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A B S T R A C T

In the present work microencapsulation was applied to an ergosterol enriched extract (EEE) from Agaricus bis-
porus L. and pure ergosterol (PE) using a complex coacervation process. The process was optimized following
two steps: (i) using response surface methodology to optimize the conditions of temperature (T, 55 to 95 °C),
protein-to-chitosan ratio (P/C, 0.5 to 10.5), maximizing yield (Y1, %, w/w), efficiency (Y2, %, w/w) and load
(Y3, %, w/w); and (ii) using the dose-response methodology to optimize the ergosterol content (E) at the optimal
conditions achieved in (i). The global optimal conditions for both cases were the same (T of 55 °C and a P/C of
0.5), but with maximized responses of Y1=75.02%; Y2=100.00%, Y3=12.78%, and Y1=19.19%;
Y2=100.00%, Y3=15.87%, respectively. The effect of increasing ergosterol content led to the reduction of the
microencapsulation yield, but with an increase in the ergosterol load and maintenance of the microencapsulation
efficiency.

1. Introduction

Agaricus bisporus L. is a mushroom extensively consumed worldwide
in many different cultures (Rúbia Carvalho Gomes Corrêa, Brugnari,
Bracht, Peralta, & Ferreira, 2016), representing a share of about 3.9
millions of tons of the global mushroom industrial production (“A de-
tailed analysis of the recombination landscape of the button mushroom
Agaricus bisporus var. bisporus,” n.d.). A. bisporus is cultivated in more
than 70 countries, being appreciated for its sensory characteristics and
health benefits (Liu, Jia, Kan, & Jin, 2013). It is a rich source of my-
costerols, namely ergosterol (5,7,22-ergostatrien-3β-ol), which re-
presents about 90% of its sterol fraction (Barreira, Oliveira, & Ferreira,
2014). Ergosterol, and its peroxidation products are known as com-
pounds of strong bioactivity exhibiting antioxidant, anti-inflammatory

and antitumor properties (Barreira & Ferreira, 2015). Ergosterol can act
similarly to phytosterols in reducing cholesterol levels (Gil-ramírez,
Ruiz-rodríguez, Marín, Reglero, & Soler-rivas, 2014), encouraging its
use as a functional agent in the food industry (Heleno et al., 2017, pp.
103–110).

Although Agaricus bisporus L. presents a high concentration of er-
gosterol (Heleno et al., 2016), the low solubility of its free form, in both
lipophilic and hydrophilic systems, limits its bioavailability (Rúbia C.G.
Corrêa, Peralta, Bracht, & Ferreira, 2017). To circumvent these con-
straints, different techniques have been used to facilitate its use in
different matrices.

The microencapsulation technique can be a solution to assure the
protection of ergosterol against external agents and can also improve
both the solubility and bioavailability of ergosterol. In this technique a
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substance such as a bioactive compound, regardless of its physical state,
is protected by a shell or included in a matrix material (Corredig, 2009,
p. 738; Gaonkar, Vasisht, Khare, & Sobel, 2014; Kwak, 2014). This
process is being increasingly used in the food industry (Corredig, 2009,
p. 738) assuring protection against the surrounding media, avoiding
chemical degradation, and increasing stability and bioavailability (Dias,
Ferreira, & Barreiro, 2015). Among the used microencapsulation tech-
niques in the food industry, extrusion, freeze drying, spray drying and
coacervation can be cited (Edris, Kalemba, Adamiec, & Piaotkowski,
2016), as well as the electrospray (Sayed et al., 2018), co-axial spraying
(Rasekh et al., 2017), microfluidics (Nisisako, 2016) and systems using
CO2 as the supercritical fluid (Getachew & Chun, 2016). Concerning the
coacervation process (CP), it is one of the most widely used micro-
encapsulation techniques, providing high encapsulation loads and sui-
table releasing properties (Ifeduba & Akoh, 2016). Generally, CP is
classified in simple CP where only one hydrocolloid is used, or complex,
which requires the interaction of two oppositely charged hydrocolloids
(Anema & Kruif, 2016; Sutaphanit & Chitprasert, 2014). The used shell
materials may be obtained from a wide range of synthetic and natural
polymers, and, their selection depends on the active principle to be
encapsulated, and on the final product specifications (Sánchez, García,
Calvo, Bernalte, & González-gómez, 2016). Furthermore, in the case of
food applications, these materials must be classified as Generally Re-
cognized As Safe (GRAS) (Gaonkar et al., 2014; Nedovic, Kalusevic,
Manojlovic, Levic, & Bugarski, 2011).

