# EXISTENTIALLY CLOSED BROUWERIAN SEMILATTICES 

LUCA CARAI AND SILVIO GHILARDI


#### Abstract

The variety of Brouwerian semilattices is amalgamable and locally finite, hence by well-known results [19], it has a model completion (whose models are the existentially closed structures). In this paper, we supply a finite and rather simple axiomatization of the model completion.


§1. Introduction. In algebraic logic some attention has been paid to the class of existentially closed structures in varieties coming from the algebraization of common propositional logics. In fact, there are relevant cases where such classes are elementary: this includes, besides the easy case of Boolean algebras, also Heyting algebras [10, 11], diagonalizable algebras [17, 11] and some universal classes related to temporal logics [9],[8]. However, very little is known about the related axiomatizations, with the remarkable exception of the case of the amalgamable varieties of Heyting algebras recently investigated in [6] and [5], and of the simpler cases of posets and semilattices studied in [1]. In this paper, we use a methodology similar to [6] (relying on classifications of minimal extensions) in order to investigate the case of Brouwerian semilattices, i.e. the algebraic structures corresponding to the implication-conjunction fragment of intuitionistic logic. We obtain the finite axiomatization reported below, which is similar in spirit to the axiomatizations from [6] (in the sense that we also have kinds of 'density' and 'splitting' conditions). The main technical problem we must face for this result (making axioms formulation slightly more complex and proofs much more involved) is the lack of joins in the language of Brouwerian semilattices.
1.1. Statement of the main result. The first researcher to consider Brouwerian semilattices as algebraic objects in their own right was W. C. Nemitz in [15]. A Brouwerian semilattice is a poset $(P, \leq)$ having a greatest element (which we denote with 1 ), inf's of pairs (the inf of $\{a, b\}$ is called 'meet' of $a$ and $b$ and denoted with $a \wedge b$ ) and relative pseudo-complements (the relative pseudo-complement of $a$ and $b$ is denoted with $a \rightarrow b$ ). $a \rightarrow b$ is also called the implication of $a$ and $b$. We recall that $a \rightarrow b$ is characterized by the following property: for every $c \in P$ we have

$$
c \leq a \rightarrow b \quad \text { iff } \quad c \wedge a \leq b .
$$

Brouwerian semilattices can also be defined in an alternative way as algebras over the signature $1, \wedge, \rightarrow$, subject to the following equations

$$
\begin{array}{rl}
a \wedge a=a & a \wedge(a \rightarrow b)=a \wedge b \\
a \wedge b=b \wedge a & b \wedge(a \rightarrow b)=b \\
a \wedge(b \wedge c)=(a \wedge b) \wedge c & a \rightarrow(b \wedge c)=(a \rightarrow b) \wedge(a \rightarrow c) \\
a \wedge 1=a & a \rightarrow a=1
\end{array}
$$

In case this equational axiomatization is adopted, the partial order $\leq$ is recovered via the definition $a \leq b$ iff $a \wedge b=a$.

[^0]By a result due to Diego and McKay [7, 14], Brouwerian semilattices are locally finite (meaning that all finitely generated Brouwerian semilattices are finite); since they are also amalgamable, it follows [19, 13] that the theory of Brouwerian semilattices has a model completion. We prove that such a model completion is given by the above set of axioms for the theory of Brouwerian semilattices together with the three additional axioms (Density1, Density2, Splitting) below.

We use the shorthand $a \ll b$ to mean that $a \leq b$ and $b \rightarrow a=a$. Note that $a \ll a$ iff $a=1$.
[Density 1] For every $c$ there exists an element $b$ different from 1 such that $b \ll c$.
[Density 2] For every $c, a_{1}, a_{2}, d$ such that $a_{1}, a_{2} \neq 1, a_{1} \ll c, a_{2} \ll c$ and $d \rightarrow a_{1}=a_{1}, d \rightarrow a_{2}=a_{2}$ there exists an element $b$ different from 1 such that:

$$
\begin{aligned}
a_{1} & \ll b \\
a_{2} & \ll b \\
b & \ll c \\
d \rightarrow b & =b
\end{aligned}
$$

[Splitting] For every $a, b_{1}, b_{2}$ such that $1 \neq a \ll b_{1} \wedge b_{2}$ there exist elements $a_{1}$ and $a_{2}$ different from 1 such that:

$$
\begin{aligned}
& b_{1} \geq a_{1}, b_{2} \geq a_{2} \\
& a_{2} \rightarrow a=a_{1} \\
& a_{1} \rightarrow a=a_{2} \\
& a_{2} \rightarrow b_{1}=b_{2} \rightarrow b_{1} \\
& a_{1} \rightarrow b_{2}=b_{1} \rightarrow b_{2}
\end{aligned}
$$

As an evidence of the interest of the above axiomatization, we mention some easy consequences that can be drawn from it: in an existentially closed Brouwerian semilattice (i) there is no bottom element; (ii) there are no joins of pairwise incomparable elements; (iii) there are no meet-irreducible elements.
The paper is structured as follows: Section 2 gives the basic notions and definitions. In particular, it describes the finite duality and characterizes the existentially closed structures by means of embeddings of finite extensions of finite sub-structures. In Section 3 we investigate the minimal finite extensions and use them to give an intermediate characterization of the existentially closed structures. Section 4 focuses on the axiomatization, it is split into two subsections: the first about the Splitting axiom and the second about the Density axioms 1

## §2. Preliminary Background.

[^1]Remark 2.1. The following is a list of identities holding in any Brouwerian semilattice that might be used without explicit mention.

$$
\begin{array}{rl}
a \rightarrow 1=1 & 1 \rightarrow a=a \\
a \wedge(a \rightarrow b)=a \wedge b & b \wedge(a \rightarrow b)=b \\
(a \rightarrow b) \wedge((a \rightarrow b) \rightarrow b)=b & ((a \rightarrow b) \rightarrow b) \rightarrow b=a \rightarrow b \\
a \rightarrow\left(b_{1} \wedge \cdots \wedge b_{n}\right) & =\left(a \rightarrow b_{1}\right) \wedge \cdots \wedge\left(a \rightarrow b_{n}\right) \\
\left(a_{1} \wedge \cdots \wedge a_{n}\right) \rightarrow b= & a_{1} \rightarrow\left(\cdots \rightarrow\left(a_{n} \rightarrow b\right)\right)
\end{array}
$$

In particular

$$
a \rightarrow(b \rightarrow c)=b \rightarrow(a \rightarrow c)
$$

Furthermore, in any Brouwerian semilattice:

$$
\begin{gathered}
a \leq b \quad \text { iff } \quad a \rightarrow b=1 \\
\text { if } b \leq c \text { then } a \rightarrow b \leq a \rightarrow c \text { and } c \rightarrow a \leq b \rightarrow a
\end{gathered}
$$

Proposition 2.2. Any finite Brouwerian semilattice is a Heyting algebra.
Proof. It is sufficient to show that any finite Brouwerian semilattice is a distributive lattice. Any finite semilattice is complete, so it is a lattice. Furthermore, the map $a \wedge(-)$ preserves suprema because it has a right adjoint given by $a \rightarrow(-)$. Thus the distributive laws hold.

Definition 2.3. Let $A, B$ be Brouwerian semilattices. A map $f: A \rightarrow B$ is a Brouwerian semilattice homomorphism if it preserves 1 , the meet and relative pseudo-complement of any two elements of $A$.

Notice that such a morphism $f$ is an order preserving map because, for any $a, b$ elements of a Brouwerian semilattice, we have $a \leq b$ iff $a \wedge b=a$.

Remark 2.4. Every finite Brouwerian semilattice is a Heyting algebra but it is not true that every Brouwerian semilattice morphism among finite Brouwerian semilattices is a Heyting algebra morphism.

Definition 2.5. Let $L$ be a Brouwerian semilattice.
We say that $m \in L$ is meet-irreducible iff for every $n \geq 0$ and $b_{1}, \ldots, b_{n} \in L$, we have that

$$
m=b_{1} \wedge \ldots \wedge b_{n} \quad \text { implies } \quad m=b_{i} \text { for some } i=1, \ldots, n
$$

Notice that by taking $n=0$ we obtain that meet-irreducibles are different from 1.

Proposition 2.6. Let $L$ be a Brouwerian semilattice and $m \in L$. Then the following conditions are equivalent:

1. $m$ is meet-irreducible;
2. $m \neq 1$ and for any $b_{1}, b_{2} \in L$ we have that $m=b_{1} \wedge b_{2}$ implies $m=b_{1}$ or $m=b_{2}$;
3. For every $n \geq 0$ and $b_{1}, \ldots, b_{n} \in L$ we have that $b_{1} \wedge \ldots \wedge b_{n} \leq m$ implies $b_{i} \leq m$ for some $i=1, \ldots, n$;
4. $m \neq 1$ and for any $b_{1}, b_{2} \in L$ we have that $b_{1} \wedge b_{2} \leq m$ implies $b_{1} \leq m$ or $b_{2} \leq m ;$
5. $m \neq 1$ and for any $a \in L$ we have that $a \rightarrow m=1$ or $a \rightarrow m=m$.

Proof. The implications $1 \Leftrightarrow 2,3 \Leftrightarrow 4$ and $3 \Rightarrow 1$ are straightforward. For the remaining ones see Lemma 2.1 in [12]. Note that 3 implies $m \neq 1$ by taking $n=0$.

Remark 2.7. In a finite Brouwerian semilattice, $m$ is meet-irreducible iff it has a unique successor, i.e. a minimal element among the elements strictly greater than $m$. In that case, we denote the successor by $m^{+}$and it is equal to $\bigwedge_{m<a} a$.

Definition 2.8. Let $L$ be a Brouwerian semilattice and $a \in L$.
A meet-irreducible component of $a$ is a minimal element among the meetirreducibles of $L$ that are greater than or equal to $a$.

Remark 2.9. Let $L$ be a finite Brouwerian semilattice. For any $a \in L$ we have

$$
a=\bigwedge\{\text { meet-irreducible components of } a\} .
$$

Hence, for any $a, b \in L$, condition 5 of Proposition 2.6 implies that
$a \rightarrow b=\bigwedge\{m \mid m$ is a meet-irreducible component of $b$ such that $a \not \leq m\}$.
Recall that $a \ll b$ means $a \leq b$ and $b \rightarrow a=a$. Thus, in any finite Brouwerian semilattice, $a \ll b$ if and only if $a \leq b$ and there is no meet-irreducible component of $a$ that is greater than or equal to $b$. Finally, if $m$ is meet-irreducible then $m \ll m^{+}$.

This last remark implies the following lemma.
Lemma 2.10. A finite Brouwerian semilattice is generated as a meet-semilattice with 1 by its meet-irreducible elements. Moreover, its Brouwerian semilattice structure is completely determined by the poset of its meet-irreducible elements.

This correspondence between finite Brouwerian semilattices and the posets of their meet-irreducible elements gives rise to a duality first presented by Köhler in [12].

### 2.1. Finite duality.

Definition 2.11. Let $(P, \leq)$ be a poset. For any $a \in P$ we define $\uparrow a=\{p \in$ $P \mid a \leq p\}$ and for any $A \subseteq P$ we define $\uparrow A=\bigcup_{a \in A} \uparrow a$. A subset $U \subseteq P$ such that $U=\uparrow U$ is called an upset, i.e. an upward closed subset, of $P$. The upsets $\uparrow a$ and $\uparrow A$ are called the upsets generated by $a$ and $A$. An upset is principal if it is generated by an element of $P$, i.e. it is of the form $\uparrow a$ for some $a \in P$. The set consisting of the upsets of $P$ is denoted by $\mathcal{U}(P)$. The analogous notations $\downarrow a$ and $\downarrow A$ are used for downsets.

Remark 2.12. $\mathcal{U}(P)$ ordered by reverse inclusion has naturally a structure of Brouwerian semilattice. Meets coincide with the union of subsets and the top element with the empty subset. It turns out that the implication of the upsets $A$ and $B$, i.e. $A \rightarrow B$, is given by $\uparrow(B \backslash A)$. Suppose now that $P$ is finite. Clearly $\mathcal{U}(P)$ is finite as well. If $A, B$ are two upsets of $P$ then $A$ is generated by the set of its minimal elements and $A \rightarrow B$ is the upset generated by the minimal elements of $B$ that are not in $A$. The meet-irreducibles of $\mathcal{U}(P)$ are exactly the principal upsets. Therefore, the meet-irreducible components of an upset $A$ are the principal upsets generated by the minimal elements of $A$. Notice that this is not always the case when $P$ is infinite. When $P$ is finite, $A, B \in \mathcal{U}(P)$ satisfy $A \ll B$ if and only if $B \subseteq A$ and $B$ does not contain any minimal element of $A$.

The following theorem states the finite duality due to Köhler.
ThEOREM 2.13. There is a dual equivalence between the category $\mathbf{B S}_{f \text { in }}$ of finite Brouwerian semilattices and the category $\mathbf{P}$ whose objects are finite posets and whose morphisms are partial mappings $\alpha: P \rightarrow Q$ satisfying:
(i) $\forall p, q \in$ dom $\alpha$ if $p<q$ then $\alpha(p)<\alpha(q)$;
(ii) $\forall p \in$ dom $\alpha$ and $\forall q \in Q$ if $q<\alpha(p)$ then $\exists r \in$ dom $\alpha$ such that $r<$ $p$ and $\alpha(r)=q$.
Proof. The proof can be found in [12]. We just recall how the equivalence works. To a finite poset $P$ it is associated the Brouwerian semilattice $\mathcal{U}(P)$ of upsets of $P$ ordered by reverse inclusion. On the other hand, to a finite Brouwerian semilattice $L$ it is associated its sub-poset $\mathcal{M}(L)$ given by its meetirreducible elements. The isomorphism $P \cong \mathcal{M}(\mathcal{U}(P))$ is given by the mapping $p \mapsto \uparrow p$. The map $U \mapsto \bigwedge U$ gives an isomorphism $\mathcal{U}(\mathcal{M}(L)) \cong L$ whose inverse is $a \mapsto\{m \in \mathcal{M}(L) \mid a \leq m\}$.
To a $\mathbf{P}$-morphism among finite posets it is associated the Brouwerian semilattice homomorphism that maps an upset to the upset generated by its preimage. More explicitly, to a $\mathbf{P}$-morphism $f: P \rightarrow Q$ is associated the morphism that maps an upset $U$ of $Q$ to $\uparrow f^{-1}(U)=\left\{p \in P \mid \exists p^{\prime} \leq p\left(p^{\prime} \in \operatorname{dom} f \& f\left(p^{\prime}\right) \in U\right)\right\}$. On the other hand, to a Brouwerian semilattice homomorphism $h: L \rightarrow L^{\prime}$, it is associated the $\mathbf{P}$-morphism $f: \mathcal{M}\left(L^{\prime}\right) \rightarrow \mathcal{M}(L)$ whose domain is given by the $a \in \mathcal{M}\left(L^{\prime}\right)$ that are meet-irreducible components in $L^{\prime}$ of $h(b)$ for some $b \in \mathcal{M}(L)$ and it is defined by $f(a)=b$.

The following proposition is easily checked:
Proposition 2.14. Let $P, Q$ be finite posets and $f: P \rightarrow Q$ a $\mathbf{P}$-morphism. Let $\alpha: \mathcal{U}(Q) \rightarrow \mathcal{U}(P)$ be the associated Brouwerian semilattice homomorphism. Then
(i) $\alpha$ is injective if and only if $f$ is surjective.
(ii) $\alpha$ is surjective if and only if $\operatorname{dom} f=P$ and $f$ is injective.

Duality results involving all Brouwerian semilattices can be found in the recent paper [2] due to G. Bezhanishvili and R. Jansana. Other dualities are described in [18] and [3].
2.2. Amalgamation property and local finiteness. The variety of Brouwerian semilattices enjoys two properties that will be used extensively throughout the paper: it has the amalgamation property and it is locally finite.

Theorem 2.15. The theory of Brouwerian semilattices has the amalgamation property.

The amalgamation property for Brouwerian semilattices is the algebraic counterpart of a syntactic property of the implication-conjunction fragment of intuitionistic propositional logic: the interpolation property. The proof that such a fragment satisfies this property can be found in [16].
Alternatively, it can be shown in a semantic way, using the finite duality, that the theory of Brouwerian semilattices enjoys the amalgamation property. This proof can be found in the online arXiv version of this paper at the link http://arxiv.org/abs/1702.08352

Theorem 2.16. The variety of Brouwerian semilattices is locally finite.
Proof. We just sketch the proof first presented in [14]. A Brouwerian semilattice $L$ is subdirectly irreducible iff $L \backslash\{1\}$ has a greatest element, or equivalently $L$ has a single co-atom, i.e. a maximal element distinct from 1.
Let $L$ be subdirectly irreducible and $u$ be the greatest element of $L \backslash\{1\}$. Then $L \backslash\{u\}$ is a Brouwerian sub-semilattice of $L$. This implies that any generating set of $L$ must contain $u$.
Moreover, if $L$ is generated by $n$ elements, then $L \backslash\{u\}$ can be generated by $n-1$ elements. It follows that the cardinality of subdirectly irreducible Brouwerian semilattices generated by $n$ elements is bounded by $\# F_{n-1}+1$ where $F_{m}$ is the free Brouwerian semilattice on $m$ generators. Since $\# F_{0}=1$, by induction we obtain that $F_{m}$ is finite for any $m$ because it is a subdirect product of a


Figure 1. The property characterizing the existentially closed Brouwerian semilattices
finite family of subdirectly irreducible Brouwerian semilattices generated by $m$ elements.

Computing the cardinality of $F_{m}$ is a hard task. It is known that $\# F_{0}=$ $1, \# F_{1}=2, \# F_{2}=18$ and $\# F_{3}=623,662,965,552,330$. The size of $F_{4}$ is still unknown. In [12] it is proved that the number of meet-irreducible elements of $F_{4}$ is $2,494,651,862,209,437$. This shows that although the cardinality of the free Brouwerian semilattice on a finite number of generators is always finite, it grows very rapidly.
2.3. Existentially closed Brouwerian semilattices. In this subsection we want to characterize the existentially closed Brouwerian semilattices using the finite extensions of their finite Brouwerian sub-semilattices.

Definition 2.17. Let $T$ be a first order theory and $\mathcal{A}$ a model of $T$. $\mathcal{A}$ is said to be existentially closed for $T$ if for every model $\mathcal{B}$ of $T$ such that $\mathcal{A} \subseteq \mathcal{B}$ every existential sentence in the language extended by names for elements of $\mathcal{A}$ which holds in $\mathcal{B}$ also holds in $\mathcal{A}$.

