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ABSTRACT

The present work details the nutritional and chemical compositions of borage and centaurea, at three flowering
stages. Water was the main constituent, followed by total dietary fiber. Both flowers showed statistically dif-
ferent (p < 0.05) nutritional and chemical profiles, although in both, polyunsaturated fatty acids (PUFAs)
(mainly linoleic and a-linolenic acids), free sugars (3.9-28.9% dw as fructose, glucose, and sucrose), tocopherols
(with the major contribution of a-tocopherol from 1.24 to 2.75mg/100 g dw), carotenoids (0.2-181.4mg/100 g
dw, mainly as lutein), and organic acids (6.1-14.4 g/100 g dw, mainly malic, succinic, and citric acids) were
quantified. Concerning flowering, significant differences (p < 0.05) were found for some components, parti-
cularly carotenoids; however, no specific trend was observed in either of the two flower species. Thus, the
present study shows that each flower species, as well as their flowering stages, may have different phytochemical
and nutritional compositions.

1. Introduction

The commercial value of edible flowers is increasing in the food
sector, mostly due to consumer' interest in natural products, new in-
gredients with potential health benefits, and the aesthetic benefits of
their use in food and beverages (colors, textures, and flavor) (Gonzalez-
Barrio, Periago, Luna-Recio, Javier, & Navarro-Gonzalez, 2018; Mlcek
& Rop, 2011). Flowers may be consumed as buds and/or the whole
flower, or only petals, depending on the flower species. The period of
flower development from mature bud to open flower encompasses one
of the most active growth periods in the entire developing process of
plants (Reid, 2005). During this process, plants undergo different
stages, in which a variety of physiological, biochemical and structural
processes occur (Chen, Zhu, Guo, Zhang, & Zhang, 2012; Cirak, Janulis,
& Ivanauskas, 2007; Collier, 1997). Sometimes the chemical changes
that happen during flower development affect their nutritional and
beneficial health properties (Dar, Tahir, & Ahmad, 2014; Shahri, Tahir,
Islam, & Bhat, 2011). Thus, consumers are likely to eat flowers of dif-
ferent compositions, according to the part of the flower or development
stage. Hence, understanding changes in chemical and nutritional
composition during flower development can help to enhance their
quality and bioactive potential, and thus, increase edible flowers'
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commercial value. However, publications on the chemical and nutri-
tional characterization of edible flowers during flower development are
limited. A small number of studies have focused primarily on protein,
anthocyanins, sugars and enzymes in rose species (Rosa hybrida, R.
damascena Herrm., and R. bourboniana Desp.) (Dafny-Yelin et al., 2005;
Sood, Vyas, & Nagar, 2006), bioactive compounds in rosemary (Ros-
marinus officinalis L.) (Del Bafio et al., 2003), carbohydrates and an-
thocyanin pigments in nasturtium flowers (Tropaeolum majus L.) (Silva,
2012), the chemical composition of Opuntia ficus-indica (L.) Mill. and O.
stricta Haw. flowers (Ammar, Ennouri, Bali, & Attia, 2014), and phy-
siological and biochemical changes in carnations (Dianthus chinensis L.)
(Dar et al., 2014).

In particular, centaurea and borage are two important edible
flowers that have been sold in different areas, and includes examples,
such as Ervas Finas®, BloomBites®, Meadowsweet Flowers®, and Petite
Ingredient®. These are used in culinary preparation by both chefs and
consumers.

Centaurea (Centaurea cyanus L.), also called ‘blue cornflower’ or
‘bachelor's button’, is a plant native to Europe. Its flowers have no
fragrance, but they have a sweet-to-spicy clove-like flavor. Centaurea
petals are ideal for mixing with other flowers to make dishes more at-
tractive, for sprinkling over salads (Chaitanya, 2014), or to be used as
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an ingredient in tea (Chaitanya, 2014). Dried flowers have been proven
to contain a long list of medicinal properties, such as being anti-in-
flammatory, skin cleansing, assisting regulating digestion and kidney,
gall bladder, liver and menstrual disorders, and increasing immunity
(Chaitanya, 2014; Pirvu, Dragomir, Schiopu, & Mihul, 2012).

Borage (Borago officinalis L.) is an annual herb, that is native to some
parts of the Mediterranean region, and is cultivated for medicinal and
culinary uses, but primarily for borage seed oil (Asadi-Samani,
Bahmani, & Rafieian-Kopaei, 2014). Borage flowers are blue and on
rare occasions appear white or pink (Asadi-Samani et al., 2014). Petals
have a cucumber-like taste and the stamens add a hint of sweetness. The
flowers are used in vegetable dishes and fruit salads, to garnish soups or
decorate desserts (Husti, Cantor, Buta, & Hort, 2013), as well as in ice
cubes (Husti et al., 2013).

To the authors' best knowledge, no studies on the phytochemical
modifications during borage and centaurea flower development have
been conducted. Thus, the present study was conducted to determine
the evolution and changes that occur in the nutritional and chemical
composition (fatty acids, free sugars, vitamin E, carotenoids and or-
ganic acids) of these two edible flowers, along with their flower de-
velopment (tight and mature buds, and fully open flowers). The main
objective of doing so is to gather important scientific information for
the academic community, and for those with an interest in the subject
such as flowers producers, and for the community in general. By va-
lorizing these products, the research can contribute to the populariza-
tion of flowers as food or supplements for food, and highlight their use
to cosmetics and pharmaceutical industries.

2. Material and methods
2.1. Plant material

The flowers of B. officinalis and C. cyanus were collected from the
greenhouse of the School of Agriculture of the Polytechnic Institute of
Braganca (Braganca, Portugal). Once harvested, flowers at different
stages of development were immediately transported to the laboratory
under refrigeration. Flower development was divided into three stages
(Fig. 1): stage one (tight bud stage) — closed bud flower, showing some
petal color at the tip of the bud end; stage two (mature bud stage) —
closed bud flower, showing the color of petals in their entire surface;
stage three (fully open) — completely opened flower, without symptoms
of senescence. Furthermore, petals (true petals, not bracts) were also
picked, because they are often the sole parts of flowers used for culinary
purposes.
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Flowers were evaluated for their moisture content before being
freeze-dried. All chemical analyses were performed using the freeze
dried samples, with the results presented in dry weight (dw) or con-
verted to fresh weight (fw).