In complex CP, process that finds a wide utilization (Elmer, Karaca,
Low, & Nickerson, 2011), the most used encapsulation materials are
proteins and polysaccharides (Sanchez, Mekhloufi, & Renard, 2006).
Among them, chitosan (C), obtained from deacetylation of chitin
(Kurukji, Norton, & Spyropoulos, 2014), the second most abundant
polysaccharide in nature (Lian, Pan, & Wang, 2016), has been widely
applied (Kurukji et al., 2014). Also, whey protein isolates (P) from dairy
industry waste, whose main representative constituent is the β-lacto-
globulin group, has been also extensively explored (Ach et al., 2015;
Wee et al., 2014; Yu, Liu, Zhu, & Kong, 2012). From an environmental
point of view, the use of whey protein is an attractive strategy to va-
lorize the current excess of this residual material. Considering chitosan,
the whey protein is an oppositely charged hydrocolloid constituting an
adequate chemical system to be used in complex CP, able to entrap
hydrophobic bioactive compounds, improving their resistance to
thermal denaturation, and of high interest for specific food process
systems (Corredig, 2009, p. 738).

Microencapsulation through complex CP using chitosan and whey
protein is influenced by the physicochemical characteristics of both
components, the composition of the used chemical system, namely the
bioactive to be encapsulated, and process conditions such as pH, pro-
tein/chitosan ratio, temperature and bioactive content, (Gulão, Souza,
Fernanda, Coimbra, & Garcia-rojas, 2014).

The microencapsulation process using WPI and chitosan, namely the
size of the obtained microparticles, can be controlled by changing the
stirring rate, pH and the WPI/chitosan ratio (Ahmed, Aschi, & Nicolai,
2018). These wall materials have been already used to micro-
encapsulate phytosterols, giving rise to uniform microcapsules with an
average size of less than 25 μm (Tolve et al., 2018), and to micro-
encapsulate cashew juice, being effective in protecting the sensitive
compounds of this food matrix (D. D. S. Bastos, Gonçalves, Andrade,
Araújo, & Rocha Leão, 2012). Concerning the specific topic of ergos-
terol microencapsulation, there are already in literature works dealing
with the encapsulation of pure ergosterol (Zhang et al., 2016) and er-
gosterol-rich extracts (Francisco et al., 2018). Furthermore, it is known
that WPI/chitosan systems have already been used efficiently with
other active principles (D. S. Bastos et al., 2010; Tavares & Noreña,
2019). However, to the best of our knowledge, no studies concerning
the encapsulation of ergosterol-rich extracts, or pure ergosterol, have
been performed using WPI/chitosan systems.

Currently, the application of mathematical models such as the

response surface methodology (RSM) is increasingly used to optimize
complex systems and is gaining a wide acceptance among the scientific
community (Pinela et al., 2016; Pinela et al., 2016). It allows the si-
multaneous optimization of a number of variables while taking into
account the complex interactions among them. RSM is also important in
the prediction of the responses maximization (Ferreira et al., 2007).

In this perspective, the aim of this study was to optimize the mi-
croencapsulation of ergosterol (either in pure form or as a constituent of
a A. bisporus extract) by complex CP using chitosan and whey protein
coacervates as the encapsulation materials. The RSM was used to op-
timize the process considering as responses the microencapsulation
yield (%, w/w), efficiency (%, w/w) and load (%, w/w). From this
study, it is expected to achieve the following targets: 1) optimize the
conditions of the complex CP by maximizing the defined response cri-
teria; and 2) develop, at laboratorial scale, a consistent process for er-
gosterol microencapsulation highlighting its potential to support a fu-
ture industrial application.

2. Materials and methods

2.1. Standards and reagents

Methanol and acetonitrile (HPLC grade) were used from Fisher
Scientific (Lisbon, Portugal). The sterol standards (ergosterol and cho-
lecalciferol) were purchased from Sigma (St. Louis, MO, USA). Whey
protein isolate (P, purity on dry basis higher than 92%), commercially
available as Provon 295, was provided from Glanbia Nutritionals
(Kilkenny, Ireland). The low molecular weight chitosan (C, tradename
Chitosan 90/200/A1), with a deacetylation degree of 93.1%, was pur-
chased from BioLog-Heppe (Landsberg, Germany). Water was treated
with a Milli-Q water purification system (TGI pure water systems,
Greenville, SC). All other chemicals and solvents were of analytical
grade and purchased from Portuguese suppliers.

2.2. Source A. bisporus material and extraction procedure

Samples of Agaricus bisporus L. were provided by a local mushroom
producer “Mogaricus mushrooms - Sociedade Unipessoal Ltda", and
classified as biowastes by this company. They correspond to specimens
with non-conformities to be commercialized. Samples were weighed,
frozen, freeze-dried (Freezone 4.5 freeze dryer model 7750031,
Labconco, Kansas City, MO, USA) and reduced to powder form (20
mesh) for further use.