The following proposition is well-known from textbooks [4].
Proposition 2.18. Let $T$ be a universal theory. If $T$ has a model completion $T^{*}$, then the class of models of $T^{*}$ is the class of models of $T$ which are existentially closed for $T$.

Thanks to the local finiteness and the amalgamability, by an easy modeltheoretic reasoning we obtain the following characterization of the existentially closed Brouwerian semilattices.

Theorem 2.19. Let $L$ be a Brouwerian semilattice. L is existentially closed iff for any finite Brouwerian sub-semilattice $L_{0} \subseteq L$ and for any finite extension $C \supseteq L_{0}$ there exists an embedding $C \rightarrow L$ fixing $L_{0}$ pointwise (see Figure 1).
§3. Minimal finite extensions. In this section we focus on the finite extensions of Brouwerian semilattices. In particular, we are interested in the minimal ones since any finite extension can be decomposed into a finite chain of minimal extensions. We will study minimal finite extensions by describing the properties of some elements which generate them. This investigation will lead us to another characterization of the existentially closed Brouwerian semilattices.

Definition 3.1. Let $A$ and $B$ subsets of a poset $P$. We say that $A \leq B$ iff there exist $a \in A$ and $b \in B$ such that $a \leq b$.
Proposition 3.2. Surjective $\mathbf{P}$-morphisms with domain $P$ are determined, up to isomorphism, by pairs $\left(P_{0}, \mathcal{F}\right)$ where $P_{0}$ is a subset of $P$ and $\mathcal{F}$ is a partition of $P_{0}$ such that:

1. for all $A, B \in \mathcal{F}$ if $A \leq B$ and $B \leq A$ then $A=B$,
2. for all $A, B \in \mathcal{F}$ and $a \in A$ if $B \leq A$ then there exists $b \in B$ such that $b \leq a$,

## 3. for all $A \in \mathcal{F}$ all the elements of $A$ are two-by-two incomparable.

Proof. Given a surjective $\mathbf{P}$-morphism $f: P \rightarrow Q$, take the pair ( $\operatorname{dom} f, \mathcal{F}$ ) where $\mathcal{F}$ is the collection of the fibers of $f$. On the other hand, given a partition $\mathcal{F}$ of a subset $P_{0}$ of $P$ satisfying the conditions 1, 2 and 3, we obtain a poset $Q$ by taking the quotient set of $P_{0}$ given by $\mathcal{F}$ with the order as in Definition 3.1. The projection onto the quotient $\pi: P \rightarrow Q$ with domain $P_{0}$ is a surjective $\mathbf{P}$-morphism.
It is routine to check that a surjective $\mathbf{P}$-morphism $f: P \rightarrow Q$ differs by an isomorphism from the projection onto the quotient defined by the partition given by the fibers of $f$.

Definition 3.3. Let $P, Q$ be finite posets and $f: P \rightarrow Q$ a surjective $\mathbf{P}$ morphism (or equivalently: let $\mathcal{F}$ satisfy conditions 1,2 and 3 of Proposition 3.2. We say that $f$ (or $\mathcal{F}$ ) is minimal if $\# P=\# Q+1$.

REmark 3.4. If $\mathcal{F}$ is minimal, then at most one element of $\mathcal{F}$ is not a singleton.
ThEOREM 3.5. Let $f: P \rightarrow Q$ be a surjective $\mathbf{P}$-morphism between finite posets. Let $n=\# P-\# Q$. Then there exist $Q_{0}, \ldots, Q_{n}$ with $Q_{0}=P, Q_{n}=Q$ and $f_{i}: Q_{i-1} \rightarrow Q_{i}$ which are minimal surjective $\mathbf{P}$-morphisms for $i=1, \ldots, n$ such that $f=f_{n} \circ \cdots \circ f_{1}$.

Proof. Let $R=\operatorname{dom} f$, we can decompose $f=f^{\prime \prime} \circ f^{\prime}$ where $f^{\prime \prime}: R \rightarrow Q$ is just the restriction of $f$ on its domain and $f^{\prime}: P \rightarrow R$ is the partial morphism with domain $R$ that acts as the identity on $R$.
$f^{\prime \prime}$ is a total surjective $\mathbf{P}$-morphism. We prove, by induction on $\# R-\# Q$, that it can be decomposed into a finite chain of minimal surjective $\mathbf{P}$-morphisms. Suppose $\# R-\# Q>1$ and let us consider the partition $\mathcal{F}$ of $R$ given by the fibers of $f^{\prime \prime}$. Let $x \in P$ be maximal among the elements of $R$ that are not in a singleton of $\mathcal{F}$ and let $G$ be the element of $\mathcal{F}$ containing $x$. Denote with $Q_{n-1}$ the quotient of $R$ defined by the refining of $\mathcal{F}$ in which $G$ is substituted by $\{x\}$ and $G \backslash\{x\}$. It is straightforward to check that our choice of $x$ implies that the projection onto the quotient $\pi: R \rightarrow Q_{n-1}$ is a total surjective $\mathbf{P}$-morphism and the map $f_{n}: Q_{n-1} \rightarrow Q$ induced by $f^{\prime \prime}$ is a minimal surjective $\mathbf{P}$-morphism. Therefore, we obtain the decomposition applying the induction hypothesis on $\pi$. It remains to decompose $f^{\prime}$. To do this, just enumerate the elements of $P \backslash$ $R=\left\{p_{1}, \ldots, p_{k}\right\}$ with $k=n-(\# R-\# Q)$. Let $f_{1}^{\prime}: R \cup\left\{p_{1}\right\} \rightarrow R$ be the partial morphism with domain $R$ that acts as the identity on $R$. Then construct $f_{2}^{\prime}: R \cup\left\{p_{1}, p_{2}\right\} \rightarrow R \cup\left\{p_{1}\right\}$ in the same way and so on until $p_{k}$.

Definition 3.6. We say that a proper extension $L_{0} \subseteq L$ of finite Brouwerian semilattices is minimal if there is no intermediate proper extension $L_{0} \subsetneq L_{1} \subsetneq L$.

The following proposition is an immediate consequence of Proposition 3.2 and Theorem 3.5

Proposition 3.7. An extension $L_{0} \subseteq L$ of finite Brouwerian semilattices is minimal if and only if the surjective $\mathbf{P}$-morphism that is dual to the inclusion is minimal.

It follows immediately from Definition 3.3 that there are two different kinds of minimal surjective $\mathbf{P}$-morphisms between finite posets: of addition type and of decomposition type.

Definition 3.8. We call a minimal surjective $\mathbf{P}$-morphism of addition type when there is exactly one element outside its domain. In this case, the restriction of such a map on its domain is an isomorphism of posets. Indeed, any bijective $\mathbf{P}$-morphism is an isomorphism of posets. Not every morphism of this type is dual to a Heyting algebra homomorphism.


Figure 2. Simplest examples of minimal extensions and their duals; on the left are shown two minimal surjective $\mathbf{P}$ morphisms and on the right the corresponding minimal extensions of Brouwerian semilattices. The domain is denoted by a rectangle and the partition into fibers is represented by the encircled sets of points. The white points represents the elements outside the images of the inclusions. Notice that the inclusion on the top right is not a Heyting algebra homomorphism.

We call a minimal surjective $\mathbf{P}$-morphism of decomposition type when it is total, i.e. there are no elements outside its domain. In this case there is exactly a single fiber which is not a singleton and it contains exactly two elements. All the minimal surjective $\mathbf{P}$-morphisms of decomposition type are dual to Heyting algebra embeddings.
We call a finite minimal extension of Brouwerian semilattices either of addition type or of decomposition type if the corresponding minimal surjective $\mathbf{P}$ morphism is respectively of addition type or of decomposition type.
Figures 2 and 3 show some examples of minimal surjective $\mathbf{P}$-morphisms and the relative extensions of Brouwerian semilattices.

REmark 3.9. A finite minimal extension of Brouwerian semilattices of addition type preserves the meet-irreducibility of all the meet-irreducibles in the domain. Indeed, since the corresponding $\mathbf{P}$-morphism is an isomorphism when restricted on its domain, we have that the upset generated by the preimage of a principal upset is still principal.
A finite minimal extension of Brouwerian semilattices of decomposition type preserves the meet-irreducibility of all the meet-irreducibles in the domain except one which becomes the meet of the two new meet-irreducible elements in the codomain. Indeed, the corresponding $\mathbf{P}$-morphism is total and all its fibers are singletons except one. Hence, the preimage of any principal upset is principal except for one whose preimage is an upset generated by two elements.

It turns out that we can characterize the finite minimal extensions of Brouwerian semilattices by means of their generators.

Definition 3.10. Let $L_{0}$ be a finite Brouwerian semilattice and $L$ an extension of $L_{0}$. We call an element $x \in L$ primitive over $L_{0}$ if the following conditions are satisfied:

1. $x \notin L_{0}$
and for any $a$ meet-irreducible of $L_{0}$ :
2. $x \rightarrow a \in L_{0}$,
3. $a \rightarrow x=x$ or $a \rightarrow x=1$.

Lemma 3.11. Let $L_{0}$ be a finite Brouwerian semilattice, $L$ a (not necessarily finite) extension of $L_{0}$ and $x \in L$ primitive over $L_{0}$. Then the two following properties hold for all $a \in L_{0}$ :
(i) $x \rightarrow a \in L_{0}$,


Figure 3. More complex examples of minimal extensions and their duals.
(ii) $a \rightarrow x=x$ or $a \rightarrow x=1$.

Proof. Let $a \in L_{0}$ and $a_{1}, \ldots, a_{n}$ be its meet-irreducible components in $L_{0}$. Since $L_{0}$ is finite, we have $a=a_{1} \wedge \cdots \wedge a_{n}$. To prove (i) observe that

$$
x \rightarrow a=\left(x \rightarrow a_{1}\right) \wedge \cdots \wedge\left(x \rightarrow a_{n}\right)
$$

which is an element of $L_{0}$ because it is meet of elements of $L_{0}$ as a consequence of 2 of Definition 3.10 .
Furthermore, to prove (ii) notice that

$$
a \rightarrow x=\left(a_{1} \wedge \cdots \wedge a_{n}\right) \rightarrow x=a_{1} \rightarrow\left(\cdots \rightarrow\left(a_{n} \rightarrow x\right)\right)
$$

and that 3 of Definition 3.10 implies that there are two possibilities: $a_{i} \rightarrow x=x$ for any $i=1, \ldots, n$ or $a_{i} \rightarrow x=1$ for some $i$. In the former case, we have $a \rightarrow$ $x=x$. In the latter, suppose that $i$ is the greatest index such that $a_{i} \rightarrow x=1$ then

$$
a \rightarrow x=a_{1} \rightarrow\left(\cdots \rightarrow\left(a_{i} \rightarrow x\right)\right)=a_{1} \rightarrow(\cdots \rightarrow 1)=1
$$

In the rest of the paper, given a Brouwerian sub-semilattice $L_{0}$ of $L$ and $x_{1}, \ldots, x_{n} \in L$, we denote by $L_{0}\left\langle x_{1}, \ldots, x_{n}\right\rangle$ the Brouwerian sub-semilattice of $L$ generated by $x_{1}, \ldots, x_{n}$ over $L_{0}$, i.e. the one generated by $L_{0} \cup\left\{x_{1}, \ldots, x_{n}\right\}$. Note that, if $L_{0}$ is finite, then $L_{0}\left\langle x_{1}, \ldots, x_{n}\right\rangle$ is finite by local finiteness.

Theorem 3.12. Let $L_{0}$ be a finite Brouwerian semilattice and $L$ an extension of $L_{0}$. If $x \in L$ is primitive over $L_{0}$, then the Brouwerian sub-semilattice $L_{0}\langle x\rangle$ of $L$ generated by $x$ over $L_{0}$ is a finite minimal extension of $L_{0}$ of addition type.

Proof. As an easy consequence of Lemma 3.11 $\left\{a, a \wedge x \mid a \in L_{0}\right\}$, i.e. the meet-subsemilattice of $L$ generated by $L_{0}$ and $x$, coincides with $L_{0}\langle x\rangle$. We want to show that the meet-irreducibles of $L_{0}\langle x\rangle$ are exactly the meet-irreducibles of $L_{0}$ together with $x$. This implies that $L_{0}\langle x\rangle$ is a minimal extension of $L_{0}$ of addition type. In the following, $a$ is always assumed to be an element of $L_{0}$.

- $x$ is meet-irreducible in $L_{0}\langle x\rangle$ :

Suppose that $b \wedge c \leq x$ with $b, c \in L_{0}\langle x\rangle$ and $b, c \not \leq x$. Then $b$ and $c$ must be elements of $L_{0}$ because they cannot be of the form $a \wedge x$. It follows from Lemma 3.11(ii) and $b, c \not \leq x$ that $b \rightarrow x=c \rightarrow x=x$. Hence $1=(b \wedge c) \rightarrow$ $x=b \rightarrow(c \rightarrow x)=b \rightarrow x=x$, contradicting $x \notin L_{0}$.

- The meet-irreducibles of $L_{0}$ are still meet-irreducible in $L_{0}\langle x\rangle$ :

It is sufficient to show that for any meet-irreducible $m$ in $L_{0}$ : if $a \wedge x \leq m$, then $a \leq m$ or $x \leq m$. Note that $m=(x \rightarrow m) \wedge((x \rightarrow m) \rightarrow m)$ by Remark 2.1
and $x \rightarrow m,(x \rightarrow m) \rightarrow m \in L_{0}$ by Definition 3.10. Thus $m$ being meetirreducible in $L_{0}$ implies that either $m=x \rightarrow m$ or $m=(x \rightarrow m) \rightarrow m$. In the former case, $a \rightarrow m=a \rightarrow(x \rightarrow m)=(a \wedge x) \rightarrow m=1$, so $a \leq m$. In the latter case, $x \rightarrow m=((x \rightarrow m) \rightarrow m) \rightarrow m=m \rightarrow m=1$ which implies $x \leq m$.

- There are no other meet-irreducibles in $L_{0}\langle x\rangle$ :

Clearly, neither elements that are not meet-irreducible in $L_{0}$ nor elements of the form $a \wedge x$ distinct from $a$ and $x$ can be meet-irreducible in $L_{0}\langle x\rangle$.

Definition 3.13. Let $L_{0}$ be a finite Brouwerian semilattice and $L$ a (not necessarily finite) extension of $L_{0}$. We call a pair $\left(x_{1}, x_{2}\right)$ of elements of $L$ primitive over $L_{0}$ if the following conditions are satisfied:

1. $x_{1}, x_{2} \notin L_{0}$ and $x_{1} \neq x_{2}$
and there exists $m$ meet-irreducible element of $L_{0}$ such that:
2. $x_{1} \rightarrow m=x_{2}$ and $x_{2} \rightarrow m=x_{1}$,
3. for any meet-irreducible element $a$ of $L_{0}$ such that $m<a$ we have $x_{i} \rightarrow$ $a \in L_{0}$ for $i=1,2$.

REmark 3.14. $m$ in Definition 3.13 is univocally determined by $\left(x_{1}, x_{2}\right)$ because $m=x_{1} \wedge x_{2}$.
Indeed, by condition 2 of Definition 3.13, we have $m \leq x_{1}, m \leq x_{2}$ and also $\left(x_{1} \wedge x_{2}\right) \rightarrow m=x_{1} \rightarrow\left(x_{2} \rightarrow m\right)=x_{1} \rightarrow x_{1}=1$ which implies $x_{1} \wedge x_{2} \leq m$.

Lemma 3.15. Let $L_{0}$ be a finite Brouwerian semilattice, $L$ an extension of $L_{0}$ and $\left(x_{1}, x_{2}\right) \in L^{2}$ primitive over $L_{0}$. Then the two following properties hold for all $a \in L_{0}$ :
(i) $x_{i} \rightarrow a \in L_{0}$ or $x_{i} \rightarrow a=b \wedge x_{j}$ with $b \in L_{0}$ for $\{i, j\}=\{1,2\}$;
(ii) $a \rightarrow x_{i}=x_{i}$ or $a \rightarrow x_{i}=1$ for $i=1,2$.

Proof. Let $m=x_{1} \wedge x_{2}$. We first prove that if $a \neq m$ is meet-irreducible in $L_{0}$, then $x_{i} \rightarrow a \in L_{0}$ for $i=1,2$. By condition 3 of Definition 3.13 we can assume $m \not \leq a$. Condition 2 of Definition 3.13 implies that $m \leq x_{j} \rightarrow m=x_{i}$ where $j \neq i$. Thus $a \leq x_{i} \rightarrow a \leq m \rightarrow a=a$ by the meet-irreducibility of $a$. Therefore $x_{i} \rightarrow a=a \in L_{0}$. Let now $a$ be any element of $L_{0}$ and $a_{1}, \ldots, a_{n}$ be its meet-irreducible components in $L_{0}$, then

$$
x_{i} \rightarrow a=\left(x_{i} \rightarrow a_{1}\right) \wedge \cdots \wedge\left(x_{i} \rightarrow a_{n}\right) .
$$

By what we showed at the beginning of the proof, if $a_{k} \neq m$ then $x_{i} \rightarrow a_{k} \in L_{0}$ for any $k$. Thus, if $m$ is not a meet-irreducible component of $a$, we have $x_{i} \rightarrow$ $a \in L_{0}$. Otherwise, if e.g. $a_{n}=m$, then $x_{i} \rightarrow a_{n}=x_{i} \rightarrow m=x_{j}$ with $j \neq i$. Thus $x_{i} \rightarrow a=b \wedge x_{j}$ for some $b \in L_{0}$. This proves (i).
We now prove (ii). If $a \leq m$, then $a \leq x_{i}$ which is equivalent to $a \rightarrow x_{i}=1$. Otherwise, since $m$ is meet-irreducible in $L_{0}, a \rightarrow m=m$. Thus, if $i \neq j$

$$
a \rightarrow x_{i}=a \rightarrow\left(x_{j} \rightarrow m\right)=x_{j} \rightarrow(a \rightarrow m)=x_{j} \rightarrow m=x_{i}
$$

Theorem 3.16. Let $L_{0}$ be a finite Brouwerian semilattice and $L$ an extension of $L_{0}$. If $\left(x_{1}, x_{2}\right)$ is primitive over $L_{0}$ then the Brouwerian sub-semilattice $L_{0}\left\langle x_{1}, x_{2}\right\rangle$ of $L$ is a finite minimal extension of $L_{0}$ of decomposition type.

