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Abstract 

BACKGROUND 

To overcome constrains affecting olive groves, cropping practices focusing on 

agronomic water use efficiency and their impact on quality parameters must be 

investigated. We evaluated the response of olive trees (Olea europaea, cv. Cobrançosa) 

to different water regimes, full irrigation (FI, 100% ETc) and three deficit irrigation 

strategies (DIS) (regulated (RDI, irrigated with 80% of crop evapotranspiration (ETc) in 

phases I and III of fruit growth and 10% of ETc in the pit hardening stage) and two 

continuous sustained strategies (SDI), a conventional SDI (27.5% of ETc), and a low-

frequency irrigation adopted by the farmer (SDIAF, 21.2% of ETc). 

RESULTS 

The effects of water regimes on the plant water status, photosynthetic performance, 

metabolites fluctuations and fruit quality parameters were evaluated. All DIS treatments 

enhanced leaf tissue density, RDI and SDI generally did not affect leaf water status and 

maintained photosynthetic machinery working properly, while SDIAF treatment 

impaired olive tree physiological indicators. DIS treatments maintained the levels of 

primary metabolites in leaves, but SDIAF plants showed signs of oxidative stress. 

Moreover, DIS treatments led to changes in the secondary metabolism, both in leaves 

and in fruits, with increased total phenolic compounds, ortho-diphenols, and flavonoids 

concentrations, and higher total antioxidant capacity, as well higher oil content. 

Phenolic profiles showed the relevance of an early harvest in order to obtain higher 

oleuropein levels with associated higher health benefits. 

CONCLUSION 

Adequate DIS are essential for sustainable olive growing, as they enhance the 

competitiveness of the sector in terms of olive production and associated quality 

parameters. 

 

Keywords: Ecophysiology; Fruit physicochemical properties; Irrigation regime; Olea 

europaea; Water use efficiency.   
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INTRODUCTION 

The Mediterranean Basin is a climate change and biodiversity hot spot where 

substantial warming and lower water availability is predicted for the next few decades.
1
 

The magnitude of the predicted climate change in natural and agro-ecosystems poses 

considerable challenges to their management. In olive tree, an ancient crop with 

considerable ecological and socioeconomic importance in the Mediterranean area, the 

impacts derived from climate warming might lead to areas of decreased profitability.
2
 

Mediterranean crops, like olive trees, intrinsically have several protection mechanisms 

against the typical summer stress (drought, heat and high irradiation levels). However, 

extreme water-limited environments due to climate change may come with negative 

repercussions on minerals uptake, carbon assimilation, canopy dimension, oxidative 

susceptibility, phenology, growth and reproduction processes and, consequently, on 

crop yield.
3-5

 

Due to the diversity in microclimate, soils and rainfall patterns in Mediterranean 

olive growing areas, annual crops water needs range extensively. Moreover, although 

olive trees are known to be resistant to drought, irrigation has been shown to improve 

the physiological performance of the trees, including better water status, higher stomatal 

conductance and photosynthetic rates, and the crop yield.
3, 5-9 

Nonetheless, irrigation has 

also been shown to have negative effects on both oil yield and quality, as the percentage 

of oil in the fruit has been reported to decrease as a function of increased amounts of 

applied water,
8
 affecting both the total amount of phenolic compounds and the HPLC 

profiles present in virgin olive oils, changing the olive oil stability to autoxidation, the 

sensory quality and ultimately consumer acceptance.
10

 

Irrigation strategies require precise knowledge of crop response to water deficit, 

which vary according to the specific genotype and during different phenological 

stages.
11

 In this sense, deficit irrigation strategies (DIS), an agronomic practice that 
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consist in the application of water below the ETc requirements, has been extensively 

researched in fruit trees with reported positive yields and quality responses.
12, 13

 DIS can 

also allow to control excessive vegetative vigour and minimize minerals losses through 

leaching, while improve crop water use efficiency.
14

 

Different DIS have shown beneficial effects on fruit yield, being sustained 

deficit irrigation (SDI) and regulated deficit irrigation (RDI) two of the most common 

strategies.
15, 16

 In SDI, a constant application of a reduced amount of water, which can 

be defined as over 75% to less than 25% of the crop evapotranspiration (ETc), leads to a 

slow gradual increase of water deficit as the season advances, allowing plants to adapt 

to it.
17

 For instance, it has been shown that for a Californian high-density hedgerow 

‘Arbequina’ olive orchard, fruit yield could be maximized with a SDI strategy using 70 

to 75% of ETc, being the best results in olive oil chemical parameters, flavour and 

stability achieved with 33 to 40% of ETc.
18, 19

 In olive trees, the main objective of RDI 

is not to control vegetative growth, since shoot growth occurs mainly in spring and 

slightly in autumn. Additionally, it has been noticed that deficit irrigation significantly 

reduces the final yield if applied in spring, from budburst until fruit drop, and in late 

summer during fruit oil synthesis. Conversely, if applied during summer, specifically 

during the fruit pit-hardening phase, deficit irrigation could result in lower reduction in 

fruit and oil yield.
20, 21

 Moreover, a deficit irrigation system usually contributes to 

change the pomological characteristics, as well the chemical composition of fruits, with 

consequences at commercial, nutritional and sensorial levels
9, 22

. Consequently, the 

cultivar, environmental conditions, management practices, among other factors, must be 

taken into account when studying the effect of DIS on plant phenology, growth, carbon 

assimilation, water use efficiency and also their impact on olive fruit yield and quality.
3, 

17, 21, 23
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Due to the importance of the cv. Cobrançosa in Portuguese young olive orchards 

owing the high productivity and regularity and relatively high oil yields (18-22%), the 

lack of knowledge in the response of this cultivar to deficit irrigation strategies, 

particularly the physiological, leaves and fruits biochemical parameters, and in order to 

overcome constrains that affect olive groves and its socioeconomic value, research 

focusing on agronomic water use efficiency must be explored. Hence, in this work we 

aimed to understand the response of 8 years old “cv. Cobrançosa” olive trees to three 

deficit irrigation strategies, RDI and 2 SDI treatments, in order to optimize the use of 

water in crop production. To accomplish this objective, we studied the irrigation 

regimes effect on the plant water status, photosynthetic performance, foliar primary and 

secondary metabolites fluctuations, and fruit yield as well as quality parameters.  
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MATERIAL AND METHODS 

Site description, cultural practices and plant material 

The experimental trial was conducted in Lodões, Vila Flor, Northeast Portugal, 

at Quinta do Prado farm (41°20'13.3"N, 7°05'54.2"W), during the 2016 cropping 

season, on an organic 8-years-old olive orchard (Olea europaea L. cv. “Cobrançosa”) 

planted in rows 7 m apart, at a tree spacing of 3.80 m, with a plantation density of 376 

plants per hectare. “Cobrançosa” is a traditional Portuguese Cultivar, native of Trás-os-

Montes Region, and mainly cultivated for oil production. Trees presented an ellipsoid 

shape, with a mean volume of 9 m
3
. A moderate pruning, performed annually in the 

winter resting period, removed around 20% of foliage. 

The field trial was carried out in a eutric Cambisol.
24

 The soil is loamy textured 

(61.7 % sand, 18.3 % silt, and 20.0 % clay), alkaline (pH 8.0) and showed mean levels 

of organic carbon (24.8 g kg
-1

, Walkley-Black). Phosphorus and potassium levels were 

very high (respectively 226.5 and 230.0 mg kg
-1

, as determined by Egnér-Riehm 

method), as well as exchangeable calcium and magnesium (25.0 and 6.2 cmolc kg
-1

, 

respectively, as determined by the ammonium acetate method). Leaf analysis revealed 

an orchard in good nutritional status, with all the essential elements falling within the 

sufficiency ranges established for the species.
25

 No soil mineral fertilization was 

applied. The soil was managed without mobilizations and a rotary brush cutter was used 

once in May to reduce soil cover vegetation.  

