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Exposure to air pollution — and particularly to particulate

matter (PM) – is strongly associated with higher risk of

neurodevelopmental disorders, poor mental health and

cognitive defects. In animal models, disruption of CNS

development and disturbances of adult neurogenesis

contribute to PM neurotoxicity. Recent studies show that

gestational PM exposure not only affects embryonic

neurodevelopment, but also disturbs postnatal brain growth

and maturation, by interfering with neurogenic/gliogenic

events, myelination and synaptogenesis. Similarly, adult

neurogenesis is affected at many levels, from neural stem cell

amplification up to the maturation and integration of novel

neurons in the adult brain parenchyma. The underlying

mechanisms are still by and large unknown. Beyond microglia

activation and neuroinflammation, recent studies propose a

role for novel epigenetic mechanisms, including DNA

methylation and extracellular vesicles-associated microRNAs.
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Exposure to air pollution is increasingly acknowledged as

one of the main contributors to the global disease burden [1].

It has been estimated that in 2016 91% of the world popula-

tion was living in places where the WHO air quality guide-

lines levels were not met (https://www.who.int/news-room/

fact-sheets/detail/ambient-(outdoor)-air-quality-and-

health). Among the key air pollutants that pose health risks,

particulate matter (PM) is one of the most widespread. PM is
www.sciencedirect.com 
a heterogeneous mixture of small solid or liquid particles

released into the atmosphere during combustion processes

or emitted by industrial activities and natural sources. PM

generally comprises water soluble and insoluble compo-

nents, including inorganic compounds, polycyclic aromatic

hydrocarbons, heavy metals and other toxic substances, and

microbial components, such as bacteria and their products of

degradation (e.g. lipopolysaccharide) and viruses [2]. PM is

defined according to its aerodynamic diameter, with coarse

PM smaller than 10 mm (PM10) and fine and ultrafine PM

smaller than 2.5 (PM2.5) or 0.1 (PM0.1) mm, respectively.

Thanks to their small size, when inhaled, PM particles have

the capability to percolate through the respiratory tract.

While PM10 is trapped in the upper airways, PM2.5 reaches

the lungs and deposits in the alveolar area. Ultrafine particles

could even penetrate into the blood circulation and over-

come the blood-brain-barrier (BBB) [3,4�], or pass through

the nasal mucosa and directly enter the brain [5,6]. Of note,

inhaled nanoparticles havebeenshown to cross the placental

barrier and to deposit in the fetal tissues in animal models

[7�], suggesting a possible mother-to-fetus transfer of air-

borne ultrafine PM.

Chronic exposure to air pollution has been consistently

associated with risk of cardiovascular and respiratory

diseases, and different types of cancer [1]. Increasing

evidence also indicates that the central nervous system

(CNS) is a target for air pollution. In utero and early child

exposure to high levels of air pollution, and in particular to

PM, is associated with higher risk of neurodevelopmental

disorders, long-lasting behavioral alterations and cogni-

tive defects [8,9]. Moreover, during adulthood, chronic

PM exposure has been associated with poor mental

health, increased risk of onset and worsening of depres-

sion [9], while both short and long term exposure has been

associated with cognitive/memory deterioration [10��,11].

Most studies in animal models that aimed at establishing

a causative link between air pollution and anatomical/

functional CNS alterations, and at unveiling the underly-

ing mechanisms, are focused on the effects of PM. In

rodents, PM exposure results in neurodevelopmental,

cognitive and behavioral alterations reminiscent of those

observed in humans, whose extent and duration depend

on PM size, doses and timing of exposure [12–15,16�,17].
Mechanistically, disruption of CNS development and of

adult neurogenesis was found to contribute to PM detri-

mental effects, suggesting the occurrence of similar

events in humans (Figure 1).
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PM-induced alterations detected in the adult mouse brain following in-utero or adult exposure.