Ergosterol enriched extracts were obtained using an ultrasound-as-
sisted extraction (UAE) apparatus QSonica model Cl-334 (Newtown,
CT, USA) according to previous reported optimized conditions (375W
and 15min) (Heleno et al., 2016). Briefly, 3 g A. bisporus sample were
weighed and mixed with 100mL of ethanol. After the required ex-
traction time, samples were centrifuged, filtered (Whatman n° 4 filters)
and the supernatant subjected to evaporation under reduced pressure.
The content of ergosterol on the obtained extracts was
36.72 ± 0.01mg/g.

2.3. Microencapsulation procedure

Microencapsulation was conducted using the obtained ergosterol
enriched extracts (EEE) and the pure ergosterol (PE) itself, used as a
control of the microencapsulation process for comparative purposes.
The complex CP was applied according to the procedure described by
Kurukji et al. (2014) with some modifications. Briefly, the process
started with the preparation of a C solution (1%, w/v) using an acetate
buffer (100mM) with the desired pH. The solution was left under
stirring overnight at 55 °C to guarantee the complete dissolution.
Thereafter, EEE or PE, was dissolved at the required concentration in a
sodium acetate buffer (100mM with the same pH of the chitosan so-
lution was used) using an Ultra-Turrax (Unidrive X100 homogenizer
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(Ingenieurbüro CAT, Germany))) for 20min. Thereafter, P was added at
the needed amount. Solutions were prepared in order to achieve the
required EEE or PE concentration and the protein-to-chitosan ratio (P/
C) by mixing 5mL of the C solution with 5mL of the P, resulting in a
size-scale of 10 mL for the performed assays. Following, the final so-
lution was vortexed, placed in a thermostatic bath during 5min to
achieve the required tested temperature (T), and thereafter transferred
to an ice bath during 20min. Final samples were then stored in a re-
frigerator (4 °C) during 24 h, then centrifuged and the supernatant
discharged. The formed coacervates were then washed in triplicate with
the sodium acetate buffer solution (5mL each) to remove traces of free
P and C, and stored at 4 °C, protected from light for further character-
ization.

2.4. Characterization of the microencapsulation process

2.4.1. Quantification of the encapsulated ergosterol
The encapsulated ergosterol was obtained by difference, i.e. based

on the non-encapsulated ergosterol, quantified by HPLC according to
the process described by Barreira et al. (2014), using a calibration curve
based on a commercial standard. To recover the non-encapsulated er-
gosterol the obtained coacervates were washed with methanol in tri-
plicate (5 mL each). The combined methanol fractions were centrifuged
at 6000 rpm for 45min, filtered, dried under reduced pressure (rotary
evaporator Büchi R-210, Flawil, Switzerland) and re-suspended in fresh
methanol at a concentration of 10mg/mL. These samples were filtered
with 0.2 μm nylon syringe filters and analyzed by HPLC-UV.

2.4.2. Microencapsulation yield, efficiency and load
The microencapsulation process was characterized considering the

microencapsulation yield, efficiency, and load. For the process yield
determination, the obtained coacervates were lyophilized to determine
the final weight achieved in the process. This weight was related with
the theoretical weight (used amount of reactants: C, P and PE or EEE)
and expressed in % (w/w). Microencapsulation efficiency, defined as
the ratio between the weight of encapsulated ergosterol and the theo-
retical one (ergosterol used in the encapsulation process), was ex-
pressed in % (w/w). Microencapsulation load, defined as the ratio be-
tween the weight of encapsulated ergosterol and the weight of achieved
microcapsules was also expressed in % (w/w).

2.4.3. Optical microscopy analysis
The final morphology of the obtained microcapsules was analyzed

by optical microscopy (Nikon Eclipse 50i microscope (Tokyo, Japan)),
equipped with a Nikon Digital Sight camera and NIS Elements software
for data acquisition at 40, 100 and 400 X magnifications.

2.5. Response surface methodology

2.5.1. Definition of the microencapsulation process responses
To evaluate the microencapsulation process by RSM analysis, of EEE

and PE, three responses were selected: Yield (Y1, % w/w); micro-
encapsulation efficiency (Y2, % w/w) and loading (Y3, % w/w), as
defined in section 2.4.2.

2.5.2. Preliminary analysis of the microencapsulation process variables
The influence of different independent variables, such as T, pH, P/C

and the ergosterol content (E), on the microencapsulation process were
investigated using one-factor-at-a-time to select the significant ones and
to determine their preliminary range. The effect of each variable was
tested by changing it in a defined range, chosen according to data
available in literature, while keeping the others fixed (Elmer et al.,
2011; Gaonkar et al., 2014; Nedovic et al., 2011; Sanchez et al., 2006).
Values used in this preliminary screening were: pH (4.5–7.0), P/C
(0.5–30), T (25–95 °C) and E (0–25mg for PE and 0–600mg for EEE,
values expressed per 10mL, the scale of the experiments). Concerning E

values, the used amount of EEE was calculated in terms of the ergos-
terol content to reproduced the used range for PE.

