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The inhibition of carbohydrate-hydrolyzing enzymes, α-amylase and α-glucosidase, is one of the major

therapeutic strategies for the treatment of type 2 diabetes mellitus. Chalcones have been recognized for

their multiple biological activities, including antidiabetic properties, through unclear mechanisms. In the

present work, a panel of chalcones bearing hydroxy, methoxy, methyl, nitro, chloro, fluoro and bromo

substituents were evaluated against α-amylase and α-glucosidase activities, most of them for the first

time. The results showed that the substitution patterns and the type of substituents of chalcones

influence their inhibitory activity. The presence of hydroxy groups at C-2’- and C-4’ of the A ring and at

C-3 and C-4 of the B ring favors the intended effect. Chalcones holding nitro groups and chloro substitu-

ents, together with a hydroxy group in the chalcone scaffold, showed strong inhibition of the

α-glucosidase activity. The present study provides related scaffolds that may serve as the basis for the

design and synthesis of new structures in order to obtain the ideal antidiabetic chalcone.

1. Introduction

Diabetes mellitus (DM) is one of the main worldwide emergen-
cies of the 21st century. The International Diabetes Federation
(IDF) reported 425 million people with DM in 2017, and esti-
mated an increase up to 629 million individuals with DM by
2045.1 DM is a chronic metabolic illness characterized by sus-
tained high levels of circulating glucose (hyperglycemia) due
to impaired insulin secretion by pancreatic β cells, insulin re-
sistance in target tissues, or a combination of both.2

Though being classified into three major types, gestational
DM, type 1 DM and type 2 DM, it is the last one that raises
more concern since it accounts for more than 90% of all cases
worldwide.3 In type 2 DM, insulin levels are insufficient to
control postprandial hyperglycemia, which in turn has been

correlated with the prevalence and incidence of various com-
plications, such as cardiovascular diseases, retinopathy,
nephropathy, and neuropathy.4 Thus, DM management envi-
sages early intervention and re-establishment of blood glucose
levels, thereby decreasing the incidence of complications.5 In
this regard, one of the therapeutic strategies is to suppress
postprandial hyperglycemia by retarding the absorption of
glucose through the inhibition of the biocatalyzers involved in
carbohydrate digestion, namely α-amylase (EC 3.2.1.1) and
α-glucosidase (EC 3.2.1.20).6 During formation of food bolus
and swallowing, dietary carbohydrates such as starch start to
be breakdown into monosaccharides through cleavage of the
α-(1,4)-glycosidic bonds by salivary α-amylase. This slow
process continues in the stomach, but mainly in the upper
part of the small bowel where the pH allows optimal activity of
additional pancreatic α-amylase secreted into the intestinal
lumen and α-glucosidase.7 As a result, pancreatic α-amylase
catalyses a more extensive hydrolysis of α-(1,4)-glycosidic
bonds into maltose, maltotriose, trisaccharides, and other
larger oligosaccharides.8 Final absorbable monosaccharides,
namely glucose, are produced through the activity of the
enzyme α-glucosidase located in the brush borders of the
enterocytes of the jejunum. After α-glucosidase action, mono-
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saccharides are transported across the intestinal mucosa to
blood vessels and distributed to cells and tissues.9,10

Therefore, inhibition of both α-amylase and α-glucosidase can

retard the uptake of dietary carbohydrates and consequently
suppress postprandial hyperglycemia, making these enzymes
attractive targets for the treatment of type 2 DM.

Table 1 Structures and in vitro α-amylase and α-glucosidase inhibition by chalcones (% of inhibition at the highest tested concentration,a indicated
in superscript)

Compound R2′ R4′ R6′ R2 R3 R4 R5 R6
α-Amylase
inhibitory activity (%)

α-Glucosidase
inhibitory activity (%)

1 — — — — — — — — <20100 µM <20150 µM

2 OH — — — — — — — 26 ± 1100 µM (a) <2075 µM

3 OH OH — — — — — — <20100 µM <20150 µM

4 (Butein) OH OH — — OH OH — — 69 ± 4100 µM (b) 91 ± 1150 µM (a)

