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As survival has improved for patients with metastatic colorectal cancer (mCRC), there is an increasing need for effective
and well-tolerated third-line and subsequent-lines of treatment. Despite recent advances with the development of new-
targeted therapies in this setting, there remains an unmet need to exploit oncogenic drivers of colorectal cancer and over-
come acquired resistance. Potential treatment strategies include revisiting old targets such as human epidermal growth
factor receptor 2, RAS, and BRAF and investigating new targets such as c-MET, the PI3 kinase, and Wnt pathways, and
also the use of immune-checkpoint inhibitors. Here, we review recent phase III trials exploring approved agents, early
trials investigating new drugs for chemorefractory mCRC, and the potential of capturing tumour dynamics during its evo-
lution by liquid biopsy analysis.
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introduction
As survival has improved for patients with metastatic colorectal
cancer (mCRC), there is an increasing need for effective and
well-tolerated therapies in third-line and subsequent-lines of
treatment. Conventional agents such as capecitabine, mitomycin
C, and gemcitabine are less effective in this setting, while re-
challenge with oxaliplatin or epidermal growth factor receptor
(EGFR)-targeted therapy may benefit some patients [1]. The
options for treating refractory mCRC have expanded with the
recent introduction of regorafenib and TAS-102, both of which
demonstrated improved survival in placebo-controlled phase III
trials [2, 3]. Regorafenib, a multikinase inhibitor, is indicated for
the treatment of mCRC in patients who have previously received
all standard systemic anticancer treatments. TAS-102 is an oral
agent consisting of trifluridine combined with tipiracil hydro-
chloride to improve bioavailability. This agent is currently
approved in the United States for the treatment of patients who
previously received fluoropyrimidine, oxaliplatin- and irinote-
can-based chemotherapy, an anti-vascular endothelial growth
factor receptor (VEGFR) biological therapy, and if RAS wild-

type, an anti-EGFR therapy and in Japan for unresectable
advanced or recurrent CRC (only if refractory to standard ther-
apies). In addition, TAS-102 recently received a positive opinion
by the Committee for Medical Products for Human Use
(CHMP) from European authorities. Despite these advances,
there remains an unmet need for new therapies to exploit onco-
genic drivers of CRC and overcome resistance. Insights from
genetic studies have provided the impetus for efforts to target
key signalling pathways, but have also led researchers to revisit
established targets. In addition, individualized treatment is
required to address the complex molecular biology of CRC [4],
in which tumour heterogeneity is prominent at both diagnosis
and metastasis, while genomic instability and acquired resist-
ance emphasize the need for ongoing monitoring of the tumour
genotype.
This review outlines current and future directions in chemore-

fractory mCRC, including recent phase III trials, new approaches
to targeted therapy, and the potential of liquid biopsy to guide
treatment in this setting.

available options for treating refractory
mCRC: where dowe stand?
Until 2013, European patients with mCRC progressing on stand-
ard treatments (i.e. 5-FU, oxaliplatin, irinotecan, bevacizumab,
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and EGFR antagonists) had no further therapeutic options sup-
ported by robust evidence from randomized trials. Meanwhile,
the use of existing standard treatments increasingly led to a new
and challenging situation of patients having disease progression
but maintaining good performance status. Consequently, clini-
cians were facing cancers resistant to all available agents in
patients desiring further treatment. Within this context of a clear
unmet need for new treatment options, the randomized (in a 2:1
ratio), double-blind placebo-controlled, phase III CORRECT trial
of regorafenib was conducted in 760 patients with progressive
mCRC after last standard therapy [2]. Regorafenib is an oral
multikinase inhibitor targeting both angiogenic and stromal tyro-
sine kinases, including human VEGFR2, tyrosine kinase with im-
munoglobulin-like and EGF-like domains 2 (TIE-2), fibroblast
growth factor receptor 1, platelet-derived growth factor receptor,
and oncogenic kinases such as KIT, RET, and BRAF [5]. Study
results were reported in 2013, with prolongation of the median
overall survival (OS) being observed in regorafenib recipients
with a risk reduction in death by 23% when compared with reci-
pients of best-supportive care alone [median 6.4 months for
regorafenib versus 5.0 for placebo; hazard ratio (HR) = 0.77; 95%
confidence interval (CI) 0.64–0.94; one-sided P = 0.0052] [2]. In
addition, risk of progression was reduced by half with regorafenib
with a median progression-free survival (PFS) of 1.9 months for
regorafenib and 1.7 months for placebo; HR = 0.49; 95% CI 0.42–
0.58; P < 0.0001). Of note, patients were heavily pre-treated, with
nearly 50% having received ≥4 prior therapies for metastatic
disease. A survival benefit was also reported for regorafenib in
Asian patients, with a median OS of 8.8 months with regorafenib
versus 6.3 months for placebo (HR= 0.55; 95% CI 0.40–0.77; one-
sided P = 0.00016) in the double-blind, placebo-controlled, phase
III CONCUR trial (randomization 2:1 ratio), which included 204
patients who had received ≥2 previous treatment lines for meta-
static disease [6]. These results supported the findings of a post hoc
analysis of the CORRECT trial, in which regorafenib had similar
efficacy in Japanese and non-Japanese subpopulations (Japanese
subpopulation: HR = 0.81; 95% CI 0.43–1.51; non-Japanese sub-
population: HR = 0.77; 95% CI 0.62–0.94) [7].
Regorafenib therapy in mCRC was further characterized in

