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A B S T R A C T

There is a growing interest in wild edible species that represent a source of several health-promoting compounds,
providing a potential strategy to diversify and enrich the daily diet. The aim of the present work was to char-
acterize the nutritional and chemical composition of Rubus ulmifolius Schott fruits. Furthermore, their anti-
microbial activity, non-anthocyanin and anthocyanin phenolic profile were also determined. According to the
obtained results, R. ulmifolius fruits exhibited a high concentration in carbohydrates and a low fat content, in
comparison with the other nutrients and non-nutrients detected in this sample. The colour parameters de-
monstrated differences in a* and b* parameters after lyophilisation process. Glucose and fructose were the most
abundant free sugars detected and quinic acid showed the highest content compared to the other five organic
acids identified. The fatty acids profile revealed 25 compounds, being mostly represented by polyunsaturated
fatty acids and evidencing linolenic and α-linolenic acid as the most abundant. All tocopherol isoforms were
detected, revealing γ-tocopherol with highest amount. Cyanidin-3-O-glucoside, ellagic acid pentoside, ellagic
acid glucuronide and sanguiin H-10 were the main phenolic compounds present, which could be related to the
antimicrobial activity (MIC values ranging between 5 and 20mg/mL) revealed by R. ulmifolius fruits. These
results showed that this fruit is a good source of nutrients as also non-nutrient compounds, with human health
benefits.

1. Introduction

In recent years, there has been an increasing concern from con-
sumers regarding food safety and quality, which has resulted in the
increasing demand for natural food products (Asioli et al., 2017;
Moscato & Machin, 2018). The preference for unprocessed foods (pro-
cessed and industrialized products) is mostly due to its higher content
in bioactive compounds, which involve several bioavailable compounds
that have been associated with healthy benefits, unlike refined foods.
During the industrialization process, refined foods loose a great amount
of components, such as fibers, nutrients, vitamins and other molecules,
and consequently present a higher content of simple carbohydrates, salt
and fats, adding a higher energetic value to the product (Moubarac,
Batal, Louzada, Martinez Steele, & Monteiro, 2017; Rodríguez-Roque
et al., 2015). In addition to the direct consequences in the nutritional
value of the food product, consumers have also shown a great concern
about the environmental impact caused by the abusive use of synthetic
fertilizers and pesticides in the contamination of the soil and machinery
as consequence of intensive industrialization (Sun, Dai, & Yu, 2017).

Thus, actually, there is a growing interest in wild edible species that
represent a source of several health-promoting compounds providing a
potential strategy to diversify and enrich the daily diet and thus a
contribution to combat global health disorders (Morales et al., 2013).
Since wild species do not require specific conditions and action for their
generation, it becomes an inexhaustible resource and therefore an
added value for the food sector (Bacchetta et al., 2016; Emilia &
Accame, 2016; Pinela, Carvalho, & Ferreira, 2017; Ruiz-Rodríguez
et al., 2014).

Rubus ulmifolius Schott (Roseaceae) is a perennial shrub commonly
known as wild blackberry or elm-leaf blackberry that is widely dis-
tributed in Asia, North Africa and Europe, predominantly in Iberian
Peninsula, in both wild and cultivated soils (Emilia & Accame, 2016;
Martins et al., 2014; Reidel, Melai, Cioni, Flamini, & Pistelli, 2016). The
blooming season occurs between May and June, followed by the ri-
pening and development of the fruit, that is characterized as an ag-
gregate of several fleshy drupelets, that during ripening change their
colour from green to black (Emilia & Accame, 2016; Reidel et al.,
2016). These fruits are consumed fresh or as derivate products such as
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jams, juices, liqueur and marmalades, due to their delicious flavour and
taste. Furthermore, their bioactive compounds have been the main
focus of many scientific studies, generating a large number of dietary
supplements and food products fortified with phytochemicals
(D'Agostino et al., 2015; Emilia & Accame, 2016; Reidel et al., 2016).
Their therapeutic properties are assigned to the high concentration of
biologically active compounds such as phenolic compounds, ellagi-
tannins and ascorbic acid (Barros, Oliveira, Carvalho, & Ferreira, 2010;
Oszmiański et al., 2015). Thus, an interdisciplinary approach should be
applied for the valorization of wild species, deliberating and encourage
about new projects linked to an ecologically sustainable extraction of
bioactive compounds, and therefore to future applications in industry
(Emilia & Accame, 2016; Ruiz-Rodríguez et al., 2014). Several studies
have been performed using different Rubus species, such as Rubus
ideaus, Rubus takesimensis and Rubus suavissimis (Milivojevic et al.,
2011; Uhler & Yang, 2018; Yang, Pak, & Kim, 2018). Deeper studies
were carried out in blackberry (Van de Velde, Pirovani, & Drago, 2018),
in Rubus ulmifolium flowers buds and open flowers (Barros et al., 2010),
and in Rubus ulmifolium fruits (Ruiz-Rodríguez et al., 2014). The present
study evidences novelty in the chemical and bioactive characterization
of R. ulmifolium fruits, and deepens the evaluation of compounds with
bioactive interest, such as polyphenols. Thus, it was performed a nu-
tritional and chemical evaluation of R. ulmifolius fruits, as well as, a
discrimination of its phenolic compounds profile (non-anthocyanin and
anthocyanin compounds) and antimicrobial activity.

2. Materials and methods

2.1. Samples

Rubus ulmifolius Schott fruits (Rosaceae) known as elm-leaf black-
berry or wild blackberry were collected during September 2017 in
Bragança, Portugal. The collected plant material was authenticated by
Professor of Botany Carlos Aguiar and a specimen voucher was de-
posited in the herbarium of the School of Agriculture, Polytechnic
Institute of Bragança (Portugal).

The fruits (200 g) were lyophilized (FreeZone 4.5, Labconco, Kansas
City, MO, USA), reduced to a fine dried power (~20 mesh) and then
mixed to obtain a homogenous mixture. The samples were stored in a
fresh and dry place, away from any light source until further analysis.

2.2. Nutritional characterization of R. ulmifolius fruits

The protein, fat, carbohydrates and ash content were obtained ac-
cording AOAC (2016) procedures and using methodologies described
by Melgar et al. (2017). For the crude protein (N×6.25) was used
Kjeldahl method (AOAC 991.02), the ash content was obtained by ex-
posing the sample to incineration at 550 ± 15 °C for 12 h (AOAC
935.42), whereas the crude fat was obtained by using a Soxhlet appa-
ratus with petroleum ether as recycling solvent (AOAC 989.05) and,
finally, the total carbohydrate was assessed through difference. To de-
termine the total energy, it was used the following equation: Energy
(kcal)= 4× (g protein + g carbohydrates)+ 9× (g fat).