5 OH OH OH — OH OH — — ND ND
6 OH — — OMe — — — — <2025 µM <2040 µM

7 OH — — — OMe — — — <2050 µM <2040 µM

8 OH — — — — OMe — — <2050 µM <2040 µM

9 OH — — — OMe OH — — 29 ± 2100 µM (a) 34 ± 4150 µM (b)

10 OH — — — OMe OMe — — <2050 µM <2040 µM

11 OH — — — OMe OMe OMe — 36 ± 3100 µM (a)(d) <2040 µM

12 OH OH — — — OMe — — <20100 µM <20150 µM

13 OH OH — — OMe OMe — — <2050 µM <20150 µM

14 OH OMe OMe — — OMe — — <2025 µM <2040 µM

15 OH OMe OMe — OMe OMe OMe — <2050 µM <2040 µM

16 OMe OMe OMe — OMe OMe — — <20100 µM <20150 µM

17 — — — — OMe OMe — — <20100 µM <20150 µM

18 OH — — — Me — — — <2050 µM <2040 µM

19 OH — — Me — Me — Me <2025 µM <2040 µM

20 — — — — — NO2 — — <2050 µM <2075 µM

21 OH — — — — NO2 — — 25 ± 3100 µM (a) 86 ± 175 µM (a)

22 — — — — — Cl — — <2050 µM <2040 µM

23 OH — — Cl — — — — <2050 µM <2040 µM

24 OH — — — Cl — — — 22 ± 350 µM (a)(e) <2040 µM

25 OH — — — — Cl — — <2050 µM <2040 µM

26 OH — — Cl — Cl — — <2050 µM 99 ± 1150 µM (a)

27 OH — — Cl — — — Cl <2050 µM <2040 µM

28 OH — — — Cl Cl — — <2025 µM <2040 µM

29 — — — — — — — — <2050 µM <2040 µM

30 — Me — — — — — — <2025 µM <2040 µM

31 — OMe — — — — — — <2025 µM <2040 µM

32 — Cl — — — — — — <2025 µM <2040 µM

33 — F — — — — — — <2050 µM <2040 µM

34 — Br — — — — — — <2050 µM <2040 µM

35 — NO2 — — — — — — <2025 µM <2040 µM

36 — — — — — Me — — <2025 µM <2040 µM

37 — — — — — OMe — — <2025 µM <2040 µM

38 — — — — — NO2 — — <2025 µM <2040 µM

39 — — — NO2 — — — — <2025 µM <2040 µM

40 OH — — — — — — — <2050 µM <2040 µM

41 OH — — NO2 — — — — <2050 µM 90 ± 275 µM (a)

Positive control: Acarbose 97 ± 0.1010 µM (c) 85 ± 12285 µM (a)

a The maximum tested concentrations were established as the concentrations that did not interfere with the assays. ND: Not determined due to
interference with the methodology. Same superscript letters indicate that inhibition % are not statistically different (p > 0.05) and different super-
script letters indicate that the inhibition % are statistically different from each other (p < 0.05).

Paper Food & Function

Food Funct. This journal is © The Royal Society of Chemistry 2019

Pu
bl

is
he

d 
on

 1
5 

A
ug

us
t 2

01
9.

 D
ow

nl
oa

de
d 

by
 N

ot
tin

gh
am

 T
re

nt
 U

ni
ve

rs
ity

 o
n 

8/
17

/2
01

9 
12

:5
8:

37
 P

M
. 

View Article Online

https://doi.org/10.1039/c9fo01298b


Three α-glucosidase inhibitors are currently available in the
therapeutic armamentarium to modulate type 2 DM, namely
acarbose, miglitol, and voglibose. Among these, acarbose also
inhibits α-amylase activity, being by far the most prescribed
drug of this class. α-Glucosidase inhibitors are associated with
few adverse effects. However, gastrointestinal side effects,
including flatulence, soft stools, abdominal discomfort, and
diarrhea, have been indicated as the limiting factors.11 These
adverse effects might occur due to the non-specific inhibition
of salivary and pancreatic α-amylases, which is correlated with
excessive accumulation of undigested carbohydrates in the
large intestine. The undigested carbohydrates get fermented
by gut microbiota, resulting in intestinal gas production.
Alternatively, moderate α-amylase inhibition together with
high α-glucosidase inhibitory activity might overcome such
inconvenient effects.12 Hence, the discovery of newer and safer
α-amylase/α-glucosidase inhibitory agents able to modulate
type 2 DM has been encouraged.

“Chalcone” is a generic term used to describe compounds
with a 1,3-diarylprop-2-en-1-one framework. These compounds,
also known as benzalacetophenones or benzylidene acetophe-
nones, are secondary metabolites of terrestrial plants and pre-
cursors of flavonoid biosynthesis.13–15 The term chalcone is
derived from the Greek word “chalkos”, meaning “copper/
bronze”, underpinning the deep yellow colour owned through
strong absorption of the cinnamoyl chromophore within
365–390 nm range, usually bathochromic shifted in derivatives
with oxygenated substituents in the phenyl group.16,17 Over the
last years, increasing attention has been dedicated to chalcones,
due to their simple chemistry, ease of synthesis, diversity of sub-
stituents, safety, and a vast number of recognized biological
activities, including anti-bacterial, anti-parasitic, anti-fungal,
anti-viral, anti-cancer, anti-inflammatory, antioxidant, anti-aller-
gic, anti-obesity, anti-hypertensive and antidiabetic
activities.15,18,19 Several reports even indicate that some chal-
cones are able to inhibit the enzymes α-amylase20–24 and
α-glucosidase.20,22,25–29 However, differences found in the
experimental conditions regarding this topic, together with the
fact that the authors usually constrained the study to a limited
number of compounds with decreased rational drug design,
make the comparison among the available studies difficult and
consequently the establishment of an accurate structure–activity
relationship (SAR). With this aim, the inhibitory activity of a
panel of twenty-eight chalcones and thirteen chalcone ana-
logues against α-amylase and α-glucosidase, a total of forty-one
structurally related scaffolds (Table 1), most of them being
studied here for the first time, is assessed. For this purpose, a
microanalysis screening system was applied for testing the type
of inhibition of the most active compounds.