2.2. Moisture, dietary fiber, and nutritional composition

The moisture, ash, fat, carbohydrates, and dietary fiber of each
sample were analyzed using AOAC procedures (1995) and expressed as
g/100 g fresh weight (fw). Moisture content was determined by drying
the sample to a constant weight at 105 °C; ash content was measured by
calcination at 550 °C for at least 2 h, until achieving white ashes. The
protein content of samples was estimated using the macro-Kjeldahl
method, with a conversion factor of 6.25, as per Sotelo, Lopez-Garcia,
and Basurto-Pena (2007) and Rop, Mlcek, Jurikova, Neugebauerova,
and Vabkova (2012). Lipids were determined by extracting a known
mass of powdered sample with petroleum ether, with 0.01% BHT (2,6-
di-tert-butyl-4-methylphenol) to prevent oxidation, using a Soxhlet ap-
paratus. Dietary fiber was determined by an enzymatic-gravimetric
method based on AOAC official method No. 985.29 (AOAC, 2003).

Free sugars were extracted by following the procedure described by
Barros, Oliveira, Carvalho, and Ferreira (2010). Sugars were analyzed
in a Jasco integrated high performance liquid chromatographic system
(Tokyo, Japan), equipped with a PU-980 intelligent pump and a re-
fractive index detector (Gilson, USA). Separation was achieved with a
SUPELCOGEL Ca column (30 cm X 7.8 mm L.D., Supelco, USA), oper-
ating at 80 °C, with ultra-pure water at a flow rate of 0.5 mL/min as
eluent. Sugar identification was made by comparing the retention times
of sample peaks with standards. Quantification was performed by the
external standard method with individual calibration curves for each
sugar at concentrations ranging from 0.5 to 10 mg/mL. The results were
expressed as g/100 g dw.

2.3. Analysis of lipids' minor components

2.3.1. Lipids compounds extraction

Lipid extraction for compositional analysis was performed ac-
cording to the method described by Cruz et al. (2013). A 250 mg por-
tion of a lyophilized sample was weighted in a plastic tube. Two in-
ternal standards solutions, tocol (20puL; 1mg/mL) for vitamin E
quantification, and triundecanoin (200 pL; 1 mg/mL), for total fatty
acids quantification, were added. Following on, two antioxidants, BHT
(20 uL, 10 mg/mL in methanol) and ascorbic acid (50 mg), were also
added. Propan-2-ol (1.6 mL) and cyclohexane (2.0 mL) were mixed and

Development stages

Flowen Tight bud stage

Mature bud stage

Fully open True petals

Borage

Centaurea

Fig. 1. Petals and three flowering stages of borage (Borago officinalis) and centaurea (Centaurea cyanus).
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agitated briefly by vortexing and kept overnight under refrigeration
(4 °C). The non-lipidic fraction was removed by washing with 2.5 mL of
a 1% NaCl solution (m/v), followed by agitation by vortexing and
centrifugation (3000 rpm, 5min; Heraeus Sepatech, Germany). The
organic phases were dehumidified with anhydrous sodium sulfate and
divided into two portions. For fatty acid analysis, the solvent was
evaporated under a nitrogen stream (60 °C). Hydrolysis was performed
with 1.5mL of KOH (0.5M in methanol) at 100 °C (10 min) in a dry
heating block (Stuart SBH200D/3, Staffordshire, UK). After reaching
room temperature, methylation was completed by the addition of
1.5mL of BF5; (14% in methanol) and heated for a further 30 min at
100 °C. After cooling, 1% NaCl (m/v) (2.5 mL) and n-hexane (2 X 2mL)
were added and the mixture was mixed by vortexing, followed by
centrifugation (3000 rpm, 5 min). The supernatant was transferred to a
tube with anhydrous sodium sulfate, followed by centrifugation at
5000 rpm for 5min. A supernatant portion (2mL) was directly trans-
ferred to a clear glass vial (Supelco, Sigma, Bellfonte, USA). The solvent
was evaporated under a nitrogen stream (60 °C), re-suspended with
heptane (1 mL), and the solution mixed in a vortex. This solution was
analyzed in a gas chromatograph for fatty acid analysis, as detailed
below. The remaining lipid extract (half of the re-suspended extract)
was transferred to an amber glass vial. The solvent was evaporated
under a gentle nitrogen stream (40 °C), re-suspended in about 600 pL of
n-hexane (HPLC grade) and placed in the HPLC autosampler for vitamin
E and carotenoids quantification.

2.3.2. Fatty acids

Fatty acids were analyzed according to the method described by
Amaral, Casal, Pereira, Seabra, and Oliveira (2003), with slight mod-
ifications. The temperatures of the injector and detector were 250 and
270 °C, respectively. Separation was achieved on a 100m x 0.25 mm
i.d. Select-FAME column (0.19-um film; Agilent, Santa Clara, USA).
Helium was used as carrier gas at an internal pressure of 180 kPa. Fatty
acids identification (C11:0-C22:6) was accomplished by comparing the
relative retention times of FAME peaks with the standards gained from
a diverse range of suppliers, from literature data, and confirmed by
GC-MS on a Agilent chromatograph 7890A with a 5977B MSD (MS
source —230°C; MS QUAD 150; aux 280 °C; m/z 30-800), using the
NIST/EPA/NIH Mass Spectral Library (NIST 14). For quantification
purposes, FID peaks were corrected using the response factors obtained
with standard FAME solutions. The fatty acids results were calculated
on a relative percentage basis.