2.3. Colour parameters analysis of R. ulmifolius fruits

This evaluation was performed according a procedure described by
Roriz, Barros, Prieto, Morales, and Ferreira (2017). To measure the
samples colour it was used a Minolta spectrophotometer (Konica Min-
olta Sensing, Inc., Chroma Meter CR-400, Japan) with an adapter for
granular materials (model CRA50). Using the illuminant C and a dia-
phragm aperture of 8mm, the CIE L∗, a∗ e b∗ colour space values were
reported through the computerized system, using colour data software
Spectra Magic Nx (version CM-S100W 2.03.0006, Konica Minolta
Company, Japan) to process the data.

2.4. Nutrients composition of R. ulmifolius fruits

Free sugars were analysed, using the high performance liquid
chromatography – HPLC (Knauer, Smartline system 1000) coupled to a
refraction index detector – RI (Knauer, Smartline system 1000), as
previously described by Barros et al. (2013). The results were evaluated
using a Clarity 2.4 Software (DataApex, Podohradska, Czech Republic),
through which expressed in g per 100 g of fresh weight (fw). The
standards (D(−)-fructose, D(+)-sucrose, D(+)-glucose, D(+)-treha-
lose and D(+)-raffinose pentahydrate) and all other general laboratory
reagents were purchased from Sigma-Aldrich (St. Louis, MO, USA) and
Panreac Química S.L.U. (Barcelona, Spain), respectively.

Organic acids were evaluated through an ultra-fast liquid chroma-
tography (UFLC, Shimadzu 20A series, Kyoto, Japan) coupled to a
photodiode array detector (PDA), according to a technique previously
explained by Barros, Pereira, and Ferreira (2013). The results were
evaluated using a LabSolutions Software (Software) and expressed in g
per 100 g of fresh weight (fw). Organic acids standards, such as: L
(+)-ascorbic acid, citric acid, malic acid, oxalic acid, shikinic acid,
succinic acid, fumaric acid, and quinic acid, were obtained from Sigma-
Aldrich (St. Louis, MO, USA).

Fatty acids procedure was performed according to a methodology
reported by Pereira, Barros, Martins, and Ferreira (2012), using a gas
chromatography (DANI model GC 1000, Contone, Switzerland) coupled
to a flame ionization detector (FID), a split/splitless injector and a
Zebron-Kame column (30m×0.25mm ID×0.20 μm df; Phenomenex,
Lisbon, Portugal). The compounds were identified by comparison of the
relative retention times of FAME peaks from samples with commercial
standards (standard 47,885-U was purchased from Sigma-Aldrich, St.
Louis, MO, USA). The results were treated using a chromatography
station for Windows CSW (version 1.7) software from DataApex (Po-
dohradska, Czech Republic) and exhibited in relative percentages (%).

Tocopherols content was obtained following a method previously
described by Barros, Pereira, Calhelha, et al. (2013), using a HPLC
system (Knauer, Smartline system 1000) coupled to a fluorescence de-
tector (FP-2020; Jasco; Easton, MD, USA) and programmed for excita-
tion at 290 nm and emission at 330 nm. The results were evaluated
using a Clarity 2.4 Software (DataApex, Podohradska, Czech Republic),
through which expressed in mg per 100 g of fresh weight (fw). Toco-
pherols commercial standards (α-, β-, γ-, and δ-tocopherol) were ob-
tained from Matreya (Pleasant Gap, PA, USA).

2.5. Phenolic composition of R. ulmifolius fruits

2.5.1. Non-anthocyanin compounds
Extraction and purification. The fruit sample was extracted by ma-

cerating 1 g with ethanol/water (30mL, 80:20, v/v) during 1 h (25 °C,
250g). Afterwards, the sample was filtered and the remaining residue
was extracted with an additional portion of the hydroethanolic mixture
during 1 h. The filtrated extract was concentrated under reduce pres-
sure (rotary evaporator Büchi R-210, Flawil, Switzerland) at 35 °C, until
complete ethanol removal. The aqueous phase was then frozen and
lyophilized (−47 °C, 0.045 bar; FreeZone 4.5, Labconco, Kansas City,
MO, USA).

The aqueous phase was purified using a C-18 SepPak® Vac 3 cm3

cartridge (Phenomenex). The activation was performed with 5mL of
ethanol and water, then 10mL of the sample (50mg/mL) was loaded
into the cartridge. Afterword's, the sugars and the more polar com-
pounds were removed by passing 15 mL of water and the phenolic
compounds were further eluted with 15mL of ethanol. Afterwards, the
ethanol was removed under vacuum until dryness and re-dissolved in
1mL of 80% aqueous ethanol, filtered through a 0.22 μm disposable LC
filter disk into a 1.5 mL amber vial for HPLC analysis (Rodrigues et al.,
2012).

Analytical method. The analysis was performed using a chromato-
graphic system Dionex Ultimate 3000 UPLC (Thermo Scientific, San
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Jose, CA, USA). Detections was performed simultaneously with a DAD
(280, 330, and 370 nm) and with a mass spectrometer (Linear Ion Trap
LTQ XL, Thermo Finnigan, San Jose, CA, USA) equipped with an ESI
source and operating in negative mode, following a procedure pre-
viously performed by the authors (Bessada, Barreira, Barros, Ferreira, &
Oliveira, 2016). The compounds were detected using the retention
times, UV-VIS and mass spectra data in comparison with available
standards and literature review. While quantitative analysis was per-
formed using calibration curves of available phenolic standards (caffeic
acid, y= 388,345×+406,369; ellagic acid, y= 26,719×− 317,255;
quercetin-3-O-glucoside, y= 34,843× – 160,173; taxifolin,
y= 203,766× – 208,383) based on the UV signal. In the case of un-
available commercial standards, the compounds were quantified based
on the calibration curve of the most similar standard available. The
results were exhibited as in mg per g of extract.

2.5.2. Anthocyanin compounds
Extraction. Each sample (1 g) was extracted through a maceration

extraction methodology during 1 h, with 30mL of ethanol/water
(80:20, v/v) containing 0.5% HCl. After filtration (Whatman No. 4
paper), the residue was re-extracted with 30mL of ethanol/water
(80:20, v/v) acidified with 0.5% HCl. In order to remove ethanol, the
combined extracts were evaporated at 35 °C, under reduced pressure
and further lyophilized. Extracts were re-dissolved in 1mL of 80%
aqueous ethanol acidified with 0.01% of HCl, and filtered through a
0.22 μm disposable LC filter disk into an amber vial for HPLC analysis.