2. Materials and methods
2.1 Chemicals

The following reagents were obtained from Sigma-Aldrich Co.
LLC (St Louis, MO): acarbose, α-amylase from porcine pan-

creas, α-glucosidase from Saccharomyces cerevisiae, 2-chloro-p-
nitrophenyl-α-D-maltotrioside (CNPG3), dimethyl sulfoxide
(DMSO), p-nitrophenyl-α-D-glucopyranoside (pNPG), and
sodium hydrogen phosphate. Compounds 1–3, 7–13, 16, and
17 were obtained from Indofine Chemical Company, Inc.
(Hillsborough, NJ). Compounds 4 and 5 were obtained from
Extrasynthese (Z.I Lyon Nord). Compounds 6, 14, 15, and
18–41 were synthesized as previously described.30–33

All compounds were dissolved in DMSO at concentrations
high enough to ensure low final % (<4.76% v/v) of the solvent
along enzymatic assays.

2.2 In vitro α-amylase inhibition assay

The α-amylase activity was measured using a method
previously reported by Proença et al.34 with slight modifi-
cations. All concentrations refer to the final volume of the
reactional mixture. In a 96-well plate, 0.1 U mL−1 α-amylase,
dissolved in 20 mM phosphate buffer (pH 6.8), was pre-
incubated at 37 °C for 10 minutes with the chalcones under
study in concentrations up to 100 µM. Acarbose (0–10 µM)
was used as positive control. After attainment of thermal
equilibrium, 500 µM of CNPG3 substrate in phosphate
buffer was added, followed by another incubation, at 37 °C
for 30 minutes. For this, a microplate reader (Synergy
HT, BIOTEK) was used with the wavelength set to 405 nm.
Then, the derivative values of the absorbance versus time
plots, in the interval of 5 to 15 minutes, were calculated and
used for further processing. The obtained results were
expressed as the mean % inhibition of α-amylase activity,
and represent at least three independent experiments. The
results were always compared with the positive control,
acarbose.

2.2.1 Study of the α-amylase inhibition type. The inhi-
bition mechanism of α-amylase was identified for the most
active compounds in the previous screening study, namely
chalcone 4 (butein) (0–50 µM) and the positive control acar-
bose (0–0.75 µM). Therefore, the compounds were pre-incu-
bated with 0.1 U mL−1 α-amylase, dissolved in 20 mM phos-
phate buffer (pH 6.8), and incubated for 10 minutes at 37 °C.
In sequence, the substrate CNPG3 was added at three different
concentrations, 250, 500 and 1000 µM, and the absorbance of
the reaction mixture at the wavelength of 405 nm was followed
for 30 minutes at 37 °C. Then, the derivative values of the
absorbance versus time plots in the interval of 5 to 15 minutes
were calculated and used for further processing.

The generalized Michaelis–Menten eqn (1) describing the
kinetics and each one of its simplifications regarding the
different types of inhibitions were used as models for non-
linear regression of the results obtained from at least five inde-
pendent experiments:

Vinic ¼ VmáxðSÞ
Km 1þ Ij j

Kic

� �
þ ðSÞ 1þ Ij j

Kiu

� � ð1Þ

where Vinic = initial velocity of formation of absorbing CNP in
ΔAbsorbance per minute, Vmax = maximum achievable velocity
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when for the 0.1 U mL−1 of enzyme had used all the catalytic
sites and is saturated by the substrate, S = CNPG3 concen-
tration in mM, Km = Michaelis–Menten constant in mM, Kic =
inhibitor dissociation constant of enzyme inhibitor expressed
in µM−1, Kiu = inhibitor dissociation constant of enzyme–sub-
strate–inhibitor complex expressed in µM−1.

Data fitting was performed in an Excel Microsoft Office™
spreadsheet using the Solver™ supplement according to
Bezerra et al.35 and Dias et al.36 For each tested condition,
the equation parameters were estimated by Solver™. The
obtained values for the parameters of the simplest model
(without inhibition) were used as initial guesses and for the
other types of inhibition, competitive, non-competitive,
uncompetitive, and finally the more complex model, mixed
inhibition. The actual mechanism of inhibition was estab-
lished by comparison between models, applying the extra
sum-of-square F test37 and the Akaike information criterion
(AIC) test.38 In order to determine the error of the kinetic
constants values, the Jackknife procedure was applied,
which consisted of the calculation of standard deviation of
all estimations made by Solver™ when each experimental
data point was removed from the initial set. The analyses
of the corresponding Lineweaver–Burk plots for each con-
centration of the inhibitor and substrate were performed
additionally.

2.3 In vitro α-glucosidase inhibition assay

α-Glucosidase activity was measured using a method pre-
viously reported by Proença et al.39 with slight modifi-
cations. All concentrations refer to the final volume of the
reactional mixture. In a 96-well plate, 0.04 U mL−1 of
α-glucosidase was dissolved in 100 mM phosphate buffer (pH
6.8) and was pre-incubated with the chalcones under study in
concentrations up to 150 µM for 5 minutes at 37 °C. Acarbose
(0–2285 µM) was herein also used as positive control. The cata-
lytic reaction started with the addition of the phosphate
buffered solution containing 600 μM of pNPG substrate, and
the reaction mixture was incubated at 37 °C for 30 minutes.
The enzymatic reaction was monitored spectrophotometrically
at 405 nm by measuring the resultant yellow color formed.
Then, the derivative values of the absorbance versus time plots
in the interval of 5 to 15 minutes were calculated and used for
further processing. The obtained results were expressed as the
mean % inhibition of α-glucosidase activity and represent at
least three independent experiments. The results were always
compared with the positive control, acarbose.

