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Abstract

A set of permutationally invariant potential energy surfaces for the electronic
ground state of formaldehyde is built at several levels of electronic theory and
atomic orbital basis sets starting from a database of more than 34000 ab ini-
tio energies. Preliminarily, the reliability of the fitted surfaces is determined
by comparing the calculated harmonic frequencies with the corresponding ab
initio values. Then, semiclassical estimates of the quantum frequencies of
vibration are presented, and their dependence on the employed level of the-
ory, type of atomic orbital basis set, and complexity of the fit is investigated.
Comparisons of semiclassical results to experimental data provide a further
assessment of the quality of the analytical surfaces and show that anhar-
monic frequencies are influenced by the precision of the fit, while accurate
frequency values are obtained also with density functional theory. Results
and conclusions support the use of ab initio “on-the-fly” semiclassical dy-
namics as a means of spectroscopic investigation when high-level analytical
potential energy surfaces are not available.
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1. Introduction

The accurate description of the potential energy surface (PES) of a molecule
is crucial for a reliable theoretical spectroscopy investigation. Theoretical
spectroscopy methods may require knowledge of the global PES or demand
for just local information. In the former case the surface must be fitted by
an analytical expression, which should be not only flexible enough to ensure
a good precision over a large range of molecular geometries (including dis-
torted ones) but also fast to be evaluated. In the other instance the potential
and related quantities, for instance gradient components, are computed ab
initio only at relevant geometries, a process which, in the case of dynamical
approaches, is commonly labeled as “on-the-fly”.

The choice of a suitable analytical form for fitting the PES is not a trivial
one. One possible approach consists in dividing the potential energy into a
sum of different kinds of parametrized contributions. Their analytical expres-
sions are usually chosen to be computationally cheap and harmonic or Morse
oscillators based on internal coordinates are often employed. The parameters
are then fitted to a large set of experimental and theoretical benchmark data
to provide a general-purpose force field. In this way, the resulting force field
can be used for fast application to a large number of chemical compounds,
but its reliability may be insufficient for calculations aiming at spectroscopic
(i.e. wavenumber) accuracy.
Much better accuracy can be achieved by constructing a specific PES for
the molecule or system of interest at the cost of slower potential energy
evaluations. For this purpose several approaches have been developed even
recently. They include, among others, Shepard interpolation,[1] permutation-
ally invariant fitting,[2] empirical valence bond theory,[3] neural networks,[4]
and machine learning.[5] In these methods a database or training set of en-
ergies is prepared usually employing a very high level of electronic structure
theory. The relevant geometries may be collected for instance through grid
searches or by means of molecular dynamics runs (at low electronic theory
level) to sample the phase space. Furthermore, a detailed analytical form for
the surface is chosen to fit the data. Eventually, the outcome is a precise and
targeted PES, which can be employed in very refined calculations including
spectroscopy ones. Many of such surfaces have been constructed in recent
years for rather small systems (less than 10 atoms), while current scientific
effort is devoted to attain comparable accuracy for bigger systems keeping
the burden of computational costs manageable.[6, 7]
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Among the several quantum approaches to vibrational spectroscopy, we
focus on semiclassical (SC) dynamics. SC vibrational spectroscopy is a dy-
namical method able to describe quantum effects with high accuracy start-
ing from classical trajectories.[8–19] It is the mathematical structure of the
SC propagator that allows to regain quantum effects from the information
included in the classical trajectories,[20] and to avoid zero point energy
leakage.[21] The method, in its initial value representation (IVR) version,[22]
can be interfaced with both analytical PESs and “on-the-fly” potential eval-
uations. In the first case, the vibrational frequencies of interest are ob-
tained through integration of the contributions to the SCIVR propagator
coming from a distribution of trajectories. In the second case, due to the
overwhelming computational cost of an “on-the-fly” SC simulation, very few
trajectories (or even a single one) are employed. The initial conditions of
these tailored trajectories are determined according to the recipe estab-
lished by the multiple coherent states semiclassical initial value representa-
tion (MC SCIVR) approach.[23–25] Applications are not limited to small sys-
tems but also medium-large molecules and supramolecular aggregates can be
studied.[26–33] This is permitted by the divide-and-conquer SCIVR approach
(DC SCIVR), which allows one to define an appropriate and manageable set
of low dimensional investigations rather than dealing with the inaccessible
full-dimensional problem.[34–36] Finally, recent advances in the field have
permitted to determine vibrational eigenfunctions,[37, 38] IR spectra,[39] re-
duce the computational overhead related to Hessian calculations,[40–43] and
decrease substantially the impact of deterministic chaos on SC simulations
leading to more accurate and precise results.