the phase IIIb CONSIGN trial, an open-label, expanded-access
study conducted in 2872 patients, of whom 96% had received
≥2 prior regimens for metastatic disease [7]. The primary ob-
jective was to better characterize the safety profile of this agent.
The duration of therapy was 0–30 (median 2.5) months, and the
median PFS was 2.7 (95% CI 2.6–2.7) months. Treatment-related
grade ≥3 adverse events were reported by 57% of patients. The
most common (>5%) grade ≥3 treatment-related AEs were
hypertension (15%), hand–foot skin reaction (14%), and fatigue
(13%). Furthermore, the safety profile was consistent with previ-
ous phase III regorafenib trials in mCRC [2, 6].
A new agent, TAS-102, has also shown a significant OS

benefit in refractory mCRC. TAS-102 is an oral drug consisting
of trifluridine (FTD), a reversible inhibitor that binds to the
active site of thymidylate synthase. Thymidylate synthase plus
tipiracil hydrochloride (TPI) improves the bioavailability of
FTD by inhibiting its catabolism by thymidine phosphorylase
(TP) [8]. TAS-102 was tested over placebo in the multinational,
randomized (2:1 ratio), double-blind, placebo-controlled phase
III RECOURSE trial which included 800 patients with mCRC

who had received ≥2 prior standard chemotherapy regimens
[3]. The median OS was 7.1 months with TAS-102 versus 5.3
months with placebo (HR = 0.68; 95% CI 0.58–0.81; P < 0.001).
On the basis of the results of the RECOURSE trial, TAS-102 was
approved by the US Food and Drug Administration (FDA) in
September 2015 for use in patients with mCRC previously
treated with standard chemotherapy and biological therapy. In
Japan, it is approved for the treatment of unresectable,
advanced, or recurrent CRC.
Regorafenib, which received a positive opinion by the CHMP

from the European Medicines Agency (EMA), is recommended
in the European Society of Medical Oncology (ESMO) and US
National Comprehensive Cancer Network (NCCN) guidelines
(V2.2016) as a standard option for second-line therapy and
beyond in mCRC, and TAS-102 is included in NCCN guidelines
only (V2.2016) [9, 10]. However, although improvements in OS
are being observed in these settings, a significant need remains
for patients with refractory mCRC.

‘old’ versus ‘new’ targets
Although most therapeutic development for mCRC in the che-
morefractory setting focuses on new targets and/or more potent
agents, reconsideration of established targets has gained import-
ance with the growth of a rational pharmacogenomic approach
to drug development. In the following section, we highlight the
most promising old targets, which are well-established cancer
biomarkers and/or targeted with FDA- or EMA-approved indi-
cations in CRC or other histologies, and new targets currently
undergoing clinical evaluation as shown in Figure 1. Table 1
also provides additional information on current trials of select
targeted agents in mCRC.