2.3.3. Vitamin E and carotenoids

Separation was achieved by normal-phase HPLC, based on the
method described by Cruz and Casal (2018). The liquid chromatograph
consisted of a Jasco integrated system (Easton, USA) equipped with an
autosampler (AS-2057 Plus), a PU-980 intelligent pump, and a multi-
wavelenght DAD (MD-910), recording at 450 nm for carotenoids, con-
nected to a fluorescence detector (FD) (FP-2020 Plus;
Nexcitation = 290 nm and Aemission = 330 nm) for vitamin E. Chromato-
graphic separation was achieved on a Luna Silica column
(100 mm X 3mm; 3pum) (Phenomenex, USA), operating at constant
room temperature (23 °C), with a gradient of n-hexane and 1,4-dioxane
at a flow rate of 1.0mL/min. The compounds were identified by
chromatographic comparisons using authentic standards. Tocopherols
and tocotrienols (a-, B-, y-, and 8-) were acquired from Supelco (USA)
and Larodan AB (Sweden). Carotenoids standards (all-trans-(3-carotene
and lutein) were sourced from Sigma Aldrich (USA). Identified toco-
pherols and carotenoids were quantified by the internal standard
method, reported on a dw basis.

The total carotenoids content was estimated according to the
method described by Aquino-Bolafos et al. (2013). One gram of frozen-
dried powder of each sample was extracted twice using a 20 mL acet-
one:hexane solution (1:1, v/v). Both extracts were put into a separation
funnel: 200 mL distilled water was then added to eliminate acetone.
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The acetone-free phase was mixed with anhydrous sodium sulfate (5 g)
to eliminate any residual water, and the remaining solution filtered and
completed to 100 mL with hexane. Carotenoids content was determined
by reading the absorbance at 450 nm and comparing the results with a
B-carotene calibration curve (0.22-8.8 ug/mL). Results were expressed
as mg f-carotene equivalent/100 g dw.

2.4. Organic acids

The organic acids in the edible flowers were determined by gas
chromatography, after methylation, following the procedure described
by Sharma et al. (2016) and Kumar, Sharma, Bhardwaj, and Thukral
(2017), with minor modifications. The analytical column used was a
HP-5MS (30m X 0.25mm i.d. x 0.25 um thickness ultra-inert capillary
column, by Agilent Technologies). Mass spectra were obtained by
electron ionization (EI) at 70 eV, in full scan mode, with a spectrum
range of ion mass captured between 25 and 400 m/z, and an average of
3.5 scans/s (sample rate of 2). The mass spectra were evaluated using
Enhanced ChemStation software (Version F.01.03.2357, Agilent Tech-
nologies). Individual standards of citric, levulinic, fumaric, succinic,
malic, salicylic, hydroxycinnamic, malonic, oxalic, tartaric and benzoic
acids - all supplied by Sigma Aldrich (Germany) - were derivatized
under sample conditions. Quantification was based on individual cali-
bration curves, using specific m/z for each compound, as detailed in
Kumar et al. (2017).

2.5. Statistical analysis

The statistical analysis was performed using SPSS software, Version
18.0 (SPSS Inc., Chicago, USA). The normality of the data and homo-
geneity of the variances were confirmed by Shapiro-Wilk and Levene's
tests, respectively. To verify if significant differences (p < 0.05) ex-
isted between samples, an analysis of variance (ANOVA) or ANOVA
Welch was performed, depending on the existence or non existence of
homogeneity of variances, respectively. When significant differences
were detected between treatments, Tukey's honest significant difference
test (if variances in different groups were identical) or the Games-
Howell test (if they were not) were performed.

3. Results and discussion
3.1. Moisture, dietary fiber, and nutritional composition

The moisture, dietary fiber, and nutritional compositions of borage
and centaurea at three flowering stages are detailed in Table 1. Water
was the main constituent in both flowers at all stages (73.7-90.5 g/
100 g fw), followed by total dietary fiber (3.84-17.2 g/100 g fw), while
lipids were minor constituents (0.41-1.13 g/100 g fw).

When comparing both flowers, borage always presented sig-
nificantly higher (p < 0.05) moisture content (> 85g/100 g fw) than
centaurea (> 73g/100g fw). The same was observed for ash values
(1.74-2.05 vs. 1.20-1.56 g/100 g fw, respectively). On the other hand,
centaurea always presented significantly higher amounts (p < 0.05) of
total dietary fiber (14.8-17.2g/100g fw) than borage (3.84-6.74 g/
100 g fw). In general, these values were similar to selected vegetables:
asparagus (moisture 79.34-92.20, proteins 3.62-4.83, fat 0.33-0.90 g/
100 g fw) (Ferrara et al., 2011), white cabbage (moisture 91.8, proteins
1.4, fat 0.4, dietary fiber 2.4 g/100 g fw) and cucumber (moisture 95.1,
proteins 1.4, fat 0.6, dietary fiber 0.7 g/100 g fw) (Instituto Nacional de
Satide Doutor Ricardo Jorge, 2010).

Regarding centaurea, our results expressed in dry weight (data not
shown) were similar to those reported by Rop et al. (2012) for fully
open flowers (protein 6.9 g/100 g dw, in both studies), and the results
of Pires, Dias, Barros, and Ferreira (2017) for true petals of this species
(protein 5.8 vs 8.5g/100 g dw).