The climate is a typically Mediterranean-like, classified as Csa according 

Köppen-Geiger climatic classification.
26

 Environmental conditions were representative 

of the area with a typical warm temperate dry summer with a summer reference 

evapotranspiration (ETo) of 488 mm. Global solar radiation, minimum and maximum 

air temperature and precipitation recorded during the experimental period are shown in 

Table 1. 

A
cc

ep
te

d 
A

rti
cl

e

This article is protected by copyright. All rights reserved.



 

Treatments applied and monitoring 

Different irrigation treatments were imposed in July 15
th

 2016. The volume of 

water applied was quantified by estimating ETc according to the FAO method proposed 

by Doorenbos and Pruitt (1977),
27

 employing the crop coefficient (Kc=0.45) and a tree 

ground cover coefficient (Kr ) of 0.17  estimated with mean crop diameter measured  

with a ruler.
28

 Reference evapotranspiration (ETo) was calculated according to Allen et 

al.
29

, using meteorological data from a weather station located near the experiment. The 

crop coefficient used for the irrigation period was obtained following previous 

measurements of evapotranspiration using the soil water balance approach in the same 

cultivar and region.
30, 31

 This value presents a good agreement with the estimated value 

(y=0.91x+0.12; r2=0.95) of Kc  by the model of Orgaz et al.
31

 Accordingly, three 

irrigation regimes were applied: a fully irrigated control (FI) that receive a seasonal 

water amount equivalent to 100% of ETc; a sustained deficit irrigation (SDI) treatment 

corresponding to 27.5% of ETc; a regulated deficit irrigation (RDI) treatment 

corresponding to 80% of ETc in phases I and III of fruit growth and 10% of ETc in 

phase II, the pit hardening stage. These irrigation treatments were compared with a 

sustained deficit irrigation treatment applied by the farmer (SDIAF), a variant of SDI 

that incorporates a low-frequency irrigation during the whole irrigation season, which 

had been defined as irrigation of three hours per week, independently of environmental 

conditions during the whole irrigation season, which corresponded to a seasonal water 

amount equivalent to 21.2% of the volume of water of FI irrigation. The low-frequency 

deficit irrigation, a practice commonly used in regions where water is particularly 

scarce, was similar to the conventional irrigation regime in the study area, which may 

allow farmers to have more flexibility in managing their irrigation systems and to avoid 
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additional expenses of automating the system. The trees were drip-irrigated by three 

drippers per tree (two at 1.5 m from the trunk and one near the trunk), each with a flow 

rate of 1.8 L/h, connected to a single drip line. The ETo, rainfall and the irrigation water 

applied to each treatment are shown in Table 1. 

The experimental trial included four adjacent plots, one per irrigation regime, 

each with four rows, with 18 olive trees per row, where only the two central lines per 

treatment were used for analysis, while the others two outer rows were considered 

buffer zones and excluded in sampling to avoid edge effects. Briefly, a total of 20 olive 

trees of similar canopy size were used per treatment. All the physiological and 

biochemical analysis done at leaf level were taken in healthy, fully expanded and 

mature leaves of each plant (n= 20). Leaf gas exchange was taken periodically during 

the morning period (9:00 – 10: 30 a.m) and leaf relative water content was evaluated at 

midday period. The leaf samples for biochemical analysis were collected at the severest 

analysed period (August 17
th

). 

 

Leaf water status and leaf density 

Leaves samples, detached in a similar sunny position, were immediately placed 

into air-tight containers and the following parameters were examined: fresh weight 

(FW; g); leaf area (LA), measured with an LI-3100 leaf area meter (Li-Cor, Lincoln, 

NE); fresh weigh at full turgor (TW; g), measured after immersion of leaf petioles in 

demineralized water for 48 h in the dark at 4 ºC; and dry weight (DW; g), measured 

after drying in a force-draft oven at 60 ºC to a constant weight. This procedure allowed 

to calculate the leaf relative water content (RWC = (FW – DW) / (TW – DW) x 100) 

and the leaf density (D = (DW/FW) * 1000). 
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Leaf gas exchange  

Leaf gas exchange parameters were measured using a portable IRGA (LCpro+, 

ADC, Hoddesdon, UK), operating in the open mode. Measurements were performed on 

cloudless days under natural irradiance and environmental conditions on sun exposed 

leaves. Net photosynthetic rate (A, μmol CO2 m
-2

 s
-1

), stomatal conductance (gs, mmol 

m
-2

 s
-1

) and the ratio of intercellular to atmospheric CO2 concentration (Ci/Ca) were 

assessed following previously developed equations.
32

 Intrinsic water use efficiency was 

calculated as the ratio of A/gs (μmol mol
-1

). 

 

Foliar pigments, metabolites and oxidative stress indicators 

Chlorophylls (Chla and Chlb) and total carotenoids (Car) were extracted with 

80% (v/v) acetone and determined according to previously published methodologies.
33-

35
 β-carotene was determined through extraction with a acetone–hexane mixture (4:6).

36
 

Total soluble proteins (TSP) was quantified using the method of Bradford 

(1976), using bovine serum albumin as a standard. TSP extract was used to assess total 

thiols (–SH) using an extinction coefficient of 13,600 M
-1

 cm
-1

.
37

 

The content of total phenolic compounds (TPC) and the concentration of ortho-

diphenol compounds (ODC) were determined in methanolic extract following the 

Folin–Ciocalteu procedure and the sodium molybdate reagent, respectively.
38, 39

 Gallic 

acid was used as standard. Flavonoids were determined according to previously 

published methodologies and using (+)-catechin as standard.
40

 

The radical-scavenging activity was determined by the 2,2-azino-bis(3-

ethylbenzothiazoline)-6 sulfonic acid (ABTS) radical cation decolourization assay. 

Briefly, for this assay ABTS
+
 radical was prepared by mixing an ABTS stock solution 

with 2.45 mM potassium persulfate. The ABTS
+
 solution was diluted with 20 mM 
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sodium acetate buffer (pH 4.5) to an absorbance of 0.70±0.01 at 734 nm. The reaction 

was started by the addition of 25, 50, 100, 150 and 200 μL of the methanolic extract to 2 

mL of the diluted ABTS
+
 solution. ABTS

+
 bleaching was monitored at 734 nm at 25 °C 

for at least 30 min and the percentage of discoloration after 15 min was used as the 

measure of antioxidant activity. The total antioxidant capacity (TAC) of the extract was 

calculated as Trolox Equivalent Antioxidant Capacity (TEAC) and was expressed as 

mmol of Trolox equivalents (TE) per kg of sample (dry weight). All measurements 

were performed in triplicate. A standard curve of the percentage of ABTS
+
 inhibition in 

function of Trolox concentration (0.11 to 0.014 mM) was used for the calculations.
41

 

Total soluble sugars (SS) were extracted by heating the samples in 80% ethanol 

during 1 h, at 80 ºC. Then, the soluble fraction was separated from the solid fraction and 

the SS concentration was determined by the anthrone method, using glucose as a 

standard.
42

 

 

Fruit sampling and maturation index 

Samples of olive fruits for biochemical analysis were collected at three different 

dates dates (29
th

 September and 11
th

 and 25
th

 October) during the last month of fruit 

maturation, preceding the traditional harvest time for this particular olive grove (end of 

October). Olives were collected around the circumference of the tree, at the same 

height, from 20 trees per treatment and were preserved at −80 °C for chemical 

determination. The fruit maturation index was determined according to the method 

proposed by the National Institute of Agronomic Research of Spain, relying primarily 

on the extent of the epidermis and mesocarp colour.
43

 Additionally, the fruit colour was 

monitored with a colorimeter Minolta CR-300 (USA). Measurements were made in the 

middle zone of fruit and the CIELab chromatic system was applied to analyse the 
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colour. Results were expressed by luminosity coordinates (L*), chroma (C*) and 

tonality (hº).
44

 

A puncture test was performed in 30 fresh olive fruits per treatment using a SMS 

P/2N needle probe and a 5 kg load cell in a texture analyser (Stable Micro Systems 

Surrey, UK). For this test the olives were punctured in the lateral face with the probe 

speed at 1.0 mm s
-1

 and the penetration depth limited to 3 mm. The force-time curve 

was graphically acquired and elaborated. The olive peel break force (yield point), as the 

maximum force (N) reached during puncturing was considered.
45

 

 

Fruit fat content and fatty acid profile 

For determination of the olive fruit fat content and succeeding fatty acid profile, 

fruits were subjected to Folch’s extraction procedure with some adaptations.
46, 47

 

Briefly, 2 g of olive flesh dried samples (Ps) were added to 50 ml of Folch’s solutions 

(chloroform/methanol (2:1; v/v) + 50 mg/L butylated hydroxytoluene (BHT)) and 

mechanical homogenization using an ultra-turrax for 6 minutes on ice was performed. 

