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Abstract. We consider the Radon transform associated to dual pairs (X,Ξ) in the sense of
Helgason, with X = G/K and Ξ = G/H, where G is a locally compact group and K and H
are closed subgroups of G. Under some technical assumptions, we prove that if the quasi-regular
representations of G acting on L2(X) and L2(Ξ) are irreducible, then the Radon transform admits
a unitarization intertwining the two representations. If, in addition, the representations are square-
integrable, we provide an inversion formula for the Radon transform based on the voice transform
associated to these representations.
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1. Introduction. In a remarkable series of papers (see, e.g., [19, 18]), for the
most part subsumed in the monographs [21, 22, 20, 23], Helgason has developed a
broad theory of Radon transforms in a differential geometric setup. In this paper we
show that the above framework is particularly appropriate for treating in a unified
way some results concerning unitarizability features and inversion formulae of various
types of Radon transforms [5, 24] and permits one to handle a significant number of
other interesting examples.

One of the central notions in Helgason’s theory is that of dual pair (G/K,G/H)
of homogeneous spaces of the same locally compact group G, where K and H are
closed subgroups of G. The transitive G-space X = G/K is meant to describe the
ambient in which the functions to be analyzed live, prototypically a space of constant
curvature like the Euclidean plane, or the sphere S2 or the hyperbolic plane H2. A
large and important part of Helgason’s work is devoted to the case when X is actually
a symmetric space, whence the notation G/K that we retain. The second transitive
G-space Ξ = G/H is meant to parametrize the set of submanifolds of X over which
one wants to integrate functions, for instance, hyperplanes in Euclidean space, great
circles in S2, geodesics or horocycles in H2. With this basic understanding in mind,
the notion of incidence between x ∈ X and ξ ∈ Ξ translates the intuition that x = g1K
is a point of ξ = g2H and amounts to the fact that g1K ∩ g2H 6= ∅. In this way any
element ξ ∈ Ξ may be realized as a submanifold ξ̂ ⊆ X simply by taking all the
points x ∈ X that are incident to ξ; conversely, one builds the “sheaf of manifolds”
x̌ through the point x ∈ X by taking all the points ξ ∈ Ξ that are incident to x. If
the maps ξ 7→ ξ̂ and x 7→ x̌ are injective, then (X,Ξ) is called a dual pair. Under this
assumption, the Radon transform R takes functions on X into functions on Ξ and is
abstractly defined by
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Rf(ξ) =

∫
ξ̂

f(x)dmξ(x),

provided that, for all ξ ∈ Ξ, mξ is a suitable measure on the manifold ξ̂ and the
right-hand side is meaningful, possibly in some weak sense. The first requirement is
achieved by observing that, denoting by ξ0 = eH the origin of Ξ, it is easy to check that
ξ̂0 ⊆ X is actually a transitive H-space, hence ξ̂0 carries a measure m0 which is quasi-
invariant with respect to the H-action [33]. The idea is then to define the measures
mξ on each ξ by pushing forward m0 via the G-action. This is achieved by fixing a
Borel section σ : Ξ → G (see (A3)), on the choice of which the whole construction
therefore depends, including the Radon transform itself (see (A6)). Observe that if

the classical but rather strong assumption that ξ̂0 carries an H-invariant measure is
removed, then the issue of selecting the family of measures {mξ} is no longer canonical

and yet is crucial (Lemma 2.1 in [20] breaks down). In general, ξ̂0 can only be assumed
to carry a quasi-invariant measure m0 with respect to the H-action, so that assuming
the existence of a relatively H-invariant measure and fixing a Borel section σ seems
a reasonable way of making this selection.

As for the right space of functions f : X → C for which the Radon transform makes
sense, a natural choice is the L2 setting. Indeed, both X and Ξ are transitive spaces,
so that there exist quasi-invariant measures dx and dξ. In this context, a central issue
is to prove that the Radon transform, up to a composition with a suitable pseudo-
differential operator, can be extended to a unitary map Q from L2(X,dx) to L2(Ξ,dξ)
intertwining the quasi-regular representations π and π̂ of G, which naturally act on
L2(X,dx) and L2(Ξ,dξ), respectively. The reader is again referred to Helgason’s
books for a thorough treatment, as well as for the broad problem of the operator
properties of R.

In this paper we address the special case in which the representations π and π̂ are
both irreducible. Under some technical assumptions that we describe below, we prove
a unitarization result; see Theorem 3.9. The proof is based on the generalization
of Schur’s lemma provided by Duflo and Moore [12]. One of the novelties of our
treatment consists in making weaker assumptions on m0, dx, and dξ, namely their
relative invariance instead of invariance. This allows for considering a wider variety
of cases, such as wavelets and shearlets. A well-known predecessor of Theorem 3.9 is
Theorem 4.1 in [20], an alternative proof of which, tailored to our particular viewpoint,
is to be found in [5].

If, in addition, we require that π is square-integrable (so that π̂ is square-integrable,
too), we derive a general inversion formula for R of the form

f =

∫
G

χ(g)〈Rf, π̂(g)Ψ〉π(g)ψ dµ(g),(1.1)

where χ is a character of G and ψ ∈ L2(X,dx) and Ψ ∈ L2(Ξ,dξ) are suitable mother
wavelets and the Haar integral is weakly convergent; see Theorem 4.1. We point out
that the coefficients 〈Rf, π̂(g)Ψ〉 depend on f only through its Radon transform Rf ,
so that the above equation allows us to reconstruct an unknown signal from its Radon
transform by computing the family of coefficients {〈Rf, π̂(g)Ψ〉}g∈G. As is clear from
(1.1), π̂ is used as an “analysis” transform applied to Rf and π as a “synthesis”
transform to reconstruct f . This kind of reconstruction formulae is already known
for the classical Radon transform where G is the affine group of Rd associated with
the multidimensional wavelets [24, 34, 29, 7, 27] and for the affine Radon transform
where G is the shearlet group [5].
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We illustrate the construction and the result with the examples where G is either
the similitude group of the plane (with two different choices of Ξ) or the standard
shearlet group [26], but other cases could also be covered, such as the generalized
shearlet dilation groups [16, 2]. In all these examples the group G is a semidirect
product of the form RdoK, where K is a closed subgroup of GL(d,R). This structure
is not necessary in order for our construction to work, but it is important to observe
that, under this assumption, X = G/K is naturally identified with Rd, a somewhat
canonical space for applications. From the point of view of the geometry involved this
case is thus different from the setup considered in much of Helgason’s work, where G is
a semisimple Lie group, X is a symmetric space, and {ξ̂} are, for example, horocycles
or geodesics. We believe that our contribution may be further substantiated with
several other examples and deepened in several directions. In particular, it would
be interesting to relax the assumption of irreducibility of the representations. This
would allow us to include many other examples, such as the class of groups studied in
[1, 3].

