AES), the model will classify it as 0.

• Most Common Baseline: For the classification task, we have 68,000 DES datasets

and 55,000 non-DES (AES) datasets. The most common baselines is 55.28%.

For most common baselines, we have divided 68,000 DES datasets with the

total 123,000 datasets.

4.5.3 Result Comparison of RNN and CNN in Classifying Two Classes

We have done the binary classification using the CNN and RNN model to check

the performance between the two models. We have measured the model accuracy

and model loss for the two models and showed which model performs well for the

binary classifying task. The comparison of these two models is shown in the following

sections.

RNN Model Accuracy and Loss

We use the same hyper-parameters for two models to compare the performance. We

use LSTM network, ‘sigmoid’ as activation function, ‘rmsprop’ as optimizer, and

‘binary crossentrophy’ as loss function. We measure the accuracy for the model in

both training and validation cases.

According to Figure 4.17, the accuracy of the model is 86.51%. That means it can

classify the DES data values from the other (AES) data values with good accuracy.
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Figure 4.17: Accuracy of the RNN model for Classification

On the other hand, the model has loss as well. The loss of the model has a zigzag

fall. It maintains a constant value at 18.23%. We can see the loss of the model in

Figure 4.18 for both the training and validation cases.

Figure 4.18: Loss of the RNN model for Classification
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CNN Model Accuracy and Loss

We keep the hyper-parameters the same for performance evaluation. For the CNN

model, we have better accuracy than the RNN model. The CNN model works good

in classification tasks.

Figure 4.19: Accuracy of the CNN model for Classification

We have almost 90% accuracy for the CNN model in classifying the DES and

Non-DES data values. Figure 4.19 shows the accuracy of the CNN model.

The loss of the CNN model is shown in Figure 4.20. The loss of the model tends

toward 10%.

We have the loss for the models in both cases: training and validation. Training

loss gives us the information about error occurred during training.

4.5.4 Discussion

Our CNN model outperforms the RNN model in classifying DES and non-DES classes.

Figure 4.21 shows the accuracy curve of the two models which proves that CNN
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Figure 4.20: Loss of the CNN model for Classification

performs well. We present the information in tabular form also.

Figure 4.21: Performance comparison of CNN and RNN

The following table 4.5 represents the performance comparison between the CNN

and RNN models at a glance.

From the table, we can get the idea of the accuracy and loss of the two models
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Result Comparison II
Model Speed (Time per

epoch)
Training Accu-
racy

Validation Accu-
racy

Loss

CNN 110 seconds 89.9% 89.5% 10%
RNN 132 seconds 87% 85.6% 38%

Table 4.5: Comparison of CNN & RNN on Binary Classification

and the speed of the execution. It takes time for both of the models because of large

training and validation datasets. We get better accuracy for the CNN model in the

binary classification. An attacker can utilize the neural network model and can guess

the algorithm used in the system. This will lead the attacker to attack the device or

system with less effort.

4.6 Experiment 3: Recurrent Neural Network Model for

Mapping Keys

In this section, we use the RNN model to get the key values for a specific plaintext-

ciphertext pair.

We show two different works: in the first one, we input plaintext, ciphertext and

encryption/decryption bits (0/1) to the neural network. The output of the neural

network model will map to the exact key for a specific plaintext-ciphertext pair.

For the next one we input plaintext, ciphertext, side-band information (toggle

count quantity) and encryption/decryption bit (0/1) to the neural network and the

output we expect keys mapped in 56 bits key-space.

After that, we evaluate the performance of key mapping with side-band and

without side-band.
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4.6.1 Procedure of the Experiment

Key Mapping without Side-band Information

We first build an RNN model which will take three inputs: plaintext, ciphertext

and one bit encryption or decryption key. Plaintext and ciphertext are in 16 byte

hexadecimal form. The working procedure of the RNN model can be summarized

below:

• First, we convert the data from hexadecimal to binary values. So, we have 64

bits binary plaintext, 64 bits ciphertext and one bit encryption/decryption key.

The input of the network is 129 bits binary values.

• Then we simply think about the multi-class logistic regression model of machine

learning where if you input two or multiple elements, it will be mapped with

the respective third element. So, we have used softmax in the final layer. As

we know, softmax generates the probabilities for a specific input to the specific

output.

• Here, we want our model to map with exact key values for a specific plaintext-

ciphertext pair.

• Final model output is 56 bits key for a plaintext-ciphertext pair.

Figure 4.22 shows the logical flow of the task for key mapping without side-band.