Proof. By Lemma 3.15 and the fact that $x_{1} \wedge x_{2}=m \in L_{0}$, the meetsubsemilattice of $L$ generated by $L_{0}$ and $\left\{x_{1}, x_{2}\right\}$, i.e. $\left\{a, a \wedge x_{1}, a \wedge x_{2} \mid a \in\right.$ $\left.L_{0}\right\}$, coincides with $L_{0}\left\langle x_{1}, x_{2}\right\rangle$. We want to show that the meet-irreducibles of $L_{0}\left\langle x_{1}, x_{2}\right\rangle$ are exactly $x_{1}, x_{2}$ and the meet-irreducibles of $L_{0}$ different from $m$. This implies that $L_{0}\left\langle x_{1}, x_{2}\right\rangle$ is a minimal extension of $L_{0}$ of decomposition type. In the following, $a$ is always assumed to be an element of $L_{0}$.

- $x_{1}, x_{2}$ are meet-irreducible in $L_{0}\left\langle x_{1}, x_{2}\right\rangle$ :

Suppose $x_{1}=b \wedge c$ with $b, c \in L_{0}\left\langle x_{1}, x_{2}\right\rangle$ and $x_{1} \neq b, c$. Then $b$ and $c$ must be either elements of $L_{0}$ or of the form $a \wedge x_{2}$. Since $x_{1} \notin L_{0}$, one of $b$ and $c$ is of the form $a \wedge x_{2}$, so $x_{1} \leq x_{2}$. Hence, by Definition 3.13, $1=x_{1} \rightarrow x_{2}=x_{1} \rightarrow\left(x_{1} \rightarrow m\right)=x_{1} \rightarrow m=x_{2}$ which contradicts $x_{2} \notin L_{0}$. The meet-irreducibility of $x_{1}$ is proved analogously.

- $m$ is not meet-irreducible in $L_{0}\left\langle x_{1}, x_{2}\right\rangle$ :
$m=x_{1} \wedge x_{2}$ and $x_{1}, x_{2} \neq m$ because $x_{1}, x_{2} \notin L_{0}$.
- All the meet-irreducibles of $L_{0}\left\langle x_{1}, x_{2}\right\rangle$ are either $x_{1}, x_{2}$ or meet-irreducible in $L_{0}$ :
Clearly neither elements of $L_{0}$ that are not meet-irreducible in $L_{0}$ nor elements of the form $a \wedge x_{1}$ or $a \wedge x_{2}$ distinct from $a, x_{1}, x_{2}$ can be meet-irreducible in $L_{0}\left\langle x_{1}, x_{2}\right\rangle$.
- All the meet-irreducibles of $L_{0}$ except $m$ are still meet-irreducible in $L_{0}\left\langle x_{1}, x_{2}\right\rangle$ : Let $b \in L_{0}$ be meet-irreducible in $L_{0}$ but not in $L_{0}\left\langle x_{1}, x_{2}\right\rangle$. Let $y_{1}, \ldots, y_{r}$ be the meet-irreducible components of $b$ in $L_{0}\left\langle x_{1}, x_{2}\right\rangle$. The $y_{i}$ 's are in $L_{0} \cup$ $\left\{x_{1}, x_{2}\right\}$. Since $b$ is meet-irreducible in $L_{0}$ and not in $L_{0}\left\langle x_{1}, x_{2}\right\rangle$, at least one of the $y_{i}$ 's is not in $L_{0}$. We can suppose $y_{1}=x_{1}$, so $b \leq x_{1}$. One among $y_{2}, \ldots, y_{r}$ has to be equal to $x_{2}$ because otherwise $y_{2} \wedge \cdots \wedge y_{r} \in L_{0}$, which implies, since the $y_{i}$ 's are the meet-irreducible components of $b$, that $x_{1}=\left(y_{2} \wedge \cdots \wedge y_{r}\right) \rightarrow b$ contradicting $x_{1} \notin L_{0}$. Hence $b \leq m$. If $b<m$ then $m \rightarrow b=b$ because $b$ is meet-irreducible in $L_{0}$. But in this case $y_{2} \wedge \cdots \wedge y_{r}=x_{1} \rightarrow b \leq m \rightarrow b=$ $b \leq x_{1}=y_{1}$ and this is not possible because the $y_{i}$ 's are the meet-irreducible components of $b$. Therefore $b=m$.

Theorem 3.17. Let $L_{0}$ be a finite Brouwerian semilattice and $L$ a finite minimal extension of $L_{0}$, then $L$ is generated over $L_{0}$ either by a primitive element or by a primitive pair over $L_{0}$.

Proof. Let $f: P \rightarrow Q$ be the surjective minimal $\mathbf{P}$-morphism dual to the inclusion of $L_{0}$ into $L$. Recall that $P$ and $Q$ are the posets $\mathcal{M}(L)$ and $\mathcal{M}\left(L_{0}\right)$ of the meet-irreducibles of $L$ and $L_{0}$, respectively. Consider two cases:

- $f$ is of addition type.

Then $\operatorname{dom} f \neq P$, there exists only one element $p \in P \backslash \operatorname{dom} f$ and the restriction of $f$ on its domain is an isomorphism of posets. It turns out that $p$ is a primitive element over $L_{0}$.

- $f$ is of decomposition type.

Then $\operatorname{dom} f=P$ and only two elements $p_{1}, p_{2}$ have the same image by $f$ (recall that $p_{1}, p_{2}$ are incomparable). It turns out that $\left(p_{1}, p_{2}\right)$ is a primitive pair over $L_{0}$.
It is easy to check that $p$ and $\left(p_{1}, p_{2}\right)$ are primitive over $L_{0}$ using that, by finite duality, any meet-irreducible in a Brouwerian semilattice corresponds to the upset generated by itself in the dual poset.

Definition 3.18. Let $L_{0}$ be a finite Brouwerian semilattice.
We call a pair $(h, M)$ a signature of addition type in $L_{0}$ if $h \in L_{0}$ and $M$ is a set of two-by-two incomparable meet-irreducible elements of $L_{0}$ such that $m<h$ for all $m \in M$. We allow $M$ to be empty.
We call a triple ( $h_{1}, h_{2}, m$ ) a signature of decomposition type in $L_{0}$ if $h_{1}, h_{2} \in L_{0}$, $m$ is a meet-irreducible element of $L_{0}$ such that $h_{1} \wedge h_{2}=m^{+}$. Recall that $m^{+}$ is the unique successor of $m$ in $L_{0}$. To keep the notation simple, we consider the signatures $\left(h_{1}, h_{2}, m\right)$ and $\left(h_{2}, h_{1}, m\right)$ to be equal.

Theorem 3.19. Let $L_{0}$ be a finite Brouwerian semilattice. Then

1. to give a signature of addition type in $L_{0}$ is equivalent to give a minimal extension of addition type of $L_{0}$, up to isomorphism over $L_{0}$;
2. to give a signature of decomposition type in $L_{0}$ is equivalent to give a minimal extension of decomposition type of $L_{0}$, up to isomorphism over $L_{0}$.

Proof. In the following, $L$ is a minimal extension of $L_{0}$.

- To any minimal extension of addition type it is associated a signature of addition type.
Let $L_{0} \subseteq L$ be of addition type. Let $x$ be the unique element of $\mathcal{M}(L) \backslash \mathcal{M}\left(L_{0}\right)$. Thus $x$ is primitive over $L_{0}$. Define $h:=x^{+} \in L$ and $M$ to be the set of maximal elements in $\left\{m \in \mathcal{M}\left(L_{0}\right) \mid m<x\right\}$. We showed in the proof of Theorem 3.12 that $L$ is generated as a meet-semilattice by $L_{0}$ and $x$. So any element above $x$ is in $L_{0}$. In particular $h=x^{+} \in L_{0}$. Therefore $(h, M)$ is a signature of addition type.
- Any signature of addition type is the signature associated to a unique, up to isomorphism over $L_{0}$, minimal finite extension of addition type of $L_{0}$.
Let $(h, M)$ be a signature of addition type of $L_{0}$. Then $h$ corresponds to an upset $U$ of $\mathcal{M}\left(L_{0}\right)$ and $M$ is an antichain in $\mathcal{M}\left(L_{0}\right)$ such that $U \subseteq \uparrow m$ for any $m \in M$. Define $P=\mathcal{M}\left(L_{0}\right) \sqcup\{x\}$ and define an order on $P$ by extending the one on $\mathcal{M}\left(L_{0}\right)$. Let $q<x$ iff $q \in \downarrow M$ and $x<q$ iff $q \in U$ for any $q \in \mathcal{M}\left(L_{0}\right)$. Take $\operatorname{dom} f=\mathcal{M}\left(L_{0}\right) \subset P$ and $f$ as the identity on its domain. It is easy to prove that $f: P \rightarrow \mathcal{M}\left(L_{0}\right)$ is a minimal surjective $\mathbf{P}$ morphism of addition type. If $f^{\prime}: P^{\prime} \rightarrow \mathcal{M}\left(L_{0}\right)$ is another minimal surjective $\mathbf{P}$-morphism of addition type whose dual induces the same signature on $L_{0}$ then it is straightforward to define an isomorphism of posets $\varphi: P_{1} \rightarrow P_{2}$ such that $f_{2} \circ \varphi=f_{1}$.
- To any minimal extension of decomposition type it is associated a signature of decomposition type.
Let $L_{0} \subseteq L$ be of decomposition type. Let $\left\{x_{1}, x_{2}\right\}=\mathcal{M}(L) \backslash \mathcal{M}\left(L_{0}\right)$. Thus $\left(x_{1}, x_{2}\right)$ is primitive over $L_{0}$. Define $h_{1}:=x_{1}^{+} \in L$ and $h_{2}:=x_{2}^{+} \in L$. We showed in the proof of Theorem 3.16 that $L$ is generated as a meet-semilattice by $L_{0}$ and $x_{1}, x_{2}$. So any element above $x_{1}$ or $x_{2}$ is in $L_{0}$. In particular $h_{1}=x_{1}^{+}, h_{2}=x_{2}^{+} \in L_{0}$. Let $m=x_{1} \wedge x_{2}$ which is in $\mathcal{M}\left(L_{0}\right)$ by Remark 3.14. It remains to prove that $m^{+}=h_{1} \wedge h_{2}$. Suppose $m<a$ for some $a \in L_{0}$. Let $a_{1}, \ldots, a_{n}$ be the meet-irreducible components of $a$ in $L$. For each $i$, $x_{1} \wedge x_{2}<a_{i}$, thus $a_{i}$ is either above $x_{1}$ or above $x_{2}$. Note that $a_{i} \neq x_{1}$, otherwise $a \rightarrow m \geq x_{1} \rightarrow m=x_{2}>m$, contradicting the meet-irreducibility of $m$ and $m<a$. Hence $a_{i} \in L_{0}$ and $h_{1}=x_{1}^{+} \leq a_{i}$ or $h_{2}=x_{2}^{+} \leq a_{i}$. Therefore $h_{1} \wedge h_{2} \leq a$. So $m^{+}=h_{1} \wedge h_{2}$ and $\left(h_{1}, h_{2}, m\right)$ is a signature of decomposition type.
- Any signature of decomposition type is the signature associated to a unique, up to isomorphism over $L_{0}$, minimal finite extension of decomposition type of $L_{0}$.
Let $\left(h_{1}, h_{2}, m\right)$ be a signature of decomposition type of $L_{0}$. Then $h_{1}, h_{2}$ correspond to upsets $U_{1}, U_{2}$ of $\mathcal{M}\left(L_{0}\right)$ such that $U_{1} \cup U_{2}=\uparrow m \backslash\{m\}$. Let $P=\mathcal{M}\left(L_{0}\right) \backslash\{m\} \sqcup\left\{x_{1}, x_{2}\right\}$ where $x_{1} \neq x_{2}$. Define an order on $P$ by extending the one on $\mathcal{M}\left(L_{0}\right) \backslash\{m\}$. Set $x_{i}<q$ iff $q \in U_{i}$ and $q<x_{i}$ iff $q<m$ for any $q \in \mathcal{M}\left(L_{0}\right)$ for $i=1,2$. Take $\operatorname{dom} f=P$ and $f$ such that it maps $x_{1}, x_{2}$ into $m$ and acts as the identity on $\mathcal{M}\left(L_{0}\right) \backslash\{m\}$. It is easy to prove that $f: P \rightarrow \mathcal{M}\left(L_{0}\right)$ is a minimal surjective $\mathbf{P}$-morphism of decomposition type. If $f^{\prime}: P^{\prime} \rightarrow \mathcal{M}\left(L_{0}\right)$ is another minimal surjective $\mathbf{P}$-morphism of decomposition type whose dual induces the same signature on $L_{0}$ then it is straightforward to define an isomorphism of posets $\varphi: P_{1} \rightarrow P_{2}$ such that $f_{2} \circ \varphi=f_{1}$.

Therefore signatures inside a finite Brouwerian semilattice $L_{0}$ are like 'footprints' left by the minimal finite extensions of $L_{0}$ : any minimal finite extension of $L_{0}$ leaves a 'footprint' inside $L_{0}$ given by the corresponding signature. On
the other hand, given a signature inside $L_{0}$ we can reconstruct a unique (up to isomorphism over $L_{0}$ ) minimal extension of $L_{0}$ corresponding to that signature. By Theorems 3.12, 3.16 and 3.17, minimal finite extension of a finite Brouwerian semilattice $L_{0}$ are exactly the ones generated over $L_{0}$ either by a primitive element or by a primitive pair. Thus, to any primitive element or pair we can associate a unique signature in $L_{0}$. This is what we did in the proof of Theorem 3.19.

Definition 3.20. Let $L_{0}$ be a finite Brouwerian semilattice and $L$ an extension of $L_{0}$.
We say that $x \in L$, a primitive element over $L_{0}$, induces a signature $(h, M)$ of addition type in $L_{0}$ if

- $h=x^{+}$in $L_{0}\langle x\rangle$;
- $M$ is the set of maximal elements of $\left\{m \in \mathcal{M}\left(L_{0}\right) \mid m<x\right\}$.

We say that $\left(x_{1}, x_{2}\right) \in L^{2}$, a primitive pair over $L_{0}$, induces a signature $\left(h_{1}, h_{2}, m\right)$ of decomposition type in $L_{0}$ if

- $h_{1}=x_{1}^{+}$and $h_{2}=x_{2}^{+}$in $L_{0}\left\langle x_{1}, x_{2}\right\rangle$;
- $m=x_{1} \wedge x_{2}$.

Corollary 3.21. Let $L_{0}$ be a finite Brouwerian semilattice and $L$ an extension of $L_{0}$.
A primitive element $x \in L$ induces a signature $(h, M)$ iff the extension $L_{0} \subseteq$ $L_{0}\langle x\rangle$ corresponds to that signature.
A primitive pair $\left(x_{1}, x_{2}\right) \in L^{2}$ induces a signature $\left(h_{1}, h_{2}, m\right)$ iff the extension $L_{0} \subseteq L_{0}\left\langle x_{1}, x_{2}\right\rangle$ corresponds to that signature.

Proof. Follows immediately from Theorem 3.19 and its proof.
Proposition 3.22. Let $L_{0}$ be a finite Brouwerian semilattice and $L$ an extension of $L_{0}$.
A primitive element $x \in L$ over $L_{0}$ induces a signature of addition type ( $h, M$ ) in $L_{0}$ if and only if for any a meet-irreducible of $L_{0}$ we have that

$$
x<a \text { iff } h \leq a \quad \text { and } \quad a<x \text { iff } a \leq m \text { for some } m \in M .
$$

A primitive pair $\left(x_{1}, x_{2}\right) \in L^{2}$ over $L_{0}$ induces a signature of decomposition type $\left(h_{1}, h_{2}, m\right)$ in $L_{0}$ if $m=x_{1} \wedge x_{2}$ and for any a meet-irreducible of $L_{0}$ we have that

$$
x_{i}<a \text { iff } h_{i} \leq a \quad \text { for } i=1,2 .
$$

Proof. This follows from Corollary 3.21 by Lemma 2.10 and the fact that $\mathcal{M}\left(L_{0}\langle x\rangle\right)=\mathcal{M}\left(L_{0}\right) \cup\{x\}$ and $\mathcal{M}\left(L_{0}\left\langle x_{1}, x_{2}\right\rangle\right)=\left(\mathcal{M}\left(L_{0}\right) \backslash\{m\}\right) \cup\left\{x_{1}, x_{2}\right\} . \quad \dashv$

We have thus finally obtained an intermediate characterization of existentially closed Brouwerian semilattices:

Theorem 3.23. A Brouwerian semilattice $L$ is existentially closed iff for any finite Brouwerian sub-semilattice $L_{0} \subseteq L$ we have:

1. Any signature of addition type in $L_{0}$ is induced by a primitive element $x \in L$ over $L_{0}$.
2. Any signature of decomposition type in $L_{0}$ is induced by a primitive pair $\left(x_{1}, x_{2}\right) \in L^{2}$ over $L_{0}$.
Proof. By the characterization of the existentially closed Brouwerian semilattices given in Theorem 2.19 we have that a Brouwerian semilattice $L$ is existentially closed iff for any finite Brouwerian sub-semilattice $L_{0}$ and for any finite extension $L_{0}^{\prime}$ of $L_{0}$ we have that $L_{0}^{\prime}$ embeds into $L$ fixing $L_{0}$ pointwise. Since any finite extension of $L_{0}$ can be decomposed into a chain of minimal extensions, we can restrict to the case in which $L_{0}^{\prime}$ is a minimal finite extension of $L_{0}$. Then the claim follows from Theorem 3.19 and Corollary 3.21 .

Thanks to Theorem 3.23 and Proposition 3.22 we already get an axiomatization for the class of the existentially closed Brouwerian semilattices, indeed the quantification over the finite Brouwerian sub-semilattice $L_{0}$ can be expressed elementarily using an infinite number of axioms. But this axiomatization is clearly unsatisfactory: other than being infinite, it is not conceptually clear.
§4. Axioms. In this section we prove the main theorem of this paper:
Theorem 4.1. A Brouwerian semilattice is existentially closed if and only if it satisfies the Splitting, Density 1 and Density 2 axioms.

The result will follow from Theorems 4.3, 4.14, 4.15, 4.16 and 4.19 by using the characterization of existentially closed Brouwerian semilattices described in Theorem 3.23. Subsection 4.1 focuses on the Splitting axiom and subsection 4.2 on the Density axioms.

To show the validity of the axioms in any existentially closed Brouwerian semilattice, we will use the following lemma which is the analogue of Lemma 2.3 in [6]. Its proof is straightforward.