2.3.1 Study of the α-glucosidase inhibition type. The types
of α-glucosidase inhibition were studied for the most active
chalcones, 4 (butein) (0–75 µM), 21 (0–45 µM), 26 (0–65 µM),
41 (0–40 µM), and the positive control, acarbose (0–2285 µM).
In a 96-well plate, 0.04 U mL−1 α-glucosidase, dissolved in
100 mM phosphate buffer (pH 6.8), was pre-incubated with the
compounds under study for 5 minutes at 37 °C. Then, the sub-
strate pNPG was added at three different concentrations, 300,
600 and 1200 µM, and the reaction mixture was incubated at
37 °C for 30 minutes. Then, the derivative values of the absor-

bance versus time plots in interval of 5 to 15 minutes were cal-
culated and used for further processing.

The types of inhibition of α-amylase were studied as men-
tioned in the section 2.2.1. and the results represent at least
five independent experiments.

2.4 Statistical analysis

The results of the in vitro inhibitory activities of the chalcones
against pancreatic α-amylase and α-glucosidase are expressed
as mean ± standard error of the mean (SEM). A statistical
comparison between the active chalcones was performed using
one-way analysis of variance (ANOVA). Differences among the
groups were compared by Tukey test, with a p value <0.05 con-
sidered statistically significant. All the statistical analyses were
performed using GraphPad Prism™ (version 5.0; GraphPad
Software).

The type of inhibition was established by comparison
among the models using the Solver™ and by applying the
extra sum-of-square F test and AIC test. ANOVA was applied to
evaluate the precision of the method.

3. Results
3.1 In vitro α-amylase inhibition

The inhibitory effects of compounds 1–41 and the positive
control, acarbose, against pancreatic α-amylase are shown in
Table 1. The compounds were divided as chalcones 1–28, with
the 1,3-diarylprop-2-en-1-one framework, and chalcone ana-
logues 29–41, known as cinnamylideneacetophenones, which
hold two double bonds linking the A and B rings. In the first
set of compounds (1–28), one is unsubstituted (1), four are
hydroxylated (2–5), ten are hydroxylated and methoxylated
(6–15), two are only methoxylated (16, 17), two display methyl
substituents (18, 19), two display nitro groups (20, 21) and
seven possess chloro substituents (22–28). Among the chal-
cone analogues (29–41), one is unsubstituted (29), eleven
present a single substitution, including methyl (30, 36),
methoxy (31, 37), chloro (32), fluoro (33), bromo (34), nitro (35,
38, 39) and hydroxy (40). Compound (41) is di-substituted with
a hydroxy group and a nitro group.

Among the hydroxylated chalcones (2–5), chalcone 4 (butein)
with two hydroxy groups at C-2′ and C-4′ of the A ring and two
at C-3 and C-4 of the B ring exhibited the highest inhibitory
activity of 69 ± 4% at the highest tested concentration of
100 μM. These results indicate that these substituents are
important for the intended effect on α-amylase. Chalcone 2
(26 ± 1%, at 100 μM) with only one 2′-hydroxy group at the
A ring also showed slight activity, though additional presence of
this substituent at C-4′ hydroxy (compound 3) cancels the effect.
Unfortunately, it was not possible to evaluate compound 5 due
to a methodological interference. During the assays, an irregular
slope in the absorbance versus time plots was observed which
can be due to the possible cyclisation of the 6′-hydroxy group40

that altered the absorbance spectrum and, consequently, the
behavior of the inhibition curve.
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On comparison, the positive control acarbose (IC50 =
1.1 ± 0.2 μM) (Fig. 1) had a substantially higher activity than
chalcone 4 (butein) (IC50 = 62 ± 4 μM). Thus, chalcone 4
(butein) shows a moderate inhibition against α-amylase when
compared with the positive control, acarbose.

Within the hydroxylated and/or methoxylated derivatives
(6–17), low inhibitory activities were observed such as 29 ± 2%
for 100 μM chalcone 9 and 36 ± 3% for 100 μM chalcone 11. In
general, methoxy substituents seem to be disadvantageous for
the inhibitory activity. Similarly, the studied chalcones with
methyl substituents (18 and 19) were not able to inhibit
α-amylase at the highest tested concentrations.

Chalcones holding nitro groups (20 and 21) also showed
reduced activity. The last, holding a 2′-hydroxy group at the A
ring and a C-4 nitro group at the B ring, showed the highest
effect of 25 ± 3%, at 100 μM.

Chalcones with chloro substituents (22–28) presented a low
α-amylase inhibition. Among these seven compounds, only
chalcone 24 (22 ± 3% at 50 µM) which has a 2′-hydroxy group
at the A ring and a 3-chloro in the B ring had above 20%
activity.

The enone functionality of chalcones underpins the inhibi-
tory activity. In fact, compounds holding two double bonds
linking the A and B rings, the chalcone analogues (29–41),
were not able to inhibit α-amylase activity, regardless of the
substituent group, up to the highest tested concentration.