The crude extract was filtered and added to a separating funnel and the procedure 

repeated. After the two procedures, the volume in the separating funnel was adjusted to 

150 mL with Folch’s solutions and then 37,5 mL of NaCl (0.73%) was added. After 

mixing it, was let resting overnight. The lower phase was collected to previously 

weighted glass flasks (P0) and the solvent was evaporated using a rotary evaporator. 

After placed 24 h in a desiccator, the flasks were reweighed (P1) and the sample fat 

content calculated (Fat content (%) = (P1-P0)/Ps * 100). 

The fatty acid (FA) composition of the former extracted lipid fractions were 

determined by gas chromatographic analysis following conversion of the free FAs 

released to their methyl esters (FAME).
48

 After derivatization, chromatographic analysis 
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was performed on a Trace GC gas chromatograph equipped with a flame ionization 

detector (FID) and Autosampler, fitted with a fused silica capillary column 

(SupelcowaxTM 10, with 30 m length x 0.25 mm ID and 0.25 µm film thickness). 1 μL 

of each sample was injected. Oven temperature was maintained 2 minutes at 100ºC, 

followed by a gradient from 100 ºC to 220 ºC (at 4ºC/min rate) and holded at 220ºC for 

20 minutes, to a total run time of 52 minutes. The injector (splitless) and detector 

temperatures were 250ºC. The carrier gas was helium at a flow rate of 1 mL/min. Peaks 

were tentatively identified by comparing the relative retention times with those from 

reference standard mixtures (Sigma-Aldrich, USA) run on the same column under the 

same conditions. All samples were run in triplicate and the results were expressed in 

relative percentage for each FA, calculated by internal normalization of the 

chromatographic peak area. The FAs composition for each sample was presented in 

terms of saturated acids: myristic acid (C14:0), palmitic (C16:0), arachidic (C20:0), 

behenic (C22:0) and unsaturated acids: monounsaturated fatty acids (MUFAs) - 

palmitoleic (C16:1), oleic (C18:1), gondoic acid (C20:1), erucic acid (C22:1); and 

polyunsaturated fatty acids (PUFAs) - linoleic (C18:2), linolenic (C18:3), and 

arachidonic acid (C20:2). Values presented are the average values of three individual 

samples, each sample analysed in triplicate. 

 

Polyphenolic compounds extraction and quantification in fruits 

Lyophilised olive fruits flesh (2 g) were macerated with 30 mL of a mixture of 

MeOH:H2O (50:50) and incubated at room temperature for 30 min. After a 

centrifugation at 10000g for 10 min, the supernatant was decanted and extractions were 

repeated three times. To remove the fat phase, the mixture was washed twice with 

hexane (50 mL) using a separating funnel and the organic phase discarded. Each extract 
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was introduced into a glass flask and the volume adjusted to 200 mL with MeOH:H2O 

(50:50). Three replicates per sample were performed. 

For the TPC, ortho-diphenol and flavonoids concentrations, and ABTS activity 

determinations were employed the same methodologies used for the leaves (session 

2.5). 

 

Determination of the polyphenolic profile of the olive fruits by HPLC 

For this analysis, 100 mL of olive flesh methanolic extract obtained in 2.8 were 

concentrated under vacuum by rotary evaporator at 35 °C. After evaporation, the 

contents were redissolved in 5 mL of MeOH:H2O (50:50). 

The chromatographic analysis of the polyphenolic compounds was 

accomplished by reversed phase (C18) high performance liquid chromatography using 

an Ultimate 3000 HPLC (Dionex, USA), equipped with Ultimate 3000 pump and 

column compartment, a WPS-3000 TSL Analyt auto sampler and  a PDA-100 UV–Vis 

photodiode array detector.
49

 The compounds separation was achieved by gradient 

elution on an ACE 5 C18 column, 5 μm particle size (250 mm×4.6 mm) (Advanced 

Chromatography Technologies, Scotland), and the analysis conditions were set with 

solvent A (95:5 water/formic acid (v/v)), solvent B (methanol), and a linear gradient 

analysis for a total run time of 80 min used as follows: starting from 5% solvent B 

during 2 min, increase to 80% solvent B over 68 min, isocratic for 8 min, decreasing to 

5% solvent B over 2 min, and last isocratic for 5 min. The sample volume injected was 

50 μL, the flow rate was 1.0 mL/min, and the column temperature maintained at 30 °C. 

The eluent was continuously monitored from 200 to 600 nm with a photodiode array 

detector (PDA-100, Dionex). Data acquisition, analysis and peak integration were 

performed using Chromeleon software (Version 7.1; Dionex, USA).
50
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For the identification of the polyphenolic profile available commercial standards 

(Sigma-Aldrich, USA and Extrasynthese, France) of apigenin, apigenin-7-O-glucoside, 

caffeic acid, chlorogenic acid, epicatechin, (-) epigallocatechin, eriodyctiol-7-O-

glucoside, (-) gallocatechin, hydroxitirosol, kaempferol-3-O-glucoside, kaempferol-7-

O-glucoside, luteolin-3,7-di-O-glucoside, luteolin-7-O-glucoside, myricetin-3-O-

glucoside, oleuropein, procyanidin A2, procyanidin B1, procyanidin B2, quercetin-3-O-

glucoside, quercetin-3,7-di-O-glucoside, rutin, and verbascoside were used. Standard 

curves were prepared in a concentration range of 5–500 mg/L using the wavelength of 

maximum absorption of each phenolic compound. The presence or absence of a 

particular polyphenolic compound was assessed by comparison of the retention time 

and UV–Vis spectra. 

 

Statistical analyses 

The statistical analysis was performed using the statistical software program 

SPSS for Windows (v. 22). ANOVA analysis of the experimental data was conducted to 

estimate the effects of the irrigation treatments. Significant differences between means 

were determined using the Tukey’s test at P < 0.05.  
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RESULTS 

Leaf water status and gas exchange 

Deficit irrigation strategies influenced RWC (Figure 1). In general, all the newly 

applied irrigation treatments improved plant water status in relation to the irrigation 

adopted by the farmer (SDIAF). RDI plants maintained RWC values at FI level, while 

SDI and SDIAF treatments consistently showed lower RWC values than FI trees. The 

irrigation regimes also influenced leaf density (Figure 1). On August 3
rd

, none of the 

newly applied irrigation systems induced changes in relation to SDIAF plants, whereas 

RDI treatment presented leaves with higher density than SDI plants. Meanwhile, on 

August 31
st
, although no significant differences were recorded between the newly 

applied irrigation treatments, the leaf density of FI and RDI plants were lower than on 

SDIAF trees. On October 11
th

, all DIS plants presented similar leaf density, which was 

higher than on FI leaves.  