old targets revisited by new
pharmacogenomic strategies

human epidermal growth factor receptor 2
The human epidermal growth factor receptor 2 (HER2/neu) is a
bona fide oncogenic driver and the target of trastuzumab in
breast and gastric cancers [26, 27], whereas investigations of its
role as a prognostic biomarker and therapeutic target in CRC
generated conflicting results. Recent data, however, based on
newer diagnostic technologies and more pertinent in vivo
models, are highlighting a renewed role for this ‘old’ molecular
target also in CRC [28]. HER-2/neu expression rates in CRC in
the literature range enormously from 1.6% [29] to 47.4% [30],
but the sample size of the series evaluated, inclusion of distinct
subgroups, and the use of different diagnostic methods and
scoring systems may account for this variability [31–34]. In two
of the most recent series, the rate of HER2 positivity [immuno-
histochemistry (IHC) score of 2+/3+, or HER2 gene amplifica-
tion by in situ hybridization] ranged from 1.6% to 6.3% [29, 35].
In a consensus study aimed at defining CRC-specific criteria for
HER2 positivity [36], an archival test cohort (n = 256) and a
clinical validation cohort (n = 830) were tested by a consensus
panel of pathologists, showing a clinically sizeable 5% fraction
of KRAS wild-type CRC patients displaying HER2-positive
tumours that were candidates for therapeutic targeting [11].
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No association with clinico-pathological parameters emerges
from most of these studies, although a trend towards worse
survival for HER2-positive patients was noted in a large cohort
(n = 1645) [29]. A possible association with tumour location in
the rectum has also been noted in several studies [29, 35], but
retrospective data from the phase 2 EXPERT-C trial, limited to
high-risk, locally advanced rectal cancer, showed a 2.8% preva-
lence of HER2 expression [37]. In addition, Missiaglia et al. [38]
reported that distal carcinomas are more likely to be HER2 amp-
lified compared with proximal carcinomas.
Early studies exploiting HER2 as a therapeutic target were

problematic due to the flawed study design (e.g. lack of con-
firmed target amplification and CRC-specific criteria, inad-
equate sample size, and absence of a rational HER2-targeted
combination strategy), and/or poor accrual when enrolment was
confined to HER2-overexpressing tumours only. In particular,
two trials of trastuzumab combined with chemotherapy in
HER2-overexpressing mCRC were prematurely closed due to
low accrual, despite evidence of activity [39, 40]. In these
studies, partial responses were obtained in 5 of 7 assessable
patients treated with trastuzumab plus irinotecan as first- or
second-line therapy [39], and in 5 of 21 assessable patients

treated with trastuzumab combined with 5-FU plus oxaliplatin in
second- or third-line [40] with an HER2 positivity (IHC 2+/3+)
rate of 4%–8%. Finally, two cases of mCRC patients with liver
metastases who demonstrated clinical response to capecitabine
and oxaliplatin (CapeOx) plus lapatinib, a dual HER2/EGFR
inhibitor, were reported, but no selection based on HER2 status
was carried out [41]. More recently, the ongoing Italian
HERACLES trial tested the combination of trastuzumab and
lapatinib in patients with HER2-positive and KRAS wild-type
chemorefractory mCRC. This combination was based on the pre-
clinical activity demonstrated in a molecularly annotated platform
of patient-derived xenografts [42]. Of the 914 patients with KRAS
exon 2 (codons 12 and 13) wild-type mCRC, 48 were HER2-
positive (5%). Of these patients, 27 were eligible for the trial. At a
median follow-up of 94 weeks, 8 patients had achieved an object-
ive response, with 1 (4%) achieving a complete response, and 7
(26%) achieving partial responses; 12 (44%) patients had stable
disease [11]. These results should be regarded as extraordinary
given the heavily pre-treated population of the study (median 5
prior regimens), showing for the first time that there is a genetic-
ally defined subpopulation of CRC (5% of KRASWT) with sensi-
tivity to pharmacological blockade of a specific oncogenic
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Figure 1. Old and new targets in metastatic colorectal cancer. mAb, monoclonal antibodies; HER, human epidermal growth factor receptor; C-MET, mesen-
chymal–epithelial transition factor; EGF, epidermal growth factor; HGF, hepatocyte growth factor; IGF-1, insulin-like growth factor-I; IR, insulin receptor;
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Table 1. Select targeted therapies in clinical development for colorectal cancer

Therapeutic agent, grouped by target Molecular target Phase and trial identifier

HER2 signalling
Trastuzumab HER2 Phase II

004-IRCC-10IIS-12 [11]
Pertuzumab HER2 Phase II

004-IRCC-10IIS-12 [12]
Lapatinib HER2, EGFR Phase II

004-IRCC-10IIS-12 [11]
Trastuzumab-emtansine (T-DM1) HER2 Phase II

004-IRCC-10IIS-12 [12]
011-IRCC-10IIS-15 [13]

Neratinib HER2, EGFR Phase II
NCT01953926
NCT01960023

Afatinib HER2, EGFR Phase II
NCT01919879
NCT01152437 [14]
NCT02450656

HER2 peptide vaccine HER2 Phase I
NCT01376505

RAS signalling
2-hydroxyoleic acid RAS membrane localisation [15] Phase I/II

NCT01792310 [16]
Vemurafenib BRAF V600 kinase Phase II

NCT02164916 [17]
Dabrafenib BRAF V600 kinase Phase II

NCT01072175 [18]
NCT01750918 [19]