During the flowering stage (from tight bud to fully open flower), the
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Table 1
Composition in moisture, nutrients and total dietary fiber of borage and centaurea at three flowering stages plus isolated petals (g/100 g fw).
Borage Centaurea
Tight bud Mature bud Fully open (Petals) Tight bud Mature bud Fully open (Petals)
Moisture 86.9 + 0.4%F 85.3 + 1.8%F 86.6 + 1.8%F 90.5 + 0.4™B 73.7 + 2.2%A 76.3 + 1.2%4 76.7 + 0.6* 80.5 + 0.7™4
Ash 2.02 * 0.14°®  1.74 = 0.04>® 2,05 + 0.11° 0.88 = 0.04**  1.56 = 0.06*  1.43 + 0.11>%* 120 + 0.11*>*  1.11 * 0.04>*
Protein 2.24 * 0.09* 262 = 0.10°®  3.04 + 0.10%® 0.89 + 0.02**  2.89 + 0.55** 178 + 0.28%4 1.60 = 0.06™* 1.66 = 0.24*"
Lipid 0.68 + 0.16*  0.56 = 0.02**  0.66 + 0.15™* 0.41 + 0.08**  0.89 + 0.08**  1.13 + 0.20*® 0.80 + 0.03** 0.86 + 0.16™"
Soluble sugars
Sucrose 3.55 + 0.53*® 492 + 0.67*®  3.86 = 0.75*" 9.60 = 1.67>®  1.45 = 0.15**  1.30 + 0.05%* 1.33 * 0.06™* 1.18 = 0.45**
Glucose 512 * 0.44*® 694 + 0.71"® 596 + 0.75*>® 885 + 0.15®  0.91 + 0.10* 210 * 0.04>" 1.74 + 0.07>* 7.30 + 0.46°"
Fructose 572 + 0.36*®  7.86 + 0.87"®  6.97 + 0.38"F 10.4 = 0.30%®  1.57 + 0.12** 249 + 0.04>* 2.71 + 0.10>* 3.43 + 0.40™4
Total dietary fiber ~ 6.28 * 0.16*  6.74 = 0.05%*  4.74 + 0.10>* 3.84 + 0.03**  17.2 x 1.4>B 14.8 + 0.8*8 15.7 + 0.5%bB 14.8 + 0.7%B

Values are expressed as: Mean + Standard deviation. fw- fresh weight. Lowercase letters compared different flowering stages in the same flower species.

Uppercase

letters compared both flowers at the same flowering stage. Values with the same letter are not statistically different (p > 0.05).

nutritional composition trends for both flowers were different. Borage
showed an increase in protein, while in centaurea, a decrease in ash and
protein content was observed. Peiretti, Palmegiano, and Salamano
(2004) reported a progressive decrease in crude protein content during
the developmental stages of borage, specifically, 149 g/kg dw for late
vegetative stage to 138 g/kg dw for late flower stage. In our work, the
lipid content remained almost constant, while dietary fiber showed
variable behavior, when both flowers were compared. These patterns
are in line with literature results for other flowers, as in the case of the
two Opuntia species at four stages of development reported by Ammar
et al. (2014). The flowers of O. ficus-indica showed an increase in fat and
a decrease in fiber content (three first stages of flowering), while in O.
stricta, the opposite was detected (Ammar et al., 2014). Thus, each
flower, at each flower development stage, showed a unique composi-
tion and nutritional value.

For both flowers studied, petals alone presented the highest
moisture content when compared with the entire flower. In borage, the
separation of petals from the flower represented a highly significant
reduction in protein, lipids, and total dietary fiber, while in centaurea
only minor changes were observed. To gain the highest protein content,
borage should be consumed as a fully opened flower, while for cen-
taurea the tight bud should be preferred. To obtain a higher fiber
content, tight buds should be chosen.

Three free sugars were identified, namely, sucrose, glucose, and
fructose. Fructose was the major sugar in both flowers at all flowering
stages (1.57-10.4g/100g dw), except in centaurea petals, in which
glucose dominated (7.30 g/100 g dw). Similar results were reported for
other flowers by Guimaraes, Barros, Carvalho, and Ferreira (2010) and
Pires et al. (2017), who detected fructose as the main sugar in Rosa
micrantha, dahlia, and centaurea petals. Borage presented higher values
for all free sugars, which can likely be associated with its sweet, sensory
attribute. Concerning different flowering stages and parts of the flower,
petals showed the highest values of free sugars for both flowers, except
for sucrose in centaurea. Different functions in flower development
have been attributed to sugars, namely as an energy source (Moalem-
Beno, Tamari, Leitner-Dagan, Borochov, & Weiss, 1997), osmotic reg-
ulators (Bieleski, 1993), and precursors of metabolic processes. During
flower development (from tight bud to fully open flower), the sucrose
and glucose remained constant in borage, while fructose increased from
5.72 to 6.97 g/100 g dw. In centaurea, sucrose also remained constant,
while glucose and fructose increased (from 0.91 to 1.74 and 1.57 to
2.71g/100g dw, respectively). This may be related to the fact that
sugar availability is an important signal during floral induction; in
particular sucrose was described as a major photosynthetic product,
and acts as a signal to control the timing of flowering (Cho, Pasriga,
Yoon, Jeon, & An, 2018; Tognetti, Pontis, & Martinez-Noel, 2013).
Moreover, its hydrolytic products (glucose and fructose), as well as
their downstream metabolic intermediates, trehalose and trehalose-6-
phosphate, also act as control signals (Cho et al., 2018).

3.2. Fatty acids

The fatty acids profiles of borage and centaurea at three flowering
stages are shown in Table 2, presented as individual, and grouped as
total saturated fatty acids (SFA), monounsaturated fatty acids (MUFA),
and polyunsaturated fatty acids (PUFA), together with the ratios of
PUFA/SFA and n-6/n-3. Nineteen fatty acids were identified and
quantified. The major fatty acid found in borage at all stages was li-
noleic acid (C18:2n6) (19.1-23.7%), followed by palmitic acid (C16:0)
(17.1-18.0%). These results are similar to Sayanova, Shewry, and
Napier (1999), who noted that the fatty acids composition of borage
flowers was characterized by having the highest content of linoleic
(41.4%) and palmitic (31.9%) acids, although our values were lower.