Lemma 4.2. Let $\theta(\underline{x})$ and $\phi(\underline{x}, \underline{y})$ be quantifier-free formulas in the language of Brouwerian semilattices. Assume that for every finite Brouwerian semilattice $L_{0}$ and every tuple $\underline{a}$ of elements of $L_{0}$ such that $L_{0} \vDash \theta(\underline{a})$, there exists an extension $L_{1}$ of $L_{0}$ which satisfies $\exists \underline{y} \phi(\underline{a}, \underline{y})$.
Then every existentially closed Brouwerian semilattice satisfies the following sentence:

$$
\forall \underline{x}(\theta(\underline{x}) \longrightarrow \exists \underline{y} \phi(\underline{x}, \underline{y})) .
$$

4.1. Splitting axiom. [Splitting Axiom] For every $a, b_{1}, b_{2}$ such that $1 \neq$ $a \ll b_{1} \wedge b_{2}$ there exist elements $a_{1}$ and $a_{2}$ different from 1 such that:

$$
\begin{aligned}
& b_{1} \geq a_{1}, b_{2} \geq a_{2} \\
& a_{2} \rightarrow a=a_{1} \\
& a_{1} \rightarrow a=a_{2} \\
& a_{2} \rightarrow b_{1}=b_{2} \rightarrow b_{1} \\
& a_{1} \rightarrow b_{2}=b_{1} \rightarrow b_{2}
\end{aligned}
$$

Theorem 4.3. Any existentially closed Brouwerian semilattice satisfies the Splitting Axiom.

Proof. It is sufficient to show, by Lemma 4.2, that for any finite Brouwerian semilattice $L_{0}$ and $a, b_{1}, b_{2} \in L_{0}$ such that $1 \neq a \ll b_{1} \wedge b_{2}$ there exists a finite extension $L_{0} \subseteq L$ with $a_{1}, a_{2} \in L$ different from 1 such that:

$$
\begin{aligned}
& a_{2} \rightarrow a=a_{1} \leq b_{1} \\
& a_{1} \rightarrow a=a_{2} \leq b_{2} \\
& a_{2} \rightarrow b_{1}=b_{2} \rightarrow b_{1} \\
& a_{1} \rightarrow b_{2}=b_{1} \rightarrow b_{2}
\end{aligned}
$$

The following construction is analogous to the one presented in the proof of Lemma 4.2 in [6]. Let $Q=\mathcal{M}\left(L_{0}\right)$ and $A, B_{1}, B_{2}$ be its upsets corresponding to $a, b_{1}, b_{2}$.
We now build a surjective $\mathbf{P}$-morphism $\pi: P \rightarrow Q$. For $i=1,2$ and any $x \in Q$ such that $x \notin B_{i}$, let $\xi_{x, i}$ be a new symbol. Moreover, for any $x \in Q$ such that $x \in B_{1} \cap B_{2}$ let $\xi_{x, 0}$ be a new symbol.
Let $P$ be the set of all these symbols, we define an order on $P$ setting:

$$
\xi_{x, j} \leq \xi_{y, i} \Leftrightarrow x \leq y \text { and }\{i, j\} \neq\{1,2\}
$$

Intuitively $P$ is made of a copy of $B_{1} \cup B_{2}$ and two copies of $Q \backslash\left(B_{1} \cup B_{2}\right)$, one of the two copies is placed underneath $B_{1}$ and the other underneath $B_{2}$.
We define $\pi: P \rightarrow Q$ by setting dom $\pi=P$ and $\pi\left(\xi_{x, i}\right)=x$.
Let $a_{1}, \ldots, a_{r}$ be the minimal elements of $A$, for any $i$ we have $a_{i} \notin B_{1} \cup B_{2}$ because by hypothesis $A \ll B_{1} \cup B_{2}$. Therefore $\pi^{-1}\left(\uparrow a_{i}\right)=\uparrow \xi_{a_{i}, 1} \cup \uparrow \xi_{a_{i}, 2}$ for $i=1, \ldots, r$.
We take:

$$
A_{1}=\bigcup_{i=1}^{r} \uparrow \xi_{a_{i}, 1} \quad \text { and } \quad A_{2}=\bigcup_{i=1}^{r} \uparrow \xi_{a_{i}, 2}
$$

We obtain $A_{1} \rightarrow \pi^{-1}(A)=\uparrow\left(\pi^{-1}(A) \backslash A_{1}\right)=A_{2}$ and $A_{2} \rightarrow \pi^{-1}(A)=\uparrow\left(\pi^{-1}(A) \backslash\right.$ $\left.A_{2}\right)=A_{1}$, they are both nonempty because $r \geq 1$ and $A$ is nonempty.
Furthermore, for any $x \in B_{1} \cup B_{2}$ we have that $a_{i} \leq x$ for some $i$. Therefore if $x \in B_{1} \backslash B_{2}$ then $\xi_{a_{i}, 1} \leq \xi_{x, 1}$. If $x \in B_{2} \backslash B_{1}$ then $\xi_{a_{i}, 2} \leq \xi_{x, 2}$. If $x \in B_{1} \cap B_{2}$ then $\xi_{a_{i}, 1} \leq \xi_{x, 0}$ and $\xi_{a_{i}, 2} \leq \xi_{x, 0}$. This implies that $\pi^{-1}\left(B_{1}\right) \subseteq A_{1}$ and $\pi^{-1}\left(B_{2}\right) \subseteq A_{2}$. We now show that $A_{1} \cap A_{2}=\pi^{-1}\left(B_{1}\right) \cap \pi^{-1}\left(B_{2}\right)$.
If $\xi \in \pi^{-1}\left(B_{1}\right) \cap \pi^{-1}\left(B_{2}\right)$ then $\pi(\xi) \in B_{1} \cap B_{2}$, therefore $\xi=\xi_{x, 0}$ and $a_{i} \leq x$ for some $i$. It implies that $\xi_{a_{i}, 1} \leq \xi_{x, 0}$, thus $\xi_{x, 0} \in A_{1}$ and $\xi_{a_{i}, 2} \leq \xi_{x, 0}$, therefore $\xi_{x, 0} \in A_{2}$ and $\xi \in A_{1} \cap A_{2}$.
On the other hand, if $\xi \in A_{1} \cap A_{2}$ then there exist $i, j$ such that $\xi_{a_{i}, 1} \leq \xi$ and $\xi_{a_{j}, 2} \leq \xi$. By definition of the order on $P$ it has to be $\xi=\xi_{x, 0}$ with $x \in B_{1} \cap B_{2}$, therefore $\xi \in \pi^{-1}\left(B_{1}\right) \cap \pi^{-1}\left(B_{2}\right)$.
Since $\pi^{-1}\left(B_{1}\right) \subseteq A_{1}$ and $\pi^{-1}\left(B_{2}\right) \subseteq A_{2}$, we have:

$$
\pi^{-1}\left(B_{1}\right) \cap \pi^{-1}\left(B_{2}\right) \subseteq \pi^{-1}\left(B_{1}\right) \cap A_{2} \subseteq A_{1} \cap A_{2}=\pi^{-1}\left(B_{1}\right) \cap \pi^{-1}\left(B_{2}\right)
$$

Therefore

$$
\begin{aligned}
& A_{2} \rightarrow \pi^{-1}\left(B_{1}\right)=\left(\pi^{-1}\left(B_{1}\right) \cap A_{2}\right) \rightarrow \pi^{-1}\left(B_{1}\right) \\
& =\left(\pi^{-1}\left(B_{1}\right) \cap \pi^{-1}\left(B_{2}\right)\right) \rightarrow \pi^{-1}\left(B_{1}\right)=\pi^{-1}\left(B_{2}\right) \rightarrow \pi^{-1}\left(B_{1}\right) .
\end{aligned}
$$

Analogously we can show

$$
A_{1} \rightarrow \pi^{-1}\left(B_{2}\right)=\pi^{-1}\left(B_{1}\right) \rightarrow \pi^{-1}\left(B_{2}\right)
$$

Thus, by taking the embedding $L_{0} \hookrightarrow L$ dual to $\pi$ and $a_{1}, a_{2} \in L$ corresponding to $A_{1}, A_{2}$, we have obtained what we were looking for.

Lemma 4.4. If $L$ is a Brouwerian semilattice generated by a finite subset $X$ then any meet-irreducible element of $L$ is a meet-irreducible component in $L$ of some element of $X$.

Proof. It follows by an easy induction that any term in the language of Brouwerian semilattices is equivalent to a term of the form $x_{1} \wedge \cdots \wedge x_{n}$ with $x_{1}, \ldots x_{n}$ containing only the implication symbol and variables. Notice that, if an element $x_{1} \wedge \cdots \wedge x_{n}$ with $x_{1}, \ldots x_{n} \in L$ is meet-irreducible, then it coincides with $x_{i}$ for some $i=1, \ldots, n$; thus any meet-irreducible element $m$ of $L$ is the interpretation of a term $t$ over the variables $X$ containing only the implication symbol. This implies that $m$ is the meet of some meet-irreducible components of the interpretation of the rightmost variable in $t$. Indeed, this can be proved by induction on the complexity of the term as, by Remark 2.9, any meet-irreducible component of $a \rightarrow b$ is a meet-irreducible component of $b$. Thus $m$ is the meet of the meet-irreducible components of some $x \in X$. Then, since it is meetirreducible, it is a meet-irreducible component of $x$.

Remark 4.5. Lemma 4.4 is not true for Heyting algebras.
Indeed, consider the inclusion $L_{0} \hookrightarrow L_{1}$ of Heyting algebras described by Figure $4 . L_{1}$ is generated by $L_{0}$ and $a$ but $b=a \vee(a \rightarrow 0)$ is meet-irreducible in $L_{1}$ and it is not a meet-irreducible component of any element of $L_{0}$ or $a$.


Figure 4. The inclusion $L_{0} \hookrightarrow L_{1}$
Lemma 4.6. Let $L_{0}$ be a finite Brouwerian sub-semilattice of $L$ and let $L$ be generated by $L_{0}$ and $a_{1}, \ldots, a_{n} \in L$.
If $a_{1}, \ldots, a_{n}$ are meet-irreducible components in $L$ of elements of $L_{0}$, then the surjective $\mathbf{P}$-morphism $\varphi: \mathcal{M}(L) \rightarrow \mathcal{M}\left(L_{0}\right)$ dual to the inclusion $L_{0} \hookrightarrow L$ is such that dom $\varphi=\mathcal{M}(L)$. In particular, the inclusion is also a Heyting algebra morphism, i.e. it preserves joins and 0.

Proof. By Lemma 4.4, all the meet-irreducible elements of $L$ are meetirreducible components in $L$ of elements of $L_{0}$. Indeed, by hypothesis, $a_{1}, \ldots, a_{n}$ are meet-irreducible components of elements of $L_{0}$. Suppose there is $x \in$ $\mathcal{M}(L) \backslash \operatorname{dom} \varphi$, then $x$ cannot be a meet-irreducible component of any element of $L_{0}$. Indeed, $x$ cannot be a minimal element of $\uparrow \varphi^{-1}(U)$ for any $U$ upset of $\mathcal{M}\left(L_{0}\right)$.

Lemma 4.7. Let $L$ be a Brouwerian semilattice and $L_{0}$ a finite Brouwerian sub-semilattice of $L, m$ be meet-irreducible in $L_{0}$ and $y_{1}, y_{2} \in L$ be elements different from 1 such that

$$
\begin{aligned}
& y_{1} \rightarrow m=y_{2} \\
& y_{2} \rightarrow m=y_{1}
\end{aligned}
$$

Let $L_{0}\left\langle y_{1}, y_{2}\right\rangle$ be the Brouwerian sub-semilattice of $L$ generated by $L_{0}$ and $\left\{y_{1}, y_{2}\right\}$. We have that:

1. $m=y_{1} \wedge y_{2}, y_{1} \neq y_{2}$ and $y_{1}, y_{2} \in L \backslash L_{0}$,
2. any meet-irreducible $a$ of $L_{0}$ such that $m \not \leq a$ is still meet-irreducible in $L_{0}\left\langle y_{1}, y_{2}\right\rangle$,
3. $y_{1}, y_{2}$ are the meet-irreducible components of $m$ in $L_{0}\left\langle y_{1}, y_{2}\right\rangle$.

Proof. We prove the three statements separately.

1. We have $m=y_{1} \wedge y_{2}, y_{1} \neq y_{2}$ and $y_{1}, y_{2} \in L \backslash L_{0}$.

The identity $y_{1} \wedge y_{2}=m$ holds because $m \leq y_{1}$ and $m \leq y_{2}$ and

$$
\left(y_{1} \wedge y_{2}\right) \rightarrow m=y_{1} \rightarrow\left(y_{2} \rightarrow g\right)=y_{1} \rightarrow y_{1}=1
$$

Furthermore $y_{1}, y_{2} \notin L_{0}$. Indeed, suppose that $y_{1} \in L_{0}$, then $y_{2}=y_{1} \rightarrow$ $m \in L_{0}$. Since $m$ is meet-irreducible in $L_{0}$ and $m=y_{1} \wedge y_{2}$, we have that $m=y_{1}$ or $m=y_{2}$. It follows respectively that $y_{2}=1$ or $y_{1}=1$, in both cases we have a contradiction because $y_{1}, y_{2} \neq 1$. Similarly, we obtain that $y_{2} \notin L_{0}$.
We also have that $y_{1} \neq y_{2}$. Indeed, suppose $y_{1}=y_{2}$, then $y_{1} \rightarrow m=y_{1}$ implies that $m=y_{1}=1$ and this is absurd.
2. Any meet-irreducible a of $L_{0}$ such that $m \not \leq a$ is still meet-irreducible in $L_{0}\left\langle y_{1}, y_{2}\right\rangle$.
Let $i: L_{0} \hookrightarrow L_{0}\left\langle y_{1}, y_{2}\right\rangle$ be the inclusion map and $g: L_{0}\left\langle y_{1}, y_{2}\right\rangle \rightarrow$ $L_{0}\left\langle y_{1}, y_{2}\right\rangle / \uparrow m$ be the projection onto the quotient of $L_{0}\left\langle y_{1}, y_{2}\right\rangle$ over the filter $\uparrow m$. Then the homomorphism $f=g \circ i$ is surjective because $L_{0}\left\langle y_{1}, y_{2}\right\rangle$
is generated over $L_{0}$ by $y_{1}, y_{2}$ which are both in the filter $\uparrow m$. By Proposition 2.14, surjective homomorphisms map meet-irreducibles to meetirreducibles or to 1 . Thus, $f(a)$ is meet-irreducible in $L_{0}\left\langle y_{1}, y_{2}\right\rangle / \uparrow m$ because $a \notin \uparrow m$ by hypothesis. Note that, since $m \not \leq a$ and $a$ is meet-irreducible in $L_{0}$, we have $m \rightarrow a=a$. To show that $a$ is still meet-irreducible in $L_{0}\left\langle y_{1}, y_{2}\right\rangle$, we prove that for any $x \in L_{0}\left\langle y_{1}, y_{2}\right\rangle$ either $x \rightarrow a=1$ or $x \rightarrow a=a$. Since $f(a)=g(a)$ is meet-irreducible, $g(x \rightarrow a)=g(x) \rightarrow g(a)$ is either 1 or $g(a)$. Hence, either $m \wedge(x \rightarrow a)=m$ or $m \wedge(x \rightarrow a)=m \wedge a$. In the former case, $m \leq x \rightarrow a$ and so $x \leq m \rightarrow a=a$. Thus $x \rightarrow a=1$. In the latter, $m \wedge(x \rightarrow a) \leq a$, so $x \rightarrow a \leq m \rightarrow a=a$, which implies $x \rightarrow a=a$. Therefore $a$ is meet-irreducible in $L_{0}\left\langle y_{1}, y_{2}\right\rangle$.
3. $y_{1}, y_{2}$ are the meet-irreducible components of $m$ in $L_{0}\left\langle y_{1}, y_{2}\right\rangle$.

We show first that $y_{1}$ is meet-irreducible, for $y_{2}$ it is analogous.
Let $i: L_{0} \hookrightarrow L_{0}\left\langle y_{1}, y_{2}\right\rangle$ be the inclusion map and $k: L_{0}\left\langle y_{1}, y_{2}\right\rangle \rightarrow$ $L_{0}\left\langle y_{1}, y_{2}\right\rangle / \uparrow y_{2}$ be the projection onto the quotient of $L_{0}\left\langle y_{1}, y_{2}\right\rangle$ over the filter $\uparrow y_{2}$. Then the homomorphism $h=k \circ i$ is surjective because $L_{0}\left\langle y_{1}, y_{2}\right\rangle$ is generated over $L_{0}$ by $y_{1}, y_{2}$ with $k\left(y_{2}\right)=1$ and $k\left(y_{1}\right)=k\left(y_{2} \rightarrow m\right)=$ $k\left(y_{2}\right) \rightarrow k(m)=1 \rightarrow k(m)=k(m)=h(m)$. Thus, since $h$ is onto and $h(m) \neq 1$ because $m \notin \uparrow y_{2}$, we have that $k\left(y_{1}\right)=h(m)$ is meet-irreducible in $L_{0}\left\langle y_{1}, y_{2}\right\rangle / \uparrow y_{2}$. Note that $y_{2} \rightarrow y_{1}=y_{2} \rightarrow\left(y_{2} \rightarrow m\right)=y_{2} \rightarrow m=y_{1}$. To show that $y_{1}$ is meet-irreducible in $L_{0}\left\langle y_{1}, y_{2}\right\rangle$, we prove that for any $x \in L_{0}\left\langle y_{1}, y_{2}\right\rangle$ either $x \rightarrow y_{1}=1$ or $x \rightarrow y_{1}=y_{1}$. Since $k\left(y_{1}\right)$ is meetirreducible, $k\left(x \rightarrow y_{1}\right)=k(x) \rightarrow k\left(y_{1}\right)$ is either 1 or $k\left(y_{1}\right)$. Hence, either $y_{2} \wedge\left(x \rightarrow y_{1}\right)=y_{2}$ or $y_{2} \wedge\left(x \rightarrow y_{1}\right)=y_{2} \wedge y_{1}$. In the former case, $y_{2} \leq x \rightarrow y_{1}$ and so $x \leq y_{2} \rightarrow y_{1}=y_{1}$. Thus $x \rightarrow y_{1}=1$. In the latter, $y_{2} \wedge\left(x \rightarrow y_{1}\right) \leq y_{1}$, so $x \rightarrow y_{1} \leq y_{2} \rightarrow y_{1}=y_{1}$, which implies $x \rightarrow y_{1}=y_{1}$. Therefore $y_{1}$ is meet-irreducible in $L_{0}\left\langle y_{1}, y_{2}\right\rangle$. Finally, to prove that $y_{1}, y_{2}$ are the meet-irreducible components of $m$ in $L_{0}\left\langle y_{1}, y_{2}\right\rangle$, we simply have to notice that $y_{1} \not \leq y_{2}$ and $y_{2} \not \leq y_{1}$. Just observe that if $y_{1} \leq y_{2}$ then $m=y_{1} \wedge y_{2}=y_{1} \notin L_{0}$ which is absurd. Analogously, it cannot be $y_{2} \leq y_{1}$.