2.5.3. Experimental design
The RSM is typically used for analyzing problems in which one or

more responses of interest are influenced by two or more variables.
Following Preliminary analysis of the microencapsulation process
variables (see discussion in section 3.1), only T and P/C variables were
selected for the conducted the RSM analysis; pH was kept constant at
5.5 (due to its negligible effect within the tested ranges, as explained in
section 3.1) and the effect of E was considered only for the analysis at
the optimum conditions achieved for T and P/C (more details in section
3.1). Thus, in this first step of the study, E concentration in the final
solution of 10mL was 108 μg/mL (equivalent amount of ergosterol
present in the extract) for PE, and 3mg/mL for EEE. For the two ana-
lysed cases, PE and EEE microencapsulation, Y2 (microencapsulation
efficiency) and Y3 (loading) were defined in terms of ergosterol. The
combined effects of T and P/C ratio were tested using a circumscribed
central composite design (CCCD), with three replicates per condition. The
structure of a CCCD considers 5 levels for each factor. The mathema-
tical expressions used to calculate the design distribution, code and
decode of the tested variables can be found in the supplemental section
(Table A1 of supplemental material).

2.5.4. Mathematical model
The following second-order polynomial equation corresponds to the

general model for the analysis of the produced RSM responses:
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where Y is the dependent variable (Y1, Y2 and Y3) to be modelled, Xi

and Xj the independent variables, b0 the constant coefficient, bi the
coefficient of linear effect, bij the coefficient of interaction effect, bii the
coefficients of quadratic effect, and n the number of considered vari-
ables.

2.5.5. Simplex procedure for optimize the variables to a maximum response
To optimize the microencapsulation conditions, the produced

parametric model responses were integrated into a simplex tool to solve
non-linear problems (Heleno et al., 2016; Pinela et al., 2016), and de-
termine the variable's values that simultaneously maximize the re-
sponses. Restrictions were applied to the variable coded values to avoid
unnatural conditions (i.e., lower values than 0% or higher values than
100%).

2.6. Dose-response study of the E analysis at the optimal global responses

Once the effects of T and P/C were depicted and the variable's
conditions optimized to maximize Y1, Y2 and Y3 responses, the effect of
changing E was studied at the optimal values. For this analysis, the
previous procedure for microencapsulation was maintained, as well as
the responses to evaluate Y1, Y2 and Y3.

2.7. Numerical methods and statistical analysis

All fitting procedures, coefficient estimates and statistical calcula-
tions were performed using a Microsoft Excel spreadsheet, and the
graphical illustrations were obtained with the software DeltaGraph V6.
Fitting and statistical analyses of the experimental results, according to
the proposed equations, were carried out in three phases:

1) Coefficients measurement was achieved using the nonlinear least-
square (quasi-Newton) method provided by the macro Solver in
Microsoft Excel (Kemmer & Keller, 2010; Murado & Prieto, 2013),
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by minimization of the sum of quadratic differences between ob-
served and model-predicted values.

2) Coefficients significance was obtained via ‘SolverAid’ (Prikler, 2009)
to determine the parametric confidence intervals. The terms that
were not statistically significant (p-value > 0.05) were removed to
simplify the model.

3) Model reliability was confirmed by applying the following stan-
dards: a) the Fisher F-test (α=0.05) to determine the consistency of
the constructed models in describing the obtained data (Borges,
Carvalho, Correia, & Silva, 2007); b), the ‘SolverStat’ macro to make
assessment of parameter and model prediction uncertainties (Shi &
Tsai, 2002); c) Correlation coefficient (R2) and adjusted coefficient
of multiple determination (R2

adj) to explain the proportion of varia-
bility of the dependent variable obtained by the model.

3. Results and discussion

3.1. Selection of the relevant system variables and working ranges for the
RSM optimization study

A preliminary assessment was performed in one-variable-at-the-
time procedure to investigate T, pH, P/C and E. The obtained results
were similar, either for ergosterol used in its PE form or as EEE.
Changes in E did not show any interaction with the other variables, and,
therefore this variable was not selected for the RSM optimization study.
However, since it is a relevant parameter from an industrial point of
view, it was subsequently investigated by a dose-response approach.