For clarity, we list the main assumptions that are made along the way. Let G
be a locally compact second countable (lcsc) group. We consider two lcsc transitive
G-spaces, X and Ξ, where the continuous actions on x ∈ X and ξ ∈ Ξ are denoted by

(g, x) 7→ g[x], (g, ξ) 7→ g. ξ.

We fix x0 ∈ X and ξ0 ∈ Ξ and we denote the corresponding stability subgroups by K
and H. We assume that the following conditions hold true:

(A1) the spaces X and Ξ carry relatively G-invariant measures dx and dξ, respec-
tively;

(A2) the H-transitive space

ξ̂0 = H[x0] ⊆ X

carries a relatively H-invariant measure m0 with character γ;
(A3) there exist a Borel section σ : Ξ → G and a character ι : G → (0,+∞) such

that
γ
(
σ(ξ)−1gσ

(
g−1. ξ

))
= ι(g), g ∈ G, ξ ∈ Ξ;

(A4) the quasi-regular representation π of G acting on L2(X,dx) is irreducible and
square-integrable;

(A5) the quasi-regular representation π̂ of G acting on L2(Ξ,dξ) is irreducible;
(A6) there exists a nontrivial π-invariant subspace A ⊆ L2(X,dx) such that for all

f ∈ A

f(σ(ξ)[·]) ∈ L1
(
ξ̂0,m0

)
for almost all ξ ∈ Ξ,(1.2a)

Rf :=

∫
ξ̂0

f(σ(·)[x])dm0(x) ∈ L2(Ξ,dξ),(1.2b)

and the adjoint of the operator R : A → L2(Ξ,dξ) has nontrivial domain.
It is worth observing that the whole construction, and in particular the existence of
the character ι and the construction of the Radon transform R itself, depends on the
choice of the section σ. Note that we do not require the injectivity of the maps ξ 7→ ξ̂
and x 7→ x̌, but our framework completely fits that of Helgason’s dual pairs (X,Ξ).
Apart from the cases considered below, the reader may consult [20] for numerous
examples of dual pairs (X,Ξ). We add a few comments on assumption (A6). We will
show that R is a semi-invariant densely defined operator (see Lemma 3.1), and as a
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consequence the assumption that the domain of R∗ is nontrivial is equivalent to the
closability of R; see Corollary 3.4. By the irreducibility of π, the minimal choice for
A is span{πgf0 : g ∈ G}, where f0 is a nonzero function in L2(X,dx) satisfying con-
ditions (1.2). In general the closure of an operator depends on its domain; however,
if the Radon transform extends to a larger domain we will show that under some
weak conditions also its extension is closable and the two closures coincide; see Corol-
lary 3.6 and the comment below Lemma 3.5. This delicate issue is further discussed
in Example 3.8.

2. Preliminaries.

2.1. Notation. We briefly introduce the notation. We set R× = R \ {0} and
R+ = (0,+∞). The Euclidean norm of a vector v ∈ Rd is denoted by |v| and its
scalar product with w ∈ Rd by v · w. For any p ∈ [1,+∞] we denote by Lp(Rd)
the Banach space of functions f : Rd → C that are p-integrable with respect to the
Lebesgue measure dx and, if p = 2, the corresponding scalar product and norm are
〈·, ·〉 and ‖ · ‖, respectively. If E is a Borel subset of Rd, |E| also denotes its Lebesgue
measure. The Fourier transform is denoted by F both on L2(Rd) and on L1(Rd),
where it is defined by

Ff(ω) =

∫
Rd
f(x)e−2πi ω·xdx, f ∈ L1

(
Rd
)
.

If G is an lcsc group, we denote by L2(G) the Hilbert space of square-integrable
functions with respect to a left Haar measure on G. If X is an lcsc transitive
G-space with origin x0, denoted by g[x] the action of G on X, a Borel measure µ
of X is relatively invariant if there exists a positive character α of G such that for any
measurable set E ⊆ X and g ∈ G it holds that µ(g[E]) = α(g)µ(E). Furthermore, a
Borel section is a measurable map s : X → G satisfying s(x)[x0] = x and s(x0) = e,
with e the neutral element of G; a Borel section always exists since G is second count-
able [33, Theorem 5.11]. We denote the (real) general linear group of size d × d by
GL(d,R).

2.2. Dual homogeneous spaces. In this section we recall the basic construct
due to Helgason [20] and, whenever possible, we keep the notation as in [20].

Let us recall the main objects introduced in section 1. We fix an lcsc group G,
and we consider two lcsc transitive G-spaces X and Ξ, whose continuous actions on
x ∈ X and ξ ∈ Ξ are denoted by

(g, x) 7→ g[x], (g, ξ) 7→ g. ξ.

We fix x0 ∈ X and ξ0 ∈ Ξ and we denote the corresponding stability subgroups by K
and H, so that X ' G/K and Ξ ' G/H.

By assumption (A1), X and Ξ admit relatively invariant measures dx and dξ with
positive characters α : G → (0,+∞) and β : G → (0,+∞), respectively, which may
be expressed by the equalities∫

X

f(g−1[x]) dx = α(g)

∫
X

f(x) dx, f ∈ L1(X,dx), g ∈ G,(2.1a) ∫
Ξ

f(g−1.ξ) dξ = β(g)

∫
Ξ

f(ξ) dξ, f ∈ L1(Ξ,dξ), g ∈ G.(2.1b)

We define the spaces

x̌0 = K. ξ0 ⊆ Ξ, ξ̂0 = H[x0] ⊆ X.
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By definition, x̌0 and ξ̂0 are K and H transitive spaces, respectively. In order to define
the Radon transform we will make use of assumption (A2), namely that ξ̂0 carries a
relatively H-invariant Radon measure m0, that is∫

ξ̂0

f(h−1[x]) dm0(x) = γ(h)

∫
ξ̂0

f(x) dm0(x), f ∈ L1(ξ̂0,dm0), h ∈ H,(2.2)

where γ : H → (0,+∞) is a positive character of H. This is a weaker assumption

than in Helgason’s approach, in which ξ̂0 is assumed to admit a bona fide invariant
measure for the H-action.