We now prove a series of lemmas which will lead to the main theorem of this subsection.

Lemma 4.8. Let $L$ be a Brouwerian semilattice and $L_{0} \subseteq L$ a finite Brouwerian sub-semilattice. Let $(h, h, m)$ be a signature of decomposition type in $L_{0}$. If $x_{1}, x_{2} \in L$ are different from 1 and satisfy

$$
\begin{align*}
& x_{1} \rightarrow m=x_{2} \leq h \\
& x_{2} \rightarrow m=x_{1} \leq h \tag{1}
\end{align*}
$$

then $\left(x_{1}, x_{2}\right)$ is a primitive pair over $L_{0}$ inducing the signature $(h, h, m)$.
Proof. We prove the result in two steps.

- $\left(x_{1}, x_{2}\right)$ is a primitive pair.

Lemma 4.7 shows that $x_{1} \neq x_{2}$ and $x_{1}, x_{2} \notin L_{0}$. The hypotheses say that $x_{1} \rightarrow m=x_{2}$ and $x_{2} \rightarrow m=x_{1}$. Furthermore, for any a meet-irreducible element of $L_{0}$, we have that $m<a$ implies $x_{i} \rightarrow a=1 \in L_{0}$ because $x_{i} \leq h=$ $m^{+}$for $i=1,2$.

- $\left(x_{1}, x_{2}\right)$ induces the signature $(h, h, m)$.

We use the Proposition 3.22, By Lemma 4.7, $m=x_{1} \wedge x_{2}$. Let $a$ be meetirreducible in $L_{0}$ and $i \in\{1,2\}$. If $x_{i}<a$ then $m<a$ because $m \leq x_{i}$. Thus $h=m^{+} \leq a$. On the other hand, $h \leq a$ implies $x_{i}<a$. Indeed, $x_{i} \notin L_{0}$ and $x_{i} \leq h$.

Definition 4.9. Let $L_{0}$ be a finite Brouwerian semilattice and $h_{1}, h_{2} \in L_{0}$. We define $\mathrm{ht}_{L_{0}}\left(h_{1}, h_{2}\right)$ to be the maximum length of chains of meet-irreducible elements of $L_{0}$

$$
k_{1}<k_{2}<\cdots<k_{n}
$$

such that $h_{1} \leq k_{1}$ and $h_{2} \not \leq k_{n}$. Equivalently, since $L_{0}$ is a Heyting algebra because it is finite, $h_{1} \leq k_{1}$ and $h_{1} \vee h_{2} \not 又 k_{n}$ with the join taken inside $L_{0}$.
We call ht $L_{0}\left(h_{1}, h_{2}\right)$ the height of $h_{1}$ relative to $h_{2}$ in $L_{0}$.
We define the relative height of $\left(h_{1}, h_{2}\right)$ in $L_{0}$, which we denote by $\mathrm{H}_{L_{0}}\left(h_{1}, h_{2}\right)$, as

$$
\mathrm{H}_{L_{0}}\left(h_{1}, h_{2}\right):=\mathrm{ht}_{L_{0}}\left(h_{1}, h_{2}\right)+\mathrm{ht}_{L_{0}}\left(h_{2}, h_{1}\right)
$$

Intuitively, $\mathrm{H}_{L_{0}}\left(h_{1}, h_{2}\right)$ measures how much $h_{1} \vee h_{2}$ is bigger than $h_{1}$ and $h_{2}$ in $L_{0}$.
Note that $\mathrm{H}_{L_{0}}\left(h_{1}, h_{2}\right)=0$ if and only if $h_{1}=h_{2}$.
Lemma 4.10. Let $L$ be a Brouwerian semilattice and $L_{0} \subseteq L$ a finite Brouwerian sub-semilattice. Let $\left(h_{1}, h_{2}, m\right)$ be a signature of decomposition type in $L_{0}$. If $y_{1}, y_{2} \in L$ are different from 1 and satisfy

$$
\begin{align*}
& y_{1} \rightarrow m=y_{2} \leq h_{2} \\
& y_{2} \rightarrow m=y_{1} \leq h_{1} \\
& y_{1} \rightarrow h_{2}=h_{1} \rightarrow h_{2}  \tag{2}\\
& y_{2} \rightarrow h_{1}=h_{2} \rightarrow h_{1}
\end{align*}
$$

then:

1. $\left(h_{1}, h_{2} \vee y_{1}, y_{1}\right)$ and $\left(h_{1} \vee y_{2}, h_{2}, y_{2}\right)$ are signatures of decomposition type in $L_{0}\left\langle y_{1}, y_{2}\right\rangle$, where the joins are taken inside $L_{0}\left\langle y_{1}, y_{2}\right\rangle$;
2. $h t_{L_{0}\left\langle y_{1}, y_{2}\right\rangle}\left(h_{1}, h_{2}\right)=h t_{L_{0}}\left(h_{1}, h_{2}\right)$ and $h t_{L_{0}\left\langle y_{1}, y_{2}\right\rangle}\left(h_{2}, h_{1}\right)=h t_{L_{0}}\left(h_{2}, h_{1}\right)$;
3. If $h_{1} \not \leq h_{2}$ then $h t_{L_{0}\left\langle y_{1}, y_{2}\right\rangle}\left(h_{2} \vee y_{1}, h_{1}\right)<h t_{L_{0}}\left(h_{2}, h_{1}\right)$. If $h_{2} \not \leq h_{1}$ then $h t_{L_{0}\left\langle y_{1}, y_{2}\right\rangle}\left(h_{1} \vee y_{2}, h_{2}\right)<h t_{L_{0}}\left(h_{1}, h_{2}\right)$.

Proof. We prove the three statements separately.

1. ( $h_{1}, h_{2} \vee y_{1}, y_{1}$ ) and ( $h_{1} \vee y_{2}, h_{2}, y_{2}$ ) are signatures of decomposition type in $L_{0}\left\langle y_{1}, y_{2}\right\rangle$.
By Lemma 4.7, $y_{1}, y_{2} \notin L_{0}$ are the meet-irreducible components of $m$ in $L_{0}\left\langle y_{1}, y_{2}\right\rangle$.
Moreover, in $L_{0}\left\langle y_{1}, y_{2}\right\rangle$ we have that:

$$
\begin{align*}
& h_{1} \wedge\left(h_{2} \vee y_{1}\right)=y_{1}^{+} \\
& \left(h_{1} \vee y_{2}\right) \wedge h_{2}=y_{2}^{+} \tag{3}
\end{align*}
$$

Indeed

$$
h_{1} \wedge\left(h_{2} \vee y_{1}\right)=\left(h_{1} \wedge h_{2}\right) \vee\left(h_{1} \wedge y_{1}\right)=\left(h_{1} \wedge h_{2}\right) \vee y_{1}=m^{+} \vee y_{1}
$$

which coincides with $y_{1}^{+}$, the successor of $y_{1}$ in $L_{0}\left\langle y_{1}, y_{2}\right\rangle$. To show this, observe that, as a consequence of Lemma 4.6. the inclusion $L_{0} \hookrightarrow L_{0}\left\langle y_{1}, y_{2}\right\rangle$ is dual to a total surjective $\mathbf{P}$-morphism $\varphi: \mathcal{M}\left(L_{0}\left\langle y_{1}, y_{2}\right\rangle\right) \rightarrow \mathcal{M}(L)$. Recall (see the proof of Theorem 2.13) that the preimage of an element of $\mathcal{M}(L)$ under $\varphi$ consists of the meet-irreducible components of such an element inside $L_{0}\left\langle y_{1}, y_{2}\right\rangle$. Then $\varphi^{-1}(m)=\left\{y_{1}, y_{2}\right\}$ because $y_{1}, y_{2}$ are the meetirreducible components of $m$ in $L_{0}\left\langle y_{1}, y_{2}\right\rangle$.
As a consequence of the surjectivity and totality of $\varphi$ we have:

$$
\uparrow \varphi^{-1}(\uparrow m \backslash\{m\})=\varphi^{-1}(\uparrow m \backslash\{m\})=\left(\uparrow y_{1} \cup \uparrow y_{2}\right) \backslash\left\{y_{1}, y_{2}\right\} .
$$

Therefore

$$
\begin{aligned}
\uparrow \varphi^{-1}(\uparrow m \backslash\{m\}) \cap \uparrow y_{1} & =\left(\uparrow y_{1} \cup \uparrow y_{2}\right) \backslash\left\{y_{1}, y_{2}\right\} \cap \uparrow y_{1} \\
& =\uparrow y_{1} \backslash\left\{y_{1}, y_{2}\right\}=\uparrow y_{1} \backslash\left\{y_{1}\right\} .
\end{aligned}
$$

Which means $m^{+} \vee y_{1}=y_{1}^{+}$. That $\left(h_{1} \vee y_{2}\right) \wedge h_{2}=y_{2}^{+}$is proved similarly.
2. $h t_{L_{0}\left\langle y_{1}, y_{2}\right\rangle}\left(h_{1}, h_{2}\right)=h t_{L_{0}}\left(h_{1}, h_{2}\right)$ and $h t_{L_{0}\left\langle y_{1}, y_{2}\right\rangle}\left(h_{2}, h_{1}\right)=h t_{L_{0}}\left(h_{2}, h_{1}\right)$.

Suppose there exists a chain of meet-irreducibles in $L_{0}\left\langle y_{1}, y_{2}\right\rangle$

$$
k_{1}<k_{2}<\cdots<k_{r}
$$

such that $h_{1} \leq k_{1}$ and $h_{2} \not \leq k_{r}$. Let, as above, $\varphi: \mathcal{M}\left(L_{0}\left\langle y_{1}, y_{2}\right\rangle\right) \rightarrow \mathcal{M}(L)$ be the surjective total $\mathbf{P}$-morphism dual to the inclusion $L_{0} \hookrightarrow L_{0}\left\langle y_{1}, y_{2}\right\rangle$. Then

$$
\varphi\left(k_{1}\right)<\varphi\left(k_{2}\right)<\cdots<\varphi\left(k_{r}\right)
$$

is a chain of meet-irreducibles in $L_{0}$ such that $h_{1} \leq \varphi\left(k_{1}\right)$ and $h_{2} \not \leq \varphi\left(k_{r}\right)$. Indeed, $\mathbf{P}$-morphisms preserve the strict order.
On the other hand, a chain of meet-irreducibles in $L_{0}$

$$
b_{1}<b_{2}<\cdots<b_{r}
$$

such that $h_{1} \leq b_{1}$ and $h_{2} \not \leq b_{r}$ can be lifted to a chain of meet-irreducibles of $L_{0}\left\langle y_{1}, y_{2}\right\rangle$

$$
k_{1}<k_{2}<\cdots<k_{r}
$$

such that $\varphi\left(k_{s}\right)=b_{s}$ for $s=1, \ldots, r$ using the fact that $\varphi$ is a surjective $\mathbf{P}$-morphism. We have that $h_{1} \leq k_{1}$ and $h_{2} \not \leq k_{r}$.
Therefore $\mathrm{ht}_{L_{0}\left\langle y_{1}, y_{2}\right\rangle}\left(h_{1}, h_{2}\right)=\mathrm{ht}_{L_{0}}\left(h_{1}, h_{2}\right)$. That $\mathrm{ht}_{L_{0}\left\langle y_{1}, y_{2}\right\rangle}\left(h_{2}, h_{1}\right)=$ $\mathrm{ht}_{L_{0}}\left(h_{2}, h_{1}\right)$ is shown analogously.
3. If $h_{1} \not \subset h_{2}$ then $h t_{L_{0}\left\langle y_{1}, y_{2}\right\rangle}\left(h_{2} \vee y_{1}, h_{1}\right)<h t_{L_{0}}\left(h_{2}, h_{1}\right)$.

Let $n_{2}=\mathrm{ht}_{L_{0}}\left(h_{2}, h_{1}\right)$. Note that $n_{2} \neq 0$ because $h_{1} \not \leq h_{2}$. Suppose there exists a chain in $\mathcal{M}\left(L_{0}\left\langle y_{1}, y_{2}\right\rangle\right)$

$$
k_{1}<k_{2}<\cdots<k_{n_{2}}
$$

such that $h_{2} \vee y_{1} \leq k_{1}$ and $h_{1} \not \leq k_{n_{2}}$. We have that $k_{1}$ is not a meetirreducible component of $h_{2}$ in $L_{0}\left\langle y_{1}, y_{2}\right\rangle$. Indeed, $y_{1} \leq k_{1}$ and the meetirreducible components of $h_{2}$ that are greater than or equal to $y_{1}$ are the same that are greater than or equal to $h_{1}$ because $y_{1} \rightarrow h_{2}=h_{1} \rightarrow h_{2}$, but $h_{1} \not \leq k_{1}$. Thus there would exist a continuation of such a chain given by $k_{0}$ meet-irreducible component of $h_{2}$ in $L_{0}\left\langle y_{1}, y_{2}\right\rangle$, but this is absurd because we have proved above that $n_{2}$ is the maximum length of those chains.
Symmetrically, if $h_{2} \not \leq h_{1}$ then $\mathrm{ht}_{L_{0}\left\langle y_{1}, y_{2}\right\rangle}\left(h_{1} \vee y_{2}, h_{2}\right)<\mathrm{ht}_{L_{0}}\left(h_{1}, h_{2}\right)$.

Lemma 4.11. Let $L_{0}, L$, $\left(h_{1}, h_{2}, m\right)$ and $\left(y_{1}, y_{2}\right)$ as in Lemma 4.10. Let $\left(y_{11}, y_{12}\right) \in L^{2}$ and $\left(y_{21}, y_{22}\right) \in L^{2}$ be primitive pairs over $L_{0}\left\langle y_{1}, y_{2}\right\rangle$ inducing the signatures $\left(h_{1}, h_{2} \vee y_{1}, y_{1}\right)$ and ( $h_{1} \vee y_{2}, h_{2}, y_{2}$ ), respectively. Then the extension of finite Brouwerian semilattices $L_{0}\left\langle y_{1}, y_{2}, y_{11}, y_{12}\right\rangle \subseteq L_{0}\left\langle y_{i j} \mid i, j=1,2\right\rangle$ is minimal of decomposition type. This implies that any meet-irreducible of $L_{0}\left\langle y_{1}, y_{2}\right\rangle$ different from $y_{1}, y_{2}$ is still meet-irreducible in $L_{0}\left\langle y_{i j} \mid i, j=1,2\right\rangle$.

Proof. By the hypotheses we have that:

1. $y_{11} \neq y_{12}$ and $y_{11}, y_{12} \notin L_{0}\left\langle y_{1}, y_{2}\right\rangle$,
2. $y_{11} \rightarrow y_{1}=y_{12}$ and $y_{12} \rightarrow y_{1}=y_{11}$
and for any $a$ meet-irreducible of $L_{0}\left\langle y_{1}, y_{2}\right\rangle$ :
3. if $y_{1}<a$ then $y_{1 i} \rightarrow a \in L_{0}\left\langle y_{1}, y_{2}\right\rangle$ for $i=1,2$,
4. $y_{11}<a$ iff $h_{1} \leq a$ and $y_{12}<a$ iff $\left(h_{2} \vee y_{1}\right) \leq a$.
furthermore
5. $y_{21} \neq y_{22}$ and $y_{21}, y_{22} \notin L_{0}\left\langle y_{1}, y_{2}\right\rangle$,
6. $y_{21} \rightarrow y_{2}=y_{22}$ and $y_{22} \rightarrow y_{2}=y_{21}$
and for any $a$ meet-irreducible of $L_{0}\left\langle y_{1}, y_{2}\right\rangle$ :
7. if $y_{2}<a$ then $y_{2 i} \rightarrow a \in L_{0}\left\langle y_{1}, y_{2}\right\rangle$ for $i=1,2$,
8. $y_{21}<a$ iff $\left(h_{1} \vee y_{2}\right) \leq a$ and $y_{22}<a$ iff $h_{2} \leq a$.

Notice that properties 4 of $y_{11}, y_{12}$ and 4 of $y_{21}, y_{22}$ actually hold for any $a \in$ $L_{0}\left\langle y_{1}, y_{2}\right\rangle$ since any element in a finite Brouwerian semilattice is the meet of meet-irreducible elements.
First of all, we observe that

$$
\begin{equation*}
y_{2 i} \rightarrow y_{1}=y_{1} \quad \text { and } \quad y_{1 i} \rightarrow y_{2}=y_{2} \quad \text { for } i=1,2 \tag{4}
\end{equation*}
$$

Indeed,

$$
\begin{equation*}
y_{1} \leq y_{2 i} \rightarrow y_{1} \leq y_{2} \rightarrow y_{1}=y_{2} \rightarrow\left(y_{2} \rightarrow m\right)=y_{2} \rightarrow m=y_{1} \tag{5}
\end{equation*}
$$

The second equation of (4) is shown analogously. The inequalities (5) and their analogues also imply that $y_{2} \rightarrow y_{1}=y_{1}$ and $y_{1} \rightarrow y_{2}=y_{2}$.
Moreover

$$
\begin{equation*}
y_{1 i}-y_{2 j}=y_{1 i} \quad \text { and } \quad y_{2 i}-y_{1 j}=y_{2 i} \quad \text { for } i, j=1,2 \tag{6}
\end{equation*}
$$

Indeed,

$$
\begin{aligned}
y_{11} \leq y_{21} \rightarrow y_{11} \leq y_{2} \rightarrow y_{11}=y_{2} \rightarrow\left(y_{12} \rightarrow y_{1}\right) & =y_{12} \rightarrow\left(y_{2} \rightarrow y_{1}\right) \\
& =y_{12} \rightarrow y_{1}=y_{11}
\end{aligned}
$$

and thus $y_{21} \rightarrow y_{11}=y_{11}$. The remaining equations of (6) are proved analogously.

- $\left(y_{21}, y_{22}\right)$ is a primitive pair inducing the signature ( $h_{1} \vee y_{2}, h_{2}, y_{2}$ ).