3.1.1 Type of α-amylase inhibition. The type of inhibition
mechanisms of chalcone 4 (butein), the most active member
of all the chalcones, and the positive control acarbose were
deduced from the statistical evaluations of the experimental
data fitting to the corresponding Michaelis–Menten kinetics
model and Lineweaver–Burk plots. Meanwhile, one-factor
ANOVA analysis of the raw experimental data showed a pre-
cision better than 1.6 and 1.4 Δabsorbance per minute for
chalcone 4 and acarbose, respectively, as calculated from the
within-groups mean square. The same statistical test also evi-
denced the method adequacy for the proposed objective
since F values of 35 and 60, higher than the F critical values
(2.0 and 1.9, respectively), indicating the clear inhibitory

effect of both the compounds on the enzymatic activity. As
depicted in Fig. 2, chalcone 4 (butein) behaved as a com-
petitive inhibitor, since the Km value increased and Vmax

value remained constant with increasing concentrations of
the compound. A mixed inhibition mechanism was devised
for acarbose once to the increase in concentration corre-
sponded decreasing values of Km and Vmax. In both cases,
the indicated kinetic model for inhibition was the best
fitted, thus, providing the lowest sum squared residuals
after iterative non-linear regression using the Solver™
supplement. The results for the type of inhibition and
the kinetic constants values (Vmax, Km, Kic and/or Kiu) are
summarized in Table 2.

3.2 In vitro α-glucosidase inhibition

Results presented in Table 1 show some chalcones with
effective inhibitory activity on α-glucosidase from
Saccharomyces cerevisiae. The most potent inhibitors were chal-
cone 4 (butein), chalcone 21, chalcone 26 and chalcone ana-
logue 41, with IC50 values of 21 ± 2 μM, 53 ± 1 μM, 87 ± 3 μM,
and 41 ± 1 μM, respectively (Fig. 3).

Among the hydroxylated compounds (2–5), chalcone 4
(butein), bearing hydroxy groups at C-2′ and C-4′ of the A ring
and C-3 and C-4 of the B ring was the most active compound
with an IC50 value nearly seventeen times lower than the IC50

value of acarbose, the positive control (IC50 = 357 ± 25 μM)
(Fig. 3). Chalcone 4 (butein) shows a potent inhibition of
α-glucosidase, when compared with the positive control, acar-
bose. Chalcone 2, with a 2′-hydroxy group at the A ring, and
chalcone 3 with hydroxy groups at C-2′ and C-4′ of the A ring,
both without substituents at the B ring, showed no inhibitory
activity. Considering the hydroxylated and methoxylated chal-
cones (6–15) and the methoxylated chalcones (16 and 17), only
chalcone 9 bearing a 2′-hydroxy group at the A ring, a
3-methoxy substituent, and a 4-hydroxy group at the B ring
showed slight inhibitory activity of 34 ± 4%, at 150 μM.

Methyl substituted compounds (18 and 19) were inactive up
to the highest tested concentration.

Fig. 1 α-Amylase inhibition by chalcone 4 (butein) and the positive
control, acarbose. Each value represents mean ± SEM of at least three
experiments.

Fig. 2 Lineweaver–Burk plots of α-amylase inhibition by chalcone 4
(butein) and acarbose, the positive control.
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Within chalcones holding nitro groups (20 and 21), chal-
cone 21, bearing a 2′-hydroxy group at the A ring and a 4-nitro
group at the B ring, showed almost seven times more activity
(IC50 = 53 ± 1 μM) than the positive control, acarbose (IC50 =
357 ± 25 μM) (Fig. 3).

Among the chlorinated chalcones (22–28), it is possible to
conclude that chalcone 26 bearing a 2′-hydroxy group at the A
ring and the chloro substituents at C-2 and C-4 of the B ring
was the most active compound with an IC50 value of 87 ± 3 μM
which is nearly four times lower than acarbose (Fig. 3).
Chalcones 22–25, 27, and 28 had no activity against this
enzyme at the highest tested concentration.

Among the chalcone analogues (29–41), the last derivative
(41) with a 2′-hydroxy group at the A ring and a 2-nitro group
at the B ring was almost nine times more active with an IC50

value of 41 ± 1 μM when compared with the positive control
acarbose (Fig. 3). Hence, while the group enone, herein with
an extra double bond added, seems less important, the simul-
taneous presence of the nitro group at C-2 together with the
hydroxy group at C-2′ seems to be essential for the inhibitory
activity.

3.2.1 Type of α-glucosidase inhibition. The inhibition
mechanisms of the most active compounds, chalcones 4
(butein), 21, and 26, chalcone analogue 41, and acarbose
against α-glucosidase were assessed by an approach similar to
the one already described for α-amylase. The one-factor ANOVA
analysis validated the experimental method used and showed
acceptable precisions ranging from 1.9 Δabsorbance per
minute up to 5.5 Δabsorbance per minute, respectively, for
acarbose and chalcone 26 along assays. The same test also evi-
denced the clear inhibition effect after analysis of mean
squares between groups. Fig. 4 shows the Lineweaver–Burk
plots of α-glucosidase activity in the presence of the selected
compounds. Chalcone 4 (butein) and acarbose behaved as
competitive inhibitors of α-glucosidase. The Vmax value
remained constant regardless of the inhibitor concentration,
but higher concentrations of the inhibitors led to increasing
Km values. Chalcones 21, 26, and 41 underpinned non-com-
petitive inhibition plots with constant Km values but successive
lower Vmax values. Corresponding kinetic parameters, obtained
from nonlinear regression of respective inhibition theoretical
models are shown in Table 2.

Fig. 3 α-Glucosidase inhibition by chalcones 4 (butein), 21, and 26,
chalcone analogue 41 and acarbose, the positive control. Each value
represents mean ± SEM of at least three experiments.