Analytical method. This evaluation was made following a metho-
dology described by Gonçalves et al. (2017), using a UPLC-DAD-ESI/
MSn system (Thermo Finnigan, San Jose, CA, USA). Detection was
performed using a DAD (520 nm) and with a mass spectrometer (Linear
Ion Trap LTQ XL Thermo Finnigan) equipped with an ESI source and
operating in positive mode. Compounds identification was performed
using the retention time, UV-VIS and mass spectra data in comparison
with available standards (cyanidin-3-O-glucoside, y= 104,478× –
823,429 and pelargonidin-3-O-glucoside, y= 50,652× − 696,848)
and literature review. The results were expressed in mg/g of extract.

2.6. Antimicrobial activity R. ulmifolius fruits

To evaluate the antimicrobial activity, the hydroethanolic extract
described in Section 2.5.1. were re-dissolved in water to obtain a stock
solution of 100mg/mL and, subsequently, submitted to further dilu-
tions. The microorganisms used during this study were donated clinical
isolates from patients hospitalized in various departments of the Local
Health Unit of Bragança and Hospital Center of Trás-os-Montes and
Alto-Douro, Vila Real, Portugal. Thus, five Gram-negative bacteria
(Escherichia coli, Klebsiella pneumoniae, Morganella morganii, Pseudo-
monas aeruginosa and Proteus mirabilis), four Gram-positive bacteria
(MRSA- methicillin-resistant Staphylococcus aureus, MSSA- methicillin-
susceptible Staphylococcus aureus, Listeria monocytogenes and En-
terococcus faecalis), and one fungi (Candida albicans) were used to access
the antimicrobial activity.

Minimum inhibitory concentrations (MIC) were obtained by the
microdilution method and the rapid p-iodonitrotetrazolium chloride

(INT, Panreac Applichem (Barcelona, Spain) colorimetric assay, fol-
lowing the methodology described by Alves, Ferreira, Martins, and
Pintado (2012). MICs were defined as the lowest concentration that
inhibits the visible bacterial growth and the results are present in mg/
mL. Minimal bactericidal and fungicidal concentration (MBC and MFC)
were also determined, by measuring the lowest concentration that
yielded no growth, therefore MBC and MFC were defined as the lowest
concentration required to kill a bacteria and fungus. Ampicillin (20mg/
mL), imipenem (1mg/mL), vancomycin (1mg/mL), and fluconazole (1
mg/mL) were used as positive control.

2.7. Hepatotoxicity evaluation R. ulmifolius fruits

The hepatotoxicity of the hydroethanolic extract described in
Section 2.5.1 was evaluated in a non-tumor primary cell culture, ob-
tained from a freshly harvested porcine liver, acquired from a local
slaughterhouse, being designated as PLP2. This evaluation was per-
formed according to a procedure described by Barros, Pereira, Calhelha,
et al. (2013) and ellipticine (from Sigma-Aldrich, Sigma-Aldrich, St.
Louis, MO, USA) was used as positive control. The results were ex-
hibited in GI50 values, sample concentration that inhibits the growth of
cells by 50%.

2.8. Statistical analysis

The described assays were performed in triplicate and the results
were expressed as mean ± standard deviation (SD). The statistical
treatment was analysed through the Student's t-test in order to de-
termine the significant differences between two samples, with p=0.05
(SPSS v. 23.0; IBM Corp., Armonk, New York, USA).

3. Results and discussion

3.1. Nutritional value and colour evaluation of R. ulmifolius fruits

The nutritional analysis of R. ulmifolius fruits was performed and the
results are provided in Table 1. The nutritional evaluation was made
through the analysis of proteins, fat, ash, carbohydrates and energy. R.
ulmifolius fruits revealed a higher concentration of carbohydrates, with
values of 26.2 ± 0.2 g/100 g fw, and low values of proteins
(2.4 ± 0.1 g/100 g fw), followed by fat (1.22 ± 0.02 g/100 g fw) and
ash (0.58 ± 0.01 g/100 g fw). In the present work it was also evident
the high level of moisture present in the fruits, with value of 70 ± 2 g/
100 g fw. In an overall, the energetic value of fruits was
125.25 ± 0.08 kcal/100 g fw.

Several studies have been carried out in other species of black-
berries and the results show some differences in most of the studied
parameters. De Souza et al. (2014) studied several red fruits, such as
blackberry, red raspberry, strawberry, sweet cherry and blueberry, and
the results showed different values in comparison with the present
study, thus the highest and lowest concentrations were also found for
the same parameters. These authors also presented different values for
blackberry sample (Rubus spp), showing higher contents in carbohy-
drates, with values of 10.18 g/100 g fw, followed by proteins with

Table 1
Nutritional parameters and physical parameter (colour - CIE L*a*b*) of R. ulmifolius fruits.

Nutritional value Lyophilized fruit powder Colour Fresh fruit Lyophilized fruit powder p-value

Moisture (g/100 g fw) 69.63 ± 1.9 L* 19.7 ± 0.2 18.8 ± 0.8 0.006
Ash (g/100 g fw) 0.58 ± 0.01
Proteins (g/100 g fw) 2.4 ± 0.1 a* 1.19 ± 0.05 8.0 ± 0.3 <0.001
Fat (g/100 g fw) 1.22 ± 0.02
Carbohydrates (g/100 g fw) 26.17 ± 0.17 b* 1.21 ± 0.05 2.7 ± 0.1 <0.001
Energy (Kcal/100 g fw) 125.25 ± 0.08

fw: fresh weight. L* - lightness; a* chromatic axis from green (−) to red (+); b*, chromatic axis from blue (−) to yellow (+). Results are presented as mean ± SD.
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values of 1.27 g/100 g fw; however, this last parameter presented a
lower concentration compared to our result. The lowest concentrations
were detected in fat and ash, presenting values of 0.42 g/100 g fw and
0.21 g/100 g fw, respectively. Also in these parameters it was verified
lower values in comparison with the present study. Otherwise, the
samples showed significantly higher moisture content, with values of
87.92 g/100 g fw, and the opposite was observed in the energy content
(49.57 kcal/100 g fw), which was considerably lower compared to the
present study. The differences observed with respect to the nutritional
composition can be explained by the different provenance of the sam-
ples, but also because they correspond to different species (Pellegrini
et al., 2018).