In centaurea, oleic acid (C18:1) was the major fatty acid in tight
buds (26.4%), while in mature buds and fully open flowers, this was
C16:0 (30.0 and 25.9%, respectively). In petals, a-linolenic acid
(C18:3n3) was the prevalent fatty acid (27.7%). However, C16:0,
C18:1, and C18:3n3 acids were not significantly different (p > 0.05)
during the flower development of centaurea. Furthermore, y-linolenic
(C18:3n6) and eicosenoic (C20:1) acids were not detected in centaurea,
unlike borage. During the three stages of flowering, borage did not
reported significant differences (p > 0.05) in the major fatty acids,
with the exception of C18:3n3, which increased from 10.4 to 13.0%. In
all stages of development, PUFAs dominated over SFA in borage, fol-
lowed by MUFA, due to the abundance of C18:2 and C18:3. Similar
results were obtained by Peiretti et al. (2004), who reported that during
the flower development of borage, high percentages of PUFA were
detected between 65 and 80%.

Contrastingly, in centaurea the following increasing order was ob-
served: SFA > PUFA > MUFA, due to the contribution of C16:0, al-
though SFA values were not very different from PUFA values.
Furthermore, for the human diet, it is recommended that PUFA/SFA
ratios be higher than 0.45, and n-6/n-3 ratios lower than 4.0 (Guil,
Torija, Giménez, & Rodriguez, 1996), which was observed in almost all
stages of flowering, except in borage petals (PUFA/SFA = 0.40), ma-
ture buds in centaurea (PUFA/SFA = 0.20), and centaurea petals
(PUFA/SFA = 0.44). Thus, in general terms, both edible flowers at all
flowering stages and petals had healthy lipid profiles.

3.3. Vitamin E

Free vitamin E was evaluated in all flowering stages, as detailed in
Table 3. Results show that a-tocopherol was the major compound in all
samples, followed by y-tocopherol in borage and (3-tocopherol in cen-
taurea. This richness in a-tocopherol is important from a health per-
spective, since it represents a primary defense against lipid peroxida-
tion (Bartoli, Simontacchi, Montaldi, & Puntarulo, 1997), and such
richness is similar to that found in other floral species such as calendula
(Miguel et al., 2016; Pires et al., 2017), centaurea (Pires et al., 2017),
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Table 2

Fatty acid composition (relative %) of borage and centaurea at three flowering stages.
Fatty acids (%) Borage Centaurea

Tight bud Mature bud Fully open (Petals) Tight bud Mature bud Fully open (Petals)

SFA
C12:0 0.5 = 0.23%4 0.6 = 0.2> 0.5 + 0.13>% 0.3 + 0.1%4 0.7 = 0.2 0.9 = 0.1%8 0.6 = 0.2%4 0.8 = 0.4%8
C14:0 0.5 + 0.3%* 0.8 + 0.3%* 0.7 £ 0.1** 2.1 + 0.1%8 0.7 + 0.3%* 1.0 + 0.5 0.7 + 0.2* 0.7 + 0.3%*
C15:0 0.2 + 0174 0.2 + 0174 0.2 + 0.1° 0.4 + 0178 0.1 = 014 0.2 + 0.2 nd 0.2 + 0.2
C16:0 18.0 + 0.8** 17.8 + 0.9 17.1 £ 0.7%4 17.2 + 0.1** 24.8 + 4.5%F 30.0 + 1.2%F 25.9 + 4.4%B 25.2 + 4.2%B
C17:0 0.9 + 0.5*® 1.0 + 0.1** 0.9 + 0.2 1.3 + 0.1 0.4 + 0.1** 1.2 = 0.3>¢A 0.6 = 0.38>4 1.3 + 0.6°°
C18:0 4.9 + 0.4%4 3.8 + 1.8 4.8 + 0.4%0 5.0 + 0.1 5.8 + 1.1 8.6 + 1.72PB 7.2 = 1.7%B 10.6 + 3.2°P
€20:0 1.5 + 0.8%4 1.8 + 0.2 1.8 = 0.2 1.8 = 0.1%4 2.5 + 0.8™4 2.9 + 0.4%8 2.5 + 0.7%B 2.9 + 118
€22:0 2.4 + 0.7*8 2.6 + 0.3*° 2.5 + 0.4™* 3.2 + 0.4*8 1.2 + 0.4 2.0 + 0.3%* 1.4 + 0.5 1.6 + 0.5%*
C24:0 2.4 + 1.3% 2.6 + 0.2%8 2.6 = 0.3 3.9 + 0.2>8 1.3 + 0.5 2.0 + 0.3%4 1.6 + 0.6 1.3 + 0.4%
Total SFA 31.0 31.0 31.0 35.0 37.0 49.0 40.0 45.0
MUFA
C16:1 0.1 = 0124 0.3 = 0.2° 0.2 + 0.1 0.2 = 0.1° 0.2 = 0.1 nd 0.3 = 0.2%B nd
c18:1 12.3 = 1.5 10.3 + 7.7%4 9.9 + 8.8 6.7 + 1.204 26.4 + 15.3*F 9.04 + 3.45*" 259 + 17.1%4 19.8 + 18.5%%
€20:1 0.4 = 0.2° 0.6 = 0.4° 0.3 = 0.0° 0.5 = 0.1° nd nd nd nd
c22:1 2.5 = 0.9°>8 2.1 + 0.5*® 1.8 + 0.2%B 3.2 + 0.4%8 0.7 + 0.5 0.75 + 0.66™* 0.9 + 0.8™* 0.5 + 0.4™*
C24:1n9 2.6 + 0.8%F 2.2 * 0.3° 2.0 + 0.3° 35 + 0.3° 0.1 * 01" nd nd nd
Total MUFA 18.0 16.0 14.0 14.0 27.0 10.0 27.0 20.0
PUFA
C18:2n6 19.1 + 1.2*8 21.3 * 1.5%>A 21.2 + 2.2%PB 23.7 = 0.8"P 15.6 * 2.4> 20.7 = 3.0%* 12.8 * 2.9°PA 10.6 * 0.7%A
C18:3n6 7.0 = 1.4° 9.1 + 1.2° 9.6 + 1.4° 6.1 = 0.2° nd nd nd nd
C18:3n3 10.4 + 1.7°A 12.5 + 1.3%¢4 13.0 = 1.5%* 8.2 + 0.7 19.4 + 6.7%F 20.3 + 2.2%B 19.6 *+ 5.6™° 27.7 + 7.8%B
C18:4n3 59 + 1.12° 6.2 + 0.8 6.5 + 0.8° 4.7 + 0.3%B nd 0.5 + 0.6™* nd 1.8 + 0.7
C22:4n6 8.5 + 1.5° 4.2 + 0.5° 45 + 0.6>8 8.4 + 0.3° nd nd 0.1 = 014 nd
Total PUFA 51.0 53.0 55.0 51.0 35.0 42.0 32.0 35.0
PUFA/SFA 0.58 0.52 0.45 0.40 0.73 0.20 0.68 0.44
n6/n3 2.13 1.86 1.83 2.96 0.80 1.00 0.65 0.36