Encorafenib (LGX-818) BRAF V600 kinase Phase II
NCT01719380 [20]
NCT02278133

Trametinib MEK1, MEK2 Phase II
NCT01750918 [19]
NCT02230553

NCT02399943
Binimetinib (MEK-162) MEK1, MEK2 Phase I/II

NCT01927341
Cobimetinib (XL-518, GDC-0973) MEK1, MEK2 Phase I

NCT01988896
NCT02457793

MET signalling
Tivantinib (ARQ-197) c-MET Phase II

NCT01892527
NCT01075048 [21]

Capmatinib (INC-280) c-MET Phase Ib
NCT02205398

Phosphoinositide-3 kinase (PI3K) pathway
Alpelisib (BYL-719) PI3K-α Phase II

NCT01719380 [20]
Buparlisib (BKM-120) Class I PI3K Phase I/II

NCT01591421
Wnt pathway
PRI-724 Inhibits interaction between

β-catenin and CREB-binding
protein [22]

Phase II
NCT02413853

WNT-974 (LGK-974) Porcupine [23] Phase I/II
NCT01351103
NCT02278133

Continued
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product. On the basis of these data, dual-targeted therapy with
trastuzumab and lapatinib could be considered as a new standard,
chemotherapy-free, regimen for CRC patients with HER2-posi-
tive tumours in this setting and possibly earlier lines of treatment.

RAS
Activating mutations in KRAS and NRAS have been reported in
∼40% and 8%–10% of CRCs, respectively [28, 43], causing re-
sistance to anti-EGFR monoclonal antibodies [3, 43, 44] and
conferring a negative prognosis [45, 46]. Consequently, KRAS
and NRAS have been pursued since the beginning of molecular-
ly driven therapeutics in oncology, while remaining out of thera-
peutic reach due to the complex matrix of factors that regulates
their functions. Instead, indirect strategies have been tested in
an effort to target the RAS protein. Targeting RAS membrane
localization using farnesyltransferase inhibitors was an early
strategy that aimed to indirectly down-regulate RAS-mutant
proteins, but this approach failed due to the existence of redun-
dant mechanisms able to overcome farnesyltransferase inhib-
ition [47]. Following the same strategy, NaCHOleate has entered

into clinical experimentation. This drug consists of a lipid-based
molecule that causes activation of sphingomyelin synthase,
thereby normalizing lipid composition of tumour-cell mem-
branes to a more balanced composition between levels of
sphingomyelin, diacylglycerol, and phosphatidyl-ethanolamine
found in normal cells. These changes in membrane lipidic com-
position have been shown to impair RAS anchorage and down-
regulate MAPK and PI3K pathways in certain tumour types
such as glioma cells [15, 48]. On the basis of this, RAS-mutant
CRC patients have been allocated to the ongoing phase I clinical
of this compound, although the reported results from the dose-
escalation phase seem modest for this particular population.
Hence, we may need to wait until the final results from the
expansion phase of the study to formulate a solid conclusion in
this regard [15].
Novel approaches to targeting RAS include small interference

RNAs (siRNAs) directed against messenger RNAs of RAS-
mutated isoforms, which have been demonstrated to down-
regulate RAS-mutant proteins in preclinical models as well as in
pancreatic cancer patients harbouring KRAS G12D mutation
[49, 50]. However, the adverse pharmacokinetic profile of siRNAs

Table 1. Continued

Therapeutic agent, grouped by target Molecular target Phase and trial identifier

ETC-159 Porcupine [24] Phase I
NCT02521844

Foxy-5 6-amino-acid peptide fragment
that mimics the effects of
Wnt-5a to impair migration of
epithelial cancer cells [25]

Phase I
NCT02020291
NCT02655952

Immune-checkpoint inhibition/immune modifiers
Pembrolizumab PD-1 Phase III

NCT02563002 (KEYNOTE 177);
NCT02460198 (KEYNOTE 164)

Nivolumab PD-1 Phase II
NCT02060188
NCT02335918

AMP-224 PD-1 Phase I

NCT02298946
PDR-001 PD-1 Phase I/II

NCT02460224
Durvalumab (MEDI-4736) PD-L1 Phase II

NCT02227667
Atezolizumab (MPDL3280A) PD-L1 Phase II

NCT02291289
Ipilimumab CTLA4 Phase II

NCT02060188
Tremelimumab CTLA4 Phase I (combination therapy)