Orange boxes (above) include the proposed underlying mechanisms. BBB, blood-brain barrier; CC, corpus callosum; DG/SGZ, hippocampal

dentate gyrus/subgranular zone; EV, extracellular vesicles; NSCs, neural stem cells; OPC, oligodendrocyte precursor cell; PM, particulate matter;

PV, parvalbumin.
In this review, we summarize recent advancements toward

the understanding of the cellular and molecular mecha-

nisms mediating PM effects on the developmental and

adult neurogenesis and gliogenesis, discuss limitations of

the available studies and highlight persisting open issues.

In utero and neonatal exposure to PM induces
neurodevelopmental alterations in animal
models
In mice, chronic prenatal exposure to high levels of fine and

ultrafine PM was reportedly associated with reduced brain

weight and ventriculomegaly at birth and during the first

postnatal period [13,18]. This is the outcome of the disrup-

tion of specific and diverse neurodevelopmental events.

Exposure to diesel exhaust particles (DEP) in mouse

pregnant dams throughout gestation resulted, in the off-

spring, in increased cortical (i.e. prefrontal cortex) and

hippocampal (i.e. dentate gyrus, DG) volumes at embry-

onic day (E)18, which switched to decreased cortical vol-

ume and normalized hippocampal size in postnatal day (P)

30 males (but not in females), compared to untreated

animals [19�]. Similarly, maternal inhalationof carbon black

nanoparticles (produced by the incomplete combustion of

petroleum products) resulted in an initial increase of par-

valbumin-positive (+) neurons in the uppermost layers of

the motor cortex, followed by a large reduction at later time

points [20]. These results suggest that gestational PM
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exposure may differentially affect distinct phases of brain

development and cause an initial tissue overgrowth —

possibly due to neural stem cell (NSC)/progenitor overex-

pansion — followed by postnatal regressive events. Thus,

the effects on CNS development of in utero PM exposure

can be persistent and extend beyond the embryonic period.

In line with this interpretation, two recent studies [12,21]

have shown that chronic prenatal exposure to high dosages

of PM2.5 resulted in increased neuronal and astrocyte

apoptosis in the cortex and distinct hippocampal subre-

gions, including the DG, of the offspring at P14-P30.

Postnatal hippocampal neurogenesis and astrogliogenesis

appeared also dramatically reduced, due to the suppression

of NSC proliferation in the subgranular zone (SGZ). Simi-

larly, parenchymal astro- and oligodendro-glia amplifica-

tion was affected, as indirectly assessed by the large

decrease of the proliferation marker PCNA in the cortex

of P1-P30 offspring [21]. In agreement with this finding,

gestational chronic exposure to fine and ultrafine parti-

cles has been associated with precocious myelination

and premature oligodendroglia proliferation/differentia-

tion switch in the corpus callosum of the adolescent

offspring [13,22�]. Dendritic complexity [15] and num-

ber of asymmetric excitatory synapses impinging on

hippocampal neurons were also significantly reduced

in adolescent (P14) mice prenatally exposed to

PM2.5. The remaining synapses showed altered — and
www.sciencedirect.com
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possibly compensatory — features, including increased

number of presynaptic vesicles, thickened postsynaptic

density and decreased synaptic space [12].

Thus, gestational PM exposure not only affects embry-

onic neurodevelopment, but also disturbs postnatal brain

growth and maturation, by interfering with neurogenic/

gliogenic events, myelination and synaptogenesis. Preg-

nancy appears to be a particularly vulnerable time win-

dow, since neonatal exposure had milder effects, and

mostly affected myelination [23,24] and expression of

synaptic proteins [14].

PM exposure disturbs adult neurogenesis in
animal models
In the adult mouse brain, generation of new neurons

continues in the subventricular zone (SVZ) of the lateral

ventricles and in the SGZ of the hippocampus [25]. Adult

neurogenesis in the SVZ cannot be detected in humans,

whereas controversial evidence has been provided about

the generation of new neurons in the adult human hip-

pocampus [26��,27��,28��]. Thus, while adult hippocam-

pal neurogenesis is implicated in cognitive processes and

mood regulation in rodents [29], whether this occurs also

in adult humans is highly debated. Nevertheless, adult

neurogenesis in rodents recapitulates many aspects of the

developmental neurogenic/gliogenic events. Therefore,

the study of the mechanisms mediating PM-induced

perturbations of the adult neurogenic niches is still of

interest, as it can unveil critical toxicity processes operat-

ing in both developing and mature CNS.