We fix two Borel sections s,X → G and σ : Ξ → G, such that (A3) holds true.
With an equivalent approach to that of Helgason’s, we define the sets

ξ̂ = σ(ξ)[ξ̂0] ⊆ X, x̌ = s(x). x̌0 ⊆ Ξ,(2.3)

which are closed subsets by [20, Lemma 1.1]. It is worth observing that ξ̂ and x̌ do
not depend on the choice of the sections σ and s.

Remark 2.1 (semidirect product). Let us see how the construction of the measure
dx and of the section s simplifies in the particular case when the group G is the
semidirect product of the Euclidean space Rd with a closed subgroup K of GL(d,R).
This is the setting of all our examples. Further, this structure is enjoyed by several
groups of interest in applications, such as the similitude group studied by Antoine and
Murenzi [4] and the generalized shearlet dilation groups introduced by Führ in [14, 16]
for the purpose of generalizing the standard shearlet group introduced in [26, 10].

We recall that G = Rd o K is the manifold Rd × K endowed with the group
operation

(b1, k1)(b2, k2) = (b1 + k1b2, k1k2), b1, b2 ∈ Rd, k1, k2 ∈ K,

where kb is the natural linear action of the matrix k on the column vector b, so that
G is a Lie group. The inverse of an element in G is given by (b, k)−1 = (−k−1b, k−1).
A left Haar measure of G is

dµ(b, k) = |det k|−1dbdk,(2.4)

where db is the Lebesgue measure of Rd and dk is a left Haar measure on K. The
transitive space we consider is X = Rd, regarded as smooth G-space with respect to
the canonical action

(b, k)[x] = b+ kx, (b, k) ∈ G, x ∈ X.

The action is clearly transitive, the isotropy at the origin x0 = 0 is the subgroup
{(0, k) : k ∈ K}, which we identify with K, so that X ' G/K. Furthermore, the map

s : X → G, s(x) = (x, Id),

is a Borel section and the Lebesgue measure dx on X is a relatively G-invariant
measure, since for any measurable set E ⊆ Rd we have |(b, k)[E]| = |b+kE| = |kE| =
|det k||E|, and so

α(b, k) = |det k|.(2.5)
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The following example shows that the (classical) Radon transform can be obtained
in this framework. Two other examples are illustrated in section 5.

Example 2.2. The (connected component of the identity of the) similitude group
SIM(2) of the plane is R2 oK, with K = {RφAa ∈ GL(2,R) : φ ∈ [0, 2π), a ∈ R+},
where

Rφ =

[
cosφ − sinφ
sinφ cosφ

]
, Aa =

[
a 0
0 a

]
.

By the identification K ' [0, 2π)×R+, we write (b, φ, a) for the elements in SIM(2).
With this identification the group law becomes

(b, φ, a)(b′, φ′, a′) = (b+RφAab
′, φ+ φ′ mod 2π, aa′),

and the inverse of (b, φ, a) is given by

(b, φ, a)−1 =
(
−A−1

a R−1
φ b,−φ mod 2π, a−1

)
.(2.6)

By (2.4), a left Haar measure of SIM(2) is

dµ(b, φ, a) = a−3dbdφda,(2.7)

where db, dφ, and da are the Lebesgue measures on R2, [0, 2π) and R+, respectively.
The group SIM(2) acts transitively on X = R2 by

(b, φ, a)[x] = RφAax+ b.

By (2.5), we have α(b, φ, a) = a2.
It remains to choose the space Ξ and the corresponding subgroup H of SIM(2).

The group SIM(2) acts transitively on Ξ = [0, π)× R by

(b, φ, a).(θ, t) =
(
θ + φ mod π, a

(
t+ w(θ) ·A−1

a R−1
φ b
))

,

where w(θ) = t(cos θ, sin θ), or equivalently

(b, φ, a)−1.(θ, t) =

(
θ − φ mod π,

t− w(θ) · b
a

)
,

where we slightly abuse the notation and denote by modπ the equivalence relation
(θ, t) ∼ (θ′, t′) if θ′ = θ + kπ and t′ = (−1)k for some k ∈ Z. The isotropy at
ξ0 = (0, 0) is

H = {((0, b2), φ, a) : b2 ∈ R, φ ∈ {0, π}, a ∈ R+}.

Thus, [0, π)× R = SIM(2)/H. An immediate calculation gives∫
Ξ

f
(
(b, φ, a)−1.(θ, t)

)
dθdt = a

∫
Ξ

f (θ, t) dθdt, f ∈ L1(Ξ,dθdt),

namely, (2.1b) is satisfied with the character β(b, φ, a) = a. Thus, the Lebesgue
measure dξ = dθdt is a relatively invariant measure on Ξ.

Consider now the sections s : R2 → SIM(2) and σ : [0, π)×R→ SIM(2) defined
by

s(x) = (x, 0, 1), σ(θ, t) = (t w(θ), θ, 1).

It is easy to verify by direct computation that
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ξ̂0 = H[x0] = {(0, b2) : b2 ∈ R} ' R,
x̌0 = K.ξ0 = {(θ, 0) : θ ∈ [0, π)} ' [0, π).

It is immediate to see that the Lebesgue measure db2 on ξ̂0 is a relatively H-invariant
measure with character γ((0, b2), φ, a) = a. Further, we have that

(̂θ, t) = σ(θ, t)[ξ̂0] = {x ∈ R2 : x · w(θ) = t},

which is the set of all points lying on the line of equation x · w(θ) = t and

x̌ = s(x).x̌0 = {(θ, t) ∈ [0, π)× R : t− w(θ) · x = 0},

which parametrizes the set of all lines passing through the point x.
Incidentally, it is worth observing that X = R2 and Ξ = [0, π) × R are homoge-

neous spaces in duality. Indeed, the map x 7→ x̌ which sends a point to the set of all

lines passing through that point and the map (θ, t) 7→ (̂θ, t) which sends a line to the
set of points laying on that line are both injective.

2.3. The representations. The group G acts unitarily on L2(X,dx) via the
quasi-regular representation defined by

π(g)f(x) = α(g)−1/2f(g−1[x]),

with α given in (2.1a). By assumption (A4), π is irreducible and square-integrable.
We stress that this latter condition is needed only in section 4.

The group G acts also on L2(Ξ,dξ) via the quasi-regular representation

π̂(g)F (ξ) = β(g)−1/2F (g−1. ξ),

where β is defined in (2.1b). The representation π̂ is irreducible by assumption (A4).