NCT01975831
LAG-525 LAG-3 Phase I/II

NCT02460224
Varlilumab CD27 Phase I/II

NCT02335918
NCT01460134

CREB, cAMP response element-binding protein; CTLA-4, cytotoxic T-lymphocyte-associated protein 4; LAG-3, lymphocyte activation gene-3; MEK,
mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase; PD-(L), programmed cell death protein (ligand).
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that need local administration in tumours clearly jeopardizes
their use in metastatic CRC. The solution for this problem comes
with the use of appropriate delivery systems that allow siRNAs to
be administered intravenously. This approach was successfully
demonstrated in a phase I trial, which included a substantial
number of metastatic CRC patients that explored the feasibility of
intravenous administration of siRNA encapsulated in to a poli-
lipidic delivery system that laid the groundwork for RAS targeting
at the RNA level in metastatic CRC [51]. Meanwhile, there is
renewed interest in the direct inhibition of RAS following the de-
velopment of small molecules that selectively and irreversibly
bind to the G12C mutant form of K-RAS [52, 53]. In addition, a
new compound, with tyrosine-kinase inhibitory activity, SML-8-
73-1, has demonstrated the ability to inhibit the KRAS G12C
mutant in preclinical studies, with clinical studies pending [53].
Other indirect strategies target the principal RAS protein

effectors. In this regard, two different approaches have been
tested so far: parallel inhibition of the mitogen-activated protein
kinases (MAPK) and PI3K/Akt/mTOR pathways; and vertical
inhibition aimed at blocking MEK plus the main membrane
receptors implicated in RAS pathway activation. Both strategies
are based on solid preclinical data [54–56], yet preliminary clin-
ical results are less positive as MAPK–PI3K inhibition had
an adverse tolerability profile with modest clinical activity in
RAS-mutant CRC [57], which does not support further clinical
development in this population. Vertical strategies to block
RAS signalling derive from the failure of using single-agent
MEK inhibitors to indirectly target RAS mutations. Following
the poor preliminary results for RAS-mutated CRC patients
reported in phase I trials exploring MEK inhibitors [58–60],
preclinical experimentation demonstrated the existence of
regulatory feedback that reactivate MAPK and PI3K pathway
signalling upon MEK inhibition through crosstalk with HER
family membrane receptors, c-MET, and insulin-like growth-
factor-receptor 1 [56, 61–63]. Thus, several clinical trials have
been initiated to evaluate MEK inhibition in combination
with different membrane receptor inhibitors. A phase I study
combining selumetinib plus cetuximab reported two partial
responses and two long-lasting stabilizations in RAS-mutant
CRC; on this basis, results from the expansion cohort for RAS-
mutant CRC are highly awaited [64]. Furthermore, another trial
explored the combination of trametinib with panitumumab in one
cohort; however, mCRC patients were not selected according to
RAS status which diluted the possibility of interpreting results [19].
On the other hand, another phase I trial combining selumetinib
plus the anti-IGF1R antibody, cixutumumab, reported a long-
lasting stable disease of more than 6 months as best response in the
RAS-mutant CRC cohort [65]. Furthermore, other phase I trials
exploring combinations of MEK inhibitors plus panitumumab
(NCT01927341), MEDH7945A, anti-EGFR/HER3 bi-specific anti-
body (NCT01986166), ganitumab (NCT01562899), or crizotinib
(NCT02510001) have results pending.

BRAF
In CRC tumours, mutations leading to constitutive BRAF
activation have been reported in 47% of hypermutated tumours
and 3% of non-hypermutated tumours [28], and ∼5%−10% of
CRC tumours overall [66]. These mutations are associated with

aggressive tumour behaviour and a correspondingly worse prog-
nosis, including shorter OS [67–70]. The low reported BRAF
mutation frequency precludes reliable conclusions regarding
sensitivity to specific antineoplastic agents. In addition, no dif-
ferential patterns of response to chemotherapy regimens or anti-
angiogenic agents have yet been reported [71, 72], whereas an
increasing body of evidence suggests that BRAF mutation may
confer a weaker benefit from anti-EGFR monoclonal antibodies,
or even a detrimental effect [73–76]. Some retrospective studies
and a prospective phase II single-arm study support the use of
an intensive combination of FOLFOXIRI plus bevacizumab as a
preferable option to counteract the poor prognosis of BRAF-
mutant patients [71, 77, 78]. Nevertheless, the percentage of
BRAF-mutant patients eligible for such approach in daily clinic-
al practice may be rather low.
In contrast to the favourable results obtained in melanoma