Here, side-band information means the toggle count quantity information that we get

from Verilog HDL simulation. For the next key mapper RNN model, we use side-band

information along with the other inputs.
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Figure 4.22: Structure of the RNN model for mapping keys without side-band

Key Mapping with Side-band information

In this key mapping task, we use the same methodology for getting a key value for

a specific plaintext-ciphertext pair. The difference is in the input parameters. Here,

our inputs to the model are plaintext, ciphertext, encryption/decryption key, and

side-band information (toggle count quantity data values). The reason behind using

side-band information as the extra input parameter in the RNN model is that we are

interested to see if it is possible to achieve better accuracy or to get better result than

without having side-band information in the input. The work procedure is as follows:

• Like the previous task, we have converted our plaintext, ciphertext from hex-

adecimal to binary values. With one bit encryption/ decryption key, we have 129

bits binary input to the neural network model. Additionally, we have side-band

information along with these inputs.

• In the same manner, we use softmax before the output layer. Softmax gives us

probabilities for multi-class regression. For a specific plaintext-ciphertext pair

and having additional information, the model mapped with a key value from

the key-space.
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• The output of the model is 56 bits key for the specific inputs.

Figure 4.23 shows the structure of the inputs and output of the RNN model to

map the key values with using side-band information.

Figure 4.23: Structure of the RNN model for mapping keys with side-band

4.6.2 Baselines or Metrics

The metrics that we use in this experiment to evaluate the performance of two RNN

models are: speed of the execution, loss and accuracy of the models for a specified

number of epochs, and memory required to store the model etc.

Our datasets for this experiment are generated from python DES programs. In

that programs, each time we generate random sets of plaintext-ciphertext pairs and

also a specific key for the pairs.

• Random Baseline: The random baseline in this case is 100% because our

ciphertext-plaintext pairs are randomly generated and also the key for these

pairs are randomly generated.

• Most Common Baseline: For the classification task, we have 76,000 DES datasets.

The most common baselines is 0%, because all the pairs of ciphertext-plaintext

are random.
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4.6.3 Performance Evaluation of RNN Model with and without Side-

band Information

The key-mapping task is done by using recurrent neural network (RNN) only. We

have not tested it with convolutional neural network (CNN). So, the performance of

the RNN model will be evaluated for the two different cases. For the first case, we

will evaluate the RNN model performance without side-band information. And for

the second case, we will use side-band information for key-mapping.

Evaluation of Model Accuracy and Loss without Side-band

We have evaluated the RNN model accuracy for the training and validation datasets.

From Figure 4.24, we can see that the accuracy of the RNN model is almost 79%.

Figure 4.24: Accuracy of the RNN model for mapping keys without side-band

We have evaluated the loss of the model for the training and validation datasets.

Figure 4.25 shows the loss of the model. We can see that the loss of the model

maintains a constant loss value at 23% after a zigzag decrease.
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Figure 4.25: Loss of the RNN model for mapping keys without side-band

Evaluation of Model Accuracy and Loss with Side-Band

We expected the better accuracy of the RNN model while we have additional infor-

mation such as side-band information. We have achieved better accuracy, as was our

expectation.

Figure 4.26 shows the accuracy of the model after using the side-band information

with our datasets.The accuracy of the model is almost 87.3% in this case. So, we got

better accuracy with side-band information.

The loss of the model was less in this case than the loss without side-band

information. From Figure 4.27, we can see that the loss of the model is 19%.

4.6.4 Discussion

We have run our RNN model for 50 epochs. For the first case, it takes 2.5 seconds

per epoch. And for the second case, it takes 3.2 seconds per epoch.
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Figure 4.26: Accuracy of the RNN model for mapping keys with side-band

Figure 4.27: Loss of the RNN model for Mapping Keys with Side-band

Figure 4.28 shows the comparative performance of two RNN models in mapping

the keys for ciphertext-plaintext pairs. We can see that the RNN model which use

side-band information achieves better accuracy than the other RNN model. It is
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clear that using more information makes the models extract more features from the

datasets and to achieve better results.

Figure 4.28: Comparison of two RNN models

From Table 4.6, we can see the relative difference between the performance of

RNN models without and with side-band information.

Result Comparison III
Model Speed (Time per

epoch)
Training Accu-
racy

Validation Accu-
racy

Loss

RNN1 125 seconds 78% 79% 23%
RNN2 160 seconds 87% 87.3% 19%

Table 4.6: Comparison of RNN & RNN on Key Mapping
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CHAPTER 5

CONCLUSION

In this section, we will discuss the summary of our work and also suggest some

directions for possible future work.

5.1 Overview of Our Work and Contributions

In our thesis work, we have studied side-channel attacks using deep learning techniques-

more specifically, with two popular neural networks (CNN and RNN). We have

discussed and pointed out that side-channel attacks are a real threat for the security

and privacy of the devices and computing systems we use every day. We have shown

how an attacker can extract valuable information from the computing devices like

smart card readers, IoT devices, micro-controllers etc. using deep learning techniques.