The best response for yield was obtained at pH 5.5 using a P/C of 3
and 5. As the P content increases (P/C of 10 and 25), the highest
achieved yield was obtained at lower pHs (pH 5.0), but with values
inferior to the ones registered at pH 5.5, for P/C of 3 and 5. In a general
way, the magnitude of the maximum achieved yield is consistent with
values reported by other authors (Lim, 2012). In CP, pH assumes an
important role, with the maximum coacervates formation occurring
when the two polymers have opposite charge (Comuzzi, Polese,
Melchior, Portanova, & Tolazzi, 2003), which happens in a pH range
comprised between the P and C isoelectric points (4.7 and 6.4, re-
spectively). In chitosan-protein systems, C provides the positive
charged polymer, whereas the P the negative one. Since the favorable
conditions were positioned within the two isoelectric points, which
corresponds to a narrow practical pH interval (with only minor im-
provements observed in this preliminary analysis), pH was not selected,

being excluded in the subsequent RSM study (a fix pH value of 5.5 was
used).

The effect of T pointed out for important differences within the
tested range. It is well known that P denaturation causes its precipita-
tion and the reaching of these conditions can favor the CP, and thus
increase the process yield. Theoretically, the increase in T gives rise to P
denaturation (i.e. unfolding), allowing a higher exposure of the pro-
tein's groups, thus promoting the combination with C, and enhancing
the formation of the coacervates (Neves, Matos, Moutinho, Queiroz, &
Gomes, 2009). Regarding ergosterol microencapsulation, no data was
found in the literature, but, the performed preliminary tests suggested
that the increase in T favors ergosterol encapsulation efficiency. For this
reason, T was selected as a relevant variable for the RSM study.

In what concerns the P/C effect, high differences were found within
the tested range. As the P/C increases, the number of negative charges
provided by the protein hydrocolloid also increases. This fact can pro-
mote supplementary repulsions between the P molecules, but if the P/C
is at the optimal value the repulsion effects become lower, facilitating
the interaction between the oppositely charged molecules, improving
ergosterol entrapment (i.e. increasing microencapsulation efficiency).
These effects where important from an optimization point of view and
thus, P/C variable was selected for the RSM study.

From this preliminary assessment, responses were optimized using a
two-step procedure as follows: firstly, the application of a RSM was
used to optimize the conditions of T (from 55 to 95 °C) and P/C (from
0.5 to 10.5), to maximize the Y1, Y2 and Y3 responses with a CCCD;
secondly, E was optimized according to a dose-response study and
considering the optimal conditions previously determined by the RSM
analysis.

3.2. RSM optimization and experimental verification of the model results
prediction

3.2.1. Development of the theoretical response surface models and statistical
verification

Table 1 shows the average results (three replicates per assay were
used) according to the statistical CCCD described in Table A1 for each
of the defined responses (Y1, Y2 and Y3). Estimated parametric values,
parametric intervals and numerical statistical criteria were obtained
and are presented in Table A2. Coefficients presenting interval values
(α=0.05) higher than the parameter value were considered as not
significant (ns) and were not used for the model development.

Table 1
Results of the CCCD experimental design for the optimization of the combined effect of T (x1) and P/C (x2) based in three experimental responses: microencapsulation
yield (Y1, %, w/w); microencapsulation efficiency (Y2, %, w/w) and microencapsulation load (Y3, %, w/w). Two replicates were performed for each condition and
each response, and the average result is presented.

Variables Responses

Extracted material (EEE) Pure ergosterol (PE)

X1: T X2: P/C ratio Y1: Yield Y2: Efficiency Y3: Load Y1: Yield Y2: Efficiency Y3: Load

(°C) – (%, w/w) (%, w/w) (%, w/w) (%, w/w) (%, w/w) (%, w/w)

−1 (65) −1 (3) 6.95 92.06 6.77 6.67 90.97 8.00
1 (85) −1 (3) 22.89 88.97 1.98 38.83 24.29 0.36
−1 (65) 1 (8) 3.27 98.55 7.31 4.24 98.99 5.99
1 (85) 1 (8) 32.09 94.50 0.71 48.82 1.07 0.01

−2 (55) 0 (5.5) 4.46 93.51 6.88 5.36 99.18 6.57
2 (95) 0 (5.5) 61.04 95.66 0.51 72.51 16.78 0.08
0 (75) −2 (0.5) 11.55 94.10 9.00 13.15 94.30 10.93
0 (75) 2 (10.5) 13.16 92.65 1.36 13.93 65.61 0.95

0 (75) 0 (5.5) 8.33 89.56 3.51 8.03 83.53 3.71
0 (75) 0 (5.5) 9.88 89.73 2.97 9.36 73.30 2.80
0 (75) 0 (5.5) 9.93 85.99 2.82 10.13 99.43 3.50
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Models using coded values for each response were obtained by fit-
ting the second-order polynomial model of Eq. [1] to the experimental
values (Table 1) through nonlinear least-squares estimations. Para-
metric results are presented in Table A2 and the obtained models de-
scribed in Eq. (2)–(4) for EEE, and in Eq. (5)–(7) for PE samples.