As a consequence of Lemma 4.7, $y_{1}, y_{2}$ are meet-irreducible in $L_{0}\left\langle y_{1}, y_{2}\right\rangle$, thus $y_{2}$ is meet-irreducible in $L_{0}\left\langle y_{1}, y_{2}, y_{11}, y_{12}\right\rangle$.
$y_{21} \neq y_{22}$ by property 1 of $y_{21}, y_{22}$. Also $y_{21}, y_{22} \notin L_{0}\left\langle y_{1}, y_{2}, y_{11}, y_{12}\right\rangle$. Indeed, if $y_{21} \in L_{0}\left\langle y_{1}, y_{2}, y_{11}, y_{12}\right\rangle$ then $y_{22}=y_{21} \rightarrow y_{2} \in L_{0}\left\langle y_{1}, y_{2}, y_{11}, y_{12}\right\rangle$ and vice versa. In that case, $y_{2}=y_{21} \wedge y_{22} \in L_{0}\left\langle y_{1}, y_{2}, y_{11}, y_{12}\right\rangle$ with $y_{21}, y_{22} \neq y_{2}$ because they are not in $L_{0}\left\langle y_{1}, y_{2}\right\rangle$. This is impossible because $y_{2}$ is meetirreducible in $L_{0}\left\langle y_{1}, y_{2}, y_{11}, y_{12}\right\rangle$.
$y_{21} \rightarrow y_{2}=y_{22}$ and $y_{22} \rightarrow y_{2}=y_{21}$ by property 2 of $y_{21}, y_{22}$.
Since $\left(y_{11}, y_{12}\right)$ is a primitive pair inducing the signature $\left(h_{1}, h_{2} \vee y_{1}, y_{1}\right)$, the meet-irreducibles of $L_{0}\left\langle y_{1}, y_{2}, y_{11}, y_{12}\right\rangle$ are $y_{11}, y_{12}$ and the meet-irreducibles of $L_{0}\left\langle y_{1}, y_{2}\right\rangle$ except $y_{1}$. If $a$ is a meet-irreducible of $L_{0}\left\langle y_{1}, y_{2}, y_{11}, y_{12}\right\rangle$ such that $y_{2}<a$ then $a$ is meet-irreducible in $L_{0}\left\langle y_{1}, y_{2}\right\rangle$ because $a \neq y_{11}, y_{12}$. Indeed, $y_{2} \nless y_{11}, y_{12}$ because $y_{2} \rightarrow y_{1 i}=\left(y_{21} \wedge y_{22}\right) \rightarrow y_{1 i}=y_{22} \rightarrow\left(y_{21} \rightarrow y_{1 i}\right)=$ $y_{1 i} \neq 1$ by (6). Thus $y_{2 i} \rightarrow a \in L_{0}\left\langle y_{1}, y_{2}\right\rangle$ by property 3 of $y_{21}, y_{22}$.

- Every meet-irreducible of $L_{0}\left\langle y_{1}, y_{2}\right\rangle$ different from $y_{1}, y_{2}$ is still meet-irreducible in $L_{0}\left\langle y_{i j} \mid i, j=1,2\right\rangle$. We have that

$$
\mathcal{M}\left(L_{0}\left\langle y_{1}, y_{2}\right\rangle\right) \backslash\left\{y_{1}, y_{2}\right\} \subseteq \mathcal{M}\left(L_{0}\left\langle y_{1}, y_{2}, y_{11}, y_{12}\right\rangle\right) \backslash\left\{y_{2}\right\} \subseteq \mathcal{M}\left(L_{0}\left\langle y_{i j} \mid i, j=1,2\right\rangle\right)
$$

because the two extensions involved are both minimal of decomposition type.

Lemma 4.12. Let $L_{0}, L$, $\left(h_{1}, h_{2}, m\right)$ and $\left(y_{1}, y_{2}\right)$ as in Lemma 4.10. Let $\left(y_{11}, y_{12}\right) \in L^{2}$ and $\left(y_{21}, y_{22}\right) \in L^{2}$ be primitive pairs over $L_{0}\left\langle y_{1}, y_{2}\right\rangle$ inducing the signatures $\left(h_{1}, h_{2} \vee y_{1}, y_{1}\right)$ and $\left(h_{1} \vee y_{2}, h_{2}, y_{2}\right)$, respectively. If $x_{1}=y_{11} \wedge y_{21}$ and $x_{2}=y_{12} \wedge y_{22}$, then $\left(x_{1}, x_{2}\right)$ is a primitive pair over $L_{0}$ inducing the signature $\left(h_{1}, h_{2}, m\right)$.

Proof. First of all, we observe that

$$
\begin{equation*}
x_{1} \rightarrow m=x_{2} \quad \text { and } \quad x_{2} \rightarrow m=x_{1} . \tag{7}
\end{equation*}
$$

Indeed, thanks to equations (4) we have:

$$
\begin{aligned}
x_{1} \rightarrow m=\left(y_{11} \wedge y_{21}\right) \rightarrow\left(y_{1} \wedge y_{2}\right) & =\left(y_{11} \rightarrow\left(y_{21} \rightarrow y_{1}\right)\right) \wedge\left(y_{21} \rightarrow\left(y_{11} \rightarrow y_{2}\right)\right) \\
& =\left(y_{11} \rightarrow y_{1}\right) \wedge\left(y_{21} \rightarrow y_{2}\right)=y_{12} \wedge y_{22}=x_{2}
\end{aligned}
$$

showing the second equation of (7) is analogous.
In the rest of the proof we will refer to the properties of $y_{11}, y_{12}, y_{21}, y_{22}$ listed at the beginning of the proof of Lemma 4.11.

- $\left(x_{1}, x_{2}\right)$ is a primitive pair over $L_{0}$.
$x_{1}, x_{2} \neq 1$ since $y_{11}, y_{12}, y_{21}, y_{22}$ are not in $L_{0} . m$ is meet-irreducible and equations (7) imply that $m=x_{1} \wedge x_{2}$. Thus if $x_{1}=x_{2}$, then $x_{1}=m=1$ but this is absurd. By equations (7) we get that $x_{1} \rightarrow m=x_{2}, x_{2} \rightarrow m=x_{1}$. Furthermore $x_{1}, x_{2} \notin L_{0}$. This is because $m$ is meet-irreducible in $L_{0}$ and $x_{1} \rightarrow m=x_{2}, x_{2} \rightarrow m=x_{1}$ are different from 1 and $m$.
It remains to show that, for any $a$ meet-irreducible element of $L_{0}$ and $i=1,2$, if $m<a$ then $x_{i} \rightarrow a \in L_{0}$. We show $x_{1} \rightarrow a \in L_{0}$, that $x_{2} \rightarrow a \in L_{0}$ is proved analogously.
Since $m<a$, we have $h_{1} \wedge h_{2}=m^{+} \leq a$. Thus $h_{1} \leq a$ or $h_{2} \leq a$. We consider these two cases separately. Suppose $h_{1} \leq a$. Then $x_{1} \rightarrow a=1 \in L_{0}$ because $x_{1} \leq y_{11} \leq h_{1}$. Suppose $h_{2} \leq a$ and $h_{1} \not \leq a$, we want to prove that $x_{1} \rightarrow a=$ $a \in L_{0}$. Note that the meet-irreducible components of $a$ in $L_{0}\left\langle y_{1}, y_{2}\right\rangle$ coincide with the meet-irreducible component of $a$ in $L_{0}\left\langle y_{i j} \mid i, j=1,2\right\rangle$. Indeed, since $a$ is the meet of its meet-irreducible components in $L_{0}\left\langle y_{1}, y_{2}\right\rangle$, it is sufficient to prove that any meet-irreducible component $b$ of $a$ in $L_{0}\left\langle y_{1}, y_{2}\right\rangle$ is meetirreducible in $L_{0}\left\langle y_{i j} \mid i, j=1,2\right\rangle$. We have $b \neq y_{1}, y_{2}$ because $h_{2} \leq b$ and $h_{2} \not \leq y_{1}, y_{2}$. Indeed, if $h_{2} \leq y_{i}$ then $1=h_{2} \rightarrow y_{i}=h_{2} \rightarrow\left(y_{j} \rightarrow m\right)=y_{j} \rightarrow$ $\left(h_{2} \rightarrow m\right)=y_{j} \rightarrow m=y_{i}$ with $i \neq j$ which is absurd. Thus by Lemma 4.11 we have that $b$ is also meet-irreducible in $L_{0}\left\langle y_{i j} \mid i, j=1,2\right\rangle$.
Since $a$ is meet-irreducible in $L_{0}$ and $h_{1} \not \leq a$, we have $h_{1} \rightarrow a=a$. For any $b$ meet-irreducible component of $a$ in $L_{0}\left\langle y_{1}, y_{2}\right\rangle$ we have $h_{1} \not \leq b$ because $h_{1} \rightarrow a=a$ means that $h_{1}$ is not smaller than or equal to any meet-irreducible component of $a$. Since $h_{1} \not \leq b$ and in particular $h_{1} \vee y_{2} \not \leq b$, then property 4 of $y_{11}$ and property 4 of $y_{21}$ imply that $y_{11}, y_{21} \not \leq b$. Therefore $x_{1}=y_{11} \wedge y_{21} \not \leq b$ because $b$ is meet-irreducible in $L_{0}\left\langle y_{i j} \mid i, j=1,2\right\rangle$. This implies that $x_{1} \rightarrow a=$ $a$ because $x_{1}$ is not smaller than or equal to any meet-irreducible component of $a$ in $L_{0}\left\langle y_{i j} \mid i, j=1,2\right\rangle$.
- $\left(x_{1}, x_{2}\right)$ induces the signature $\left(h_{1}, h_{2}, m\right)$.

We use Proposition 3.22 . Let $a$ be meet-irreducible in $L_{0}\left\langle y_{1}, y_{2}\right\rangle$.
If $h_{i} \leq a$ then $x_{i} \leq y_{i i}<a$ by property 4 of $y_{11}$ and property 4 of $y_{22}$
If $x_{1}<a$ then $m<a$ by (7) and $m^{+}=h_{1} \wedge h_{2} \leq a$. Let $b$ be a meet-irreducible component of $a$ in $L_{0}\left\langle y_{1}, y_{2}\right\rangle$. We claim that $h_{1} \leq b$. We have that $b$ is meetirreducible in $L_{0}\left\langle y_{1}, y_{2}\right\rangle$ and $b \neq y_{1}, y_{2}$ because $x_{1}<b$ and $x_{1} \nless y_{1}, y_{2}$. Indeed, by equations (6), we have:

$$
\begin{align*}
& x_{1} \rightarrow y_{2}=y_{11} \rightarrow\left(y_{21} \rightarrow y_{2}\right)=y_{11} \rightarrow y_{22}=y_{22} \neq 1 \\
& x_{1} \rightarrow y_{1}=y_{21} \rightarrow\left(y_{11} \rightarrow y_{1}\right)=y_{21} \rightarrow y_{12}=y_{12} \neq 1 \tag{8}
\end{align*}
$$

Suppose $h_{1} \not \subset b$, then by property 4 of $y_{11}$ we would get $y_{11} \nless b$. Furthermore, $h_{1} \vee y_{2} \not \leq b$ and by property 4 of $y_{21}$ we would get $y_{21} \nless b$. Then $b$ would also be meet-irreducible in $L_{0}\left\langle y_{i j} \mid i, j=1,2\right\rangle$ by Lemma 4.11. Therefore $x_{1}=$ $y_{11} \wedge y_{21} \nless b$ but this is absurd. Thus for any $b$ meet-irreducible component of $a$ we have $h_{1} \leq b$ and hence $h_{1} \leq a$. For $x_{2}$ the reasoning is analogous.

Lemma 4.13. Let $L_{0}, L,\left(h_{1}, h_{2}, m\right)$ and $\left(y_{1}, y_{2}\right)$ as in Lemma 4.10 with $h_{2}<$ $h_{1}$. Let $\left(y_{11}, y_{12}\right) \in L^{2}$ be a primitive pair over $L_{0}\left\langle y_{1}, y_{2}\right\rangle$ inducing the signature $\left(h_{1}, h_{2} \vee y_{1}, y_{1}\right)$. If $x_{1}=y_{11}$ and $x_{2}=y_{12} \wedge y_{2}$, then $\left(x_{1}, x_{2}\right)$ is a primitive pair over $L_{0}$ inducing the signature $\left(h_{1}, h_{2}, m\right)$.

Proof. By equations (3), we have $y_{2}^{+}=\left(h_{1} \vee y_{2}\right) \wedge h_{2}=h_{2}$ in $L_{0}\left\langle y_{1}, y_{2}\right\rangle$. We will refer to the properties 1, 2, 3, 4, of $y_{11}, y_{12}$ listed at the beginning of the proof of Lemma 4.11. We have

$$
\begin{equation*}
x_{1} \rightarrow m=x_{2} \quad \text { and } \quad x_{2} \rightarrow m=x_{1} . \tag{9}
\end{equation*}
$$

Indeed,

$$
\begin{array}{r}
x_{1} \rightarrow m=y_{11} \rightarrow\left(y_{1} \wedge y_{2}\right)=\left(y_{11} \rightarrow y_{1}\right) \wedge\left(y_{11} \rightarrow y_{2}\right)=y_{12} \wedge y_{2}=x_{2} \\
x_{2} \rightarrow m=\left(y_{12} \wedge y_{2}\right) \rightarrow\left(y_{1} \wedge y_{2}\right)=\left(y_{12} \rightarrow\left(y_{2} \rightarrow y_{1}\right)\right) \wedge\left(y_{12} \rightarrow\left(y_{2} \rightarrow y_{2}\right)\right) \\
=y_{12} \rightarrow y_{1}=y_{11}=x_{1}
\end{array}
$$

We have used that $y_{11} \rightarrow y_{2}=y_{2}$, this is proven in the same way as (4) in Lemma 4.12

- $\left(x_{1}, x_{2}\right)$ is a primitive pair over $L_{0}$.

Equations (9) imply $m=x_{1} \wedge x_{2}$. Moreover, if $x_{1}=x_{2}$ then $x_{1}=m=1$ but this is absurd because $x_{1}, x_{2} \neq 1$ since $y_{11}, y_{12}, y_{2} \notin L_{0}$. Thus $x_{1} \neq x_{2}$. We have $x_{1}, x_{2} \notin L_{0}$ because $m$ is meet-irreducible in $L_{0}$ and $x_{1} \rightarrow m=x_{2}$ and $x_{2} \rightarrow m=x_{1}$ are different from 1 and $m$.
By equations (9) we have $x_{1} \rightarrow m=x_{2}$ and $x_{2} \rightarrow m=x_{1}$.
It remains to show that, for any $a$ meet-irreducible element of $L_{0}$ and $i=1,2$, if $m<a$ then $x_{i} \rightarrow a \in L_{0}$.
If $m<a$ then $h_{2}=h_{1} \wedge h_{2}=m^{+} \leq a$. Thus $h_{1} \leq a$ or $h_{2} \leq a$. We consider these two cases separately. Suppose $h_{1} \leq a$. Then $x_{1} \rightarrow a=1 \in L_{0}$ because $y_{11} \leq h_{1}=x_{1}$, moreover $x_{2}<y_{2} \leq h_{2}<h_{1} \leq a$ imply $x_{2} \rightarrow a=1 \in L_{0}$. Suppose $h_{2} \leq a$ and $h_{1} \not \leq a$. Clearly $x_{2} \rightarrow a=1$ because $x_{2} \leq y_{2} \leq h_{2} \leq a$. We want to prove that $x_{1} \rightarrow a=a \in L_{0}$. Note that the meet-irreducible components of $a$ in $L_{0}\left\langle y_{1}, y_{2}\right\rangle$ coincide with the meet-irreducible components of $a$ in $L_{0}\left\langle y_{1}, y_{2}, y_{11}, y_{12}\right\rangle$. Indeed, since $a$ is the meet of its meet-irreducible components in $L_{0}\left\langle y_{1}, y_{2}\right\rangle$, it is sufficient to prove that any meet-irreducible component $b$ of $a$ in $L_{0}\left\langle y_{1}, y_{2}\right\rangle$ is meet-irreducible in $L_{0}\left\langle y_{1}, y_{2}, y_{11}, y_{12}\right\rangle$. We have $b \neq y_{1}$ because $h_{2} \leq b$ and $h_{2} \not \leq y_{1}$. Indeed, $h_{2} \not \leq y_{1}$ holds because $h_{2} \leq y_{1}$ would imply $1=h_{2} \rightarrow y_{1}=h_{2} \rightarrow\left(y_{2} \rightarrow m\right)=y_{2} \rightarrow\left(h_{2} \rightarrow m\right)=$ $y_{2} \rightarrow m=y_{1}$ which is absurd. Then we have that $b$ is also meet-irreducible in $L_{0}\left\langle y_{1}, y_{2}, y_{11}, y_{12}\right\rangle$. This follows from the fact that $\left(y_{11}, y_{12}\right)$ is a primitive pair over $L_{0}\left\langle y_{1}, y_{2}\right\rangle$ inducing the signature $\left(h_{1}, h_{2} \vee y_{1}, y_{1}\right)$ which implies that $\mathcal{M}\left(L_{0}\left\langle y_{1}, y_{2}\right\rangle\right) \backslash\left\{y_{1}\right\} \subseteq \mathcal{M}\left(L_{0}\left\langle y_{1}, y_{2}, y_{11}, y_{12}\right\rangle\right)$. Since $a$ is meet-irreducible of $L_{0}$ and $h_{1} \not \leq a$ it is $h_{1} \rightarrow a=a$. For any $b$ meet-irreducible component of $a$ in $L_{0}\left\langle y_{1}, y_{2}\right\rangle$ we have $h_{1} \not \leq b$ because $h_{1} \rightarrow a=a$ means that $h_{1}$ is not smaller than or equal to any meet-irreducible component of $a$. Since $h_{1} \not \leq b$, by property 4 of $y_{11}$, we have that $x_{1}=y_{11} \nless b$, therefore $x_{1} \not \leq b$ because $b \neq y_{11}$ since $y_{11} \notin L_{0}\left\langle y_{1}, y_{2}\right\rangle$. This implies that $x_{1} \rightarrow a=a$ because $x_{1}$ is not smaller than or equal to any meet-irreducible component of $a$ in $L_{0}\left\langle y_{1}, y_{2}, y_{11}, y_{12}\right\rangle$.

- $\left(x_{1}, x_{2}\right)$ induces the signature $\left(h_{1}, h_{2}, m\right)$.

We use Proposition 3.22. Let $a$ be meet-irreducible in $L_{0}\left\langle y_{1}, y_{2}\right\rangle$.
By property 4 of $y_{11}$ we have that $h_{1} \leq a$ iff $x_{1}=y_{11}<a$.
If $h_{2} \leq a$ then $x_{2} \leq y_{2}<h_{2} \leq a$ since $h_{2}=y_{2}^{+}$.
If $x_{2}<a$, since $m=y_{1} \wedge y_{2} \leq y_{12} \wedge y_{2}=x_{2}$, then $m<a$ and $h_{2}=h_{1} \wedge h_{2}=$ $m^{+} \leq a$.