Example 2.3 (Example 2.2, continued). The group SIM(2) acts on L2(R2) by
means of the unitary irreducible representation π defined by

π(b, φ, a)f(x) = a−1f
(
A−1
a R−1

φ (x− b)
)

(2.8)

or, equivalently, in the frequency domain

F [π(b, φ, a)f ](ω) = ae−2πib·ωFf
(
AaR

−1
φ ω

)
.(2.9)

Furthermore, G acts on L2([0, π)×R) by means of the quasi-regular representation π̂
defined by

π̂(b, φ, a)F (θ, t) = a−
1
2F

(
θ − φ mod π,

t− w(θ) · b
a

)
,(2.10)

which is irreducible, too.

2.4. The Radon transform. As remarked earlier, the setup in which we are
interested differs from that considered by Helgason because ξ̂0 is not assumed to carry
an H-invariant measure but only relatively invariant. We thus use the section σ in
order to push-forward the measure m0 (see (2.2)) to the manifolds ξ̂ given in (2.3)
and we define the Radon transform of f as the map Rf : Ξ→ C given by
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Rf(ξ) =

∫
ξ̂

f(x)dmξ(x) :=

∫
ξ̂0

f(σ(ξ)[x])dm0(x),(2.11)

provided that the integral converges. Note that this depends intrinsically on the
choices of m0 and σ and not only on the subset of integration ξ̂. Let us investigate
how the expression of Rf(ξ) depends on the choice of σ (see also Example 2.4 below).
Given another section σ′, we have

R′f(ξ) =

∫
ξ̂0

f(σ′(ξ)[x])dm0(x)

=

∫
ξ̂0

f(σ(ξ)σ(ξ)−1σ′(ξ)[x])dm0(x)

= γ
(
σ′(ξ)−1σ(ξ)

) ∫
ξ̂0

f(σ(ξ)[x])dm0(x)

= γ
(
σ′(ξ)−1σ(ξ)

)
Rf(ξ),

since σ(ξ)−1σ′(ξ) ∈ H. Thus, the dependence of the Radon transform on σ is only
through a multiplicative factor depending only on ξ and not on f .

Assumption (A6) states that there exists a nontrivial π-invariant subspace A of
L2(X,dx) such that Rf is well defined for all f ∈ A and the adjoint of the Radon
transform R : A → L2(Ξ,dξ) has nontrivial domain.

Example 2.4 (Example 2.2, continued). We compute by (2.11) the Radon trans-
form between the homogeneous spaces in duality R2 and [0, π)× R and we obtain

Rpolf(θ, t) =

∫
R
f (t cos θ − y sin θ, t sin θ + y cos θ) dy,(2.12)

which is the so-called polar Radon transform.
If we choose the section σ′(θ, t) = (tw(θ), θ, c(t)), where c : R → (0,+∞) is a

Borel function, we obtain

R′f(θ, t) = c(t)−1Rpolf(θ, t),

which shows that the Radon transform depends nontrivially on the choice of the
section σ.

Next we show that assumption (A6) holds true. We recall that, since Rpol is a
continuous map from S(R2) into S([0, π)×R) (see [19]), given g ∈ S ′([0, π)×R), the
tempered distribution R#g : S(R2)→ C is defined by

〈R#g, f〉 = 〈g,Rpolf〉.

If g ∈ S([0, π) × R), by Theorem 1.4 in [28, Chapter 2], the tempered distribution
FR#g is represented by the function

FR#g(ω) = |ω|−1(I ⊗F)g

(
ω

|ω|
, |ω|

)
,

which is in L2(R2) if we choose g ∈ S∗([0, π)×R), namely g ∈ S([0, π)×R) such that∫
R
tmg(θ, t)dt = 0,
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for all m ∈ N. Then, if we fix g ∈ S∗([0, π)× R),

|〈g,Rpolf〉| = |〈R#g, f〉| ≤ C‖f‖

for any f ∈ S(R2). Therefore, if we take f0 ∈ S(R2), the vector subspace A =
span{π(g)f0 : g ∈ G} ⊆ S(R2) and any g ∈ S∗([0, π) × R) belongs to the domain of
the adjoint of the restriction R of Rpol to A and we can conclude.

3. The unitarization theorem. Our construction is based on the following
lemma, which shows that the Radon transform intertwines the representations π and
π̂ up to a positive character of G.

Lemma 3.1. The Radon transform R restricted to A is a densely defined operator
from A into L2(Ξ,dξ) satisfying

Rπ(g) = χ(g)−1π̂(g)R(3.1)

for all g ∈ G, where

χ(g) = α(g)1/2β(g)−1/2γ(gσ(g−1.ξ0))−1.(3.2)

For the classical Radon transform considered in Example 2.2, this result is a
direct consequence of the behavior of Rpol under linear actions [30, Chapter 2]. With
a slight abuse of notation, R denotes both the Radon transform defined by (2.11) and
its restriction to A.

Proof. By assumption (A6), R is a well-defined operator from A into L2(Ξ,dξ).
We now prove (3.1). By the π-invariance of A, for f ∈ A and g ∈ G we have

(Rπ(g)f)(ξ) = α(g)−1/2

∫
ξ̂0

f(g−1σ(ξ)[x])dm0(x)

= α(g)−1/2

∫
ξ̂0

f(σ(g−1. ξ)σ(g−1. ξ)−1g−1σ(ξ)[x])dm0(x)

= α(g)−1/2

∫
ξ̂0

f(σ(g−1. ξ)m(g, ξ)−1[x])dm0(x),

where m(g, ξ)−1 := σ(g−1. ξ)−1g−1σ(ξ). It is known that for any g ∈ G and any ξ ∈ Ξ

m(g, ξ) = σ(ξ)−1gσ(g−1. ξ) ∈ H.(3.3)

We show this property for the reader’s convenience. Indeed

σ(ξ)−1gσ(g−1. ξ).ξ0 = σ(ξ)−1g.(g−1. ξ) = σ(ξ)−1.ξ = ξ0,

so that m(g, ξ) ∈ H. Thus, using (2.2) we obtain

(Rπ(g)f)(ξ) = α(g)−1/2γ(m(g, ξ))

∫
ξ̂0

f(σ(g−1.ξ)[x])dm0(x).