As illustrated in Figure 2, the irrigation regimes also influenced leaf gas 

exchange responses. In general, all the newly irrigation treatments presented higher A 

and gs than SDIAF plants, being the values of RDI and SDI trees similar to FI plants. 

An exception to this trend was verified at September 19
th

, where SDI presented higher 

A and gs than RDI trees. Meanwhile, no significant differences among the treatments 

were observed on intrinsic water use efficiency (A/gs) and Ci/Ca ratio.   

 

Foliar biochemical components 

Leaf biochemical analysis is shown in Table 2. Relatively to SDIAF, FI 

treatment presented 39% and 32% higher concentrations of Chl(a+b) and Car, 

respectively. On the other hand, although no significant differences were recorded 

among the DIS treatments, RDI and SDI leaves presented similar concentrations of 
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photosynthetic pigments as FI trees. Conversely, SDIAF leaves presented higher 

concentration of flavonoids and superior TAC than the other treatments. In addition, 

among the newly applied irrigation treatments, FI and RDI exhibited the lower 

investment in flavonoids and TAC. The higher concentration of TPC was recorded in 

SDIAF and SDI leaves, while the superior concentration of ODC was observed in RDI 

and SDI leaves. No significant differences among treatments were detected on Chla/Chlb 

and Chl(a+b)/Car ratios, as well on β-carotene, TSP, -SH, and SS concentrations.  

 

Crop yield and fruit physicochemical characteristics 

Crop yield increased with expanding seasonal water volume. Fruit yield was 

2040 kg ha
-1

 for FI control, 1789 kg ha
-1

 for RDI, 1487 kg ha
-1

 for SDI, and 933 kg ha
-1

 

for SDIAF, although only statistical significant differences were observed between FI 

and SDIAF treatments. However, when considering the yield per unit of water volume 

during the seasonal irrigation period (Water productivity (WP) = yield / unit of 

irrigation water used), a different behaviour was obtained, as SDI (142,98 kg ha
-1

 mm
-1

) 

presented higher WP than FI (49.76 kg ha
-1

 mm
-1

) and RDI (78.81 kg ha
-1

 mm
-1)

 (Table 

3). 

The maturation index (MI) of the fruits, as well their weight, dry matter, pulp/pit 

ratio, colour and peel break force analysis at harvest are also shown in Table 3. The 

maturation index among treatments varied in the order SDI>FI>RDI=SDIAF. 

Moreover, FI treatment presented higher fruit weight than the SDIAF regime, while no 

differences were recorded among the DIS treatments. By other side, fruit dry matter was 

lower in FI treatment than in the DIS treatments. All the newly applied irrigation 

regimes had inferior pulp/pit ratio than SDIAF treatment. For colour measurements, 
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only chroma (C) showed significant differences, with lower values in FI than in SDIAF 

fruits. Furthermore, fruits of all DIS treatments studied presented higher peel break than 

FI fruits.  

The concentrations of fruit phenolic compounds, namely TPC, ODC and FL, and 

TAC responded differently to the different irrigation treatments and harvest dates (Table 

4). In all samplings, SDIAF treatment consistently showed a general trend for higher 

concentrations of phenolic compounds, TPC, ODC and FL, as well as TAC in the fruits, 

except on the last sampling date, where SDI fruits exhibited higher TAC. In relation to 

SDIAF treatment, on September 19
th

, RDI and SDI reduced the concentrations of TPC, 

FI, RDI and SDI treatments reduced the concentrations of ODC, while a difference in 

FL concentration was only recorded between FI and SDI, higher in the last treatment. 

Relatively to SDIAF, FI and RDI treatments reduced TAC in 62 % and 41%, 

respectively, while no significant differences were detected relatively to SDI.  

Meanwhile, on October 11
th

, relatively to SDIAF, FI reduced the concentrations of TPC 

and FL, and FI and RDI reduced the concentrations of ODC and TAC. In relation to 

SDIAF, on October 25
th

, FI, RDI and SDI treatments reduced the concentrations of TPC 

and FL, FI reduced the concentration of ODC, while SDI increased TAC.  In general, 

between September 19
th

 and October 11
th

 was observed a reduction in the 

concentrations of TPC and FL, which increased again on October 25
th

. By other side, a 

general increment in ODC concentrations was observed along the sampling dates. In 

DIS treatments, the TAC response along the sampling dates followed the TPC and FL 

pattern, while increased progressively in FI treatment. 

Regarding the fat content (Table 4), on September 19
th

 no significant differences 

among treatments were recorded. On October 11
th

, when expressed by FW,  higher fat 

content was observed in SDI, while on the last harvest, FI fruits showed a lower fat 
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content (both expressed by DW and FW) than all DIS treatments. The fat content highly 

increased from September 19
th

 to October 11
th

, and stabilized, or even declined to 

October 25
th

.   

Table 5 shows the influence of water regimes on the phenolic profile of olive 

fruits at three harvest dates. The evolution of the phenolic compounds concentrations 

along the sampling dates was dependent on both phenolic compound type and irrigation 

regime. A general increase along the sampling dates was recorded for hydroxytyrosol, 

oleuropein, caffeic acid, apigenin-7-O-glucoside and quercetin-3-O-glucoside. The 

exceptions were observed for oleuropein and apigenin-7-O-glucoside in SDIAF 

treatment, that presented reductions from the 1
st
 to the other sampling dates, and from 

the 2
nd

 to the 3
rd

 sampling date, respectively. The increase from the 1
st
 to the 2

nd
 date, 

with a subsequent decline to the 3
rd

 sampling date was observed for chlorogenic acid, 

kaempferol-3-O-glucoside, luteolin-7-O-glucoside and rutin.  

The irrigation regime changed the concentration of some phenolic compounds in 

each sampling date. No special differences among treatments were recorded for 

hydroxytyrosol, except on September 19
th

, in which the concentration was higher in FI 

than in RDI treatment. By other side, in relation to SDIAF, oleuropein concentration 

was reduced by the newly applied irrigation regimes on September 19
th

, while on 

October 25
th

 RDI had higher concentration than SDIAF.  Chlorogenic acid 

concentration was only affected by the water regime on October 11
th

, where SDI 

showed lower concentration than SDIAF. Moreover, no consistent trend was observed 

on caffeic acid concentration. On the 1
st
 harvest no significant differences among 

treatments were recorded, while on October 11
th

 FI fruits had higher concentration than 

SDIAF, and in the last sampling date RDI fruits presented higher concentration than 

SDI. Among flavonoids, only apigenin-7-O-glucoside, kaempferol-3-O-glucoside and 
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quercetin-3,7'-di-O-glucoside concentrations were significantly affected by the 

irrigation treatments. On September 19
th

, FI had higher concentration of apigenin-7-O-

glucoside than SDIAF, while no differences were recorded among the DIS regimes.  On 

October 11
th

 this pattern was reversed, as FI and RDI treatments showed lower 

concentrations than SDIAF, while on October 25
th

 all the newly applied irrigation 

regimes had superior apigenin-7-O-glucoside concentration than SDIAF.  Kaempferol-

3-O-glucoside was only significantly affected by the irrigation regime on the 1
st
 and 2

nd
 

sampling dates. On September 19
th

, FI and RDI had higher concentrations than SDIAF, 

while on October 11
th

, FI fruits presented a reversed pattern.  Furthermore, the 

significant differences recorded on quercetin-3,7'-di-O-glucoside was only recorded on 

the 1
st
 harvest, where FI fruits showed lower concentration than all the DIS treatments.  

The irrigation regimes influenced, to some extent, the fatty acids profile on the 

3
rd

 harvest, although the two major fatty acids (oleic acid and palmitic acid) were not 

affected, as shown in Table 6. Significant differences were observed for palmitoleic 

(C16:1), linoleic (C18:2), and linolenic (C18:3) acids. Relatively to SDIAF treatment, 

FI regime had higher levels (30%) of palmitoleic acid (C16:1), while FI, RDI and SDI 

treatments presented 16%, 9% and 21% higher levels of linoleic acid (C18:2). 