The values of three-dimensional coordinates CIE (L*, a* and b*) for
the colour analysis of the R. ulmifolius fruit samples are described in
Table 1. Colour is a very important parameter in the food industry since
the visual aspect of a product will always have a first impact on the
consumer and is often the decisive factor for the acceptance or not of
the product. The fruits of blackberry have a very intense colour that
remains and characterizes all derivative products such as marmalade,
jam, liqueurs, ice cream and others (Kaume, Howard, & Devareddy,
2012). L* is the coordinate that represents lightness, ranges from white
(100) to black (0), and showed a value of 19.7 in fresh fruit; while a*
represents the chromatic axis from green (−) to red (+) showing a
value of 1.19, and b* which represents the chromatic axis from blue
(−) to yellow (+), showing a value of 1.21 for fresh fruits. On the other
hand, the colour was also measured in fruits after being lyophilized and
reduced to powder, and the results present values of 18.8, 8.0 and 2.7
for L*, a* and b* parameters. According to these results and with the
application of statistical analysis, it is evident that the differences be-
tween a* and b* parameters in the different samples, revealed that the
lyophilisation process caused statistically significant differences for all
colour parameters (p < 0.05). Thus, the L* parameter showed a de-
crease after the dehydration by lyophilisation (keeping the dark colour
characteristic of this fruit), on the other hand, the a* and b* values
evidenced an accentuated increase.

The present study cannot be compared with previous studies, since
these analyses were not previously performed by other authors.
Lyophilisation is a process that allows to obtain a high quality product;
in this way it is important to evaluate its effects, in this case, with re-
gard to colour change, allowing a small screening of the stained pig-
ments, such as anthocyanin compounds, in this case.

3.2. Chemical characterization of R. ulmifolius fruits in terms of nutrients

The composition of the fruits was obtained evaluating the fatty
acids, free sugars, organic acids, and tocopherols content and the results
are presents in Table 2.

The analysis of free sugars revealed the presence of two mono-
saccharides (fructose and glucose) and one disaccharide (sucrose), ex-
hibiting a total free sugar concentration of 16.3 ± 0.4 g/100 g fw.
Glucose and fructose revealed the highest content, presenting values of
8.1 ± 0.1 g/100 g fw and 7.8 ± 0.4 g/100 g fw, respectively. On the
other hand, sucrose showed a much lower concentration, with value of
0.34 ± 0.02 g/100 g fw. The obtained sugar profile is in accordance
with a previously published study by Milivojevic et al. (2011), which
also detected glucose (6.45 g/100 g fw), fructose (7.61 g/100 g fw) and
sucrose (0.3 g/100 g fw) in similar concentrations in Rubus fruticosus L..
However, these authors obtained results with lower values in compar-
ison with the present study; as well as, the main free sugar was also
different and in this case fructose was the major compound. In a work
performed by Barros et al. (2010), studying R. ulmifolius flowers, it was
also detected the presence of glucose (0.382 g/100 g dw), fructose
(0.284 g/100 g dw), and sucrose (0.229 g/100 g dw), but also other
sugars, namely, trehalose and raffinose, with values of 0.72 and 0.10 g/
100 g dw, respectively; these differences would be expected, because
these authors studied another part of this plant.

Furthermore, among other wild red fruits, the composition in sugars
are also very similar to Fragaria vesca L. and Rubus ideaus L., being also
detected as main sugars, glucose, fructose and sucrose. Fructose was
predominant in F. vesca (11.68 g/100 g fw), whereas glucose (6.52 g/
100 g fw) was present in the lowest amounts. For R. idaeus, with the
exception of sucrose (0.69 g/100 g fw), it was also obtained lower levels
in sugars with 3.83 g/100 g fw of glucose and 3.15 g/100 g fw of fruc-
tose (Milivojevic et al., 2011). Thus, it was evident that the present
study obtained a higher total free sugars value, in comparison with
other wild species. These differences could also be explained due to
different extraction and analytical procedures, further to the different
species studied.

However, despite the higher sugar concentration, it does not mean
that blackberries are sweatier, since the content of organic acids is an
important factor in the perception of this taste (Milivojevic et al.,
2011).

The profile in organic acids was also evaluated and the results are
present in Table 2, being identified oxalic, quinic, malic, shikimic, as-
corbic, and fumaric acids. According to the results, the total con-
centration of these molecules was 238 ± 7mg/100 g fw. Quinic acid
was the compound detected in the highest concentration
(119 ± 10mg/100 g fw), followed by oxalic (71 ± 4mg/100 g fw),
malic (29 ± 1mg/100 g fw), shikimic (11.33 ± 0.05mg/100 g fw),
and ascorbic (6.66 ± 0.01mg/100 g fw), thus fumaric acid was only
detected in trace amounts.

Quinic acid has been identified in several fruits and vegetables, and
contributes to their characteristic taste (Marrubini, Appelblad, Gazzani,
& Papett, 2015). Some studies have been performed to determine the
beneficial effects of this molecule in human health and Papetti et al.
(2013) and Conti et al. (2013), described that quinic acid was demon-
strated to have an antioxidant potential and act together with other
molecules, namely, succinic, oxalic, and shikimic acids as an inhibitor
for the most important virulence traits of oral pathogens. Milivojevic
et al. (2011) evaluate the difference in chemical properties of cultivated
and wild Rubus berries, and with respect to the organic acids profile,
only citric (not found in the current analysis) and malic acids were
detected. Compared with our study, malic acid was detected in lower
amounts, with values of 0.03mg/g fw, for example in R. fruticosus
fruits.

Concerning the fatty acids profile (Table 2), twenty-five compounds
were identified, being the most abundant molecule linolenic acid
(C18:2n6c) presenting a value of 52.4 ± 0.5%, followed by α-linolenic
acid (C18:3n3, 18.6 ± 0.7%) and oleic acid (C18:1n9c, 18.4 ± 0.1%).

There are several studies that describe these acids with beneficial
properties for human health. Linoleic and α-linolenic acids are desig-
nated as essential fatty acids because humans cannot synthesize them
and it is necessary to obtained these fatty acids from the daily diet.
Additionally, they are precursors of other substances with important
functions in the organism (Anez-Bustillos et al., 2018). Several studies
indicate that through linoleic acid (omega 6, ω-6), it is synthetized the
arachidonic acid, a substrate of cyclooxygenase, lipoxygenase and cy-
tochrome P450 enzymes, leading to the generation of eicosanoids and
mediators for inflammatory regulation with fundamental physiological
functions (Anez-Bustillos et al., 2018; Innes & Calder, 2018; Mori, 2018;
Tallima & El Ridi, 2018). On the other hand, α-linolenic acid (omega 3,
ω-3) is the precursor for the production of others polyunsaturated
omega 3 fatty acids, through a cascade of reaction, such as EPA (eico-
sapentaenoic acid) and DHA (docosahexaenoic acid), which represents
the omega 3 fatty acid with major potential to exert beneficial phy-
siologic effects on the regulation of plasma triglyceride levels, ar-
rhythmias, blood pressure, atherosclerotic plaque, platelet aggregation,
and consequently, to improve the vascular function (Elagizi et al.,
2018). Also, it has the function to control the weight gain and chronic
inflammation trough gut microbiota (Zhang, Ju, & Zuo, 2018).