= + + + + +Y x x x x x x9.4 13.1 0.8 5.9 0.8 2.7EEE
1 1 2 1

2
2
2

1 2 [2]

= + + +Y x x x89.7 0.6 1.3 1.0EEE
2 2 1

2
2
2 [3]

= − − + + +Y x x x x x x3.1 1.9 1.3 0.23 0.6 0.01EEE
3 1 2 1

2
2
2

1 2 [4]

= + + +Y x x x11.9 17.5 7.3 1.0PE
1 12 1

2
2
2 [5]

= − − − + −Y x x x x x x73.8 23.1 2.0 5.2 0.3 1.0PE
2 1 2 1

2
2
2

1 2 [6]

= − − + + +Y x x x x x x3.1 1.9 1.9 0.2 0.7 0.4PE
3 1 2 1

2
2
2

1 2 [7]

where T (x1) and P/C (x2) are the variables and Y1, Y2 and Y3 the re-
sponses. Only parameters showing statistically significant confidence

intervals in Eq. [1] were used for model development. Equations
(2)–(7) translate the response patterns for each studied case showing a
highly complex behavior (Table A2). Linear and quadratic effects were
found to play an important and significant role for all studied condi-
tions. Regarding the interaction between variables, only in two cases it
was not considered significant, and almost all interactive effects were in
a positive mode.

Although the model coefficients are empirical values, and may not
be related with physical or chemical significance, they are of great
importance helping to predict the results for non-experimental condi-
tions; its numerical value and sign mark the performance of the re-
sponse (Gaonkar et al., 2014; Klemmer, Waldner, Stone, Low, &
Nickerson, 2012). Thus, when a factor has a positive sign a proportional
relationship with the response is observed; on the other hand, when the
effect is negative an inversely proportional relationship applies (Kurukji
et al., 2014). Moreover, the higher is the absolute value of the coeffi-
cient, the more important is the weight of this variable in the response.

Several statistical tests were used to evaluate the obtained models

Fig. 1. Graphical results of ergosterol microencapsulation for the enriched ergosterol extract (EEE) in terms of three different responses (Y1, Y2 and Y3). Part A: 3D
graphics as a function of each the variables involved. Each of the net surfaces represents the theoretical three-dimensional response surface predicted with the second
order polynomial of Eqs. (2)–(4) for all responses used (Y1, Y2 and Y3 respectively). The binary action between variables are presented when the excluded variable is
positioned at the center of the experimental domain (T=75 °C; P/C=5.5). Part B: contour plot representation of the combined effect of T (x1) and P/C (x2)
presenting the isolines of all response value formats. Part C: predicted vs observed data and residual plot distribution.
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(Eqs. (2)–(7)), being observed that no considerable improvement was
achieved by the exclusion of the non-statistically significant effects
(Table A2). This was also corroborated by the achieved R2 and R2

adj

values (Table A2), which did not diminish by excluding these non-sig-
nificant coefficients. Moreover, the obtained correlation coefficients for
the three defined responses, for both studied cases (EEE and PE),
showed high correlation between predicted and experimental data. As
an example, Y1 response (microencapsulation yield) for the EEE pre-
sented the highest R2 value (0.9898), whereas the lowest value was
obtained in the PE case for Y3 response (loading) with a R2 of 0.8840.
Both values are high enough to indicate that the obtained experimental
data is satisfactorily describe by the models.

3.2.2. Effects of CP variables on the response criteria used to evaluate the
microencapsulation process

CP may be described by means of the parametric values of the
second-order polynomial models defined in Eqs. (2)–(7). Alternatively,
graphical representations facilitate the analysis of the complex

relationships that might exist between the experimental variables.
Fig. 1 and Fig. 2 shows the graphical results of ergosterol micro-
encapsulation in terms of the three analyzed responses (Y1, Y2 and Y3),
for EEE and PE, respectively. Part A shows the joint 3D-graphical
analysis as a function of each involved variable (T and P/C). Each of the
net surfaces represents the theoretical three-dimensional response sur-
face predicted by the second order polynomial in Eq. [1] for Y1, Y2 and
Y3. Part B presents the contour plot representation of the combined
effect of T (x1) and P/C (x2) presenting the isolines of all response value
formats to guide the selection of the most favorable conditions. Part C
presents the predicted vs observed data graphic and the residual dis-
tribution (%) as a function of each one of the variables.

The Y1 (microencapsulation yield) varied from 3.27 to 61.04% and
from 4.24 to 72.51% for EEE and PE cases, respectively. With both
ergosterol sources, the lowest Y1 value was obtained at 65 °C and P/C
ratio of 8; the higher value was obtained at 95 °C and P/C of 5.5.