Then,

(Rπ(g)f)(ξ) = α(g)−1/2γ(m(g, ξ))(Rf)(g−1.ξ)

= α(g)−1/2β(g)1/2γ(m(g, ξ))π̂(g)Rf(ξ).
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Thanks to assumption (A3), there exists a character ι : G → (0,+∞) such that
γ(m(g, ξ)) = ι(g) for every g ∈ G and ξ ∈ Ξ. In particular, γ(m(g, ξ)) = γ(m(g, ξ0)) =
γ(gσ(g−1.ξ0)), and (3.1) follows.

We finally prove that A is dense. By assumption (A6), the domain of R is π
invariant, so that π(g)A ⊆ A for every g ∈ G. Since A 6= {0} and π is irreducible,
then A = L2(X,dx).

Observe that if γ extends to a positive character of G, then

γ(m(g, ξ)) = γ(σ(ξ))−1γ(g)γ(σ(g−1. ξ))

and the independence of ξ is implied by the stronger condition

γ(σ(g−1. ξ)) = γ(σ(ξ))

that must be satisfied for all g ∈ G and ξ ∈ Ξ. This is equivalent to requiring that
γ(σ(ξ)) = 1 for all ξ ∈ Ξ, which is true in all our examples.

Lemma 3.1 is at the base of our construction and its validity strongly depends
on the choice of the Borel section σ : Ξ → G (see (A3)). For instance, if we change
the Borel section in Example 2.2 and we choose σ′ : Ξ → G defined as σ′(θ, t) =
(tw(θ), θ, et), then hypothesis (A3) does not hold true anymore and consequently
Lemma 3.1 fails. This example underlines once again that our whole construction
depends on the choice of σ in (A3).

Example 3.2 (Example 2.2, continued). By (3.1) and (3.2) we have that

Rpolπ(b, φ, a) = χ(b, φ, a)−1π̂(b, φ, a)Rpol,(3.4)

where χ(b, φ, a) = a−1/2 since α(b, φ, a) = a2 and β(b, φ, a) = γ(b, φ, a) = a.

Our approach is based on a classical result due to Duflo and Moore [12]. According
to [12], a densely defined closed operator T from a Hilbert space H to another Hilbert
space Ĥ is called semi-invariant with weight ζ if it satisfies

π̂(g)Tπ(g)−1 = ζ(g)T, g ∈ G,(3.5)

where ζ is a character of G and π and π̂ are unitary representations of G acting on
H and Ĥ, respectively.

Theorem 3.3 (see [12, Theorem 1]). With the above notation, assume that π is
irreducible. Let T be a densely defined closed nonzero operator from H to Ĥ, semi-
invariant with weight ζ.

(i) Suppose that π = π̂. If T ′ is another densely defined closed operator from H
to H, semi-invariant with weight ζ, then T ′ is proportional to T .

(ii) Let T = Q|T | be the polar decomposition of T . Then |T | is a positive self-
adjoint operator in H semi-invariant with weight |ζ|, and Q is a partial isom-
etry of H into Ĥ, semi-invariant with weight ζ/|ζ|.

As shown by the next corollary, the assumption that T is closed can be removed.

Corollary 3.4. Let π and π̂ be two irreducible unitary representations of G act-
ing on H and Ĥ, respectively, and let ζ be a character of G. Suppose that T : dom(T )⊆
H → Ĥ is such that

(a) dom(T ) and dom(T ∗) are nontrivial;
(b) dom(T ) is π-invariant and π̂(g)Tπ(g)−1 = ζ(g)T for all g ∈ G.
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Then
(i) dom(T ∗) is π̂ invariant and dom(T ) and dom(T ∗) are dense;

(ii) T is closable, the closure T of T is semi-invariant with weight ζ and T is the
unique closed extension of T ;

(iii) T ∗ = T
∗

is a densely defined closed operator and is semi-invariant with
weight ζ.

Since dom(T ) is shown to be dense, the adjoint T ∗ is uniquely defined.

Proof. We prove the first claim. Given f̂ ∈ dom(T ∗) and g ∈ G, for all f ∈
dom(T )

|〈π̂(g)f̂ , T f〉| = |ζ(g−1)〈f̂ , Tπ(g−1)f〉| = |ζ(g−1)||〈T ∗f̂ , π(g−1)f〉|

≤ |ζ(g−1)|‖T ∗f̂‖H‖f‖H,

which implies that π̂(g)f̂ ∈ dom(T ∗). Since dom(T ) and dom(T ∗) are nontrivial and
are G-invariant, the irreducibility of π and π̂ implies that dom(T ) and dom(T ∗) are
dense and, hence, T is closable; see [31, Theorem VIII.1].

Let T ′ be a closed extension of T . We claim that T ′ is semi-invariant with
weight ζ. Given f ∈ dom(T ′), then there exists a sequence (fn) in dom(T ) such
that it converges to f and (Tfn) convergences to T ′f . Given g ∈ G, clearly (π(g)fn)
converges to π(g)f and

lim
n→+∞

Tπ(g)fn = lim
n→+∞

ζ(g−1)π̂(g)Tfn = ζ(g−1)π̂(g)T ′f.

Since T ′ is closed, then π(g)f ∈ dom(T ′) and

ζ(g−1)π̂(g)T ′f = T ′π(g)f,

so that T ′ is semi-invariant with weight ζ. It follows, in particular, that T is a densely
defined closed operator semi-invariant with weight ζ. By item (ii) of Theorem 3.3,
|T ′| and |T | are semi-invariant operators with weight |ζ|, and by item (i) of the same
theorem, |T ′| = c|T | by a constant c > 0, hence dom(T ′) = dom(T ), so that T ′ = T .

Finally, T ∗ = T
∗

is a densely defined closed operator by [31, Theorem VIII.1] and
the semi-invariance of T ∗ follows straightforwardly.

As a consequence of the above result and assumption (A6), we get the following
property.

Lemma 3.5. The Radon transform R : A → L2(Ξ,dξ) is closable and its closure
R is a densely defined operator satisfying

Rπ(g) = χ(g)−1π̂(g)R(3.6)

for all g ∈ G, where χ is given by (3.2). Furthermore, R is the unique closed extension
of R.