We have evaluated the performance of our models in predicting the DES rounds

from the DPA contest dataset and toggle quantity count dataset. Using CNN and

RNN models, we have showed how an attacker can detect the underlying algorithm

from the datasets by simple classification. We have evaluated the performance of

the two models in classifying between DES and Non-DES algorithms using various

performance metrics. Finally, we have showed how an attacker can map key value for

a specific plaintext-ciphertext pair. We showed that by using additional information

(side-band), an attacker can get good accuracy in mapping keys.



56

5.2 Directions of Future Work

We have faced some challenges while working in this area of research.

1. Handling large datasets, we faced problems. Our machine became slow while

processing these large datasets. We have used DPA contest V1 datasets and

simulated toggle quantity datasets.

2. Processing the datasets to remove NULL or empty field. It took time and space

to process large datasets.

3. Converting the input datasets into appropriate formats for applying the deep

learning model.

4. We don’t have adequate prior knowledge about deep learning techniques because

we did not take any courses on them.

5. We couldn’t build an automated process or scripts to find an exact neural

network model by changing the hyper-parameters.

To address these, we worked hard and learned about deep learning techniques. We

tried to complete our work with the resources that we already have. In the future,

to process large datasets, we will occupy a server machine with high configuration.

We will generate physical data from Artix-7 board and will conduct research. We

will build a neural network model that will be very effective and will achieve higher

accuracy.
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APPENDIX A
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CORRELATION POWER ANALYSIS (CPA)

A.1 Overview

CPA is an attack that uses statistical analysis techniques and mathematical cor-

relations, e.g. Pearson correlation coefficient. First, an intermediate small subkey

is selected from the plaintext and part of the key. Then, the power consumption

is hypothetically calculated for each essential subkey based on a power model (e.g.

hamming weight model) for each plaintext sample. The Pearson correlation coefficient

is calculated between the hypothetical power consumption values and the real power

values measured. The key with the highest correlation with the measured trace is

selected as the correct key guess.

CPA can be prevented by increasing the noise or decreasing the signal sizes,

inserting timing variations, data masking, computing the inverse operations, changing

the order of the computer operations by shuffling

A.2 Key Guess using Python Program

#!/usr/bin/env python

import sys

class CPA():

sboxTable = ( 0x63, 0x7C, 0x77, 0x7B, 0xF2, 0x6B, 0x6F, 0xC5, 0x30, 0x01,0x67, 0x2B, 0xFE, 0xD7, 0xAB, 0x76,
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0xCA, 0x82, 0xC9, 0x7D, 0xFA, 0x59, 0x47, 0xF0, 0xAD, 0xD4, 0xA2,

0xCD, 0x0C, 0x13, 0xEC, 0x5F, 0x97, 0x44, 0x17, 0xC4, 0xA7, 0x7E, 0x3D, 0x64,

)

def __init__(self):

pass

def Sbox(self, inp):

return self.sboxTable[inp]

pass

def HammingWeight(self, num, ret=0):

count = 0

while num >= 1:

if num%2 > 0:

count+=1

num /= 2

if ret == 0:

return 6 - count

else:
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return count

def HammingDistance(self, num1, num2):

return self.HammingWeight(num1^num2)

A.3 Recurrent Neural Network

RNN has different models:

• One to One: Takes one input and generates only one output, e.g. image

classification.

• One to Many: Takes one input and generates a sequence of multiple steps, e.g.

image captioning.

• Many to One: Takes a sequence of multiple steps as input and generates only

one output, e.g. sentiment analysis.

• Many to Many: Takes a sequence of multiple steps as input and generates a

sequence of words, e.g. language translations.

In this thesis work , we are using the many to one model where we are feeding

the sequence of multiple toggle quantities of the power consumption from the Verilog

HDL simulator into the RNN model and trying to achieve a single output if it is the

desired encryption algorithm or not, and we are mapping many to many model to

reverse engineer the encryption algorithm using the simulated toggle data.
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APPENDIX B
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POWER MEASUREMENT SETUP FOR XILINX ARTIX-7

BOARD

B.1 Overview

A post-silicon dataset refers to the dataset collected from the hardware implementa-

tion in actual devices at real-time.

This dataset was acquired by measuring the power consumption via probes from

the Cmod A7 DIP form development board built around a Xilinx Artix-7 FPGA,

which is considered the cryptographic device containing the code of the S-AES algo-

rithm. Figure B.1 shows a Cmod A7 development board.

Figure B.1: Experimental Setup for Collecting Physical Dataset