Conversely, RDI and SDI exhibited 31% and 28% lower levels of linolenic acid (C18:3) 

than SDIAF. 

 

DISCUSSION 

Leaf water status, sclerophylly and gas exchange  

 

Olive trees subjected to the newly applied irrigation regimes (FI, RDI and SDI) 

exhibited, in general, a better water status than plants under the SDIAF regime. Among 
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the DIS treatments, stood out RDI plants that displayed the capacity to continuously 

maintain leaf water status similar to FI plants (Figure 1), as a result of the higher water 

supply through the summer season, 102% and 162% more than SDI and SDIAF, 

respectively, still only 56% of FI (Table 1). Remarkably, this capacity is preserved even 

when only 10% of ETc was applied, confirming that during the pit hardening stage olive 

tree is less sensitive to water deficit.
51

 Our observation of lower RWC in sustained 

deficit irrigation strategies, especially in SDIAF treatment with only 21.2% of ETc 

applied, is in accordance with previous studies.
20, 51, 52

 On the other hand, the absence of 

significant differences in leaf RWC among treatments at the beginning of August and 

mid-September, which were even slightly better than in previous measures, is a 

response to earlier precipitation events (Table 1), confirming  the quick recovery of 

water status by olive tree.
53

 Meanwhile, the expected higher leaf density in DIS 

treatments by the end of the summer shows the primary role that water availability plays 

in modifying leaf structure. Higher leaf tissue density can result from reductions in 

turgor pressure and cell expansion, resulting in the same dry mass within a smaller leaf 

area.
4, 54

 Leaves with high tissue density are able to better survive to severe drought 

events due to higher resistance to desiccation damage and are also mechanically more 

stable, resulting in longer life-span.
4, 54

 

The enhanced A and gs of plants subjected to the newly applied irrigation 

treatments relatively to SDIAF, comes in line with the higher water supply and the 

better water status of trees. The closely association between A and gs, as verified by 

Tekaya et. al.
9
 suggests that the decline in net photosynthesis of SDIAF plants is largely 

a consequence of stomatal limitation. Nonetheless, as Ci/Ca values did not follow the 

same trend, in spite of lower gs, indicate that non-stomatal limitations to photosynthesis 

also occur. Similar results were reported previously in olive tree.
3, 53

 Interestingly, 
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although RDI and SDI regimes used substantial lower amounts of water in relation to 

FI, plants under those treatments maintained A and gs at FI levels, demonstrating the 

olive tree resilience to low/moderate water deficit, and that is possible to save water in 

this crop, which is economically and environmentally advantageous. Similarly, no 

significant differences of A and gs among RDI, SDI and FI treatments have been 

previously reported in olive trees under South Spain conditions.
55

  

 

Foliar biochemical components 

As net photosynthesis decreased under low-frequency deficit irrigation, an 

excess of reducing power is frequently generated and, thus, over-reduction of 

photosynthetic electron chain may result in the formation of reactive oxygen species 

that can cause oxidative damage. In fact, leaves from this treatment revealed signs of 

oxidative stress, as confirmed by the lower concentrations of Chl(a+b) and Car relatively 

to FI plants. Nevertheless, the degradation of the photosynthetic machinery may also be 

seen as a mean to mobilise resources for the production of new acclimated leaves and to 

avoid excessive energy absorption,
56

 in order to reduce photoinhibitory damages. 

Interestingly, SDIAF plants were able to maintain a similar amount of leaf 

soluble sugars as in FI trees, in spite of the lower net photosynthesis. This may be 

linked to a lower sink demand and also in order to perform osmotic adjustment, as 

observed in potted olive trees.
4
 In the same way, no significant differences in the 

concentration of total soluble proteins were observed among treatments. As in other 

studies with the same olive cultivar were reported decreases or increases on TSP,
4, 53

 we 

may infer that differences on the imposition mode, duration and severity of water stress, 

as well environmental conditions, explain the balance between protein synthesis and 

their degradation. On the other hand, plants under water deficit need to invest in 
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secondary metabolism, e.g. production of phenolic compounds, like polyphenols, that 

possess ideal chemistry for free radical scavenging, overcoming other antioxidants in 

the capacity to donate electrons or hydrogen atoms.
4, 57

 Although both SDI and SDIAF 

exhibited higher TPC concentrations, only SDIAF showed higher TAC, certainly in 

association with the increase in flavonoids concentration (25%). In line, the 

accumulation of phenolic compounds in olive leaves in response to water deficit 

conditions was previously reported.
4, 9, 58

 

 

Yield and fruit physicochemical characteristics 

In spite of the contribution of the higher net photosynthetic rate of FI, RDI and 

SDI plants for the higher productivity, the increase of crop yield, relatively to SDIAF, 

was correlated with the seasonal water volume, in line with previous studies.
22, 30, 59

 

Meanwhile, the higher crop yield of FI trees in relation to DIS treatments was 

associated with the higher weight of the fruits. However, the higher fruit weight was 

more evident when expressed by fresh weight than by dry weight, meaning that the 

water content on fruits is decisive on crop yield measurements. By other side, the 

increase in water productivity in DIS treatments, despite the crop yield reduction, means  

that DIS regimes can be an important tool for farmers to increase production, reduce 

costs, and developing a sustainable agricultural activity.
11, 60

 Relatively to SDIAF, SDI 

appears to have a better balance on crop yield and water productivity than RDI. 

Although RDI showed an increase of 91% in crop yield and SDI an increase of 59%, 

RDI presented a reduction of 26% in water productivity, while SDI exhibited an 

increase of 33%. 

The analysis of chroma suggest that olives colour intensity increases slightly 

with reduced water availability. In fact, it is common to find in other studies that 
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reduced water availability accelerates the ripening process.
50, 61

 However, this was not 

clear in the maturation index, probably due to the early stage of fruit development 

during our sampling dates, between September and October.  Meanwhile, the higher 

maximum force (N) reached during the puncturing test in all the DIS treatments (Table 

3) might be related to the increased firmness of the fruits and the overall lower water 

content/higher fruit dry matter (Table 3).
45, 62

 

The TPC, ODC and FL concentrations, and TAC were measured on the olive 

flesh from FI and DIS treatments during three harvest dates in order to understand the 

influence of the irrigation regimes on the polyphenol’s concentrations and antioxidant 

activity of olives. Moreover, these results are expressed on a dry weight (DW) basis to 

eliminate variations in water content between sampling dates and irrigation treatments. 

The overall decrease in TPC and FL values from the 1
st
 to the 2

nd
 harvest might be a 

response to a rainfall event, which was accompanied by a rapid increase in fruit weight. 

In fact, from the 2
nd

 to the 3
rd

 harvest TPC and FL concentrations increased again, and 

ODC continuously increased through the sampling dates. As expected, in general, the 

TAC of fruits followed the phenolic compounds accumulation, as described in other 

studies.
63, 64

 Although it is usual to find a decrease in the concentration of phenolic 

compounds during the ripening process,
50

 it should be noted that in the present study the 

first two harvests were performed very early in the fruit development process, where the 

accumulation of phenolic compounds still occurs. Hence, it would be expected that 

phenolic compounds  and TAC values start to decrease after the last harvest.
50

 Taking 

into account the climatic conditions of the Trás-os-Montes region, which is 

characterized by long cold winters, the commercial harvest date, made before full 

ripening, usually revolves around the end of November and December. However, the 

farmer where the field trial was located performs the harvest during an early ripening 
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stage (mid to end of October), in order to produce an exquisite extra virgin olive oil, 

known by the high-quality with a low acidity. 