We note that by formula (2.11) R naturally extends to a densely defined operator
Rmax : Amax → L2(Ξ,dξ), where Amax is the π-invariant domain

Amax =

{
f ∈ L2(X,dx) : f(σ(ξ)[·]) ∈ L1(ξ̂0,m0) a.e. ξ ∈ Ξ,

∫
ξ̂0

f(σ(·)[x])dm0(x) ∈ L2(Ξ,dξ)

}
.
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In general we are not able to show that Rmax is closable on Amax and we need
assumption (A6) to ensure that the Radon transform is closable at least on a smaller
domain A ⊆ Amax. Observe that if A′ is another π-invariant vector space such that
A ⊆ A′ ⊆ Amax and the restrictionR′ ofRmax to A′ is closable, then by Corollary 3.4,
its closure R′ coincides with R. Hence, the choice of A in assumption (A6) is not
crucial. The most delicate issue is to prove that the Radon transform is closable
and, by the irreducibility of π, it is natural to choose A as a “minimal” domain,
for example, A = span{π(g)f0 : g ∈ G}, where f0 ∈ Amax is a suitable nonzero
function. However, with this minimal choice, it would be nice to have a larger domain
A′ such that Rf = Rmaxf for all f ∈ A′. The following result provides an equivalent
characterization of this property, which is useful in the examples.

Corollary 3.6. Let A′ be a subspace of L2(X,dx) such that

A ⊆ A′ ⊆ Amax

and R′ denote the restriction of Rmax to A′. Then R : A → L2(Ξ,dξ) is closable and
A is dense in A′ with respect to the graph norm of R′ if and only if R′ : A′ → L2(Ξ,dξ)
is closable and its closure coincides with R. In particular, Rf = R′f for any f ∈ A′.

The result is a direct consequence of the following Proposition 3.7, whose proof
is standard and we include it for completeness.

Lemma 3.7. Assume two operators T0 : dom(T0) ⊆ H → K and T : dom(T ) ⊆
H → K from a Hilbert space H to another Hilbert space K such that dom(T0) is dense
and T extends T0. Then T0 is closable and dom(T0) is dense in dom(T ) with respect
to the graph norm of T if and only if T is closable and T = T 0.

Proof. We suppose that T0 is closable and that dom(T0) is dense in dom(T ) with
respect to the graph norm, namely

‖f‖2T = ‖f‖2H + ‖Tf‖2K, f ∈ dom(T ),

which gives to dom(T ) a pre-Hilbertian structure. If we take f ∈ dom(T ), then
by hypothesis there exists a subsequence (fn)n in dom(T0) such that fn → f in
H and Tfn → Tf in K. Then, f ∈ dom(T 0) and T 0f = limn→+∞ T0fn = Tf .
Therefore, T ⊆ T 0 and so T is closable and T = T 0. Conversely, if we suppose that
T is closable, then so is T0. Furthermore, by hypothesis T0 = T and in particular
dom(T ) = dom(T 0). This implies that if we consider f ∈ dom(T ), there exists a
subsequence (fn)n in dom(T0) such that fn → f in H and Tfn → Tf in K and we
can conclude that dom(T0) is dense in dom(T ) with respect to the graph norm.

Example 3.8 (Example 2.2, continued). We already know that, fixed f0 ∈ S(R2),
the polar Radon transform R : span{π(g)f0 : g ∈ G} → L2([0, π)×R) is closable and
we denote its closure by R. By Fubini’s theorem the integral (2.12) is well defined
for any f ∈ L1(R2). Furthermore, we now verify that Rpolf ∈ L2([0, π) × R) for
every f ∈ L1(R2) ∩ L2(R2). This requires us to recall one of the fundamental results
in Radon theory, the so-called Fourier slice theorem [20], which relates the Radon
transform with the Fourier transform. For f ∈ L1(R2), the integral (2.12) converges
for almost all (θ, t) ∈ [0, π)× R by Fubini’s theorem and

(I ⊗F)(Rpolf)(θ, τ) = Ff(τw(θ))(3.7)

for every (θ, τ) ∈ [0, π)× R, where I is the identity operator. Hence, we have
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[0,π)×R

|Rpolf(θ, t)|2 dθdt =

∫
[0,π)×R

|Ff(τw(θ))|2dθdτ

=

∫
[0,π)×[−1,1]

|Ff(τw(θ))|2dθdτ +

∫
[0,π)×[−1,1]c

|Ff(τw(θ))|2

|τ |
|τ |dθdτ

≤ 2π‖f‖21 +

∫
|ω|>1

|Ff(ω1, ω2)|2

|ω|
dω1dω2

≤ 2π‖f‖21 + ‖f‖22 < +∞.

Therefore, A′ = L1(R2)∩L2(R2) comes out as a natural domain for the polar Radon
transform and, denoting the restriction of Rpol to A′ by R′, the question whether
Rf = Rpolf for every f ∈ A′ naturally rises. By Corollary 3.6, we need to show that
span{π(g)f0 : g ∈ G} is dense in A′ with respect to the graph norm, namely

‖f‖2R′ = ‖f‖2 + ‖R′f‖2, f ∈ A′.

We denote by 〈·, ·〉R′ the respective scalar product. For this it suffices to prove that
if f ∈ A′ and satisfies

〈f, π(g)f0〉R′ = 0

for every g ∈ G, then f = 0. We choose f0(x) = e−π|x|
2

. By the Fourier slice theorem
and (2.9), for any g = (b, φ, a) ∈ SIM(2) we have that

0 = 〈f, π(g)f0〉R = 〈f, π(g)f0〉+ 〈Rf,Rπ(g)f0〉L2([0,π)×R)

= a

∫
R2

Ff(ω)

(
1 +

1

|ω|

)
Ff0(aR−1

φ ω)e2πib·ωdω.

Then, fixed (φ, a) = (0, 1), by the injectivity of the Fourier transform, there exists a
negligible set E such that

Ff(ω)

(
1 +

1

|ω|

)
Ff0(ω) = 0(3.8)

for every ω 6∈ E. Since Ff0(ω) > 0 for every ω ∈ R2, this implies Ff(ω) = 0 for any
ω 6∈ E and we conclude that f = 0. Therefore, we have that Rf = Rpolf for any
f ∈ L1(R2) ∩ L2(R2). Otherwise, it is possible to show directly that R′ is closable
following the same arguments as in section 5.1.3 and R′ = R by Corollary 3.4.

We are finally in a position to state and prove our main result.

Theorem 3.9. There exists a unique positive self-adjoint operator

I : dom(I) ⊇ ImR → L2(Ξ,dξ),

semi-invariant with weight ζ = χ−1 with the property that the composite operator
IR extends to a unitary operator Q : L2(X,dx) → L2(Ξ,dξ) intertwining π and π̂,
namely

π̂(g)Qπ(g)−1 = Q, g ∈ G.(3.9)

Furthermore, π and π̂ are equivalent representations.
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The above result is a generalization of Helgason’s theorem on the unitarization of
the classical Radon transform, [20, Theorem 4.1], because by definition of extension
it holds that

IRf = Qf, f ∈ A.(3.10)

The isometric extension problem for the Radon transform was actually addressed and
implicitly solved by Helgason in the general context of symmetric spaces; see [22,
Corollary 3.11].