An open question about semiclassical methods for vibrational spectroscopy
concerns their sensitivity to the treatment of the underlying electronic struc-
ture problem. The issue is not trivial and related to the dualism between
analytical-surface-based and “on-the-fly” approaches. On the one hand an
analytical PES may be based on data calculated at very high levels of elec-
tronic theory, but introduction of a fitting error is unavoidable; on the other
hand “on-the-fly” approaches are free of fitting errors but limited to lower
levels of electronic theory.

The goal of this paper is to move a first step toward the understanding of
the influence of these two competing effects on the accuracy of SC frequency
estimates. For this purpose, as a test case, we built a set of permutationally
invariant analytical PESs for the electronic ground state of H2CO at several
levels of electronic theory and atomic orbital basis sets. The surfaces were
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Table 1: Levels of theory of the constructed energy databases and potential energy surfaces.
Theory level Basis set

DFT
6-31G**
cc-pVDZ
cc-pVTZ

MP2
6-31G**
cc-pVDZ
cc-pVTZ

CCSD(T) 6-31G**
cc-pVDZ

also fitted by several functional forms of different complexity to tune the fit-
ting error. In Section 2 we report the details of the methodologies employed.
Section 3 is dedicated to the presentation of results. Finally, in Section 4, we
briefly discuss the work and in Section 5 we come to the conclusions.

2. Theory

Our first step in the construction of a permutationally invariant potential
energy surface for the electronic ground state of formaldehyde consisted in
the collection of an appropriate database of energies. This is usually per-
formed by sampling the phase space by means of ab initio direct dynamics
trajectories evolved at low level of eletronic structure theory. The single en-
ergies of the variuos geometries are then refined adopting a higher level of
theory. In Table 1 the different levels of electronic calculations undertaken
in this work are reported.

Upon determination of all energies we fitted the PESs. We employed the
permutationally invariant polynomial technique of Braams and Bowman.[2]
Finally, the analytical surfaces were used for our semiclassical vibrational
spectroscopy calculations. More details on these two techniques are given in
the following subsections.

2.1. Permutationally invariant fit
Invariance of the potential energy under translations and rigid rotations

of the molecular geometry is among the properties of a PES. It may be en-
forced by defining the potential energy in terms of functions of scalar and
cross products of the internuclear Cartesian distances. One possible way
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to build a fitting basis set is to begin with monomials dependent on the
internuclear distances, and then combine them into polynomials of various
complexity up to a chosen maximum order. This ensemble of polynomi-
als constitutes the fitting basis set. The mathematical expression for the
variables on which monomials and polynomials depend should be driven by
some physical-chemical insight. A proper choice for an isolated molecule is
represented by Morse variables

Mk = exp(−rk/a), (1)

where rk defines the k-th internuclear distance, and a is a constant. The
value of a could be optimized, but it is commonly chosen to be equal to 2
Bohr.[2] Morse variables are certainly suitable to describe molecular motion
and distorted geometries including bond elongation and dissociation. How-
ever, another key feature of the PES is missing and should be introduced.
Specifically, the potential energy must be invariant under permutation of
like atoms. This is also the case for the H2CO molecule investigated here.
Because of the two hydrogen atoms, formaldehyde belongs to the A2BC per-
mutational group and particular care must be taken in symmetrizing the
polynomials appropriately. The process is exemplified by Figure 1, which
shows how internuclear distances are labeled, and by Eq. (2), which presents
some of the permutationally invariant polynomials p.

p(0) = 1

p(1) = exp(−r1/a)

p(2) = exp(−r2/a) ∗ exp(−r4/a)

p(3) = exp(−r3/a) ∗ exp(−r5/a)

p(4) = exp(−r6/a)

p(5) = exp(−r2/a) + exp(−r4/a)

p(6) = exp(−r3/a) + exp(−r5/a) (2)

The first five polynomials in Eq. (2) are actually some of the possible sym-
metrized monomials, while p(5) and p(6) are binomials. Furthermore, p(2)
and p(3) are second order polynomials (monomials) and, consequently, they
would not be part of the fitting basis set if a maximum polynomial order of 1
were chosen. Appropriate combinations of symmetrized monomials and poly-
nomials define the whole permutationally invariant fitting basis set, whose
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Figure 1: Definition of the internuclear distances for H2CO. The two hydrogen atoms are
labeled as H1 and H2.