For Y2 (microencapsulation efficiency), the shown behavior pattern
for the EEE and PE differed. In the case of EEE, the lowest Y2 value

Fig. 2. Graphical results of ergosterol microencapsulation for pure ergosterol (PE) in terms of three different responses (Y1, Y2 and Y3). Part A: 3D graphics as a
function of each the variables involved. Each of the net surfaces represents the theoretical three-dimensional response surface predicted with the second order
polynomial of Eqs. (5)–(7) for all responses used (Y1, Y2 and Y3 respectively). The binary action between variables are presented when the excluded variable is
positioned at the center of the experimental domain (T=75 °C; P/C=5.5). Part B: contour plot representation of the combined effect of T (x1) and P/C (x2)
presenting the isolines of all response value formats. Part C: predicted vs observed data and residual plot distribution.
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(85.99%) was obtained at 75 °C and P/C ratio of 5.5. For PE, the lowest
microencapsulation efficiency was 1.07% at 85 °C and P/C of 8.0.
Maximum efficiency values (98.55%) occurred at 65 °C and P/C ratio of
8.0 for EEE case, whereas for PE 99.43% was reached at 75 °C and P/C
of 5.5.

For Y3 response (microencapsulation load) the values ranged from
0.51 to 9.00% and 0.01–10.93% for EEE and PE, respectively. The
maximum values, obtained for both ergosterol sources, occurred at
75 °C with P/C of 0.5. The lowest values occurred at 95 °C with P/C of
5.5 (EEE), and 85 °C with P/C of 8.0 (PE).

It is worth noting that in all cases the residuals distribution was
always randomly scattered around zero with no found grouped data
and autocorrelations (data not shown). This means that the proposed
models are functional and may be applied to subsequent prediction and
optimization stages. Also, it indicates a good agreement between the
experimental and predicted values.

The maximum values for the Y1 were found at high T values, and the
optimal values for Y2 and Y3 achieved at T values below 75 °C. This fact
may be related with the occurrence of protein denaturation; whey
protein is mainly formed by β-lactoglobulin which is a thermosensitive
globular protein presenting structural reversible changes at 50 °C, and
irreversible ones at 70 °C. The increase of the hydrophobic groups ex-
position may promote a better association with ergosterol since it is also
a hydrophobic molecule (Barros, Oliveira, Carvalho, & Ferreira, 2010;
de Vasconcelos, Bennett, Rosa, & Ferreira-Cardoso, 2010). The high Y2

observed for the lower P/C tested may be related with the amount of
presented charged groups.

3.3. Optimization of the encapsulation conditions

In mathematical terms, it is possible to obtain the individual and the
global optimal conditions of the variables leading to the maximal re-
sponse values (Y1, Y2 and Y3), by applying a simplex procedure con-
sidering restrictions to the experimental ranges. The obtained in-
dividual and global optimal conditions are shown in Table 2. In
addition, Fig. 3 shows the individual optimal conditions for the defined
variables (P/C in the right side, and T in the left side of the figure) with
PE and EEE cases assigned by light and dark curves, respectively. The

most noted difference between PE and EEE occurred for the variable Y2;
for PE it remained constant as T increased, whereas for EEE T increasing
implied a reduction on the microencapsulation efficiency. For P/C an
opposite trend was observed, i.e. for EEE it remained nearly the con-
stant (slightly concave). As the P/C increase a prominent concavity
around P/C of 5.5 was observed when PE was used. Additionally, the

Table 2
Optimal variable conditions of ergosterol microencapsulation for the enriched
ergosterol extract (EEE) and pure ergosterol (PE) in terms of three different
responses (Y1, Y2 and Y3). Intermediary variable conditions that optimize the
response for all responses are computed.

Criteria Optimal variable conditions Optimum response

X1: T (°C) X2: P/C ratio

EXTRACTED MATERIAL (EEE)
Individual optimal variable conditions
Y1 95.0 ± 8.7 b 10.48 ± 0.97 a 75.02% (w/w)
Y2 55.0 ± 3.7 b 10.5 ± 0.85 b 100.00% (w/w)
Y3 55.0 ± 9.1 b 0.5 ± 0.02 b 12.78% (w/w)

Global optimal variable conditions
Y1 55.0 ± 6.9 b 0.5 ± 0.10 b 19.46% (w/w)
Y2 98.32% (w/w)
Y3 12.78% (w/w)

PURE ERGOSTEROL (PE)
Individual optimal variable conditions
Y1 95.0 ± 4.1 b 10.5 ± 0.31 b 92.66% (w/w)
Y2 55.0 ± 5.2 b 0.5 ± 0.32 b 100.00% (w/w)
Y3 55.0 ± 7.1 b 0.5 ± 0.24 b 15.87% (w/w)

Global optimal variable conditions
Y1 55.0 ± 8.4 b 0.5 ± 2.2 b 19.19% (w/w)
Y2 100.00% (w/w)
Y3 15.87% (w/w)

a Conditions that lead to an absolute optimum response.
b Conditions that lead to a relative optimum response within the experi-

mental design (from −2 to +2).