Other acids detected in a significant concentration were palmitic
(C16:0) and stearic (C18:0) acids, showing values of 5.3 ± 0.2 and
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2.94 ± 0.03%, respectively. The remaining molecules were detected in
concentrations lower than 1%.

A study carried out by Morales et al. (2013), in order to identify
potential phytochemicals in wild edible fruits, showed a similarly fatty
acid profile to R. ulmifolius fruits. These authors also identified lino-
lenic, oleic, and α-linolenic acids as the major fatty acids, with con-
centrations of 48.56, 22.62 and 13.28%, respectively. Compared with
the present study, these authors obtained the same major compounds,
but linoleic and α-linolenic acids showed lower a lower content.

Also Fazio, Plastina, Meijerink, Witkamp, and Gabriele (2013)
evaluated the composition and properties of the methanolic extrats of
the seed from two wild fruits (Rubus ulmifolius Schott and Sambucus
nigra L.) and the analysis showeded that the most represented fatty
acids in R. ulmifolius seeds were linolenic (15.34 g/100 goil), α-linolenic
(4.22 g/100 goil) and oleic acids (8.33 g/100 goil). These authors also
detected the same main compounds; however, the values cannot be
compared because they are expressed in different units. Moreover,
Barros et al. (2010) performed a study regarding the phytochemical
composition of flowers and flowers buds from R. ulmifolius and detected
23 fatty acids, being α-linolenic (38.04%, 39.56%), linolenic (14.98%,
16.02%), and palmitic acids (12.05%, 11.99%) the most abundant fatty
acids.

In a general, polyunsaturated fatty acids (PUFA – 71.4 ± 0.2%)
were the predominant compounds, followed by monounsaturated fatty
acids (MUFA – 18.8 ± 0.1%) and saturated fatty acids (SFA –
9.7 ± 0.3%). These results are in accordance with the other studies
previously reported, namely, in Fazio et al. (2013) presenting a higher
percentage in PUFA (19.56%) compared to SFA (3.47%) in the seed oil
of these fruits, and in Barros et al. (2010) with a percentage of 53.56%
of PUFA and 42.99% of SFA. This latter study shows lower PUFA values
in comparison to the present study, thus the SFA values were con-
siderably higher.

The ration between PUFA/SFA is a factor to evaluate the nutritional
quality of food products, this ratio should present values over 0.45
(Ospina-E et al., 2012; Morales et al., 2013; Rincón-Cervera et al.,
2019). Therefore, in the studied fruits, the ratio presented a value of
7.40, which present the quality of this fruit.

The analysis of tocopherols is present in Table 2, and several iso-
forms were detected, namely, α-, β-, γ- and δ-tocopherol, presenting a

total tocopherol content of 5.1 ± 0.1 mg/100 g fw. γ-Tocopherol was
highlighted as a major isoform present in analysed samples, with a
concentration of 2.80 ± 0.04mg/100 g fw, followed by α-tocopherol,
and δ-tocopherol with similar contents, 1.15 ± 0.04mg/100 g fw and
1.13 ± 0.04mg/100 g fw, respectively. β-Tocopherol was detected in
the lowest concentration with value of 0.020 ± 0.002mg/100 g fw. γ-
Tocopherol has been reported as a very potent compound in delaying
arterial thrombus formation, reducing LDL oxidation, superoxide gen-
eration and lipid peroxidation. It has also been mentioned that regular
consumption of food rich in this isoform lowers the risk of myocardial
infarction and death from ischemic heart disease (Nadeem et al., 2012).
Campbell, Stone, Whaley, and Krishnan (2003) has also reported that
most of the antioxidant and protective effects of tocopherols have been
focused primarily on α-tocopherol, which is the main form of vitamin E,
in over-the-counter supplements. This isoform was second most abun-
dant in the fruits of R. ulmifolius.

The obtained results are in accordance with a study performed by
Morales et al. (2013), which detecting a total tocopherol content of
13.48mg/100 g fw in wild edible fruits, with similar contents of γ-to-
copherol (3.73mg/100 g fw), δ-tocopherol (3.69mg/100 g fw), and α-
tocopherol (3.38mg/100 g fw) and lower amount of β-tocopherol
(0.24mg/100 g fw). In comparison to our results, these authors ob-
tained higher concentrations of all isoforms and, consequently, of total
tocopherols. In a study performed by Fazio et al. (2013) using seed oils
of R. ulmifolius fruits, showed a total tocopherol content of 43.71 μg/
goil, being γ-tocopherol (43.35 μg/100 goil) the highest isoform found,
whereas α-tocopherol (0.36 μg/100 goil) was detected in lowest
amount, and β-tocopherol and δ-tocopherol were not detected. In this
study, although the results were not expressed in the same unit, it was
possible to concluded that there was a significant heterogeneity be-
tween the detected isoforms in comparison to the present study. Barros
et al. (2010), detected the presence of all tocopherol isoforms (α-, β-, γ-
and δ-tocopherol) in the R. ulmifolius flowers buds and open flowers,
with a total content of 12.28mg/100 g dw and 9.86mg/100 g dw, re-
spectively; and the major isoform found was α-tocopherol presenting
values of 5.97mg/100 g dw and 5.84mg/100 g dw, respectively.
However, in this study there were a discrepancy of the results in
comparison to our results, thus these differences would be expected due
to the different parts of this species studied.

Table 2
Individual chemical compounds of R. ulmifolius fruits.