 As expected, the increase in water supply reduces the accumulation of phenolic 

compounds in fruits. By other side, the decrease in water supply increased the stressful 

conditions experienced by the plants, as observed by the physiological performance of 

the trees and, consequently, the necessity to invest in the secondary metabolism to 

protect against oxidative stress.
53

 In fact, several studies reported that stressful 

conditions increase the accumulation of phenolic compounds in olive fruits.
9, 22, 50, 65, 66 

Although the increased accumulation of phenolic compounds improve its antioxidant 

properties, oils are occasionally characterized as excessively bitter.
67

 Moreover, the 

increase in quality conferred by the phenolic compounds, usually is not compensated by 

the losses in yield, as observed in SDIAF treatment. In this context, SDI appears to have 

a great balance, not only with crop load and water productivity but also with phenolic 

compounds accumulation. In line, deficit irrigation strategies have been pointed a good 

option to compensate the losses in quantity maintaining the products quality.
67, 68

 

Interestingly, during the final harvest, though the SDI treatment presented lower TPC 

and FL concentrations than SDIAF, it showed higher TAC values, probably because 

other compounds with important antioxidant capacity are present in these olive fruits, as 

in other studies.
64

 The lack of correlation between phenolics and TAC was already 

reported by Brito et al.
65

 

The type and the quantity of polyphenols in olive fruits fluctuate depending 

upon on the development and growing conditions, the cultivar and the stage of 

ripening.
10, 50

 In order to understand the changes observed in the phenolic profile during 

maturation of cv. Cobrançosa, and among the different irrigation treatments, we 

analysed them by RP-HPLC-DAD, reference compounds were used as standards and 
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the presence or absence of a particular polyphenolic compound was assessed by 

comparison of the retention time and UV–vis spectra.
50, 69

 The majority of fruit samples 

presented the same chemical profile, composed of 10 identified phenolic compounds: 

hydroxytyrosol, oleuropein, chlorogenic acid, caffeic acid, apigenin-7-glucoside, 

kaempferol-3-O-glucoside, luteolin-7-O-glucoside, quercetin-3-O-glucoside, quercetin-

3,7’-di-O-glucoside, and rutin (Table 5). The SDIAF treatment presented higher 

oleuropein content than the other treatments in the first harvest. The amount of 

oleuropein range considerable during the 3 harvest dates, increasing significantly. 

Oleuropein is generally considered a major precursor of olive phenolic compounds. It is 

well described that the accumulation of oleuropein occurs during the fruit growth phase 

where it can reach as far as 14% of dry matter. On the other hand, through the process 

of maturation and late harvesting, usually very low levels of oleuropein are found.
70

 The 

increased values detected during the 3 harvest dates is in accordance with the 

aforementioned increasing levels of ODC and TAC concentrations, which relates to the 

very early commercial harvest dates of this farmer. Thus, our results demonstrated the 

relevance of an early harvest in order to obtain higher oleuropein levels and, thus, 

higher health benefits. 

Hydroxytyrosol is considered the most powerful antioxidant compound after 

gallic acid and one of the most powerful antioxidant compounds between phenolic 

compounds from olive tree products and, thus, its regular consumption has several 

beneficial effects such as antioxidant, anti-inflammatory, anticancer, and as a protector 

of skin and eyes.
71

 Interestingly, at the final harvest, hydroxytyrosol was only detected 

in SDI treatment. Derived from hydrolysis of the polyphenol oleuropein, 

hydroxytyrosol has been shown to increase as the fruit ripening occurs.
66

 As mentioned 
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for the oleuropein concentration in our study, the early commercial harvesting can 

explain our results.  

First reported to occur only in leaves of Olea europaea, chlorogenic acid has 

been recurrently described in olives.
69

 Besides the higher chlorogenic acid concentration 

of the SDIAF treatment, at the last harvest date it is important to note the higher values 

found in our study, ranging from 55.1 to 531.0 mg kg
-1

 compared to those found 

previously in Cobrançosa and other Portuguese olive cultivars, generally under 12.5 mg 

Kg
-1

.
69

 

While no differences between DIS treatments and FI control could be observed 

for quercetin-3-O-glucoside, is was interesting to detect a higher quercetin-3,7’-di-O-

glucoside concentration in the 1
st
 harvest date for the DIS treatments. In our study DIS 

treatments appear to increase the concentration of this quercetin derivative in olive fruit 

of this particular cultivar. Previously described in onions, changes in the quercetin 

derivatives content might influence not only the TAC of the fruit extract but also their 

biological activity and human health inherit benefits.
72

 

Rutin was the predominant flavonoid, which was expected since it is reported to 

occur in olive fruits, even when other compounds are not present.
66, 69

 Still, no 

differences in rutin concentration was observed. Besides, the aforementioned 

components, other flavonoids were detected, such as apigenin, kaempferol, and luteolin, 

which shows the diversity and fluctuation that these constituents suffer during the fruit 

development/ripening, and the different irrigation regimes. The increased concentration 

of oleuropein, kaempferol-3-O-glucoside, and quercetin-3,7’-di-O-glucoside in DIS 

treated plants, even if due to the early ripening stage, can influence the biological 

activity and human health inherit benefits associated with the consumption of the fruits 

and olive oil, therefore it justifies further studies.
72
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The fruit fat content was affected by the irrigation strategies applied, and a 

higher accumulation was observed in the DIS treatments compared to FI control, 

reaching 29% in SDI. And while it is well established that the process of oil 

accumulation on olives is subtle to water deficit,
73

 it is important to point out the very 

early harvest dates pursued in this study, consequently oil accumulation might not had 

yet reached its maximum.
5
 It is described that oil content is related with the amount of 

mesocarp available for oil biosynthesis.
73

 SDIAF had fruits with the highest pulp/pit 

ratio (Table 3) which translated into fruits with the highest fat content when expressed 

as % of FW, both in the 2
nd

 and 3
rd

 harvest dates. 

In general, no major differences were observed for the majority of the fatty 

acid’s contents, still small decreases in palmitoleic acid (C16:1), linoleic acid (18:2) and 

linolenic acid (18:3) contents were observed in the DIS treatments. However, these 

differences did not reflect changes in MUFA or PUFA content and in the 

unsaturated/saturated fatty acid, C18:1/C18:2 and MUFA/PUFA ratios. Previous studies 

have been producing divergent results, as both increase and decrease in irrigation can 

lead to PUFA content to increase.
23

 It has also been shown that different irrigation 

strategies has only minor effects on the unsaturated/saturated fatty acid and 

MUFA/PUFA ratios.
11

 Furthermore, as C18:1/C18:2 and MUFA/PUFA ratios are 

closely associated with stability
9
, our results indicate that oils from these treatments 

may have similar oxidative stability. Ultimately, the most common findings in the 

available literature is in severe water deficit scenarios, with absence of irrigation, which 

affects the oil fatty acid composition.
10
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CONCLUSIONS 

The newly applied irrigation systems (FI, RDI and SDI) improved plant 

performance in relation to the system adopted by the farmer (SDIAF), including water 

status and net photosynthetic rate. By the end of the summer season, the leaves from all 

DIS treatments developed higher tissue density and, in general, presented changes in 

secondary metabolism, with higher accumulation of phenolic compounds, responses 

that boost drought resistance. 

Although the newly applied irrigation systems improved crop yield in parallel 

with the volume of water applied, the water productivity tends to decrease. An 

increment in fruits phenolic compounds accumulation and antioxidant capacity was also 

observed with the reduction of water supply. Overall, SDI appears to have a great 

balance between crop load, water productivity and the accumulation of phenolic 

compounds in fruits. Interestingly, the oil accumulation was higher in DIS treatments 

than in FI system. Furthermore, no impacting changes into the phenolic and fatty acids 

composition were observed. 