Values are expressed as: Mean +

Standard deviation. Nd - not detected. Lowercase letters compared different flowering stages in the same flower species. Uppercase

letters compared both flowers at the same flowering stage. Values with the same letter are not statistically different (p > 0.05).

rose species (Guimaraes et al., 2010; Pires et al., 2017), capper (Tlili,
Nasri, Saadaoui, Khaldi, & Triki, 2009), and lilium (Arrom & Munné-
Bosch, 2010). In almost all flower development stages, borage showed a
higher tocopherol content than centaurea; however, centaurea pre-
sented the highest value of a-tocopherol in petals (3.47 mg/100 g dw),
as well as higher [B-tocopherol values than borage (0.41-1.01 vs
0.29-0.33mg/100 g dw). No tocotrienols were detected in centaurea,
while borage showed f3- and y-tocotrienols in their composition in re-
duced amounts. Pires et al. (2017) also described the presence of a- and
y-tocopherols in centaurea flowers. Contrastingly, Lockowandt et al.
(2019) did not detected [3- or 8- tocopherols in centaurea flowers, al-
though the values for a-tocopherol (1.01 mg/100g dw) and y-toco-
pherol (0.29 mg/100 g dw) were similar to ours.

Throughout flower development, the content of total tocopherols
decreased in both flowers, between 3.7 and 3.2 mg/100 g dw (borage)
and 3.0 to 2.4mg/100g dw (centaurea). However, borage and

Table 3

centaurea showed significant differences in individual tocols. In borage,
a- and -tocopherols decreased (from 2.75 to 2.21 and 0.33 to 0.29 mg/
100 g dw, respectively) from tight bud to fully open stage, while y-to-
copherol increased (from 0.34 to 0.43 mg/100 g dw). In centaurea, the
a-tocopherol remained constant, while [3- and y-tocopherols decreased
(from 1.01 to 0.66 and 0.32 to 0.28 mg/100 g dw, respectively), in-
dicating that different flowers had distinctive trends in vitamin E
composition throughout flower development.

When analyzing caper from different Tunisian regions, Tlili et al.
(2009) found that buds presented higher a- and y-tocopherols values
than flowers. An increase in a-tocopherol content during the progres-
sion of senescence in chrysanthemum petals, followed by a decline in
advanced stages (stage four - roughly 50% of full browning of the petal
and evidence of wilting, and stage five - browning involved 50-100% of
the petal), were been reported by Bartoli et al. (1997). In lilium floral
organs, a- and y-tocopherols also increased alongside the progression of

Vitamin E contents (mg/100 g dw) in borage and centaurea at three flowering stages.

Tocols (mg/100 g) Borage Centaurea
Tight bud Mature bud Fully open (Petals) Tight bud Mature bud Fully open (Petals)

a-Tocopherol 275 = 0.16°% 224 = 0.05>* 221 * 0.06*® 247 + 0.11>* 1.32 = 0.20*™ 1,78 = 0.39%*  1.24 = 0.01*  3.47 + 0.29°F
B-Tocopherol 0.33 = 0.01  0.30 + 0.01**  0.29 + 0.01*  0.33 = 0.01>* 1.01 + 0.07%F 0.61 = 0.06"®  0.66 + 0.07>®  0.41 + 0.02*"
y-Tocopherol 0.34 + 0.01*®  0.43 + 0.01°®  0.43 = 0.01®  0.38 + 0.02>* 0.32 + 0.01>* 0.34 + 0.04>  0.28 + 0.01**  0.39 = 0.01%*
8-Tocoferol 0.24 = 0.01**  0.25 + 0.01° 0.24 = 0.01**  0.24 + 0.01*>*  0.35 = 0.01>® nd 0.26 *+ 0.01**  0.34 + 0.03>"
Total tocopherol 3.7 3.2 3.2 3.4 3.0 2.7 2.4 4.6
B-Tocotrienol 0.23 * 0.01° 0.28 + 0.01¢ 0.28 + 0.01¢ 0.22 + 0.01°% nd nd nd nd
y-Tocotrienol 0.23 + 0.01° 0.20 + 0.01° 0.19 + 0.01° 0.25 + 0.01° nd nd nd nd

Total tocotrienol 0.5 0.5 0.5 0.5 nd nd nd nd

Values are expressed as: Mean +

Standard deviation. Lowercase letters compared different flowering stages in the same flower species. Uppercase letters compared

both flowers at the same flowering stage. Values with the same letter are not statistically different (p > 0.05).
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Table 4
Total and individual carotenoids in borage and centaurea at three flowering stages and petals.
Flowers Flowering stages Total carotenoids B-carotene Lutein
(mg B-carotene/100 g dw) (mg [B-carotene equivalent/100 g dw)
Borage Tight bud 23.5 + 4.2>P 0.45 + 0.03"® 13.04 + 0.61"®
Mature bud 23.8 + 0.1>8 1.04 = 0.07%® 14.95 + 0.32%%
Fully open 181.4 + 13.9%B 8.50 + 0.61%B 43.73 + 2.24%8
(Petals) 3.3 + 0.5 0.04 + 0.01** 0.73 + 0.15**
Centaurea Tight bud 0.2 + 0.2 0.002 + 0.001** 0.03 + 0.01**
Mature bud 7.8 + 0.3%* 0.041 + 0.005> 1.16 = 0.06%*
Fully open 58 + 1.0>* 0.036 = 0.003%* 1.08 = 0.03%*
(Petals) 4.8 + 0.2"8 0.091 * 0.039%F 0.69 = 0.21%4