Table 2: Dependence of the number of permutationally invariant polynomials on the
maximum polynomial order for H2CO.

max. polynomial order 2 3 4 5 6 7 8 9
No. polynomials 18 50 120 256 502 918 1589 2625

complexity depends on the maximum polynomial order allowed.[44, 45] Ded-
icated software for this purpose has been developed by Xie and Bowman.[46]

A linear coefficient is associated to each polynomial, and the fit is per-
formed by means of a minimum least squares algorithm. More elaborated
basis sets provide more precise fits, but potential calls are slower, and over-
fitting should be carefully avoided. Table 2 reports the number of coefficients
(i.e. permutationally invariant polynomials) for the A2BC permutation group
as a function of the maximum polynomial order.

Once the coefficients have been determined, the analytical surface is ready
for use and the potential energy, at a given molecular geometry, can be cal-
culated as the scalar product between the arrays of coefficients and permu-
tationally invariant polynomials evaluated at that specific geometry.
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2.2. Semiclassical spectroscopy
Determination of the frequencies of vibration of a molecule is a prob-

lem at the heart of quantum mechanics, even if approximations based on
harmonic or classical estimates are widely (sometimes inappropriately) em-
ployed. Semiclassical dynamics is a quantum dynamical approach that allows
one to get quantum estimates starting from classical trajectories. Once an
analytical PES is available, SC calculations can be undertaken by means of
Kaledin and Miller’s time-averaged (TA) SCIVR formula for semiclassical
power spectra[47, 48]

I(E) =
1

(2π~)Nvib

∫ ∫
dp0dq0

1

2π~T

∣∣∣∣∫ T

0

dt ei[St+φt+Et]/~〈pt,qt|χ〉
∣∣∣∣2 . (3)

I(E) is the energy-dependent density of vibrational states, which is charac-
terized by signals (ideally Dirac deltas) with maximum intensity located at
the eigenvalues of the vibrational Hamiltonian. From the power spectrum
it is trivial to get by difference the quantum frequency associated with the
transition between any two states. In particular, the frequencies of the tran-
sitions between the vibrational ground state at zero point energy (ZPE) and
the states corresponding to a single excitation of the modes of vibration are
called fundamental frequencies. In Eq. (3) Nvib is the number of vibrational
degrees of freedom; p0 and q0 determine the phase space points from which
the classical trajectories start; T is the total evolution time; St is the instan-
taneous classical action; φt is a phase; 〈pt,qt|χ〉 is the quantum mechanical
overlap between the time-evolved coherent state |pt,qt〉 and the quantum
reference state |χ〉. The phase, which is related to the Herman-Kluk SC
propagator, is defined as

φt′(p0,q0) = phase

[√∣∣∣∣12
(
∂qt′

∂q0

+ Γ−1
∂pt′

∂p0

Γ− i~∂qt
′

∂p0

Γ +
iΓ−1

~
∂pt′

∂q0

)∣∣∣∣
]
,

(4)
where the partial derivatives are the block elements of the stability (mon-
odromy) matrix and Γ is the coherent state width matrix.[49] The physical
meaning of the latter is clarified by the coordinate representation of a coher-
ent state, i.e.
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〈q|gt′(p0,q0)〉 =

(
det(Γ)

πNvib

)1/4

exp

[
−(q− qt′)

T Γ

2
(q− qt′) +

i

~
pTt′(q− qt′)

]
.

(5)
Γ is usually a diagonal matrix with elements equal to the harmonic frequen-
cies of vibration ωharm, which are easily obtained upon diagonalization of the
Hessian matrix of the potential energy.