Table 2 Type of inhibition (using Solver™ supplement) of chalcone 4 (butein) and acarbose against α-amylase activity, and chalcones 4 (butein),
21, 26, chalcone analogue 41 and acarbose against α-glucosidase activity and respective kinetic parameters values: Vmax, Km, Kic and Kiu (mean ±
SEM)

Compound Type of inhibition Vmax Km Kic Kiu

α-Amylase activity
4 (Butein) Competitive 35 ± 1 1.17 ± 0.03 88 ± 2 —
Acarbose Mixed 41 ± 1 0.94 ± 0.02 2.6 ± 0.2 0.37 ± 0.01

α-Glucosidase activity
4 (Butein) Competitive 97 ± 2 0.91 ± 0.04 13.7 ± 0.4 —
21 Non-competitive 208 ± 5 2.9 ± 0.1 103 ± 2 103 ± 2
26 Non-competitive 125 ± 5 1.49 ± 0.09 138 ± 4 138 ± 4
Analogue 41 Non-competitive 139 ± 3 1.51 ± 0.07 51 ± 1 51 ± 1
Acarbose Competitive 112 ± 2 1.49 ± 0.05 246 ± 5 —
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4. Discussion

The effects of some natural and synthetic chalcones against
α-amylase and α-glucosidase activities have already been
studied.20,21,24,26 However, several experimental variabilities
such as the in vitro model used, the different origins of
enzymes and substrates, the diverse origins and concen-
trations of chalcones, and the time of exposure of the enzymes
to the compounds compromise a reliable comparison among
studies. The present work overcomes such discrepancies after

assessing a panel of forty-one structurally related chalcones
and analogues against α-amylase and α-glucosidase. The
inclusion of the unsubstituted inactive chalcone (1) allowed a
better understanding of the impact of different substituents
on the aryl rings.

Different derivatives regarding the number and type of
substituents in the main chalcone scaffold were tested for
α-amylase inhibitory activity. Chalcones 1, 2, and 3 were
studied here for the first time though they did not show any
meaningful activity against α-amylase. The most active one was
the hydroxylated chalcone 4 (butein), where the presence of
hydroxy groups at C-2′ and C-4′ of the A ring and C-3 and C-4
of the B ring (4, butein) contributed to the inhibitory effect. A
simple comparison with chalcone 3 suggests that the presence
of the catechol group is crucial for the activity of chalcone 4
(butein). A similar conclusion was drawn by Seo et al.21 who
studied the inhibitory effects of chalcones substituted with
hydroxy, amine and sulfonamide groups. The authors con-
cluded that a catechol group was essential for the observed
effect against α-amylase. Other works also described the deter-
minant presence of the catechol group on other polyphenol
scaffolds, namely in flavonoids.41,42

In general, methoxy substituents do not impart favorable
inhibitory activity underlined here by the study of chalcones
6–17, tested here for the first time. Chalcone 13 has two
methoxy groups in the B ring instead of the hydroxyls in
chalcone 4 (butein), but with loss in the inhibitory effect.
Comparing chalcone 3 with those bearing hydroxy substituents
at C-2′ and C-4′ of the A ring and chalcone 12 having the same
hydroxy substitutions and an additional methoxy substituent
at the B ring, it is possible to conclude that the addition of the
methoxy group also did not improve the inhibitory activity of
the chalcone. These results are in accordance with Yang
et al.23 who studied a hydroxylated chalcone and two chal-
cones bearing a O-glucopyranoside at the A ring. Replacement
of the 4-hydroxy group by a methoxy substituent caused an
activity decrease. This is consistent with the finding of
Bale et al.,24 who showed that methoxy substituents also
decreased the inhibitory activity of the most active chalcone.
Nonetheless, the presence of three methoxy substituents
at C-3, C-4, and C-5 of the B ring in chalcone 11 slightly
improved the inhibitory effect to 36 ± 3% at 100 μM. In spite of
the slight inhibitory activity, it suggests that the presence of a
2′-hydroxy group at the A ring together with methoxy substituents
at C-3, C-4 and C-5 of the B ring may benefit the inhibitory
activity.

The methyl group is not favorable for the inhibitory effect
of chalcones as it is possible to confirm by the lack of activity
observed for chalcones 18 and 19. As far as we know, these
structures were also studied here for the first time.

Concerning the chalcones holding nitro substituents (20,
21), no reports in literature were found maybe because other
groups might have also noticed that this is negligible.

Considering the group of chalcones bearing chloro
substituents (22–28), no inhibitory effect was observed. The
presence or absence of the 2′-hydroxy group at the A ring is

Fig. 4 Lineweaver–Burk plots of α-glucosidase inhibition by chalcones
4 (butein), 21, and 26, chalcone analogue 41 and acarbose, the positive
control.
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indifferent for the intended effect as it is shown by comparing
chalcone 22 with no substitutions at the A ring and a 4-chloro
substituent at the B ring with chalcone 25 having a hydroxy
group at the A ring and a chloro group at the same position in
the B ring. The effect of the number of chloro substituents at
the B ring was also irrelevant, as concluded comparing the
results between chalcone 23 and chalcone 26. A similar
pattern of results was obtained by Bale et al.24 who also
studied chalcones with chloro substituents at the B ring.
Despite the significant inhibitory activities of the studied com-
pounds, when the SCH3 group at the B ring was replaced by a
chloro substituent on the most active chalcone, the IC50 value
increased.