Theorem 4.14. Let $L$ be a Brouwerian semilattice satisfying the Splitting Axiom.
Then for any finite Brouwerian sub-semilattice $L_{0} \subseteq L$ and for any signature $\left(h_{1}, h_{2}, m\right)$ of decomposition type in $L_{0}$ there exists a primitive pair $\left(x_{1}, x_{2}\right) \in L^{2}$ over $L_{0}$ inducing that signature.

Proof. We prove the theorem by induction on $\mathrm{H}_{L_{0}}\left(h_{1}, h_{2}\right)$.
Base case of induction: $\mathrm{H}_{L_{0}}\left(h_{1}, h_{2}\right)=0$.
In this case we have $h_{1}=h_{2}=m^{+}$. We denote $h_{1}=h_{2}$ by $h$.
Since $m \ll h$, we can apply the splitting axiom to $m, h, h$. Hence there exist elements $x_{1}, x_{2} \in L$ different from 1 such that:

$$
\begin{align*}
& x_{1} \rightarrow m=x_{2} \leq h \\
& x_{2} \rightarrow m=x_{1} \leq h . \tag{10}
\end{align*}
$$

By Lemma 4.8, we have that $\left(x_{1}, x_{2}\right)$ is a primitive pair inducing the signature $\left(h_{1}, h_{2}, m\right)$. Inductive step.
Assume the statement of the theorem be true for any pair $\left(h_{1}, h_{2}\right)$ of relative height smaller than $n$, we show it is true for $\mathrm{H}_{L_{0}}\left(h_{1}, h_{2}\right)=n$.
Since $m \ll m^{+}=h_{1} \wedge h_{2}$, we can apply the splitting axiom to $m, h_{1}, h_{2}$ to find $y_{1}, y_{2} \in L$ different from 1 such that:

$$
\begin{gather*}
y_{1} \rightarrow m=y_{2} \leq h_{2} \\
y_{2} \rightarrow m=y_{1} \leq h_{1} \\
y_{1} \rightarrow h_{2}=h_{1} \rightarrow h_{2}  \tag{11}\\
y_{2} \rightarrow h_{1}=h_{2} \rightarrow h_{1}
\end{gather*}
$$

By local finiteness, $L_{0}\left\langle y_{1}, y_{2}\right\rangle$ is finite and thus a Heyting algebra. By Lemma 4.10 we have

1. $\left(h_{1}, h_{2} \vee y_{1}, y_{1}\right)$ and $\left(h_{1} \vee y_{2}, h_{2}, y_{2}\right)$ are signatures of decomposition type in $L_{0}\left\langle y_{1}, y_{2}\right\rangle$, where the joins are taken inside $L_{0}\left\langle y_{1}, y_{2}\right\rangle$;
2. $\operatorname{ht}_{L_{0}\left\langle y_{1}, y_{2}\right\rangle}\left(h_{1}, h_{2}\right)=\mathrm{ht}_{L_{0}}\left(h_{1}, h_{2}\right)$ and $\mathrm{ht}_{L_{0}\left\langle y_{1}, y_{2}\right\rangle}\left(h_{2}, h_{1}\right)=\mathrm{ht}_{L_{0}}\left(h_{2}, h_{1}\right)$;
3. If $h_{1} \not \leq h_{2}$ then $\operatorname{ht}_{L_{0}\left\langle y_{1}, y_{2}\right\rangle}\left(h_{2} \vee y_{1}, h_{1}\right)<\operatorname{ht}_{L_{0}}\left(h_{2}, h_{1}\right)$.

If $h_{2} \not \leq h_{1}$ then $\operatorname{ht}_{L_{0}\left\langle y_{1}, y_{2}\right\rangle}\left(h_{1} \vee y_{2}, h_{2}\right)<\operatorname{ht}_{L_{0}}\left(h_{1}, h_{2}\right)$.
We can now apply the inductive hypothesis. To do so we shall consider different cases.
First, we consider the case in which $h_{1} \not \leq h_{2}$ and $h_{2} \not \leq h_{1}$, i.e. $h_{1}, h_{2}$ are incomparable.
In this case $H_{L_{0}\left\langle y_{1}, y_{2}\right\rangle}\left(h_{1}, h_{2} \vee y_{1}\right)<H_{L_{0}}\left(h_{1}, h_{2}\right)$.
Indeed, since $h_{1} \vee\left(h_{2} \vee y_{1}\right)=h_{1} \vee h_{2}$ and so $\operatorname{ht}_{L_{0}\left\langle y_{1}, y_{2}\right\rangle}\left(h_{1}, h_{2} \vee y_{1}\right)=$ $\mathrm{ht}_{L_{0}\left\langle y_{1}, y_{2}\right\rangle}\left(h_{1}, h_{2}\right)$, we have:

$$
\begin{aligned}
H_{L_{0}\left\langle y_{1}, y_{2}\right\rangle}\left(h_{1}, h_{2} \vee y_{1}\right) & =\operatorname{ht}_{L_{0}\left\langle y_{1}, y_{2}\right\rangle}\left(h_{1}, h_{2} \vee y_{1}\right)+\operatorname{ht}_{L_{0}\left\langle y_{1}, y_{2}\right\rangle}\left(h_{2} \vee y_{1}, h_{1}\right) \\
& =\operatorname{ht}_{L_{0}\left\langle y_{1}, y_{2}\right\rangle}\left(h_{1}, h_{2}\right)+\operatorname{ht}_{L_{0}\left\langle y_{1}, y_{2}\right\rangle}\left(h_{2} \vee y_{1}, h_{1}\right) \\
& <\operatorname{ht}_{L_{0}}\left(h_{1}, h_{2}\right)+\operatorname{ht}_{L_{0}}\left(h_{2}, h_{1}\right)=H_{L_{0}}\left(h_{1}, h_{2}\right) .
\end{aligned}
$$

Analogously, $H_{L_{0}\left\langle y_{1}, y_{2}\right\rangle}\left(h_{1} \vee y_{2}, h_{2}\right)<H_{L_{0}}\left(h_{1}, h_{2}\right)$.
Therefore we can apply the inductive hypothesis on both the two signatures $\left(h_{1}, h_{2} \vee y_{1}, y_{1}\right)$ and $\left(h_{1} \vee y_{2}, h_{2}, y_{2}\right)$ considered inside $L_{0}\left\langle y_{1}, y_{2}\right\rangle$ to obtain two primitive pairs $\left(y_{11}, y_{12}\right) \in L^{2}$ and $\left(y_{21}, y_{22}\right) \in L^{2}$ of decomposition type over $L_{0}\left\langle y_{1}, y_{2}\right\rangle$ which induce the two signatures, respectively.
Let $x_{1}=y_{11} \wedge y_{21}$ and $x_{2}=y_{12} \wedge y_{22}$. Lemma 4.12 guarantees that $\left(x_{1}, x_{2}\right)$ is a primitive pair of decomposition type over $L_{0}$ inducing the signature $\left(h_{1}, h_{2}, m\right)$. Finally, we consider the case in which $h_{1}$ and $h_{2}$ are comparable.
We assume $h_{1}<h_{2}$. Then, as shown above, $h_{2} \not \leq h_{1}$ implies $H_{L_{0}\left\langle y_{1}, y_{2}\right\rangle}\left(h_{1} \vee\right.$
$\left.y_{2}, h_{2}\right)<H_{L_{0}}\left(h_{1}, h_{2}\right)$. Thus, we can apply the inductive hypothesis on the signature ( $h_{1} \vee y_{2}, h_{2}, y_{2}$ ) considered inside $L_{0}\left\langle y_{1}, y_{2}\right\rangle$ to obtain the primitive pair $\left(y_{11}, y_{12}\right) \in L^{2}$ over $L_{0}\left\langle y_{1}, y_{2}\right\rangle$ which induces that signature. Define $x_{1}=y_{11}$ and $x_{2}=y_{12} \wedge y_{2}$. Lemma 4.13 guarantees that $\left(x_{1}, x_{2}\right)$ is a primitive pair of decomposition type over $L_{0}$ inducing the signature $\left(h_{1}, h_{2}, m\right)$.
The case $h_{2}<h_{1}$ is analogous and the case $h_{1}=h_{2}$ is considered in the base case of the induction.
4.2. Density axioms. [Density 1 Axiom] For every $c$ there exists $b \neq 1$ such that $b \ll c$

Theorem 4.15. Any existentially closed Brouwerian semilattice satisfies the Density 1 Axiom.

Proof. It is sufficient to show, by Lemma 4.2, that for any finite Brouwerian semilattice $L_{0}$ and $c \in L_{0}$ there exists a finite extension $L_{0} \subseteq L$ with $b \in L$ different from 1 such that $b \ll c$.
Let $C$ be the upset of $\mathcal{M}\left(L_{0}\right)$ corresponding to $c$.
Let $P$ be the poset obtained from $\mathcal{M}\left(L_{0}\right)$ by adding a new least element $l \in P$ such that $l \leq p$ for any $p \in \mathcal{M}\left(L_{0}\right)$. Let $\varphi: P \rightarrow \mathcal{M}\left(L_{0}\right)$ be the surjective $\mathbf{P}$ morphism such that dom $\varphi=\mathcal{M}\left(L_{0}\right)$ and it is the identity on its domain. Then $\uparrow l \ll C$. Let $L$ be the Brouwerian semilattice dual to $P$ and $b \in L$ corresponding to $\uparrow l$.
[Density 2 Axiom] For every $c, a_{1}, a_{2}, d$ such that $a_{1}, a_{2} \neq 1, a_{1} \ll c, a_{2} \ll c$ and $d \rightarrow a_{1}=a_{1}, d \rightarrow a_{2}=a_{2}$ there exists an element $b$ different from 1 such that:

$$
\begin{aligned}
b & \ll c \\
a_{1} & \ll b \\
a_{2} & \ll b \\
d \rightarrow b & =b
\end{aligned}
$$

THEOREM 4.16. Any existentially closed Brouwerian semilattice satisfies the Density 2 Axiom.

Proof. It is sufficient to show, by Lemma4.2, that for any finite Brouwerian semilattice $L_{0}$ and $c, a_{1}, a_{2}, d$ such that $a_{1}, a_{2} \neq 1, a_{1} \ll c, a_{2} \ll c$ and $d \rightarrow a_{1}=$ $a_{1}, d \rightarrow a_{2}=a_{2}$ there exists a finite extension $L_{0} \subseteq L$ with $b \in L$ different from 1 such that $b \ll c, a_{1} \ll b, a_{2} \ll b$ and $d \rightarrow b=b$.
Let $C, A_{1}, A_{2}, D$ be the upsets of $\mathcal{M}\left(L_{0}\right)$ corresponding to $c, a_{1}, a_{2}, d$.
We proceed in two ways depending on whether $C$ is empty or not.
If $C=\emptyset$ choose two minimal elements $\alpha^{1}, \alpha^{2}$ respectively of $A_{1}$ and $A_{2}$ and obtain a poset $P$ by adding a new element $\beta$ to $P_{0}$ and setting for any $x \in P$ :

- $x \leq \beta$ iff $x=\beta$ or $x \leq \alpha^{1}$ or $x \leq \alpha^{2}$.

If $\alpha^{1}, \alpha^{2}$ are incomparable, they become the only two predecessors of $\beta$ in $P$, otherwise if e.g. $\alpha^{1} \leq \alpha^{2}$ then $\alpha^{2}$ is the only predecessor of $\beta$.

- $\beta \leq x$ iff $x=\beta$, i.e. $\beta$ is maximal in $P$.

Define a surjective $\mathbf{P}$-morphism $\varphi: P \rightarrow \mathcal{M}\left(L_{0}\right)$ taking dom $\varphi=\mathcal{M}\left(L_{0}\right)$ and $\varphi$ acting as the identity on its domain. Take $B=\uparrow \beta$, we have:

- $B \ll \emptyset=\uparrow \varphi^{-1}(C)$,
- $A_{1} \cup\{\beta\}=\uparrow \varphi^{-1}\left(A_{1}\right) \ll B$,
- $A_{2} \cup\{\beta\}=\uparrow \varphi^{-1}\left(A_{2}\right) \ll B$,
- $B=\uparrow \varphi^{-1}(D) \rightarrow B$.

Indeed, since $d \rightarrow a_{1}=a_{1}$ and $d \rightarrow a_{2}=a_{2}, D$ does not contain any minimal element of $A_{1}$ or $A_{2}$, in particular it does not contain $\alpha^{1}$ or $\alpha^{2}$.
Thus, take $L$ to be the Brouwerian semilattice dual to $P$ and $b \in L$ corresponding to $B$.

If $C \neq \emptyset$ let $\gamma_{1}, \ldots, \gamma_{n}$ be the minimal elements of $C$.
Choose for any $i=1, \ldots, n$ two minimal elements $\alpha_{i}^{1}, \alpha_{i}^{2}$ respectively of $A_{1}$ and $A_{2}$ such that $\alpha_{i}^{1} \leq \gamma_{i}$ and $\alpha_{i}^{2} \leq \gamma_{i}$. Notice that they exist and $\gamma_{i} \neq \alpha_{i}^{1}, \gamma_{i} \neq \alpha_{i}^{2}$ because $A_{1} \ll C$ and $A_{2} \ll C$.
Obtain a poset $P$ by adding new elements $\beta_{1}, \ldots, \beta_{n}$ to $P_{0}$ and setting for any $x \in P$ :

- $x \leq \beta_{i}$ iff $x=\beta_{i}$ or $x \leq \alpha_{i}^{1}$ or $x \leq \alpha_{i}^{2}$.

If $\alpha_{i}^{1}, \alpha_{i}^{2}$ are incomparable they become the only two predecessors of $\beta_{i}$ in $P$, otherwise if e.g. $\alpha_{i}^{1} \leq \alpha_{i}^{2}$ then $\alpha_{i}^{2}$ is the only predecessor of $\beta_{i}$.

- $\beta_{i} \leq x$ iff $x=\beta$ or $\gamma_{i} \leq x$,
i.e. $\gamma_{i}$ is the unique successor of $\beta_{i}$ in $P$.

Define a surjective $\mathbf{P}$-morphism $\varphi: P \rightarrow \mathcal{M}\left(L_{0}\right)$ by taking dom $\varphi=\mathcal{M}\left(L_{0}\right)$ and $\varphi$ acting as the identity on its domain.
Take $B=\uparrow \beta_{1} \cup \cdots \cup \uparrow \beta_{n}$, we have:

- $B \ll \uparrow \varphi^{-1}(C)$,
- $A_{1} \cup\left\{\beta_{1}, \ldots, \beta_{n}\right\}=\uparrow \varphi^{-1}\left(A_{1}\right) \ll B$,
- $A_{2} \cup\left\{\beta_{1}, \ldots, \beta_{n}\right\}=\uparrow \varphi^{-1}\left(A_{2}\right) \ll B$,
- $B=\uparrow \varphi^{-1}(D) \rightarrow B$.

Indeed $D$ does not contain any minimal element of $A_{1}$ or $A_{2}$, in particular it does not contain $\alpha_{i}^{1}$ or $\alpha_{i}^{2}$ for any $i=1, \ldots, n$.
Then, take $L$ to be the Brouwerian semilattice dual to $P$ and $b \in L$ corresponding to $B$.

Lemma 4.17. Let $L$ be a Brouwerian semilattice and $L_{0} \subseteq L$ a finite Brouwerian sub-semilattice. Let $(h, \emptyset)$ be a signature of addition type in $L_{0}$ and $0_{L_{0}}$ the least element of $L_{0}$. If $1 \neq t \in L$ is such that $t \ll 0_{L_{0}}$, then:

1. $L_{1}:=L_{0} \cup\{t\}$ is a Brouwerian sub-semilattice of $L$,
2. $\left(h, 0_{L_{0}}, t\right)$ is a signature of decomposition type in $L_{1}$,
3. If $\left(x_{1}, x_{2}\right)$ is a primitive pair of elements of $L$ over $L_{1}$ inducing the signature $\left(h, 0_{L_{0}}, t\right)$, then $x_{1}$ is a primitive element of $L$ over $L_{0}$ inducing the signature $(h, \emptyset)$.

Proof. We prove the result in two steps.

- $L_{1}$ is a Brouwerian sub-semilattice of $L$ and $\left(h, 0_{L_{0}}, t\right)$ is a signature of decomposition type in $L_{1}$.
$L_{1}$ is clearly closed under meets. It is also closed under implications. Indeed, for any $a \in L_{0}$ we have $t<a$ and thus $t \rightarrow a=1$ and $t \leq a \rightarrow t \leq 0_{L_{0}} \rightarrow t=t$, therefore $a \rightarrow t=t$. This also shows that $t$ is a meet-irreducible of $L_{1}$. Moreover, it is clear that the meet-irreducibles of $L_{1}$ are the meet-irreducibles of $L_{0}$ and $t$.
$\left(h, 0_{L_{0}}, t\right)$ is a signature of decomposition type in $L_{1}$ because $h \wedge 0_{L_{0}}=0_{L_{0}}=$ $t^{+}$.
Since $\left(x_{1}, x_{2}\right)$ is a primitive pair inducing the signature $\left(h, 0_{L_{0}}, t\right)$, we have the following list of properties:

1. $x_{1} \neq x_{2}$ and $x_{1}, x_{2} \notin L_{1}$,
2. $x_{1} \rightarrow t=x_{2}$ and $x_{2} \rightarrow t=x_{1}$
and for any $c$ meet-irreducible of $L_{1}$ :
3. if $m<c$ then $x_{i} \rightarrow c \in L_{1}$ for $i=1,2$,
4. $x_{1}<c$ iff $h \leq c$ and $x_{2}<c$ iff $0_{L_{0}} \leq c$.

Recall that Lemma 3.15 implies that for any $c \in L_{1}$ :
(i) $x_{i} \rightarrow c \in L_{1}$ or $x_{i} \rightarrow c=b \wedge x_{j}$ for some $b \in L_{1}$ with $\{i, j\}=\{1,2\}$.
(ii) $c \rightarrow x_{i}=x_{i}$ or $c \rightarrow x_{i}=1$ for $i=1,2$.