In a recent study, acute exposure to fine DEP caused an

impairment of adult neurogenesis in mice. This effect

was gender-specific, with males showing fewer newly-

generated neurons in SGZ, SVZ and olfactory bulb (OB),

compared to control animals, and females displaying

fewer new neurons only in the OB [30�]. Reduced neu-

rogenesis was a consequence of decreased proliferation of

NSCs/progenitors, reduced survival of immature neurons,

and altered specification/differentiation of newborn ele-

ments (i.e. reduced fraction of newborn cells expressing

the mature neuronal marker NeuN 3 weeks after their

generation [30�]). Moreover, life-long exposure to con-

centrated water-soluble subfraction of PM0.2 dramatically

reduced the number of SGZ newborn neurons -but not

of newborn astrocytes- in adult male rats, which also

showed contextual memory defects and depressive

behaviors [16�]. Thus, PM appears to negatively modu-

late the neurogenic events at many levels, from NSCs

division up to the maturation and integration of novel

neurons in the adult brain parenchyma. In line with this

view, chronic inhalation of ammonium sulfate, the major

inorganic component in PM2.5 (as resulting from the

reaction of ammonia, mostly originating from animal

farming and synthetic fertilizers, with sulfur dioxide

emitted by the burning of fossil fuels [31]), diminished
www.sciencedirect.com 
the dendritic complexity of immature neurons in the DG

of aged rats [32]. However, in this latter study, no

alteration of SGZ/SVZ NSC/progenitor proliferation

and of the specification of their derivatives could be

detected, highlighting a specific neurotoxicity of the

distinct components of PM.

Proposed mechanisms underlying the effects
of PM on neurogenesis and gliogenesis
In rodents, neuroinflammation accompanied by microglia

and astrocyte activation were cardinal effects of PM expo-

sure, whenever it occurs [12–15,16�,19�,20,23,24,30�]. Phar-

macological treatments aimed at blocking microglia polari-

zation — such as the peroxisome proliferator-activated

receptor g (PPARg) agonist pioglitazone — protected

against PM-induced suppression of SGZ proliferation

and rescued the number of newborn neurons, indicating

a major role of microglia reactivity in the negative modula-

tion of adult hippocampal neurogenesis [30�]. Neverthe-

less, mechanistically, which activated microglia phenotype

(i.e. proregenerative M2 versus neurotoxic M1 versus ‘dark

microglia’ [33]) is favored upon/after PM exposure and how

microglia activation inhibits the neurogenic events remain

obscure. Beyond the release of high levels of pro-inflam-

matory cytokines or reactive oxygen species that can inhibit

NSC/progenitor proliferation and alter the specification

and survival of their derivatives [34], an interesting hypoth-

esis is that PM-induced microglia activation could result in

increased phagoptosis (i.e. the engulfment of immature

viable neurons [35]). In line with this hypothesis, Bolton

and colleagues [19�] reported increased microglia-neuron

physical interactions in the cortex of the offspring of PM-

exposed dams.

Notably, upon prenatal and neonatal PM exposure,

microglia activation and astrogliosis occurred predomi-

nantly in males [19�,23,24,36]. Consistently, neuroinflam-

mation was more pronounced in males than in females

upon exposure to DEP during adulthood [37], in line with

a more marked reduction of adult neurogenesis [30�].
This suggests that sex-dependent factors, including the

hormonal background, may influence the individual’s

vulnerability to PM effects. Interestingly, microglia acti-

vation and neuroinflammation extended well beyond

PM-exposure, when it occurred in utero, in line with a

priming action of air pollution.