Eq. (3) requires first to sample the phase space to determine the ini-
tial conditions for the classical dynamics, then to run the dynamics, and
eventually to achieve Monte Carlo convergence. As for the initial sampling
the common procedure consists in selecting phase space points (p0,q0) from
a Husimi distribution centered at the equilibrium geometry and momenta
with harmonic zero-point energy components. The Gaussian widths of the
distribution for the i -th generic vibrational mode can be tailored on the sim-
ulation, but they are usually chosen to be

√
ωharm,i/2 for the coordinates and√

1/(2ωharm,i) for the momenta, in agreement with SC calculations based on
the parent Herman-Kluk propagator. The dynamics is evolved by means of a
4-th order symplectic integrator,[50] and convergence is achieved by running
a few thousand trajectories per vibrational degree of freedom.

The last aspect of Eq. (3) still to be discussed concerns the role of the
quantum reference state |χ〉. This is an arbitrary state which is decomposed
onto the complete basis of the eigenfunctions of the vibrational Hamiltonian
by the semiclassical calculation. The consequence is twofold: on the one
hand, from an SC power spectrum it is possible to collect the whole spectrum
of the operator (i.e. all eigenvalues); on the other hand, the intensity of
signals can be tuned according to the reference state adopted. Indeed, it is
possible to select as reference states some appropriate linear combinations of
coherent states that are able to enhance specific spectral signals according
to the parity or group symmetry of the target eigenstate.[51]

3. Results

The work has been divided into two parts. First we constructed a set
of potential energy surfaces for H2CO as anticipated in Table 1, and then
performed our semiclassical vibrational spectroscopy simulations. The PES
of formaldehyde had already been studied in details.[52, 53] Apart from the
global minimum it is characterized by two isomers denoted as trans-HCOH
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Table 3: Root mean square errors associated to the fitting of several analytical surfaces.
Values are in kcal/mol.

DFT MP2 CCSD(T)

No. polys 6-31G** cc-pVDZ cc-pVTZ 6-31G** cc-pVDZ cc-pVTZ 6-31G** cc-pVDZ

502 1.464 1.444 1.389 1.546 0.986 1.428 0.791 0.842

918 0.869 0.853 0.812 0.925 0.735 0.837 0.751 0.804

1589 0.604 0.590 0.557 0.653 0.645 0.579 0.741 0.793

2625 0.531 0.518 0.487 0.571 0.619 0.501 0.732 0.784

and cis-HCOH. However, for our purposes, in this work we focused only on
the spectroscopic features of the global minimum well.

3.1. PES construction
Potential energies for H2CO were calculated with NWChem,[54] for the

several levels of electronic theory and atomic orbital basis sets reported in
Table 1, at the geometries included in a pre-existing database made of about
34000 points.[55] We maintained the full set of points for density functional
theory (DFT) and two sets of second order Møller-Plesset perturbation the-
ory (MP2) evaluations, while coupled cluster CCSD(T) calculations were
performed on a reduced database of 20000 points. Another exception was
the MP2/cc-pVDZ database (28575 points). Data were fitted by means of
permutationally invariant basis sets featuring maximum polynomial orders
ranging from 6 (502 polynomials) to 9 (2625 polynomials). Table 3 sum-
marizes the root mean square error (RMSe) of the several fits, calculated
according to

RMSe =

√∑Ndb

i=1(Ei,db − Ei,PES)2

Ndb

, (6)

where Ndb is the number of points in the database, Ei,db is the ab initio
energy of the i -th point in the database, and Ei,PES is the corresponding
energy calculated on the analytical PES.

From Table 3 it is clear that there is an improvement in fit precision
when increasing the number of polynomials in the fitting basis set. The
more elaborated fits return RMS errors of about 0.5 kcal/mol in most cases.
As anticipated, this was not the case in 3 instances, and to get comparable
RMSe values for all levels of theory and basis sets the database of energies
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Table 4: Mean Absolute Errors (cm-1) of harmonic frequencies calculated with analytical
PESs with respect to ab initio values. The surfaces have been fitted at several levels of
electronic theory with basis sets made of 502 and 2625 polynomials.

DFT MP2 CCSD(T)

No. polys 6-31G** cc-pVDZ cc-pVTZ 6-31G** cc-pVDZ cc-pVTZ 6-31G** cc-pVDZ

502 35 31 33 50 20 49 28 30

2625 27 14 18 12 13 13 20 25

has been reduced by getting rid of the points at higher energy and associated
to the most distorted geometries compared to the equilibrium one.

To better assess the accuracy of the fitted PESs we have calculated the
harmonic frequencies for each of them. Table 4 reports the mean absolute
errors (MAE) of the six harmonic frequencies of each PES with respect to
the corresponding ab initio value.