It is worth observing that the irreducibility of π̂ enters only in the surjectivity of
Q. The first part of the statement holds true without this assumption but does need
that R is closable. For this reason in the proof that follows we use assumption (A5)
only to show that Q is surjective.

Proof. The unitarization of R is based on the polar decomposition R = Q|R| of
R. By Lemma 3.5 and Theorem 3.3, item (ii), |R| : dom(R)→ L2(X,dx) is a positive
self-adjoint operator semi-invariant with weight |χ| = χ, where χ is defined by (3.2),
i.e.,

π(g)|R|π(g)−1 = χ(g)|R|, g ∈ G,(3.11)

and Q : L2(X,dx)→ L2(Ξ,dξ) is a partial isometry with

kerQ = kerR, ImQ = Im(R),

and is semi-invariant with weight χ/|χ| ≡ 1, i.e., (3.9) is satisfied. Since π is irre-
ducible, kerQ = {0} and it follows that Q is an isometry. Furthermore, since π̂ is
irreducible and Im(Q) is a π̂-invariant closed subspace of L2(Ξ,dξ) by (3.9), it follows
that Q is surjective, so that Q is unitary and π and π̂ are equivalent.

Define W = Q|R|Q∗ with π̂-invariant domain

domW = {f ∈ L2(Ξ,dξ) : Q∗f ∈ domR} = Q(domR)⊕ Im(R)
⊥
,

which is a densely defined positive operator in L2(Ξ,dξ), semi-invariant with weight χ.

Indeed, Q(domR) is dense in Q(L2(X,dx)) = Im(R) since R is densely defined by
Lemma 3.5. Observe that the π̂-invariance of domW follows from the π-invariance
of domR. Further, by (3.9) and (3.11) and using that π(g) is a unitary operator we
readily derive

π̂(g)Wπ̂(g)−1f = π̂(g)Q|R|Q∗π̂(g)−1f

=
(
π̂(g)Qπ(g)−1

) (
π(g)|R|π(g)−1

) (
π(g)Q∗π̂(g)−1

)
f

= Q
(
χ(g)|R|

)
Q∗f

= χ(g)Wf

for every f ∈ domW .
Since Q∗Q = Id, then R = WQ and ImR ⊆ ImW . We denote by I the Moore–

Penrose inverse of W [6, Chapter 9, section 3, Theorem 2] with densely defined domain
given by

ImW ⊕ ImW⊥ ⊇ ImWQ = ImR.

Since W is a positive operator in L2(Ξ,dξ), then I is positive, too, and
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IWf = f, f ∈ domW ∩ kerW⊥,

WIf = f, f ∈ ImW.

We claim that I is semi-invariant with weight χ−1 and

IRf = Qf, f ∈ domR.

Indeed, if f ∈ ImW , by definition If = h with h ∈ domW ∩ kerW⊥ and Wh = f .
Thus, by the semi-invariance of W we have that

π̂(g)Iπ̂(g)−1f = π̂(g)Iπ̂(g)−1Wh

= χ(g)−1π̂(g)IWπ̂(g)−1h

= χ(g)−1If,(3.12)

where we used that π̂(g)−1h ∈ kerW⊥, which follows from the π̂-invariance of kerW .
If f ∈ ImW⊥, by definition of I the semi-invariance property (3.12) is trivial.

Finally, since by (3.6) R is an injective operator, we have that kerW = kerQ∗
and hence kerW⊥ = ImQ ⊇ ImQ, whence Qf ∈ domW ∩kerW⊥ for any f ∈ domR.
Therefore IRf = IWQf = Qf , as desired.

Example 3.10 (Example 2.2, continued). Applying Lemma 3.5 and Corollary 3.6
toR, by (3.4) its closed extensionR is a semi-invariant operator from L1(R2)∩L2(R2)
to L2([0, π)×R) with weight χ(b, φ, a) = a−1/2. By Theorem 3.9 there exists a positive
self-adjoint operator I : dom(I) ⊇ Im(R)→ L2([0, π)×R), semi-invariant with weight
χ(g)−1 = a1/2, such that IR extends to a unitary operatorQ : L2(R2)→ L2([0, π)×R)
intertwining the quasi-regular (irreducible) representations π and π̂. Hence

IRpolf = Qf, f ∈ L1(R2) ∩ L2(R2),(3.13)

Q∗Qf = f, f ∈ L2(R2),

QQ∗F = F, F ∈ L2([0, π)× R),

π̂(g)Qπ(g)−1 = Q, g ∈ SIM(2).

We can provide an explicit formula for I. Consider the subspace

D =

{
f ∈ L2([0, π)× R) :

∫
[0,π)×R

|τ ||(I ⊗F)f(θ, τ)|2 dθdτ < +∞

}

and define the operator J : D → L2([0, π)× R) by

(I ⊗F)J f(θ, τ) = |τ | 12 (I ⊗F)f(θ, τ),

a Fourier multiplier with respect to the last variable. A direct calculation shows that
J is a densely defined positive self-adjoint injective operator and is semi-invariant
with weight ζ(g) = χ(g)−1 = a1/2. By Theorem 3.3, item (i), there exists c > 0
such that I = cJ and we now show that c = 1. Consider a nonzero function f ∈
L1(R2)∩L2(R2). Then, by the Plancherel theorem and the Fourier slice theorem (3.7)
we have that
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‖f‖2 = ‖IRpolf‖2L2([0,π)×R) = c2‖(I ⊗F)JRpolf‖2L2([0,π)×R)

= c2
∫

[0,π)×R
|τ ||(I ⊗F)Rpolf(θ, τ)|2dθdτ

= c2
∫

[0,π)×R
|τ ||Ff(τw(θ))|2dθdτ

= c2‖f‖2.

Thus, we obtain c = 1.