The results of this study allow to conclude that deficit irrigation strategies are 

essential for sustainable olive growing in regions of limited water resources. It was also 

observed that commercial harvest dates very early in the ripening process changes fruit 

quality parameters, specifically the phenolic and fatty acid composition, which can then 

have effects into the olive oil quality and their associated health benefits. Hence, further 

studies into different deficit irrigation strategies combined with the effects on the 

quality parameters during different phases of the ripening process are needed for cv. 

“Cobrançosa” and other important cultivars, in order to optimize the adoption of 

efficient irrigation strategies adjusted to the evolving commercial practices in place. 
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List of Figures: 

Figure 1. Evolution of leaf relative water content (RWC), in the left, and leaf density in 

irrigation treatments throughout the experiment, in the right. Different letters 

demonstrate significant differences (P<0.05) between treatments in each analyzed date. 

FI - fully irrigation, SDI – sustained deficit irrigation, RDI – regulated deficit and 

SDIAF - sustained deficit irrigation applied by the farmer. 

Figure 2. Evolution of leaf gas exchange variables throughout the experiment. Net 

photosynthetic rate (A), stomatal conductance (gs), intrinsic water use efficiency (A/gs) 

and ratio of intercellular to atmospheric CO2 concentration (Ci/Ca). Different letters 

demonstrate significant differences (P<0.05) between treatments in each date. FI - fully 

irrigation, SDI – sustained deficit irrigation, RDI – regulated deficit and SDIAF - 

sustained deficit irrigation applied by the farmer. 
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Table 5. Olive fruit phenolic composition of fully irrigated (FI), regulated deficit 

irrigation (RDI), sustained irrigation (SDI) and sustained deficit irrigation applied by 

the farmer (SDIAF) treatments during three harvest dates (mg kg
-1

 DW). 

Table 6. Olive fruit most representative fatty acids, and fatty acids saturated/unsaturated 

relations of fully irrigated (FI), regulated deficit irrigation (RDI), sustained irrigation 

(SDI) and sustained deficit irrigation applied by the farmer (SDIAF) treatments at final 

harvest. Saturated fatty acids (SFA), unsaturated fatty acids (UFA), monounsaturated 

fatty acids (MUFA), polyunsaturated fatty acids (PUFA). 

 

Table 1. Mean values of global solar radiation (all period of 24 hours), minimum and maximum 

air temperature, rainfall and reference evapotranspiration (ETo) and amount of water by 

irrigation to control treatment, fully irrigated (FI) and three deficit irrigation treatments, 

regulated deficit irrigation (RDI), sustained irrigation (SDI) and sustained deficit irrigation 

applied by the farmer (SDIAF). 

Period 

Solar 

radiation  

Temp 

Min 

(ºC) 

Temp 

Max 

(ºC) 

Rainfall 

(mm) 

ETo 

(mm 

d
-1

) 

Irrigation (mm) 

(Wm
-2

) FI RDI SDI SDIAF 

01 - 30/06/2016  304 14.3 27.8 29.4 4.0 0 0 0 0 

01 - 14/07/2016 295 17.0 31.7 10.2 4.3 0 0 0 0 

15 - 31/07/2016 313 19.3 35.0 0 5.0 11.4 9.1 3.4 2.5 

01- 31/08/2016 272 18.1 33.5 20.2 4.2 16 2.8 4.5 2.5 

01 - 30/09/2016 214 15.4 29.0 45.4 3.1 11.6 9.2 2 2.5 

01 - 07/10/2016 184 11.4 25.4 0 2.2 2 1.6 0.5 1.2 

08 - 31/10/2016 107 12.0 20.3 0.1 1.24 0 0 0 0 

Total - - - 105.3  - 41 22.8 11.3 8.7 

 

 

Table 2. Leaf biochemical analysis of fully irrigated (FI), regulated deficit irrigation 

(RDI), sustained irrigation (SDI) and sustained deficit irrigation applied by the farmer 

(SDIAF) treatments. Total chlorophylls (Chl(a+b), mg g
-1

 DW), chlorophyll a/b ratio 

(Chla/Chlb), total carotenoids (Car, mg g
-1

 DW), Chl(a+b)/Car ratio, β-carotene (mg g
-1

 

DW), total soluble proteins (TSP, mg g
-1

 DW), total thiols (-SH, nmol mg
-1

 DW), total 

phenolic compounds (TPC, mg GAE g
-1

 DW), ortho-diphenols (ODC, mg GAE g
-1

 

DW), flavonoids (mg CE g
-1

 DW) and soluble sugars concentrations (SS, mg g
-1

 DW) 

and total antioxidant capacity (TAC, µmol TE g
-1

 DW). 
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Different letters within a line demonstrate significant differences (P<0.05) between 

treatments. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3. Fruit maturation index, yield, water productivity, fruit weight, colour and peel 

break force analysis of fully irrigated (FI), regulated deficit irrigation (RDI); sustained 

irrigation (SDI) and sustained deficit irrigation applied by the farmer (SDIAF) 

treatments during the final harvest. 

Treat

ment 

Matur

ation 

Index 

Yiel

d 

(kg 

ha
-

1
) 

Water 

produc

tivity 

Fru

it 

wei

ght 

(g, 

FW

) 

Fru

it 

wei

ght 

(g, 

DW

) 

Fru

it 

dry 

mat

ter 

(%) 

Pulp

/Pit 

ratio 

(DW

) 

Colour 

Pee

l 

bre

ak 

for

ce 

(N) 

(kg ha
-1

 

mm
-1

) 
L C hº 

FI 3.133 
204

0
a
 

49.8
b
 4.13

a
 

1.56
a
 

37.9
b
 

1.52
b

,c
 

30.

56 

13.0

5
b
 

24.

61 

1.6

8
b
 

 
FI RDI SDI SDIAF 

P-value 

(P<0.05) 

Chl(a+b) 3.13
a
 2.73

a,b
 2.61

a,b
 2.25

b
 0.0332 

Chla/Chlb 2.47 2.49 2.54 2.56 0.8469 

Car 0.664
a
 0.573

a,b
 0.608

a,b
 0.503

b
 0.0341 

Chl(a+b)/Car 4.71 4.76 4.28 4.48 0.1749 

β-Carotene 0.177 0.158 0.151 0.142 0.0924 

TSP 2.93 2.46 2.52 2.94 0.6121 

-SH  0.662 0.667 0.652 0.805 0.5022 

TPC 10.7
b
 11.0

b
 12.9

a
 13.5

a
 0.0004 

ODC 72.9
c
 84.2

a,b
 86.7

a
 79.5

b,c
 <0.001 

Flavonoids 14.9
b,c

 12.8
c
 18.0

b
 22.5

a
 <0.001 

SS  92.8 102.2 110.6 120.3 0.1634 

TAC 83.9
b,c

 73.0
c
 92.0

b
 116.2

a
 <0.001 
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RDI 3.033 
178

9
a
 

78.8
b
 3.49

b
 

1.48

ª
,b
 

41.6
a
 

1.57
b
 

31.

75 

17.2

2
a,b

 

32.

40 

4.7

0
a
 

SDI 3.200 
148

7
a,b

 

143.0
a
 3.25

b
 

1.32
b
 

40.9
a
 

1.42
c
 

32.

00 

14.3

7
a,b

 

31.

65 

4.1

8
a
 

SDIA

F 
3.033 

933
b
 

107.2
a,b

 3.29
b
 

1.37
b
 

41.6
a
 

1.76
a
 

36.

22 

19.0

5
a
 

40.

94 

4.9

4
a
 

P-

value 
- 

0.0

028 

0.0005 <0.

001 

0.00

11 

<0.

001 

<0.0

01 

0.1

325 

0.02

60 

0.1

647 

0.0

002 

Different letters within a column demonstrate significant differences (P<0.05) 

between treatments. 