patients [79], initial attempts to target BRAF-mutant CRC using
the BRAF kinase inhibitor vemurafenib yielded low clinical ac-
tivity, with a response rate (RR) of 5% and median PFS of 2.1
months [17]. The addition of an MEK inhibitor did not sub-
stantially increase efficacy, with an RR of 9% and PFS of 3.5
months reported for the combination ofdabrafenib and trameti-
nib [18]. EGFR expression was subsequently identified as a key
cause of resistance to BRAF inhibition by means of its interplay
with MEK: after BRAF blockade, MEK-derived EGFR signalling
was shown to reactivate MAPK and/or PI3K signalling, causing
early tumour progression [80, 81]. Subsequent phase I/II trials
have explored the addition of anti-EGFR monoclonal antibodies
to BRAF inhibitors, with varying results, for example, an RR of
10% and PFS of 3.5 months, have been observed for dabrafenib–
panitumumab [19]. Triplet regimens have also been explored in
an attempt to improve efficacy and delay resistance, with an RR
of 26% and PFS of 4.1 months reported for dabrafenib–panitu-
mumab–trametinib [19]; and an RR of 50% and PFS not
reported for vemurafenib–cetuximab–irinotecan [82]. However,
there are considerable toxicities with these combination regi-
mens, especially diarrhoea and skin reactions. In addition, out-
comes remain inferior to those seen in melanoma or other
BRAF-mutant tumours, such as lung adenocarcinoma or papil-
lary thyroid cancer [83]. The results of a confirmatory phase II
trial comparing irinotecan and cetuximab with or without
vemurafenib in BRAF-mutant mCRC and a phase I/II trial of
WNT974, cetuximab, and encorafenib in BRAFV600-mutant
mCRC with RNF43 mutations or R-spondin fusions will be of
interest to clarify the future role of BRAF inhibition in CRC.

immune-checkpoint inhibitors
In recent years, we have witnessed an intense expansion of
immune therapeutics in oncology [84], particularly immune-
checkpoint inhibitors: anti-CTLA4 and anti-programmed cell
death (ligand) protein-1 (PD-1/PD-L1) monoclonal antibodies.
Once again contrasting with favourable results in other tumour
types, CRC patients derived little benefit from these agents in the
initial clinical trials [85–87]. Some insight was provided by a recent
study that identified the tumour mutational load as a predictive
biomarker of response to the anti-PD-1 monoclonal antibody,
pembrolizumab [88]. The immune-related objective response rate
was 40% (4/10 patients) for mismatch repair-deficient mCRC,
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versus 0% (0/18 patients) for mismatch repair-proficient mCRC
[88]. These findings strongly suggest a need to expand the iden-
tification of CRC tumours with microsatellite instability beyond
the localized stages to include patients across the disease spec-
trum. In addition, there is a need for understanding how to
enhance susceptibility to immunotherapies in mismatch repair-
proficient tumours. Two ongoing studies are investigating pem-
brolizumab in a naïve patient population (phase III KEYNOTE
177 study; NCT02563002) and in previously treated advanced
CRC (phase II KEYNOTE 164 study; NCT02460198).

novel targets under investigation

membrane receptors: c-MET
Activation of the c-MET receptor is linked to cancer cell survival
during stress, and also to treatment resistance [89]. In CRC,
MET amplification, overexpression, and super-activation have
been implicated in chemotherapy resistance [89]; consequently,
c-MET inhibition to overcome resistance has been explored as a
single agent or in combination with chemotherapy. Results have
been inconsistent, in part, due to a lack of reliable biomarkers to
identify those patients most likely to respond [21, 90]. More re-
cently, studies exploring the molecular mechanisms underlying
resistance to anti-EGFR monoclonal antibodies have identified
MET amplification as a cause of resistance in 5%–12% of
patients progressing on these agents [91]. Current efforts to
develop c-MET inhibitors for clinical use are exploring the po-
tential of c-MET inhibitors to overcome resistance to EGFR
blockade in patients with proven MET amplification or c-MET
overexpression after progression on anti-EGFR therapy [90].

cytoplasmic targets: PI3K, Akt and PTEN
Mutations in phosphatidylinositol-45-bisphosphate 3-kinase
catalytic sub-unit alpha (PIK3CA), phosphoinositide-3-kinase,
regulatory sub-unit 1 (PIK3R1), and Akt, together with deletion
or mutation of phosphatase and tensin homolog (PTEN), are
molecular alterations that lead to activation of the phosphoino-
sitide 3-kinase (PI3K) pathway in CRC [28, 92–94]. Inhibitors
of this pathway have been extensively tested in molecularly
selected patients, but, in contrast to findings in other tumour
types, results in CRC have been poor [95–97], and development
has been halted in this indication. However, recent studies in-
vestigating temporal clonal evolution in CRC identified a pro-
gressive enrichment of PI3K pathway activation, both as the
disease progressed and following treatment, highlighting the im-
portance of this pathway in progression and resistance [98, 99].
These results warrant the exploration of these drugs in combin-
ation with standard therapies in selected patients, as part of a
strategy to overcome resistance.