Values are expressed as: Mean + Standard deviation. Lowercase letters compared different flowering stages in the same flower species. Uppercase letters compared
both flowers at the same flowering stage. Values with the same letter are not statistically different (p > 0.05).

tepal senescence, between stages one (closed flowers, with fully com-
pacted organs and green tepals) and five (flowers with dehydrated te-
pals, just before abscission) (Arrom & Munné-Bosch, 2010). It must be
stated that centaurea petals were richer in a- and y-tocopherols than the
entire flower in each flowering stage. Thus, the consumption of borage
and centaurea can contribute to the daily recommend dose of vitamin E.

3.4. Carotenoids

The results for total and individual carotenoids are shown in
Table 4. Carotenoids are pigments with provitamin and antioxidant
roles. Regarding total carotenoids, borage always showed significantly
higher amounts than centaurea at all stages of flower development
(23.5-181.4 vs 0.2-7.8mg [-carotene/100g dw), except in petals,
where centaurea petals had a higher content than those of borage (4.8
and 3.3 mg [B-carotene/100 g dw, respectively). This indicates that bo-
rage carotenoids are more prevalent in other flower components than in
petals.

Regarding individual carotenoids, lutein was the main carotenoid in
both flowers (0.03-43.7 mg p-carotene equivalent/100g dw), as in
other edible flowers, namely: chrysanthemum (1.18-30.7 mg lutein/
100 g dw) (Park et al., 2015), snapdragon (1.41 mg lutein/100 g dw)
(Gonzalez-Barrio et al., 2018), garden nasturtium (35.0-45.0 mg lu-
tein/100 g fw) (Niizu & Rodriguez-Amaya, 2005), marigold (106.2 mg
lutein/100 g fw) (Tinoi, Rakariyatham, & Deming, 2006), and pansies
(5.11 mg lutein/100 g dw) (Gonzélez-Barrio et al., 2018). Borage pre-
sented consistently higher lutein contents than centaurea (0.73-43.73
vs 0.03-1.16 mg f3-carotene equivalent/100 g dw, respectively), except
in petals, in which similar results were obtained (0.73 and 0.69 mg [3-
carotene equivalent/100 g dw, respectively). 3-carotene was also found
in both flowers, but in much smaller amounts than lutein, ranging be-
tween 0.04 and 8.50 mg P-carotene equivalent/100 g dw for borage and
between 0.002 and 0.091 mg f-carotene equivalent/100 g dw in cen-
taurea.

Concerning flower development, different behavior was observed
for each of the two flower species. Borage had the highest lutein con-
centration in the last flowering stage (fully open), with values three
times higher than in previous stages, whereas centaurea presented an
increase from tight to mature bud, and then a non-significant decrease
to the fully open stage, but always in a very low range when compared
to borage. Throughout borage flowering (tight bud to fully open stage),
B-carotene also increased from 0.45-8.50 mg (-carotene /100g dw,
while in centaurea it was almost residual, but remained more constant
from mature bud to fully open flower. This different behavior between
the flower species is also described in Ohmiya, Tanase, Hirashima,
Yamamizo, and Yagi (2013), who detected that red carnation flowers
accumulated small amounts of carotenoids at stage one (bud flower),
followed by mature flower and decreased at stage four, i.e. — fully open
flower; while in green carnations, the amount of carotenoids accumu-
lated in petals during flower development (stage four). Yamamizo,
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Kishimoto, and Ohmiya (2010) also detected a different behavior for
petals of different species of Ipomoea during flowering development. In
L obscura and L nil, the values of lutein and (-carotene decreased from
stage one (12h before flower opening) to stage four (fully opened
flowers), while in Ipomoea sp. this content increased. Thus, each plant
employs a different strategy for quantitatively and qualitatively con-
trolling carotenoid levels in petals (Ohmiya et al., 2013).

Furthermore, carotenoids extracted from flowers can be used in the
food, pharmaceutical, and cosmetics industries. In food industry, car-
otenoids can be used as a natural colorant, as is already the case; for
example, the yellow color derived from the lutein of Tagetes erecta L.
flowers (Lin, Lee, & Chang, 2015). On the other hand, some carotenoids
are precursors of vitamins and also present actions that are anti-in-
flammatory, have antioxidant properties, immunomodulatory, and
anti-cancer (Cardoso et al., 2017). As such, the inclusion in pharma-
ceutical and food products of these bioactive compounds in their con-
centrated form also represents an approach for promoting health. In
fact, some dietary supplements, processed foods, beverages, con-
fectionery, and dairy products already include carotenoids from flowers
in their formulations (Berman et al., 2015).