 

 

 

Table 4. Olive fruit chemical characteristics of fully irrigated (FI), regulated deficit 

irrigation (RDI), sustained irrigation (SDI) and sustained deficit irrigation applied by 

the farmer (SDIAF) treatments during three harvest dates. Total phenolic compounds 

(TPC, mg GAE g
-1

 DW), ortho-diphenols content (ODC, mg GAE g
-1

 DW), flavonoids 

(mg CE g
-1

 DW), total antioxidant capacity (TAC, mmol TE kg
-1

 DW), and fat content 

(% of DW and % of FW). 

 

TPC ODC Flavonoids TAC Fat content 

mg.g
-1

DW mmol kg
-1

 DW % of DW % of FW 

September 

19
th

       

FI 29.3
a
 46.6

b
 30.7

b
 99.9

c
 19.5 6.7 

RDI 22.1
b
 36.8

c
 31.2

a,b
 156.8

b
 21.9 6.9 

SDI 25.2
b
 48.9

b
 43.0

a
 269.0

a
 22.7 9.2 

SDIAF 30.6
a
 60.5

a
 38.5

a,b
 265.4

a
 - - 

P-value 

(P<0.05) 
<0.001 

<0.001 0.0132 <0.001 0.1694 0.1106 

October 11
th

       

FI 12.2
b
 41.5

b
 24.7

b
 119.9

b
 40.6 15.4

b
 

RDI 13.5
a,b

 48.8
b
 27.1

a,b
 130.9

b
 45.5 18.3

b
 

SDI 14.3
a
 53.9

a
 30.9

a,b
 152.3

a,b
 46.3 23.8

a
 

SDIAF 14.1
a
 59.4

a
 33.4

a
 168.1

a
 - - 

P-value 0.0049 <0.001 0.0087 0.0056 0.2090 0.0046 
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(P<0.05) 

October 25
th

       

FI 26.6
b
 65.9

b
 26.3

c
 220.4

b
 37.7

b
 14.9

b
 

RDI 26.9
b
 80.9

a,b
 33.8

b
 261.5

b
 45.9

a
 18.3

a
 

SDI 26.6
b
 82.9

a
 33.1

b
 310.7

a
 48.5

a
 19.3

a
 

SDIAF 29.4
a
 95.1

a
 52.5

a
 233.5

b
 46.7

a
 19.4

a
 

P-value 

(P<0.05) 
0.0012 

0.0007 <0.001 <0.001 0.0107 0.0195 

Different letters within a column demonstrate significant 

differences (P<0.05) between treatments. 

 

 

 

Table 5. Olive fruit phenolic composition of fully irrigated (FI), regulated deficit 

irrigation (RDI), sustained irrigation (SDI) and sustained deficit irrigation applied by 

the farmer (SDIAF) treatments during three harvest dates (mg kg
-1

 DW). 

 September 19
th

  October 11
th

  October 25
th

 

 FI RDI SDI 
SDI

AF 

Effe

cts 
(P<0.

05) 

 

FI RDI SDI 
SDI

AF 

Effe

cts 
(P<0.

05) 

 

FI RDI SDI 
SDI

AF 

Eff

ects 
(P<0

.05) 

Non-flavonoid composition 
Hydroxytyrosol 

(RT=10.61) 

558.

5a 

311.

3b 

396.

3a,b 

363.

9a,b 

0.043

9 

 571.

7 
493.6 544.5 

799.

1 

0.05

70 

 
n.d n.d. 

654.

2 
n.d. - 

Oleuropein (RT=37.60) 1223

.8b 

1269

.2b 

1221

.4b 

3011

.9a 
0.011

1 

 1795

.4 

1790.

3 

1274.

4 

130

6.2 

0.67

42 

 3105.

2a,b 

4656

.7a 

1836

.0b 

1558

.9b 
0.00

50 

Chlorogenic acid 

(RT=15.28) 

308.

7 

301.

3 

347.

0 

410.

0 

0.307

1 

 534.

8a,b 

608.4
a,b 

418.1
b 

835.

8a 

0.03

65 

 
241.1 55.1 

360.

7 

531.

0 

0.41

57 

Caffeic acid (RT=9.28) 4.78
a 

2.68a 4.48a 2.30a 
0.047

4 

 
6.26a 

4.27a,

b 
3.14b 

2.74
b 

0.00

98 

 29.6a,

b 

40.5
a 

4.4b 
23.7a

,b 

0.02

06 

Flavonoid composition 
Apigenin-7-O-

glucoside (RT=33.54) 

865.

3a 
88.4b 

116.

7b 

299.

7b 

<0.00

1 

 
45.9c 

145.0
b,c 

379.4
a,b 

615.

1a 

0.00

08 

 629.2
b 

1137

.7a 

1018

.0a,b 

106.

3c 

0.00

04 

Kaempferol-3-O-

glucoside (RT=30.08) 

335.

0b 

318.

6b 

368.

4ª,b 

546.

8a 

0.026

7 

 436.

4b 

618.0
a,b 

682.4
a,b 

979.

8a 

0.01

84 

 
387.8 

474.

8 

413.

8 

264.

8 

0.15

68 

Luteolin-7-O-glucoside 

(RT=27.008) 
8.09 9.91 8.39 13.5 

0.517

7 

 
10.6 18.5 9.56 14.1 

0.13

52 

 
2.18 9.35 7.53 n.d. - 

Quercetin-3-O-

glucoside (RT=29.82) 
49.4 n.d. n.d. n.d. - 

 
40.7 41.7 43.9 36.4 

0.75

46 

 
66.3 

119.

3 
91.5 82.8 

0.44

61 

Quercetin-3,7'-di-O-

glucoside (RT=26.28) 

38.8
c 

125.

9b 

219.

3a 

157.

6ª,b 

0.000

8 

 151.

2 
129.5 56.7 

116.

1 

0.29

17 

 
n.d. n.d. 71.3 n.d. - 

Rutin (RT=33.30) 3045

.1 

2896

.6 

3203

.8 

4027

.8 

0.227

8 

 4292

.4 

7121.

8 

3986.

5 

666

0.4 

0.11

84 

 4953.

9 

4884

.7 

3772

.1 

2972

.2 

0.29

69 

Different letters within a line demonstrate significant differences (P<0.05) between 

treatments. n.d.- non detected. RT – retention time (min) 
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Table 6. Olive fruit most representative fatty acids, and fatty acids saturated/unsaturated 

relations of fully irrigated (FI), regulated deficit irrigation (RDI), sustained irrigation 

(SDI) and sustained deficit irrigation applied by the farmer (SDIAF) treatments at final 

harvest. Saturated fatty acids (SFA), unsaturated fatty acids (UFA), monounsaturated 

fatty acids (MUFA), polyunsaturated fatty acids (PUFA). 

Fatty Acid Profile 

Treatment 

% of total 

FI RDI SDI SDIAF P-value 

Palmitic acid (C16:0) 17.03 15.60 15.58 16.98 0.2104 

Palmitoleic acid (C16:1) 1.65
a
 1.27

b
 1.10

b
 1.27

b
 0.0002 

Oleic acid (C18:1) 68.09 71.51 70.72 69.59 0.2106 

Linoleic acid (C18:2) 9.63
a
 9.04

a,b
 10.05

a
 8.28

b
 0.0118 

Linolenic acid (C18:3) 1.42
a
 1.08

b
 1.12

b
 1.57

a
 0.0008 

SFA 17.92 16.17 16.15 16.82 0.0922 

MUFA 70.68 73.54 72.56 73.18 0.0860 

PUFA 11.40 10.29 11.28 10.00 0.0647 

UFA/SFA 4.58 5.19 5.21 4.96 0.1125 

Oleic acid (C18:1) / Linoleic acid (C18:2) 7.07
a
 7.93

a
 7.07

a
 8.43

a
 0.0448 

Different letters within a line demonstrate significant 

differences (P<0.05) between treatments. 
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