Sugars (g/100 g fw) Fatty acids (%)

Fructose 7.8 ± 0.4 C11:0 0.073 ± 0.001 C21:0 0.023 ± 0.002
Glucose 8.1 ± 0.1 C12:0 0.10 ± 0.01 C20:4n6 0.086 ± 0.001
Sucrose 0.34 ± 0.02 C13:0 0.026 ± 0.001 C20:3n3 0.026 ± 0.001
Total 16.3 ± 0.4 C14:0 0.09 ± 0.01 C22:0 0.33 ± 0.02

Organic acids (mg/100 g fw) C15:0 0.037 ± 0.001 C20:5n3 0.015 ± 0.001
Oxalic acid 71 ± 4 C16:0 5.3 ± 0.2 C22:2 0.029 ± 0.002
Quinic acid 119 ± 10 C16:1 0.057 ± 0.001 C24:0 0.09 ± 0.01
Malic acid 29 ± 1 C17:0 0.15 ± 0.01 SFA 9.7 ± 0.3
Shikimic acid 11.33 ± 0.05 C17:1 0.075 ± 0.004 MUFA 18.8 ± 0.1
Ascorbic acid 6.66 ± 0.01 C18:0 2.94 ± 0.03 PUFA 71.4 ± 0.2
Fumaric acid tr C18:1n9c 18.4 ± 0.1
Total 238 ± 7 C18:2n6t 0.110 ± 0.001

Tocopherols (mg/100 g fw) C18:2n6c 52.4 ± 0.5
α-tocopherol 1.15 ± 0.04 C18:3n6 0.069 ± 0.001
β-tocopherol 0.020 ± 0.002 C18:3n3 18.6 ± 0.7
γ-tocopherol 2.80 ± 0.04 C20:0 0.63 ± 0.03
δ-tocopherol 1.13 ± 0.04 C20:1 0.27 ± 0.01
Total 5.1 ± 0.1 C20:2 0.038 ± 0.001

tr: traces; fw: fresh weight; SFA; satured fatty acids MUFA: monounsatured fatty acids; PUFA: polyunsatured fatty acids; undecanoic acid (C11:0); Undecanoic acid
(C12:0); Tridecanoic acid (C13:0); Myristic acid (C14:0); Pentadecanoic acid (C15:0); Palmitic acid (C16:0); Palmitoleic acid (C16:1); Heptadecanoic acid (C17:0);
Heptadecanoic acid (C17:1); Stearic acid (C18:0); Oleic acid (C18:1n9); Linoleic acid (C18:2n6); α-Linolenic acid (C18:3n3); Linolenic acid (C18:3n6); Stearic acid
(C20:0); Eicosenoic acid (C20:1); Eicosadienoic acid (C20:2); Eicosatrienoic acid (C20:3n3); Arachidonic acid (C20:4n6); Eicosapentaenoic acid (C20:5n3);
Heneicosanoic acid (C21:0); Behenic acid (C22:0); Docosadienoic acid (C22:2); Lignoceric acid (C24:0). Results are presented as mean ± SD.
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3.3. Phenolic composition of R. ulmifolius fruits

Results regarding the phenolic compounds profile of R. ulmifolius
fruit extracts are present in Table 3. The evaluated extract revealed the
presence of eleven non-anthocyanin (4 phenolic acids, 2 dihydro-
flavonol, three flavonol, oneflavanone, and a ellagitanin) and five an-
thocyanin (cyanidin and pelargonidin glycoside derivatives) com-
pounds (Fig. 1).

The identification of these compounds were performed taking into
account the retention time, UV–Vis spectra, and mass fragmentation
pattern. Regarding the non-anthocyanin compounds, peaks 1, 2, 7, and
8 were identified as phenolic acids. Peak 1 ([M-H]− at m/z 341) re-
leased an MS2 fragment at m/z 179 ([caffeic acid-H]−) from the loss of
a hexosyl moiety (−162 u) being tentatively identified as caffeic acid
hexoside. Peak 2 ([M-H]− at m/z 353) was identified as caffeoyl-quinic
acid, and considering the fragmentation pattern described by Clifford,
Johnston, Knight, and Kuhnert (2005), it was identified as 4-O-caf-
feoylquinic acid. Compounds 7 ([M-H]− at m/z 433) and 8 ([M-H]− at
m/z 477) both presented UV–Vis spectra similar to ellagic acid and
released an MS2 fragment at m/z 301 ([ellagic acid-H]−) from the loss
of a pentosyl (−132 u) and glucuronyl moiety, respectively, being
tentatively assigned as ellagic acid pentoside and ellagic acid glucur-
onide. Compound 6 ([M-H]− at m/z 1567) was the only hydrosoluble
tannin found in the fruits of R. ulmifolius being identified as sanguiin H-
10. This identification was made taking into account its previous
fragmentation pattern described by the authors in R. ulmifolius flowers
buds and open flowers (Martins et al., 2014).

Compounds 3–5 and 9–11 were identified as non-anthocyanin fla-
vonoid glycosides. Peaks 3 and 9 ([M-H]− at m/z 465) presented the

same pseudomolecular ion and were identified as taxifolin derivatives,
revealing an MS2 fragment released at m/z 303 (taxifolin; [M-H-162]−

loss of a hexosyl moiety), being tentatively assigned as taxifolin-O-
hexoside isomers. Considering similar reasoning, peaks 4 ([M-H]− at
m/z 449) and 5 ([M-H]− at m/z 609) were identified as eriodictyol-O-
hexoside and kaempferol-O-di-hexoside, respectively. Compound 10
([M-H]− at m/z 607) and 11 ([M-H]− at m/z 591) was identified as
quercetin-HMG-glucoside and quercetin-HMG-rhamnoside considering
previous findings found in other Rubus sp. (McDougall, Martinussen,
Junttila, Verrall, & Stewart, 2011; Tavares et al., 2012)

Ellagic acid pentoside (13.2 ± 0.4mg/g of extract) followed by
ellagic acid glucuronide (10.7 ± 0.1mg/g of extract) and sanguiin H-
10 (9.6 ± 0.1mg/g of extract) were the main non-anthocyanin com-
pounds. Besides ellagic acid derivatives, moderate quantities of caffeic
acid derivatives (peak 1 and 2) and non-anthocyanin flavonoid glyco-
sides (peaks 3, 4, 5, 9, 10 and 11) were also found in R. ulmifolius fruit
extracts, accounting to 10 and 20%, respectively of the phenolic com-
pounds composition. The phenolic compounds of R. ulmifoius fruits has
been previously described by Ruiz-Rodríguez et al. (2014) in a sample
from Spain, nevertheless, the phenolic profile shown by these authors is
completely different from the one obtained herein.

Regarding the anthocyanin compounds, peaks 13 (cyanidin-3-O-
glucoside) and 14 (pelargonidin-3-O-glucoside) were positively identi-
fied with commercial standards. Compound 12 ([M+H]+ at m/z 611)
presented an MS2 fragment released at m/z 287 (cyanidin; [M+H-162-
162]− loss of a two hexosyl moieties), thus being identified as a cya-
nidin-O-di-hexoside. Peak 15 ([M+H]+ at m/z 419) and 16
([M+H]+ at m/z 593) were assigned to a cyanidin-3-O-xyloside and
cyanidin-3-O-dioxayl-glucoside, owing to the identification of those

Table 3
Retention time (Rt), wavelengths of maximum absorption in the visible region (λmax), mass spectral data, tentative identification and quantification (mean ± SD) of
non-anthocyanin and anthocyanin compounds of R. ulmifolius fruits.

