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CUPID-0 is the first large mass experiment based on cryogenic calorimeters (bolometers) that
implements the dual read-out of light and heat for background rejection. The detector, consisting
of 24 enriched Zn32Se crystals (5.28 kg of 82Se), is taking data in the underground LNGS (Italy)
from March 2017. In this contribution we present the analysis that allowed to set the most strin-
gent limit on the half-life of neutrino-less double beta decay of 32Se. We prove that the particle
identification, enabled by the simultaneous read-out of heat and light, provides an unprecedented
background level for cryogenic calorimeters of few 10~ counts/keV/kg/y. Finally, we discuss

the impact of these results on next generation projects.
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1. Introduction

Several extensions of the Standard Model of Particle Physics predict that double beta decay
(BB) could occur also with no-neutrino emission [1]. The observation of this decay (Ov33) would
give precious insights in the Physics beyond the Standard Model, proving the existence of a process
that violates the conservation of the total lepton number; furthermore, it would allow to establish
the fundamental nature of neutrinos, as this decay can occur only if neutrinos, in contrast to all the
other known fermions, are Majorana particles, i.e. they coincide with anti-neutrinos [2].

Only certain nuclei are of interest for 0v33, such as "°Ge, 82Se, %Mo, 3Xe, 3°Te. From
the theoretical point of view, there is not a strong motivation to prefer the study of one isotope
over the others. For this reason, different collaborations chose different nuclei and technological
approaches. In this contribution we review the status of the CUPID-0 experiment, that is searching
for the OV B of 82Se with cryogenic calorimeters.

2. The CUPID-0 Detector

The CUPID-0 detectors exploits cryogenic calorimeters. This technology, originally proposed
by Fiorini and Niinikoski [?] is characterised by an exquisite energy resolution (<1%), a high
efficiency for the containment of the two electrons emitted by OvB S (>80%) and, as recently
proved by the CUORE experiment [3, 4], by the possibility of reaching source masses of hundreds
of kg. In addition, the crystals to be operated as calorimeters can be grown starting from different
nuclei of interest for 0v3 3, allowing an independent cross-check in case of discovery.

The main limit of cryogenic calorimeters resides in the background in the region of interest,
of the order of 10~2 counts/keV/kg/yr. Such background stems mainly from ¢ particles emitted
by radio-active contaminants located in the materials constituting the detector [5]. A technique
to suppress such background consists in coupling each calorimeter to a light detector, in order to
exploit the light emission to discriminate the electrons produced (possibly) by Ov decays from
the dominant o background. The intense R&D activity of the last years [6, 7, 8] resulted in a
mature and viable technology for a next-generation project: CUPID [9].

The CUPID-0 experiment, described in this contribution, is the first medium-scale demonstra-
tor of CUPID.

The OvB B emitter chosen by the CUPID-0 collaboration is 32Se. This isotope is characterised
by high Q-value (2997.940.3 keV [10]) and a rather long half-life for the 2v3 8 mode (Tfyzz [9.39
4 0.17 (stat) &= 0.58 (syst)] x 10" yr [11]), that allows to prevent background events in the region
of interest due to pile-up of 2V 3 decays. We increased the isotopic abundance of natural Se up
to 96.3% via isotopic enrichment, and used the obtained material to synthesise the ZnSe powder
and grow 24 cylindrical crystals, doped with ZnSe(Al) to enhance the light output [12]. The 24
crystals feature a total mass of 9.65 kg, but two of them were later discarded because of their poor
bolometric features, resulting in a final mass of 8.74 kg (3.41x10? nuclei of 2Se). The detector
comprises also two natural crystals, not used for the analysis of the OV 8 decay.

The scintillation light emitted by the ZnSe detectors (a few % of the total energy converted
into heat) is detected using cryogenic light detectors (LD). These devices consist in high purity
germanium disks operated as cryogenic calorimeters [13].
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The ZnSe crystals, surrounded by a VIKUITI multi-layer reflecting foil produced by 3M, and
coupled to their LD, are arranged in 5 towers using PTFE elements and high purity copper frames.
Both the ZnSe and the LD are equipped with Si Joule resistors injecting a periodical reference pulse
to correct thermal drifts.

The description of the detector set-up, the cryogenic facility, the electronics and data-acquisition
system can be found in Ref. [14].

The cool down of the CUPID-0 detector begun in January 2017 and the commissioning (com-
prising a first long background measurement) was completed in May 2017. We acquired physics
runs for an exposure of 3.44 kg-yr, published in Ref. [15], and later other 2.02 kg-yr, followed by
a >%Co calibration of about 1 month. The results obtained with the full statistics are presented in
this contribution. The CUPID-0 experiment will continue taking data to reach a total exposure of
10 kg-yr to improve the background model.

3. Results

The region of interest for CUPID-0 is a ~400 keV region centred around the Q-value of 3%Se:
2800-3200 keV.

After applying a basic pulses selection in order to discard non-particle like events, and after
requiring that a single crystal triggered, we obtain a rate of (3.24-0.4)x 10~2 counts/keV/kg/yr in
the analysis window. The efficiency of this data selection is computed using the most prominent
peak in the physics spectrum, produced by the Zn decay, and results (95+2)%.

We then study the most sensitive shape parameter of the filtered light pulses, defined as

AL(UR \/ Z?f;wR (y; —As;)?, where y; is the pulse, A and iy its amplitude and maximum position,
s; the ideal signal pulse scaled to unitary amplitude and aligned to y; , wg the right width at half
maximum of s;. As described in Ref. [16], we optimise this shape parameter in order to have 100%
efficiency on the signal while reducing the o background. The signal efficiency is computed on a
pure signal-like sample using electrons produced by u interactions, that result in high multiplicity
events (more than 5 crystals trigger simultaneously). The counting rate in the analysis window
after the selection on the light pulses decreases to (1.34-0.2)x 1072 counts/keV/kg/yr, proving that
the dual read-out of light and heat effectively suppress the background in the Rol.

We further reduce the background by identifying the events produced by 28Tl decays in the
region of interest. To tag these events, we exploit the short half-life of 2°T1 (about 3 minutes), and
the fact that a 28 T1 decay is preceded by an & decay of its mother, >'’?Bi. Whenever we tag the
particle emitted by >'?Bi, we open a ~9 minutes time-veto in order to reject possible 2°5Tl events.

The « particles emitted by 2'?Bi are expected to produce a peak at 6.21 MeV (this value
includes also the nuclear recoil). Nevertheless, if 2!?Bi is located on the surface of the crystal, we
could lose a variable fraction of energy, and observe an & event at much lower energy. For this
reason, we decided to exploit the excellent discrimination capability of CUPID-0 to tag « particles
down to ~2 MeV, and open the time veto whenever an ¢ particle with energy between 2 MeV
and the Q-value of 2!?Bi interacts. After applying the time-veto, the event rate in the analysis
window drops to 3.2J_FH x 1073 counts/keV/kg/yr. The final efficiency for the search of Ovf 3
decay (containment of the OV 3 electrons + trigger + energy reconstruction + data selection + o
rejection and time-veto) amounts to (75£2)%.
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In conclusion, CUPID-0 set the first important milestone for a next generation experiment
based on cryogenic calorimeters, proving that the CUORE background (~10~2 counts/keV/kg/yr)
can be reduced to 3.2}:? x 1073 counts/keV/kg/yr by exploiting the simultaneous read-out of light
and heat. Thanks to the low background and high efficiency, it was possible to set the most com-

petitive lower limit on the half-life of 32Se: T?yz >4.0x10?* yr (90% C.1.).
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