All the tested new chalcone analogues (29–41) showed an
inhibitory activity inferior to 20% up to the highest tested
concentrations.

The type of α-amylase inhibition by chalcone 4 (butein) and
positive control acarbose were determined using the nonlinear
regression of Michaelis–Menten with the complement
Lineweaver–Burk plots. Since the linear transformations of the
Michaelis–Menten equation are less accurate, the type of inhi-
bition and the kinetic constants were also evaluated using
Solver supplement of Excel Microsoft Office™. The two
methods were in accordance and showed chalcone 4 (butein)
as a competitive inhibitor. This means that this compound
competes with the substrate for the active sites of the enzyme,
thus requiring higher concentrations of CNPG3 to generate the
reaction product in the same time window. Acarbose showed a
mixed type of inhibition. This means that acarbose can bind
to both the free enzyme and the enzyme–substrate complex.
This finding is corroborated by other authors.43,44 The ANOVA
analysis also showed that chalcone 4 (butein) and acarbose
have a F value higher than the F critical value, which allowed
the rejection of the null hypothesis, reinforcing that the com-
pounds exhibited an inhibitory effect on the enzymatic
activity.

Concerning α-glucosidase, the studies with compounds
holding hydroxy groups (2–5) and the hydroxylated and/or
methoxylated compounds (6–17), chalcone 4 (butein) was the
only chalcone that showed potent inhibitory activity.
Negligible activities were found for the remaining hydroxylated
and/or methoxylated chalcones (2, 3, 5–17), except chalcone 9
which has a 2′-hydroxy group at the A ring, 3-methoxy and
4-hydroxy substituents at the B ring, which showed a slight
inhibitory activity. These results suggest that the presence of
the hydroxy groups is crucial for the inhibition of
α-glucosidase activity. Comparison between chalcone 4
(butein) and chalcone 3 provides evidence for the positive
effect of the catechol group at C-3 and C-4 of the B ring, which
favored the inhibitory effect against α-glucosidase activity. The
comparison of chalcone 4 (butein) and chalcone 13, bearing
hydroxy groups in the same positions of the A ring and
methoxy groups at C-3 and C-4 of the B ring, enables us to con-
clude that the presence of methoxy substituents in the chal-
cone scaffold also did not bring any advantage for the
intended effect. Moreover, in contrast to that of α-amylase,

increasing the number of methoxy groups in the B ring did
not favor the inhibitory activity which is possible to see
through comparison of the derivatives chalcone 10 and chal-
cone 11. A similar pattern of results was obtained by Cai
et al.,26 who tested a series of hydroxy and methoxy chalcones
against α-glucosidase activity. Comparing the tested com-
pounds, chalcones holding methoxy groups showed much
lower inhibitory activities than chalcones with hydroxy groups
at the same positions. In line with this pattern, Cai et al.26 also
described that the number and position of the hydroxy substi-
tuents in the chalcones is an important factor affecting their
inhibitory activity. In fact, the authors also concluded that the
presence of a catechol in the A and B rings was relevant for the
inhibitory activity. Similar to our results, Ansari et al.27 tested
one chalcone with a methoxy group at the B ring, and the IC50

value decreased when a 2′-hydroxy group was added to the A
ring of the chalcone. Sun et al.28 evaluated the inhibitory
activity of hydroxylated, prenylated and/or geranylated chal-
cones. Replacing hydroxy by methoxy groups of one of the pre-
nylated chalcones, diminished the activity, corroborating our
results.

The presence of a nitro group in the chalcone scaffold
increased their inhibitory activity against α-glucosidase
activity. Chalcone analogue 41 showed almost nine times more
activity than the positive control, acarbose. Chalcone 21
exhibited almost seven times more activity than acarbose.
The addition of nitro groups to chalcone 2 and chalcone ana-
logue 40, both with a single 2′-hydroxy group at the A ring,
resulted in strong inhibitory activities. Moreover, the presence
of a hydroxy group was crucial for the α-glucosidase inhibition.
This is evident by comparing the meaningless result obtained
for chalcone 20 with a 4-nitro group at the B ring with chal-
cone 21 bearing an additional 2′-hydroxy group at the A ring.
The same effect was observed in chalcone analogues, for
example, comparing chalcone analogue 39 bearing a 2-nitro
group at the B ring with chalcone analogue 41 bearing an
additional 2′-hydroxy group at the A ring. In turn, changing
the position of the nitro group in chalcone 39 to C-2′ of the A
ring (chalcone analogue 35) and to C-4 of the B ring (chalcone
analogue 38) did not improve the inhibition of the com-
pounds. As far as we know, chalcone 21 and chalcone ana-
logues bearing nitro groups (35, 38, 39, 41) were studied here
for the first time. The inhibitory activity of chalcone 20 was
already evaluated by Ansari et al.27 and Jabeen et al.25 In both
studies, the authors evaluated different substituents, including
hydroxy, methoxy, amino and sulfonamido. The less active
compound was chalcone 20.