- $x_{1}$ is a primitive element of $L$ over $L_{0}$ inducing the signature $(h, \emptyset)$.
$x_{1} \notin L_{0}$ because $x_{1} \notin L_{1}$. Let $a$ be a meet-irreducible of $L_{0}$. Then $x_{1} \rightarrow a \in$ $L_{0}$. Indeed, by property 4 of $x_{2}$, it follows from $0_{L_{0}} \leq a$ that $x_{2}<a$. Thus, by (ii) either $x_{1} \rightarrow a \in L_{1}$ or $x_{1} \rightarrow a=b \wedge x_{2}$ with $b \in L_{1}$. The latter is impossible because we would get $x_{2}<a \leq x_{1} \rightarrow a=b \wedge x_{2} \leq x_{2}$. Therefore it has to be $x_{1} \rightarrow a \in L_{1}$. Thus, $x_{1} \rightarrow a \in L_{0}$ because $t<a \leq x_{1} \rightarrow a$.
We have that $a \rightarrow x_{1}=x_{1}$ or $a \rightarrow x_{1}=1$ by property (ii).
We use Proposition 3.22 to show that $x_{1}$ induces the signature $(h, \emptyset)$.
$x_{1}<a$ if and only if $h \leq a$ by property 4 of $x_{1}$. Moreover $a \nless x_{1}$. Indeed, if $a<x_{1}$ then $0_{L_{0}}<x_{1}$ and so $1=0_{L_{0}} \rightarrow x_{1}=0_{L_{0}} \rightarrow\left(x_{2} \rightarrow t\right)=x_{2} \rightarrow\left(0_{L_{0}} \rightarrow\right.$ $t)=x_{2} \rightarrow t=x_{1}$ which is impossible because $x_{1} \notin L_{1}$.

Lemma 4.18. Let $L$ be a Brouwerian semilattice and $L_{0} \subseteq L$ a finite Brouwerian sub-semilattice. Let $\left(h,\left\{m_{1}, \ldots, m_{k}\right\}\right)$ be a signature of addition type in $L_{0}$ with $k \geq 1$. Let $y \in L$ be a primitive element over $L_{0}$ inducing the signature $\left(h,\left\{m_{1}, \ldots, m_{k-1}\right\}\right)$. Then

1. $\left(h, m_{k}^{+}, m_{k}\right)$ is a signature of decomposition type in $L_{0}\langle y\rangle$, where $m_{k}^{+}$is the unique successor of $m_{k}$ in $L_{0}\langle y\rangle$;
2. let $\left(m_{k}^{\prime}, m_{k}^{\prime \prime}\right)$ be a primitive pair inducing the signature $\left(h, m_{k}^{+}, m_{k}\right)$ and $1 \neq x \in L$ such that

$$
\begin{equation*}
x \ll h, y \ll x, m_{k}^{\prime} \ll x \text { and } d \rightarrow x=x \tag{12}
\end{equation*}
$$

where $d=\bigwedge\left\{b\right.$ meet-irreducible of $L_{0}$ s.t. $\left.b \not \leq m_{1}, \ldots, b \not \leq m_{k}\right\}$. Then $x$ is a primitive element inducing the signature $\left(h,\left\{m_{1}, \ldots, m_{k}\right\}\right)$.

Proof. By Definition 3.10 and Proposition 3.22 , we have that for any $a$ meetirreducible of $L_{0}$ :

1. $y \notin L_{0}$,
2. $y \rightarrow a \in L_{0}$,
3. either $a \rightarrow y=y$ or $a \rightarrow y=1$,
4. $y<a$ iff $h \leq a$, and $a<y$ iff $a \leq m_{i}$ for some $i=1, \ldots, k-1$.

Recall that Lemma 3.11 shows that the properties 2 and 3 actually hold for any $a \in L_{0}$.
Notice that $m_{k}$ is still meet-irreducible in the Brouwerian sub-semilattice $L_{0}\langle y\rangle \subseteq$ $L$ generated by $L_{0}$ and $y$ since $L_{0} \subseteq L_{0}\langle y\rangle$ is a minimal finite extension of addition type by Theorem 3.12 ,

- $\left(h, m_{k}^{+}, m_{k}\right)$ is a signature of addition type in $L_{0}\langle y\rangle$.

Indeed, $m_{k} \ll m_{k}^{+}=h \wedge m_{k}^{+}$.
The elements $m_{k}^{\prime}, m_{k}^{\prime \prime} \in L$ satisfy:

1. $m_{k}^{\prime}, m_{k}^{\prime \prime} \notin L_{0}\langle y\rangle$ and $m_{k}^{\prime} \neq m_{k}^{\prime \prime}$,
2. $m_{k}^{\prime} \rightarrow m_{k}=m_{k}^{\prime \prime}$ and $m_{k}^{\prime \prime} \rightarrow m_{k}=m_{k}^{\prime}$
and for any $a$ meet-irreducible of $L_{0}\langle y\rangle$ :
3. if $m_{k}<a$ then $m_{k}^{\prime} \rightarrow a \in L_{0}\langle y\rangle$ and $m_{k}^{\prime \prime} \rightarrow a \in L_{0}\langle y\rangle$,
4. $m_{k}^{\prime}<a$ iff $h \leq a \quad$ and $\quad m_{k}^{\prime \prime}<a$ iff $m_{k}^{+} \leq a$.

Observe that property 4 actually holds for any $a \in L_{0}\langle y\rangle$ since any element in a finite Brouwerian semilattice is the meet of meet-irreducible elements.

- $x$ is primitive over $L_{0}$.

We have $x \notin L_{0}$. Indeed, if $x \in L_{0}$ then, by property 4 of $y$, it would be $h \leq x$ because $y<x$. This is impossible because $x \neq 1$ and $x \ll h$.
Let $a$ be meet-irreducible in $L_{0}$. If $h \leq a$ then $x \rightarrow a=1 \in L_{0}$ since $x \leq h$ by equations (12). If $h \not \leq a$ then by property 4 of $m_{k}^{\prime}$ we have $m_{k}^{\prime} \nless a$. We consider two cases:

- If $h \not \leq a$ and $a \neq m_{k}$, then $a$ is still meet-irreducible in $L_{0}\left\langle y, m_{k}^{\prime}, m_{k}^{\prime \prime}\right\rangle$ (since $L_{0}\langle y\rangle \subseteq L_{0}\left\langle y, m_{k}^{\prime}, m_{k}^{\prime \prime}\right\rangle$ is a minimal finite extension by Theorem 3.16). Hence $m_{k}^{\prime} \rightarrow a=a$. Therefore $x \rightarrow a=a \in L_{0}$ because $a \leq x \rightarrow a \leq m_{k}^{\prime} \rightarrow a=a$ since $m_{k}^{\prime} \leq x$.
- If $a=m_{k}$, then $m_{k}^{\prime} \ll x$ by equations (12) and

$$
\begin{aligned}
x \rightarrow m_{k} & =x \rightarrow\left(m_{k}^{\prime} \wedge m_{k}^{\prime \prime}\right)=\left(x \rightarrow m_{k}^{\prime}\right) \wedge\left(x \rightarrow m_{k}^{\prime \prime}\right)=m_{k}^{\prime} \wedge\left(x \rightarrow\left(m_{k}^{\prime} \rightarrow m_{k}\right)\right) \\
& =m_{k}^{\prime} \wedge\left(\left(m_{k}^{\prime} \wedge x\right) \rightarrow m_{k}\right)=m_{k}^{\prime} \wedge\left(m_{k}^{\prime} \rightarrow m_{k}\right)=m_{k}^{\prime} \wedge m_{k}^{\prime \prime}=m_{k} \in L_{0} .
\end{aligned}
$$

We also have $a \rightarrow x=1$ or $a \rightarrow x=x$. Indeed, we consider again two cases. Suppose $a \leq m_{i}$ for some $i=1, \ldots, k$. If $i \neq k$ then $a \leq y \leq x$ and $a \rightarrow x=1$ by property 4 of $y$ and equations 12). If $i=k$ then $a \leq m_{k} \leq m_{k}^{\prime} \leq x$ and $a \rightarrow x=1$. Suppose now $a \not \leq m_{i}$ for any $i=1, \ldots, k$ then, by definition of $d$, we have $d \leq a$. So $a \rightarrow x=x$ because $x \leq a \rightarrow x \leq d \rightarrow x=x$.

- $x$ induces the signature $(h, M)$.

We use Proposition 3.22.
If $x<a$, then $m_{k}^{\prime} \leq x<a$ and thus $h \leq a$ by property 4 of $m_{k}^{\prime}$. If $h \leq a$, then $x<a$ because $x<h$ by 12 .
If $a<x$ and $a \not \leq m_{1}, \ldots, a \not \leq m_{k}$, then $d \leq a$ and $1=a \rightarrow x \leq d \rightarrow x=x$ which is absurd. Thus, $m_{i} \leq a$ for some $i=1, \ldots, k$.
Let $a \leq m_{i}$ for some $i=1, \ldots, k$. If $i \neq k$, then $a \leq m_{i}<y<x$ because $m_{i}<y$ by property 4 of $y$. Therefore $a<x$. If $i=k$ then $a \leq m_{k}<m_{k}^{\prime}<x$ and thus $a<x$.

Theorem 4.19. Let $L$ be a Brouwerian semilattice satisfying the Splitting, Density 1 and Density 2 Axioms. Then for any finite Brouwerian sub-semilattice $L_{0} \subseteq L$ and for any signature $(h, M)$ of addition type in $L_{0}$ there exists a primitive element $x \in L$ over $L_{0}$ inducing that signature.

Proof. Let $M=\left\{m_{1}, \ldots, m_{k}\right\}$, the proof is by induction on $k$.
Base case: $k=0$, i.e. $M=\emptyset$.
Let $0_{L_{0}}$ be the minimum element of $L_{0}$. By Density 1 there exists $1 \neq t \in L$ such that $t \ll 0_{L_{0}}$.
By Lemma 4.17, $L_{1}:=L_{0} \cup\{t\}$ is a Brouwerian sub-semilattice of $L$ and $\left(h, 0_{L_{0}}, t\right)$ is a signature of decomposition type in $L_{1}$. Thanks to the Splitting Axiom, we can apply Theorem 4.14 to the signature $\left(h, 0_{L_{0}}, t\right)$ in $L_{1}$ and obtain the existence of a primitive pair $\left(x_{1}, x_{2}\right) \in L^{2}$ inducing the signature $\left(h, 0_{L_{0}}, t\right)$. Lemma 4.17 shows that $x_{1}$ is a primitive element over $L_{0}$ inducing the signature $(h, \emptyset)$. Inductive step.
Assume $k \geq 1$ and that the statement of the theorem is true for any signature $(h, M)$ with $\# M=k-1$. By inductive hypothesis there exists a primitive element $y \in L$ over $L_{0}$ which induces the signature ( $h,\left\{m_{1}, \ldots, m_{k-1}\right\}$ ). By Lemma 4.18, $\left(h, m_{k}^{+}, m_{k}\right)$ is a signature of decomposition type in $L_{0}\langle y\rangle$. Since $L$ satisfies the Splitting Axiom, we can apply Theorem 4.14 to the signature $\left(h, m_{k}^{+}, m_{k}\right)$ in $L_{0}\langle y\rangle$ to obtain a primitive pair $\left(m_{k}^{\prime}, m_{k}^{\prime \prime}\right)$ of elements of $L$ inducing $\left(h, m_{k}^{+}, m_{k}\right)$. We want to apply the Density 2 Axiom on $h, y, m_{k}^{\prime}, d$ where

$$
d=\bigwedge\left\{b \text { meet-irreducible of } L_{0} \text { s.t. } b \not \leq m_{1}, \ldots, b \not \leq m_{k}\right\} .
$$

We need to show that we can apply the axiom. Since $y$ is primitive over $L_{0}$ and induces the signature $\left(h,\left\{m_{1}, \ldots, m_{k-1}\right\}\right)$, by Lemma 3.11 and Proposition 3.22, we have the following two properties of $y$ :

1. for any $a \in L_{0}$, either $a \rightarrow y=y$ or $a \rightarrow y=1$,
2. for any $b$ a meet-irreducible of $L_{0}, y<b$ iff $h \leq b$, and $b<y$ iff $b \leq m_{i}$ for some $i=1, \ldots, k-1$.
$y \ll h$ since $y<h$ because $h \in L_{0}$ and, by property 1 of $y$, we have $h \rightarrow y=y$. $m_{k}^{\prime} \ll h$ since $m_{k}^{\prime}<h$ and $h \rightarrow m_{k}^{\prime}=h \rightarrow\left(m_{k}^{\prime \prime} \rightarrow m_{k}\right)=m_{k}^{\prime \prime} \rightarrow\left(h \rightarrow m_{k}\right)=$ $m_{k}^{\prime \prime} \rightarrow m_{k}=m_{k}^{\prime}$. Notice that $h \rightarrow m_{k}=m_{k}$ because $m_{k}$ is meet-irreducible in $L_{0}$ and $m_{k}<h$.
$d \rightarrow y=y$ because for any $b$ meet-irreducible in $L_{0}$ such that $b \not \leq m_{1}, \ldots, b \not \leq m_{k}$ we have $b \rightarrow y=y$. Indeed, otherwise it would be $b \rightarrow y=1$ because $y$ is meetirreducible in $L_{0}\langle y\rangle$. So $b<y$ and then, by property 2 of $y$, we would have $b \leq m_{i}$ for some $i<k$, which is impossible.
$d \rightarrow m_{k}^{\prime}=m_{k}^{\prime}$. Indeed, since $m_{k}$ is meet-irreducible in $L_{0}$ :

$$
m_{k} \leq d \rightarrow m_{k} \leq \bigwedge\left\{b \text { meet-irreducible of } L_{0} \text { s.t. } b \not \leq m_{k}\right\} \rightarrow m_{k}=m_{k} .
$$

So $d \rightarrow m_{k}^{\prime}=d \rightarrow\left(m_{k}^{\prime \prime} \rightarrow m_{k}\right)=m_{k}^{\prime \prime} \rightarrow\left(d \rightarrow m_{k}\right)=m_{k}^{\prime \prime} \rightarrow m_{k}=m_{k}^{\prime}$.
Then, by the Density 2 Axiom, there exists $1 \neq x \in L$ such that

$$
x \ll h, y \ll x, m_{k}^{\prime} \ll x \text { and } d \rightarrow x=x .
$$

Lemma 4.18 shows that $x$ is a primitive element of $L$ inducing the signature (h, M).

Acknowledgment. We would like to thank the anonymous referee for careful reading the manuscript and providing valuable comments.

## REFERENCES

[1] M. H. Albert and S. N. Burris, Finite axiomatizations for existentially closed posets and semilattices, Order, vol. 3 (1986), no. 2, pp. 169-178.
[2] G. Bezhanishvili and R. Jansana, Esakia style duality for implicative semilattices, Appl. Categ. Structures, vol. 21 (2013), no. 2, pp. 181-208.
[3] S. A. Celani, Representation of Hilbert algebras and implicative semilattices, Cent. Eur. J. Math., vol. 1 (2003), no. 4, pp. 561-572.
[4] C. C. Chang and H. J. Keisler, Model theory, third ed., Studies in Logic and the Foundations of Mathematics, vol. 73, North-Holland Publishing Co., Amsterdam, 1990.
[5] L. Darnière, On the model-completion of Heyting algebras, arXiv:1810.01704, 2018.
[6] L. Darnière and M. Junker, Model completion of varieties of co-Heyting algebras, Houston J. Math., vol. 44 (2018), no. 1, pp. 49-82.
[7] A. Diego, Sur les algèbres de Hilbert, Translated from the Spanish by Luisa Iturrioz. Collection de Logique Mathématique, Sér. A, Fasc. XXI, Gauthier-Villars, Paris; E. Nauwelaerts, Louvain, 1966.
[8] S. Ghilardi and S. J. Van Gool, Monadic second order logic as the model companion of temporal logic, Proceedings of the 31st Annual ACM-IEEE Symposium on Logic in Computer Science (LICS 2016), ACM, New York, 2016, p. 10.
[9] , A model-theoretic characterization of monadic second order logic on infinite words, J. Symb. Log., vol. 82 (2017), no. 1, pp. 62-76.
[10] S. Ghilardi and M. Zawadowski, Model completions and r-Heyting categories, Ann. Pure Appl. Logic, vol. 88 (1997), no. 1, pp. 27-46.
[11] ——, Sheaves, games, and model completions, Trends in Logic-Studia Logica Library, vol. 14, Kluwer Academic Publishers, Dordrecht, 2002, A categorical approach to nonclassical propositional logics.
[12] P. KöHLER, Brouwerian semilattices, Trans. Amer. Math. Soc., vol. 268 (1981), no. 1, pp. 103-126.
[13] P. Lipparini, Locally finite theories with model companion, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat. (8), vol. 72 (1982), no. 1, pp. 6-11 (1983).
[14] C. G. McKay, The decidability of certain intermediate propositional logics, J. Symbolic Logic, vol. 33 (1968), pp. 258-264.
[15] W. C. Nemitz, Implicative semi-lattices, Trans. Amer. Math. Soc., vol. 117 (1965), pp. 128-142.
[16] G. R. Renardel de Lavalette, Interpolation in fragments of intuitionistic propositional logic, J. Symbolic Logic, vol. 54 (1989), no. 4, pp. 1419-1430.
[17] V. Yu. Shavrukov, Subalgebras of diagonalizable algebras of theories containing arithmetic, Dissertationes Math. (Rozprawy Mat.), vol. 323 (1993), p. 82.
[18] L. Vrancken-Mawet, Dualité pour les demi-lattis de Brouwer, Bull. Soc. Roy. Sci. Liège, vol. 55 (1986), no. 2, pp. 346-352.

19] W. H. Wheeler, Model-companions and definability in existentially complete structures, Israel J. Math., vol. 25 (1976), no. 3-4, pp. 305-330.

DEPARTMENT OF MATHEMATICAL SCIENCES
NEW MEXICO STATE UNIVERSITY
1290 FRENGER MALL
LAS CRUCES, NM 88003-8001, USA
E-mail: lcarai@nmsu.edu
DIPARTIMENTO DI MATEMATICA
UNIVERSITÁ DEGLI STUDI DI MILANO VIA CESARE SALDINI 50 20133 MILANO, ITALY
E-mail: silvio.ghilardi@unimi.it


[^0]:    2010 Mathematics Subject Classification. Primary 03G25; Secondary 03C10, 06D20.
    Key words and phrases. Brouwerian semilattices, existentially closed structures, finite duality.

[^1]:    ${ }^{1}$ The paper contains full proofs. However, in few cases, when proofs are just routine execises or when the statement to be proved is known from the literature, we preferred to omit straightforward details in order to facilitate reading. In any case, such omitted details are available too in the online arXiv version at the link http://arxiv.org/abs/1702.08352