The complete list of harmonic frequencies can be found in the supplemen-
tary material. As expected, by increasing the dimensionality of the fitting
basis set we were able to get values closer to the ab initio ones. The mag-
nitude of the improvement of estimates moving from the simpler fit (502
polynomials) to the more elaborated one (2625 polynomials) is strictly re-
lated to the decrease in the fitting RMSe. Thereby at the harmonic level
differences are smaller for the surfaces constructed starting from the reduced
databases, which cover a restricted portion of the configuration space and
allow for a better fit when a small fitting basis set is employed. The en-
hanced accuracy of a fit based on 2625 polynomials comes at the price of
slower potential energy evaluations. However the scaling in cpu times is lin-
ear with the number of coefficients, a feature that allows one to adopt the
more precise fit also in SC calculations. A Table illustrating this aspect can
be found in the supplementary material.

Finally, we wanted to test the analytical surfaces on geometries not in-
cluded in our databases. To this end we performed some one-dimensional
PES cuts describing the stretching of the CH and CO bonds, and the dis-
placement of the carbon atom above and below the molecular plane. In Fig.
2 we show potential energy estimates at several values of the CH bond length
for the three levels of theory and biggest basis sets, and compare them to
the corresponding ab initio values. The other two cuts at the same levels
of theory and three additional cuts involving the smaller 6-31G** basis set
are reported in the supplementary material. The general agreement is quite
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Figure 2: Potential cuts for CH bond elongation. Ab initio values (black dots) are com-
pared to analytical surface evaluations at DFT/ccpVTZ (green), MP2/ccpVTZ (blue),
and CCSD(T)/ccpVDZ (red) level.

satisfactory. Accuracy deteriorates occasionally for the CCSD(T) fits as a
consequence of the fact that they have been built starting from reduced and
more localized databases, which make these fits less suitable for the descrip-
tion of geometries far from equilibrium.

3.2. Semiclassical spectra
After constructing and testing the potential energy surfaces, we moved to

the TA-SCIVR spectroscopy calculations. We performed a different simula-
tion for each of the six fundamental frequencies employing a tailored reference
state able to enhance the desired spectroscopic signal. Specifically we chose

|χ〉 =
6∏
i=1

(|pharmi , qeqi 〉+ εi| − pharmi , qeqi 〉), (7)

with εi = -1 for the i -th fundamental we were interested in, and εi = +1
otherwise. Fig. 3 illustrates the results for three different levels of theory
and compares them to experimental results.[56]

The corresponding, detailed numerical results are reported in Table 5.
The calculated frequencies reproduce the experimental data often accurately.
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Figure 3: Semiclassical power spectra for H2CO. Experimental values of the six funda-
mental frequencies (orange vertical bar) are compared to results at DFT/ccpVTZ (black),
MP2/ccpVTZ (blue), and CCSD(T)/ccpVDZ (red) level of theory.

The complete set of vibrational frequencies obtained for all surfaces con-
structed is reported in the supplementary material.

TA-SCIVR returns MAE values for the three levels of theory close to each
other with a minimum for the surface built at the DFT/ccpVTZ level. In Fig.
4 the DFT fundamental frequencies are compared to harmonic estimates and
experimental values, thus allowing one to fully appreciate the anharmonicity
of the vibrational motions.

4. Discussion

An internal check to verify the effectiveness of the adopted fitting pro-
cedure consists in comparing the harmonic frequencies calculated with the
analytical surfaces to their ab initio counterparts. Under this aspect, all
the constructed PESs have passed the test with an improvement in accuracy
moving from surfaces based on 502 terms to those characterized by 2625
polynomials. The potential cuts, which involve geometries not included in
the databases used for the fits, further demonstrate the reliability of the
surfaces. In fact, very good agreement between fits and ab initio data is
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Table 5: Fundamental frequencies of vibration (cm-1) for H2CO calculated with three
different potential energy surfaces. MAE stands for Mean Absolute Values.