Moreover, what is the trigger for microglia and astrocyte

activation remains elusive. Fine and ultrafine particles

could enter the CNS and directly stimulate glial reactiv-

ity. Given the relatively small extension of the olfactory

mucosa, it is likely that in humans — at difference with

rodents — the main entrance route for PM is the blood. In

line with this view, astroglia reactivity was observed

predominantly around blood vessels [38]. Nevertheless,

glial cells and NSCs/progenitors may be reached by a

plethora of other factors — and even cells — from the
Current Opinion in Pharmacology 2020, 50:61–66
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periphery, thanks to the disruption of BBB integrity and

increased leakage induced by PM exposure [13,16�].
Among these elements, pulmonary cell-derived extracel-

lular vesicles (EVs) may represent important lung-to-

brain mediators of PM effects [39,40]. EVs are lipid

bilayer-delimited particles, actively released from cells

in response to stress. After internalization within target

cells, EVs deliver their content, including proteins, lipids

and miRNAs, and profoundly influence the recipient cell

molecular state and function [41]. Interestingly, recent

studies [39,40] showed that, in humans, the miRNA cargo

of plasma EVs released following PM exposure has a

signature relevant for the modulation of glial cell reactiv-

ity (e.g. miR-9, involved in microglia activation and

neuroinflammation [42]) and NSC/progenitor functions

(e.g. miR-128, miR-302, let-7 and miR-9, regulating neu-

ral precursor proliferation and neurogenesis [43]; miR-21,

miR-9, miR-200, miR-17, miR-7, miR-302c, limiting oli-

godendroglia differentiation or enriched in immature

oligodendrocyte precursors [44]). Finally, a novel epige-

netic mechanism possibly mediating PM effects on devel-

opmental and adult neurogenesis may be the regulation of

DNA methylation in NSCs and their derivatives that has

been shown to be responsive to extrinsic signals and to

influence multiple aspects of neurogenesis from stem cell

maintenance up to synaptogenesis [45]. This hypothesis

is corroborated by the observation of increased DNA

methyltransferase DNMT1 in the brains of male mice

perinatally exposed to DEP [46�]. Notably, in human

placenta, PM exposure was associated with altered meth-

ylation level of DNA repair and clock genes [47�,48�],
which are also essential for adult and developmental

neurogenesis [49–51].

Concluding remarks and open issues
Convincing evidence, obtained in animal models, shows

that CNS development and adult neurogenesis are pro-

foundly impacted by PM exposure throughout life, with

significant behavioral and cognitive alterations. This field

of research is still in its infancy and strenuous efforts are

still needed to clarify the precise mechanisms by which

PM affects neurodevelopmental events and adult neuro-

genesis, and the molecular substrates of gender and time

window-specific differences in PM sensitivity. Available

mechanistic studies have frequently exploited heteroge-

neous PM dosages, composition, administration modali-

ties and timing. This scenario has so far impeded a

complete understanding of the processes subserving

PM effects. Nevertheless, research on the effects of

PM on other systems has greatly advanced in the last

years and identified interesting candidate mechanisms

that could be also at the basis of PM neurotoxicity.
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Milior G, Olmos-Alonso A, Gómez-Nicola D, Luheshi G, Vallières L
et al.: Dark microglia: a new phenotype predominantly
associated with pathological states. Glia 2016, 64:826-839.

34. Rolando C, Boda E, Buffo A: Immune system modulation of
parenchymal and germinal neural progenitor cells in
physiological and pathological conditions. In Neural Stem
Cells and Therapy. Edited by Tao n. InTech;
2012:9789533079585413-440.

35. Brown GC, Neher JJ: Microglial phagocytosis of live neurons.
Nat Rev Neurosci 2014, 15:209-216.

36. Allen JL, Liu X, Weston D, Prince L, Oberdörster G, Finkelstein JN,
Johnston CJ, Cory-Slechta DA: Developmental exposure to
concentrated ambient ultrafine particulate matter air pollution
in mice results in persistent and sex-dependent behavioral
neurotoxicity and glial activation. Toxicol Sci 2014, 140:160-
178.

37. Cole TB, Coburn J, Dao K, Roqué P, Chang YC, Kalia V,
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