R-spondin fusions and RNF43 mutation in
the Wnt pathway
Deregulation of the Wnt signalling pathway plays a key role in
CRC development, with over 90% of CRC tumours harbouring
Wnt pathway mutations, notably inactivation of the adenoma-
tous polyposis coli gene (APC) (81% of tumours), and activating
mutations of the β-catenin gene (CTNNB1) (5%) [28]. Most
cases of sporadic CRC result from bi-allelic loss of the tumour

suppressor gene APC, which has been described as a gatekeeper
gene [88]. The loss of APC leads to the formation of stable com-
plexes between β-catenin and the transcription factor TCF4; this
critical downstream signalling junction has proven difficult to
target [100]. However, a drug that inhibits the interaction
between β-catenin and the cAMP response element-binding
protein (CREB) binding protein, PRI-724, has completed phase
I development [22] and will be evaluated in a randomized phase
II trial for mCRC (NCT02413853). PRI-724 is administered as a
continuous 7-day infusion.
Furthermore, recent genotyping studies revealed the existence

of additional molecular alterations of the Wnt pathway that
define a subset of CRCs highly dependent on sustained high
Wnt levels; these alterations include R-spondin 2 and 3 fusions
and inactivating mutations of the tumour suppressor gene
RNF43 and ZNFR3 [101–103]. Porcupine, an enzyme required
for palmitoylation of Wnt ligands, is another target in the Wnt
pathway. WNT974 (formerly LGK974) is a small-molecule por-
cupine inhibitor that decreased Wnt ligand production and
down-regulated the Wnt pathway in preclinical models [23].
WNT974 is currently being assessed in two phase I trials. The
first is evaluating WNT974 monotherapy and includes patients
with RNF43 or ZNRF3 as well as with RSPO2 or 3 fusions
(NCT01351103), while the second is investigating WNT974 as
combination therapy in BRAFV600-mutant mCRC with RNF43
mutations or R-spondin fusions. The results of these trials are
eagerly awaited.

capturing the instable tumour genome:
the role of liquid biopsy
One of the major challenges in the targeted treatment of mCRC
is the instability of the cancer genome. Thus, salvage treatment
is frequently introduced after ≥4 lines of treatment, and often
≥30 months after the diagnosis of metastatic disease [2, 104]. In
routine clinical use, tumour-tissue biopsies are obtained before
the initiation of first-line treatment. The somatic mutation
profile is a snapshot of the unstable tumour genome and may
alter substantially over time, or due to clonal selection of resist-
ant cells during targeted treatment. Serial biopsies should be
carried out to guide treatment decisions, but serial invasive diag-
nostic techniques are not feasible, thus highlighting a high
unmet need for circulating markers.

circulating tumour cells versus circulating
cell-free tumour DNA
Technical advances now make it possible to obtain genetic in-
formation on tumours from peripheral blood, a minimally inva-
sive approach commonly referred to as a ‘liquid biopsy’. To
date, two different sources of circulating genetic information can
be analysed, namely circulating tumour cells (CTCs) and cell-
free tumour DNA (ctDNA). In patients with mCRC, the
number of CTCs before and during treatment is a strong inde-
pendent predictor of PFS and OS [105], and enumeration of
CTCs using the CellSearch® system (Janssen Diagnostics, LLC;
Raritan, NJ, USA) is FDA-approved for monitoring such
patients. Isolation and functional characterization of CTCs
offers the potential for further analysis, including protein
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expression, activation of signalling pathways, quantitative RNA
analysis, and cytogenetic characterization. Characterization of
CTCs may lead to the identification of prognostic, predictive, or
pharmacokinetic biomarkers, including markers of drug sensi-
tivity and resistance [106]. For example, KRAS mutation ana-
lysis of DNA from CTCs in CRC patients identified a
connection between the presence of KRAS mutations in ctDNA
and the presence of genetically abnormal circulating cells [107].
Recent technical advances have also demonstrated the possi-

bility of single-cell amplification and sequencing, which allows a
detailed genomic characterization of CTCs and could potentially
be used to re-evaluate the cancer genome before the introduc-
tion of a new treatment in patients with advanced disease [108].
A drawback of this method is that CTCs are rare (estimated at
one CTC per 106–108 normal blood cells) [109]. CTC enrich-
ment methods commonly use an epithelial cell adhesion mol-
ecule (EpCAM)-based selection system, which may fail to detect
cells that undergo mesenchymal transition [109]. EpCAM-inde-
pendent isolation systems exist, but are still faced with a high
cell-to-cell variability, necessitating isolation of a large number
of CTCs to obtain a representative profile of the individual
cancer genome [110, 111].
Once isolated, CTCs represent a pure tumour-cell population,