3.5. Organic acids

The organic acids profiles of borage and centaurea during flowering
development are presented in Table 5. Eight organic acids were de-
tected, with distinct profiles for both flowers. In borage and centaurea,
the total content of organic acids ranged between 6.1-9.2 and
8.6-14.4g/100 g dw, respectively. The major organic acid in borage
was malic acid (2.09-4.66 g/100 g dw), followed by citric (0.52-1.73 g/
100 g dw) and levulinic (0.69-1.58 g/100 g dw) acids. Contrastingly, in
centaurea, the major organic acid was succinic acid (1.89-9.68 g/100 g
dw), followed by malic (1.47-2.17 g/100 g dw) and citric (1.09-2.76 g/
100 g dw) acids. Petals had the highest total organic acid content, with
different patterns in both flower species, but similar to those presented
in flower development, with malic acid being prevalent in borage petals
(50.6%), and succinic acid in centaurea petals (67.2%). Pires et al.
(2017) also reported different organic acid profiles for dahlia, rose,
calendula, and centaurea petals, for which the major organic acids
were: malic acid (0.74 g/100 g dw), quinic and malic acids (1.52 and
1.23g/100 g dw, respectively), succinic acid (1.77 g/100g dw), and
oxalic acid (0.18g/100g dw), respectively. Furthermore, when ana-
lyzing dried centaurea petals (commercial sample), Pires et al. (2017)
did not detect any of the current study's major organic acids, reporting
only oxalic and shikimic acids. On the other hand, Lockowandt et al.
(2019) also detected succinic (3.62g/100g dw), citric (2.29g/100g
dw), malic (0.36 g/100 g dw), and fumaric (0.0021 g/100 g dw) acids in
fully open centaurea flowers, the first two organic acids being the
dominant acids, in line with our results.

In both flowers, from tight bud to fully open stage, citric acid de-
creased (from 1.73-0.92 and 2.76-1.88g/100g dw in borage and
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Table 5

Organic acids composition in borage and centaurea at three flowering stages (g/100 g dw).

Centaurea

Borage

Organic acids

Fully open (Petals) Tight bud Mature bud Fully open (Petals)

Mature bud

Tight bud

1.09 + 0.06>®
0.53 = 0.03>*
0.013 + 0.001**

9.68 + 0.21%F

1.88 + 0.08™F
0.86 + 0.06%*
0.017 = 0.001>*

3.62 + 0.15%%

2.20 + 0.12%B

2.76 = 0.04%
0.77 * 0.03%®

0.52 + 0.02°*
1.58 + 0.15%F

0.92 + 0.02>*
1.17 + 0.07>®
0.87 + 0.01>B

0.49 * 0.01**

0.99 + 0.01%*

1.73 * 0.05%4
0.69 + 0.03%*
0.75 = 0.06™
0.56 + 0.01>*
2.09 * 0.05**
0.010 * 0.001*

0.24 + 0.01*"

Citric acid

0.70 + 0.01>*
0.017 + 0.001>*
2.94 + 0.16™®
2.09 + 0.23%*
0.019 + 0.001>®
0.27 + 0.03"®

0.73 + 0.03*B

9.0

1.20 + 0.07>P
0.91 + 0.07>8

0.51 + 0.01>*

Levulinic acid
Fumaric acid
Succinic acid
Malic acid

0.018 = 0.001>*
1.89 = 0.09%®

2.17 * 0.03%®
0.019 + 0.001>®

0.21 + 0.02%*
0.77 * 0.04>8

8.6

1.30 + 0.08%B
0.55 + 0.03>*

4.66 + 0.29%B

1.47 + 0.09%4
0.019 + 0.001>®
0.49 * 0.05%*
1.13 + 0.02"8

14.4

1.84 = 0.09>*
0.017 * 0.001*®
0.35 + 0.02%%

2.88 = 0.03"®
0.011 = 0.001>*

0.22 + 0.01%*
0.053 + 0.002**

6.6

2.94 + 0.10>P

0.010 = 0.001®*

0.49 + 0.06>"
0.064 + 0.003>*

9.2

0.012 = 0.001%

0.22 + 0.01>*

Salicylic acid

Hydroxycinnamic acid
Malonic acid

Total

0.70 * 0.078

9.3

0.057 * 0.002%4

6.8

0.055 + 0.006>*

6.1

Values are expressed as: Mean + Standard deviation. Lowercase letters compared different flowering stages in the same flower species. Uppercase letters compared both flowers at the same flowering stage. Values with

the same letter are not statistically different (p > 0.05).
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centaurea, respectively). In borage, levulinic and malic acids increased
during flower development (0.69-1.17 and 2.09-2.88 g/100 g dw, re-
spectively). In centaurea, succinic acid increased from tight bud
(1.89g/100 g dw) to fully open (3.62 g/100 g dw) stages, while malic
acid decreased from 2.17-1.84g/100g dw. Borage petals showed
higher values for all organic acids quantified, except citric and salicylic
acids. In centaurea petals, only succinic, hydroxycinnamic and malonic
acids increased with flower development. Thus, food, cosmetics and
pharmaceutic industries can use edible flowers as a new source of dif-
ferent organic acids, depending on the stage of flowering, as well as the
part of the flower to be consumed (petals or whole flower).

Furthermore, malic and citric acids, which are important compo-
nents in centaurea and borage flowers, have been reported to have
protective effects on myocardial ischemia/reperfusion injury (Tang
et al., 2013) and as having antimicrobial activity against some patho-
genic microorganisms (Eswaranandam, Hettiarachchy, & Johnson,
2004). Moreover, some of these organic acids are already used as food
additives, such as citric acid, which demonstrated efficacy for pathogen
control in fresh and processed meat (Anyasi, Jideani, Edokpayi, &
Anokwuru, 2017), or citric, malic, and tartaric acids as antioxidants in
the manufacturing of beverages (Scherer et al., 2012).

4. Conclusions

In summary, the present work describes, for the first time, the
chemical and nutritional composition of two edible flowers, centaurea
and borage, at three flowering stages, and for their petals. Both flowers
species have a high-water content (> 73%). In general, centaurea
presented the highest values for total dietary fiber, while borage
showed the highest protein, PUFA and total carotenoid content. During
flowering, few changes were observed in the compounds analyzed for
both flower species, the major differences detected being between
flower and petals. In borage petals, the lowest protein and total car-
otenoid values were observed.

In conclusion, both edible flower species showed a nutritional
composition and compounds with functional properties. Despite the
lower amounts of some compounds, the daily consumption of edible
flowers may contribute to supplying some macronutrients, vitamins,
and organic acids to the human diet. These characteristics may there-
fore encourage the use of edible flowers (whole flower and petals) for
human consumption.
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