Peak Rt λmax Tentative identification [M-H]− Main fragment Quantification (mg/g extract)

(min) (nm) ESI- MSn [intensity (%)]

1 5.58 320 Caffeic acid hexoside 341 MS2 [341]: 179(100) 1.6 ± 0.1
2 6.72 324 4-O-CQA 353 MS2 [353]: 191(12),179(51),173(100),155(8),135(5) 3.1 ± 0.1
3 7.97 – Taxifolin-O-hexoside isomer 1 465 MS2 [465]: 303(100) 2.3 ± 0.1
4 9.62 – Eriodictyol-O-hexoside 449 MS2 [449]: 287(100) 0.94 ± 0.02
5 11.05 343 Kaempferol-O-di-hexoside 609 MS2 [609]: 285(100) 1.18 ± 0.02
6 14.48 285 Sanguiin H-10 1567 MS2 [1567]: 1265(11),1235(23),1103(5),935(7),783(12),633(48),301(41) 9.6 ± 0.1
7 17.66 360 Ellagic acid pentoside 433 MS2 [433]: 301(100) 13.2 ± 0.4
8 18.20 361 Ellagic acid glucuronide 477 MS2 [477]: 301(100) 10.7 ± 0.1
9 18.95 278,328 Taxifolin-O-hexoside isomer 2 465 MS2 [465]: 303(100) 1.60 ± 0.02
10 20.84 355 Quercetin-HMG-glucoside 607 MS2 [607]: 463(53), 301(100) 2.1 ± 0.1
11 23.68 355 Quercetin-HMG-rhamnoside 591 MS2 [591]: 447(47), 301(100) 1.55 ± 0.02

TPA 28.7 ± 0.7
TFNA 9.68 ± 0.03
TE 9.6 ± 0.1
TPCNA 47.9 ± 0.8

Peak Rt λmax (nm) Tentative identification [M+H]+ Main fragment (mg/g extract)

(min) ESI- MSn [intensity (%)]

12 27.61 517 Cyanidin-O-di-hexoside 611 287(100) 2.14 ± 0.02
13 29.02 516 Cyanidin-3-O-glucoside 449 287(100) 14.69 ± 0.04
14 31.08 502 Pelargonidin-3-O-glucoside 433 271(100) 2.234 ± 0.003
15 32.05 518 Cyanidin-3-O-xyloside 419 287(100) 2.62 ± 0.02
16 32.52 519 Cyanidin-3-O-dioxayl-glucoside 593 287(100) 2.04 ± 0.03

TAC 23.7 ± 0.1

TPA – total phenolic acids; TFNA – total flavonoids non-anthocyanins; TE- total ellagitannins; TPCNA – total phenolic compounds non-anthocyanins; TAC – total
anthocyanin compounds; Rt – retention time. Standard calibration curves: caffeic acid (y= 388,345×+406,369), chlorogenic acid (y= 168,823× - 161,172),
taxifolin (y= 203,766× - 208,383), quercetin-3-O-glucoside (y=34,843× - 160,173), ellagic acid (y= 26,719× - 317,255), cyanidin-3-O-glucoside
(y= 104,478× - 823,429), pelargonidin-3-O-glucoside (y=50,652× - 696,848). Results of quantification are presented as mean ± SD.

L.P. da Silva et al. Food Research International 119 (2019) 34–43

39



compounds in blackberries by Tavares et al. (2012).
The main phenolic compounds found in R. ulmifolius fruits were

anthocyanins (23.8 ± 0.1mg/g extract), representing about 35% of
the total phenolic compounds quantified, comprising different cyanidin
glycosides and one pelargonidin glycoside, with the higher amounts
being found for cyanidin-3-O-glucoside (14.7mg/g extract). This com-
pound has been previous reported as the main anthocyanin compound
in fruits of the same species (Ruiz-Rodríguez et al., 2014). Thus, none of
the remainig anthocyanin compounds have been descrided, which
could be explain for different location of the fruit origin.

3.4. Antimicrobial activity

The results obtained for the antimicrobial activity in hydroethanolic
extracts of R. ulmifolius fruits are present in Table 4. The results ob-
tained in this study revealed activity in some tested strains, with MIC
values ranging between 5 and > 20mg/mL. Among the tested bac-
teria, the sample revealed a potential bacteriostatic effect against most
of the studied strains, with the exception of Klebsiella pneumoniae and
Pseudomonas aeruginosa (both Gram-negative bacteria), being necessary
a concentration above 20mg/mL for the inhibition of their microbial
growth. For the remaining Gram-negative strains, the most effective
results were shown against Morganella morganii (MIC=5mg/mL) and
Escherichia coli (MIC=5mg/mL), followed by Proteus mirabilis (10mg/
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Fig. 1. Phenolic compounds of R. ulmifolius fruits recorded at 280 (A) and 520 (B) nm. The numbers correspond to the peaks identified in Table 3.
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mL), being the first one more active than ampicillin (20mg/mL) used as
a positive control. Concerning Gram-positive bacteria, the extract also
exhibited a bacteriostatic effect against all the tested strains, En-
terococcus faecalis, Listeria monocytogenes, and MSSA were the most
susceptible to the extract (MIC=5mg/mL), followed by MRSA
(MIC=10mg/mL).

Gomes et al. (2018) evaluated the antibacterial activity of the hy-
dromethanolic extracts of flower buds and fully opened flowers of R.
ulmifolius against different Staphylococcus aureus strains. These authors
revealed that the extracts had moderate effects against S. aureus, re-
sulting in a inhibition halo ranging from 8 to 10mm, which means that
the extract had a bacteriostatic effect. However, in a study performed
by Hajaji et al. (2017), who evaluate several bioactivities of a Tunisian
R. ulmifolius methanolic extract, through the disc diffusion assay, no
significant results were reached against S. aureus.

Thus, the results obtained herein for the studied extracts are very
promising, since the tested microorganism were clinical isolates with a
large resistant spectrum. These results could be associated to the phe-
nolic composition found in the studied extracts.

Mingo, Silván, & Martinez-Rodriguez (2016) suggested that the
phenolic compounds composition was also strongly involved in the
antimicrobial effect. However, they are unable to associate the activity
to a specific compound, due to the capacity of phenolic compounds to
act synergistically. However, they suggested that epicatechin gallate
could be the most active compound as it showed the lowest value of
MIC and MBC. Also, these authors also concluded that the potential
activity of this compound could be related to the gallate side chain,
which when bonded to a bacterial lipid bilayer cell membrane, it is
capable to cause damage or dysfunction of the membrane. In a similar
context Bittencourt et al. (2015), study a brazilian propolis in order to
identify the bioactive potential of its compounds (total phenolic com-
pounds, triterpenoids, acetyltriterpenoids, sesquiterpenes, steroids, and
hydrocarbons) and the respective activity (antimicrobial and anti-
oxidant activities). The authors detected a good correlation between
some of the detected compounds and the obtained antimicrobial ac-
tivity, suggesting that in some cases, the activities could be achieved by
synergistic effects among the potential compounds present in the ex-
tract.