Fig. 3. Individual 2D graphics of Y1, Y2 and Y3 for each variable (thinner line:
pure ergosterol, thicker line enriched ergosterol extract). All other variables are
located at the optimal conditions found. Dots (☉) presented alongside each line
highlights the location of the optimum value.
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optimum conditions for EEE always lead to higher values than those
obtained for PE. This may occur due to the presence of other molecules
in the extract besides ergosterol, which affects the microencapsulation
process. It may be hypothesized that those other molecules present in
the EEE may create a “preferable path” favoring, in global terms, the
entrapment of the surrounding molecules.

3.4. Dose-response analysis of ergosterol encapsulation using EEE and PE at
the optimal achieved microencapsulation conditions

Two different optimal conditions for the CP were taken into account
to evaluate the dose-response effect of E using the two ergosterol
sources (EEE and PE) with responses shown in Table 2, Figs. 1, Figs. 2
and 3. condition 55 °C and P/C of 0.5 was chosen because it corre-
sponds to an overall optimum value of almost all responses. condition
95 °C and P/C of 10.5 was also chosen since it leads to a high Y1, which
may be important from a productive point of view.

Table A3 and Fig. 4 show the obtained dose-responses (in terms of
Y1, Y2 and Y3) when EEE and PE ergosterol sources were used at the two
considered optimal conditions.

The Y1 remained constant as the ergosterol content decreased. At
55 °C the increase in the E, for both ergosterol sources (PE and EEE),
interfered in the final achieved yield. In fact, CP depends on the in-
teraction between P and C molecules. It seems that the insertion of high
ergosterol content promote the individual interaction of this molecule
with the used coacervation materials, thus reducing coacervation yield.
On the other hand, at 95 °C higher yields were attained, comparatively
with those obtained at 55 °C. As the T increases, P denaturation also
increases, thus the recovered coacervates may include some denatured
P itself.

For Y2, at 55 °C it was possible to detect a proportional relationship
with E, both for the EEE and PE ergosterol sources. With PE, an op-
timum was achieved resulting from a possible saturation of the en-
capsulating material (achievement of a maximum load capacity), which
was corroborated by the amount of ergosterol found outside the mi-
crocapsules.

For Y3, in the two cases, a linear relationship with E was found, with
slightly higher values found at 55 °C, comparatively with 95 °C. For
high E values, the formed microcapsules may not be able to incorporate
all the available ergosterol and therefore, asymptotic patterns were

Fig. 4. Dose-response study of the effects of ergosterol content (E), on the response values assessed of Y1 (△), Y2 (◯) and Y3 (□) for both source materials, pure
ergosterol (PE) and enriched ergosterol extract (EEE). Numerical results are presented in Table A3.
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found.
According to Figure A1 and comparing PE and EEE samples, there

are not significant differences at 95 °C and P/C ratio of 10.5. This can be
also corroborated in Fig. 4, where it is also verified that there is not
much difference between the answers for these two optimal conditions.
On the other hand, at 55 °C and P/C ratio of 0.5 differences between PE
and EEE samples are observed, also well evident in Fig. 4). In Fig. 5 and
A1, it can be also observed the effect of increasing the concentration of
ergosterol in PE and in EEE samples.

Regarding the morphology at 95 °C, it can be perceived complex
irregular clusters containing both extract and ergosterol inside. When a
temperature of 55 °C was used, the formed microcapsules are more
defined presenting a round shape. In Fig. 4 it can be observed that
under these established optimal conditions, higher ergosterol loads
were obtained at this temperature.

4. Conclusions

Encapsulation of ergosterol using chitosan/whey protein coa-
cervates is a viable alternative for the food industry. Both biopolymers
are obtained from industrial wastes, highlighting the green connota-
tions of the present work, and contributing for their valorization. The
used mathematical models were statistically validated leading to the

optimization of microencapsulation process (yield, efficiency and load).
Moreover, the global optimal conditions for the encapsulation of er-
gosterol occurred at 55 °C for a P/C of 0.5. It is further noted that the
ergosterol presented in the enriched ergosterol extracts seems to be
encapsulated more efficiently than the pure ergosterol itself, which may
be associated with the presence of other molecules in the extract that
may favor ergosterol entrapment. Finally, the effect of increasing E
(ergosterol content) in the processing responses, led to significant
changes in the Y1 (microencapsulation yield reduction) and Y3 (mi-
croencapsulation load increase), while maintaining approximately
constant the efficiency of the microencapsulation process (Y2).
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