DFT/ccpVTZ MP2/ccpVTZ CCSD(T)/ccpVDZ Experiment
ω1 1175 1194 1168 1167
ω2 1234 1256 1252 1249
ω3 1499 1531 1516 1500
ω4 1791 1744 1800 1746
ω5 2761 2838 2830 2782
ω6 2814 2898 2890 2843

MAE 19 29 27 -
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 ω
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Figure 4: Semiclassical power spectra for H2CO calculated at the DFT/ccpVTZ level.
Harmonic estimates (pink vertical bars) and experimental frequencies (orange vertical
bars) complete the graphs.
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Table 6: Mean absolute errors (cm-1) of harmonic and semiclassical frequencies with re-
spect to experimental values. The number of polynomials employed for the fit are reported
in parenthesis.

DFT MP2 CCSD(T)

Calculation 6-31G** cc-pVDZ cc-pVTZ 6-31G** cc-pVDZ cc-pVTZ 6-31G** cc-pVDZ

Harm (502) 72 68 59 98 84 76 137 100

SC (502) 32 36 31 50 27 34 65 30

Harm (2625) 104 62 69 126 103 112 124 87

SC (2625) 21 30 19 57 27 29 61 27

generally found, with the exception of a few points associated to distorted
geometries. In particular this is the case (see Supporting material) for the
cut in which a carbon atom is displaced above and below the molecular plane
and the CCSD(T) surfaces fitted on a restricted database are employed.
An estimate of the absolute accuracy of the PESs can be obtained by com-
paring calculated frequencies with experimental values. We have performed
this test at both harmonic and semiclassical level and the outcome is reported
in Table 6.

An immediate feature to be noticed is that, on average, the harmonic
frequencies are closer to the experiment in the case of the less accurate 502-
polynomial-based fits. However, this is only apparently puzzling because
experiments certainly take into account the anharmonicity of the molecular
vibrations. Thereby, moving to the more realistic semiclassical estimates, it
is the more refined and computationally demanding 2625-polynomial-based
surfaces that return the best estimates and overperform neatly the harmonic
values, demonstrating the importance of having an accurate description not
only near the equilibrium geometry but also in the anharmonic part of the
potential well. Furthermore data for MP2 and CCSD(T) show the impor-
tance of choosing an adequately large atomic orbital basis set, a characteristic
which appears to be more influential than the level of electronic theory.

A deeper investigation of SC power spectra points out three main as-
pects. One is that different levels of theory with sufficiently large basis sets
provide similar results with more evident discrepancies for the two highest
frequencies. This is related to the second aspect, i.e., frequency estimates
are worse for ω5 and ω6. A possible cause lies in the fact that the database
was originally designed for a surface at a level of theory and basis set not
considered here (see Ref. 55). One could refine the database around the equi-
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librium geometry and re-fit the surface possibly improving the estimates of
the highest frequency modes, which are rapidly influenced by small changes
in the topology of the surface near the equilibrium structure. Finally, SC
power spectra demonstrates clearly the role of anharmonicities showing not
only that harmonic estimates are often badly off the mark but also that the
amount of anharmonicity is different mode by mode, which is a clue suggest-
ing that scaled harmonic approaches should not be employed for accurate
vibrational investigations.

5. Conclusions

We have presented a study of formaldehyde vibrational frequencies by
means of semiclassical power spectra. The investigation was based on the
construction of several potential energy surfaces at different levels of theory,
atomic orbital basis set, and complexity of the analytical surface, followed by
the calculation of harmonic and semiclassical anharmonic frequencies. From
the analysis of the results, we draw a twofold conclusion. First, an adequately
large basis set is necessary to obtain accurate results. This is evident for MP2
and CCSD(T) calculations. The role of the basis set overshadows the choice
of the level of electronic theory, because results for anharmonic frequencies
are accurate also when employing DFT surfaces. Secondly, PESs based on a
larger number of polynomials fit better the ab initio points in the database
and return more accurate semiclassical estimates.

In this work we have studied a very small molecule. Certainly the role
of the ab initio level of theory gains importance when moving to larger and
more complex systems for which density functional theory is not able to en-
sure a level of accuracy similar to post Hartree-Fock methods. However,
results suggest that when high levels of electronic theory are not computa-
tionally affordable, DFT with a suitable basis set can be a valid alternative,
provided that the potential energy surface is a precise description of the ab
initio energy landscape not only close to the well minimum but also far in
the anharmonic region. This substantiates the success in many applications
of DFT-level ab initio “on-the-fly” semiclassical dynamics, which is, by defi-
nition, free of fitting errors.
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