On the other hand, Kemperman, Bolca, Roger, and Vaughan (2010)
analysed the mechanisms of microbial inhibition exerted by phenolic
compounds, and according to these results, the authors stated that

polyphenols may act as antimicrobial agents through phenolic-mem-
brane interactions, DNA gyrase inhibition, and metal sequester. Also,
the mechanisms could be associated to a structural change in the bac-
teria, as these compounds promote the penetration of the drug in to the
bacterial membrane, inhibiting the action of protective enzymes and
interfere with metabolic targets of the antibiotic, which are associated
to multiple resistance of bacteria (Albano et al., 2016).

For the tested fungi, Candida albicans, the extract also exhibited a
fungistatic effect (MIC= 5mg/mL). The positive effect against C. al-
bicans was also support by a study performed by Panizzi, Caponi,
Catalano, Cioni, and Morelli (2002), which aimed to evaluate the an-
timicrobial activity of R. ulmifolius extracts (leaves, branches and
flowering tops), from Italy, obtained using solvents with different po-
larity, which showed to be more effective when extracted with me-
thanol and less effective when water was applied as the solvent.

On the other hand, in the present study the extract did not show a
sufficient bactericidal and fungicidal effect in order to eliminate the
strains, absence of MBC and MFC, although promoting a bacteriostatic
and fungistatic effect in most of the tested strains.

A study performed by Hajaji et al. (2017), who aimed to evaluate
several bioactivities of the methanolic extract of R. ulmifolius fruits from
Tunisia, concluded that they have a potential bacteriostatic and bac-
tericidal effect. These authors used the diffusion agar test, where the
extracts showed a bacteriostatic effect against Escherichia coli ATCC
8739 and Candida albicans (inhibition halos of 28mm and 39mm, re-
spectively). Moreover, through the broth dilution method, they ob-
tained MIC and MBC values, which showed similar values in relation to
the present study, namely, against E. coli ATCC 8739 (MIC= 4.03mg/
mL; MBC=8.92mg/mL). Positive results were also obtained against S.
aureus (MIC=3.22mg/mL; MBC=7.17mg/mL) and C. albicans
(MIC= 3.17mg/mL; MBC=7.25mg/mL). Some differences observed
between different studies can be explained by the different geographic
localization, which leads to different environmental conditions,
namely, climate, soil, among others, that have a high impact in the
chemical composition of these species. Furthermore, the extraction
solvents applied, have also high impact in their chemical composition
and consequently is responsible for expressing distinct bioactivities
(Dai, Gupte, Gates, & Mumper, 2009; Hajaji et al., 2017).

Concerning the toxicity assay, through the primary cell culture -
PLP2, the extracts did not show toxicity, obtaining values of
GI50 > 400 μg/mL.

Table 4
Antibacterial (MIC and MBC- mg/mL) activity of the hydroethanolic extract of R. ulmifolius fruits.

Sample Control

R. ulmifolius fruit extract Ampicillin Imipenem Vancomycin Fluconazole

Antimicrobial activity (mg/mL) MIC MBC MIC MBC MIC MBC MIC MBC MIC MFC

Gram-negative bacteria
Escherichia coli 5 >20 <0.15 <0.15 < 0.0078 <0.0078 n.t. n.t. n.t. n.t.
Klebsiella pneumoniae >20 >20 10 20 <0.0078 <0.0078 n.t. n.t. n.t. n.t.
Morganella morganii 5 >20 20 >20 <0.0078 <0.0078 n.t. n.t. n.t. n.t.
Proteus mirabilis 10 >20 <0.15 <0.15 < 0.0078 <0.0078 n.t. n.t. n.t. n.t.
Pseudomonas aeruginosa >20 >20 >20 >20 0.5 1 n.t. n.t. n.t. n.t.

Gram-positive bacteria
Enterococcus faecalis 5 >20 <0.15 <0.15 n.t. n.t. < 0.0078 <0.0078 n.t. n.t.
Listeria monocytogenes 5 >20 <0.15 <0.15 n.t. n.t. n.t. n.t. n.t. n.t.
MRSA 10 >20 <0.15 <0.15 n.t. n.t. < 0.0078 <0.0078 n.t. n.t.
MSSA >20 <0.15 <0.15 n.t. n.t. 0.25 0.5 nt nt

Yeasts MIC MFC

Candida albicans 5 >20 n.t. n.t. n.t. n.t. n.t. n.t. 0.06 0.06

n.t. - not tested; MRSA- methicillin-resistant Staphylococcus aureus; MSSA- methicillin sensitive Staphylococcus aureus; MIC- minimum inhibitory concentration; MBC-
minimum bactericidal concentration; MFC - minimum fungicidal concentration.
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4. Conclusions

R. ulmifolius is a fruit appreciated by consumers and is described as a
food with several health benefits. In this study the nutritional and
chemical characterization was carried out, as well as the antimicrobial
activity.

The nutritional profile revealed that the blackberry is an energetic
fruit, being carbohydrates the most abundant macronutrient. Their
chemical composition revealed glucose as the predominate sugar mo-
lecule present, while quinic acid showed the greatest amount, regarding
organic acids. These characteristics justify the sweetish and slight acid
characteristic taste of blackberry. In the fatty acid evaluation, 25 fatty
acids were identified and the profile evidenced a great PUFA/SFA ratio,
that is known to maintain plasma cholesterol concentrations and con-
sequently, reduce the risk of several cardiovascular diseases. Moreover,
the fruits revealed the presence of all tocopherols isoforms, highlighting
α- and δ-tocopherol with higher concentrations. Whilst anthocyanins
represent about 35% of the total phenolic compounds quantified, being
cyaniding-3-O-glucoside the major compound present, followed by el-
lagic acid pentoside, ellagic acid glucuronide and sanguiin H-10.
Concerning, the antimicrobial activity fruits showed a bacteriostatic
and fungistatic effect, being a natural source to explore and to obtain
greater effectiveness for further applications as an antimicrobial agent.
Based on the obtained results, R. ulmifolius fruits showed to be a good
choice to enrich the daily diet, due to it nutritional and chemical
composition.
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