The derivative 26 emerged from the chlorochalcones
(22–28), herein evaluated for the first time as a potential inhibi-
tor of α-glucosidase activity. Recently, Proença et al.39 studied a
series of chlorinated flavonoids. A flavonoid holding a chloro
substituent at the C ring and hydroxy groups at the A and B
rings was one of the most active compounds. The same group
has shown that chloroflavonoids display potential anti-inflam-
matory activity,45 essential to avoid damages induced by
inflammatory processes, which are exacerbated under diabetic
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conditions. These results, together with ours, indicate that this
halogen substituent should be included in future works
regarding promising chemical structures for the intended
effect.

Concerning the other tested compounds, methylchalcones
(18, 19) were not able to inhibit α-glucosidase, up to the
highest tested concentration. As far as we know, these chal-
cones were studied for the first time.

The chalcone analogues with methyl (30, 36), methoxy (31,
37), chloro (32), fluoro (33), and bromo (34) substituents were
not able to inhibit α-glucosidase up to the highest tested con-
centration. As far as we know, these chalcone analogues with
two double bonds between the A and B rings were evaluated
here for the first time. Cai et al.26 studied a series of hydroxyl-
ated and methoxylated chalcones and bischalcones which
contain two chalcone moieties in a single structure, thus also
displaying two double bonds in their structures. The authors
reported that the introduction of hydroxy groups in bischal-
cones were determinant in increasing the inhibitory activity.

By analyzing the results of the α-glucosidase inhibition by
chalcones, it is possible to observe that their order of potency
was: chalcone 4 (butein) (IC50 = 21 ± 2 μM) > chalcone ana-
logue 41 (IC50 = 41 ± 1 μM) > chalcone 21 (IC50 = 53 ± 1 μM) >
chalcone 26 (IC50 = 87 ± 3 μM).

The type of α-glucosidase inhibition of the most active com-
pounds was studied using Lineweaver–Burk plots and Solver™
supplement. Both methods showed that chalcone 4 (butein)
and acarbose act via competitive inhibition mechanism. In
turn, chalcone 21, chalcone 26, and chalcone 41 showed a
non-competitive inhibition. Concerning acarbose, this con-
clusion is corroborated by other authors.39,43,46 However, Son
and Lee47 reported that acarbose is a mixed type inhibitor.
These different results may rely on the experimental con-
ditions used, such as the enzyme and substrate concen-
trations, the time of interaction between the enzyme and acar-
bose, and the time of kinetic monitoring of the enzymatic reac-
tion. The ANOVA analysis showed that the compounds have an
F value higher than the F critical value which means that
despite the variability found in the method precision, the com-
pounds exhibited inhibitory effect against the enzyme activity.

It is currently known that commercially available
α-glucosidase inhibitors accumulate significantly increased
amounts of undigested carbohydrates in the intestine, mainly
due to the non-specific inhibition of α-amylase, leading to gas-
trointestinal side effects. A strong α-amylase inhibitory activity
will lead to prolonged inhibition of starch hydrolysis and the
accumulation of undigested carbohydrates in the colon, which
will result in excessive bacterial fermentation of carbohydrates
that are then used as substrate by bacteria. The consequences
for the patients are severe gastrointestinal complications such
as diarrhea, flatulence, and abdominal distention. Therefore,
inhibitors of α-glucosidase with mild inhibitory activity against
α-amylase, constitute one of major therapeutic strategies for
the treatment of type 2 DM. Chalcone 4 (butein), the most
active compound of this study, showed a moderate inhibition
of α-amylase and potent inhibition of α-glucosidase activity

which is important to overcome the side effects of the current
therapy. Chalcone 4 (butein) is an important naturally occur-
ring chalcone present in several plants. As far as we know, the
antidiabetic activity of butein was already evaluated in vitro
and in vivo against aldose reductase, the reductase responsible
for the polyol pathway, which converts glucose into sorbitol
that accumulates in tissues causing several complications.
Butein was shown to significantly reduce the activation of
aldose reductase, preventing such complications.48,49 Also, it
is known that inflammation contributes to the development of
insulin resistance and dysfunction of pancreatic β cells. Butein
was also shown to be a potential therapeutic anti-inflamma-
tory agent.50 To the best of our knowledge, the inhibitory
activity of butein against α-amylase and α-glucosidase was
studied here for the first time. In our study, chalcone 4
(butein) constitutes the most promising molecule to address
type 2 DM control and/or treatment.

5. Conclusions

In the present study, a panel of forty-one chalcones and chal-
cone-type compounds were evaluated for their inhibitory
activity of the digestive enzymes, α-amylase and α-glucosidase,
with most of them being tested for the first time, in order to
provide deeper insights into their structure and activity. It was
possible to conclude that the substitution pattern and the type
of substituents influence the inhibitory activity of the com-
pounds, the presence of hydroxy groups being favorable for
the intended effect. From the obtained results, it was found
that chalcone 4 (butein) was the most active compound
showing a moderate inhibition of α-amylase and a potent inhi-
bition of α-glucosidase. Therefore, the presence of hydroxy
groups at C-2′ and C-4′ of the A ring and at C-3 and C-4 of the
B ring seems to be important for the inhibitory activity of the
studied chalcones. Moreover, it was proved that chalcone 4
(butein) displayed a competitive type of inhibition for both the
enzymes.

This study provided important considerations about the
chalcones’ scaffold and their antidiabetic effect. The obtained
results may also contribute for the design of novel molecules
that can be useful in the management of type 2 DM.
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