which can be analysed or used to study functional cell behav-
iour. Novel advances in molecular characterization at the single-
cell level provide a unique opportunity for longitudinal analysis
of clonal evolution over the disease course and during different
treatment approaches. However, the bottleneck for CTC studies
is their low levels and the fact that they have to be identified and
isolated for further analysis.
Fulfilling the requirements of an EpCAM-independent, non-

invasive biomarker, ctDNA can also be isolated from plasma,
serum, or other body fluids, and additionally may reflect the
average genotype of all tumour cells. Serial monitoring of
nucleic acids has become established in chronic infectious dis-
eases, including HIV infection and viral hepatitis, as a conveni-
ent means of tracking viral activity or treatment response. The
concept that quantitative assessment of circulating cell-free
DNA correlates with tumour burden was first described in 1977
[112]; however, levels may be affected by non-specific factors
such as inflammation, trauma, or benign lesions. Isolation of
ctDNA is, therefore, preferred using highly sensitive next-gener-
ation sequencing of cell-free DNA to detect tumour-specific
somatic mutations. When a tumour-specific mutation is known,
Beads, Emulsion, Amplification, and Magnetics (BEAMing)
technology may be used to quantitatively analyse ctDNA in
plasma. In BEAMing, which allows detection of rare mutant
alleles, mutation-specific oligonucleotides are used to coat mag-
netic beads with emulsion PCR and hybridization and analysis
by flow cytometry [113]. Using this technique in patients with
CRC, Diehl et al. [113] found that serial ctDNA measurements
reliably followed tumour dynamics; the recurrence rate also dif-
fered significantly between patients with and without detectable
mutant ctDNA at the first post-surgical follow-up (P = 0.006).
Other studies have demonstrated concordance of liquid biop-

sies and tumour-tissue biopsies for molecular characterization
of oncogenes such as RAS. Thierry et al. [114] prospectively
compared results from ctDNA characterization with those of
standard tumour-tissue biopsies and found that ctDNA had a

sensitivity of 92% and a specificity of 98%, with a net accuracy
of 96% for KRAS and BRAF mutations in mCRC patients. As
the tumour genome is unstable, it is tempting to speculate
whether the inaccuracy of 4% observed in this study might be
caused by inaccurate analysis of a biopsy from a single tumour
lesion. As ctDNA represents the average tumour genome with
a detection limit of ratios >1:10 000 (0.01%), ctDNA analysis
might be the more accurate approach; however, translation
of this improved accuracy into better patient selection for
treatment with molecularly targeted agents is yet to be
demonstrated.
Serial analysis of ctDNA has also been used to predict pro-

gression and explore potential mechanisms of resistance during
anti-EGFR treatment in patients with RAS wild-type CRC.
Misale et al. [115] demonstrated that acquired KRAS mutations
were associated with secondary resistance to EGFR blockade
and, further, that KRAS-mutant alleles were detectable in the
blood of cetuximab-treated patients up to 10 months before
radiographic evidence of disease progression. A second study
found that patients who relapsed on anti-EGFR treatment devel-
oped one or more mutations in genes involved in the MAPK
pathway, most frequently in codon 61 of either the KRAS or
NRAS gene [116].

clinical outlook
ctDNA is thought to represent an average of the whole tumour
genome, which may be more accurate than a tissue biopsy or
analysis of a small number of CTCs. All liquid biopsy techniques
still provide only a snapshot of the current status of the tumour
genome, but ctDNA characterization is minimally invasive,
cheap, and as such can be repeated on demand. Clinical trials
are now urged to facilitate the rapid implementation of this
technique into routine clinical use.

conclusions
Patients with mCRC can reach an OS of more than 30 months
due to novel treatment approaches including regorafenib and
TAS-102. In addition, patients are becoming increasingly fit
after the failure of standard treatment options, thus there is a
need for novel and individualized therapies in the third-line
setting and beyond. Modern pharmacogenomics strategies are
allowing reconsideration of known targets, such as HER2 and
BRAF, based on precision medicine approaches. The latter
include the use of liquid biopsies as a tool to characterize the
cancer genome, detect actionable targets at the actual time of
treatment initiation, and monitor the dynamic changes occur-
ring under drug selection pressure. Other approaches include
targeting novel pathways such as the Wnt signalling pathway
and immunotherapies.
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