4. Inversion of the Radon transform. In this section, we make explicit use
of the assumption that π is square-integrable to invert the Radon transform. We
recall that, under this assumption, there exists a self-adjoint operator

C : domC ⊆ L2(X,dx)→ L2(X,dx),

semi-invariant with weight ∆
1
2 , where ∆ is the modular function of G, such that for

all ψ ∈ domC with ‖Cψ‖ = 1, the voice transform Vψ

(Vψf)(g) = 〈f, π(g)ψ〉, g ∈ G,

is an isometry from L2(X,dx) into L2(G) and we have the weakly convergent repro-
ducing formula

f =

∫
G

(Vψf)(g)π(g)ψ dµ(g),(4.1)

where µ is the Haar measure (see, for example, [15, Theorem 2.25]). The vector ψ is
called admissible vector.

As shown in the previous section, there exists a positive self-adjoint operator I
semi-invariant with weight χ−1 such that IR extends to a unitary operator Q, which
intertwines the quasi-regular representations π and π̂ of G on L2(X,dx) and L2(Ξ,dξ),
respectively.

Since Q is unitary and satisfies (3.9), the voice transform reads

Vψf(g) = 〈f, π(g)ψ〉 = 〈Qf,Qπ(g)ψ〉 = 〈Qf, π̂(g)Qψ〉, g ∈ G,(4.2)

for all f ∈ L2(X,dx). Furthermore, the assumption that π is square-integrable ensures
that any f ∈ L2(X,dx) can be reconstructed from its unitary Radon transform Qf
by means of the reconstruction formula (4.1), which becomes

f =

∫
G

〈Qf, π̂(g)Qψ〉π(g)ψ dµ(g).

Moreover, if we can choose ψ in such a way that Qψ is in the domain of the operator
I, by (4.2), for all f ∈ domR, we have

Vψf(g) = 〈Qf, π̂(g)Qψ〉
= 〈IRf, π̂(g)Qψ〉
= 〈Rf, Iπ̂(g)Qψ〉
= χ(g)〈Rf, π̂(g)IQψ〉,(4.3)
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where we use that I is a self-adjoint operator, semi-invariant with weight χ−1.
By (4.3) the voice transform Vψf depends on f only through its Radon transform

Rf . Therefore, (4.3) together with (4.1) allow us to reconstruct an unknown signal
f ∈ domR from its Radon transform. Explicitly, we have derived the following
inversion formula for the Radon transform.

Theorem 4.1. Let ψ ∈ L2(X,dx) be an admissible vector for the representation
π such that Qψ ∈ dom I, and set Ψ = IQψ. Then, for any f ∈ domR,

f =

∫
G

χ(g)〈Rf, π̂(g)Ψ〉π(g)ψ dµ(g),(4.4)

where the integral is weakly convergent, and

‖f‖2 =

∫
G

χ(g)2|〈Rf, π̂(g)Ψ〉|2dµ(g).(4.5)

If, in addition, ψ ∈ domR, then Ψ = I2Rψ.
Note that the datum Rf is analyzed by the family {π̂(g)Ψ}g∈G and the signal f

is reconstructed by a different family, namely {π(g)ψ}g∈G.

Example 4.2 (Example 2.2, continued). It is known that π is square-integrable
and the corresponding voice transform gives rise to two-dimensional directional wave-
lets [4]. An admissible vector is a function ψ ∈ L2(R2) satisfying the admissibility
condition [4]∫

[0,2π)×R+

|Fψ(AaR
−1
φ ω)|2dφ

da

a
= 1 for all ω ∈ R2/{0},(4.6)

which is equivalent to ∫
R2

|Fψ(ω1, ω2)|2

ω2
1 + ω2

2

dω1dω2 = 1.(4.7)

Given f ∈ L1(R2) ∩ L2(R2), define G(b, φ, a) = a
1
2 〈Rpolf, π̂(b, φ, a)Ψ〉, i.e., by (2.10)

G(b, φ, a) =

∫
[0,π)×R

Rpolf(θ, t) Ψ

(
θ − φ mod π,

t− b · w(θ)

a

)
dθdt.

Then, taking into account that χ(b, φ, a) = a−
1
2 , (4.4) reads

f(x) =

∫
R2o([0,2π)×R+)

G(b, φ, a)ψ

(
R−1
φ

x− b
a

)
dbdφ

da

a5
.(4.8)

By (4.5), reconstruction formula (4.8) is equivalent to

‖f‖2 =

∫
R2o([0,2π)×R+)

|G(b, φ, a)|2dbdφ
da

a5
.(4.9)

The idea to exploit the theory of the continuous wavelet transform to derive inversion
formulae for the Radon transform is not new; we refer to [24, 7, 27, 34, 29, 32, 35], to
name a few.

It is possible to obtain a version of (4.9) in which the scale parameter a varies
only in a compact set. Consider a smooth function Φ ∈ L1(R2) ∩ L2(R2) such that
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|FΦ(ω)|2 +

∫
[0,2π)×(0,1)

|Fψ(AaR
−1
φ ω)|2dφ

da

a
= 1.(4.10)

By Plancherel’s theorem, we have that∫
R2

|〈f, TbΦ〉|2 db =

∫
R2

∣∣∣∣∫
R2

Ff(ω)FΦ(ω)e2πib·ω dω

∣∣∣∣2 db

=

∫
R2

|F−1(Ff FΦ)(b)|2 db

=

∫
R2

|Ff(ω)|2|FΦ(ω)|2 dω.(4.11)

Using an analogous computation, by Plancherel’s theorem, (2.9), and Fubini’s theorem
we have

∫
R2o([0,2π)×(0,1))

|G(b, φ, a)|2dbdφ
da

a5
=

∫
R2o([0,2π)×(0,1))

|〈f, π(b, φ, a)ψ〉|2dbdφ
da

a3

(4.12)

=

∫
R2o([0,2π)×(0,1))

∣∣∣∣∫
R2

Ff(ω)Fψ(AaR
−1
φ ω)e2πib·ω dω

∣∣∣∣2 dbdφ
da

a

=

∫
[0,2π)×(0,1)

(∫
R2

|F−1(FfFψ(AaR
−1
φ ·))(b)|

2db

)
dφ

da

a

=

∫
R2

|Ff(ω)|2
(∫

[0,2π)×(0,1)

|Fψ(AaR
−1
φ ω)|2dφ

da

a

)
dω.

Thus, combining (4.10), (4.11), and (4.12) we obtain the reconstruction formula

‖f‖2 =

∫
R2

|〈f, TbΦ〉|2db+

∫
R2o([0,2π)×(0,1))

|G(b, φ, a)|2dbdφ
da

a5
.(4.13)

It is worth observing that there always exists a function Φ satisfying (4.10) pro-
vided that the admissible vector ψ has fast Fourier decay. Indeed, if we require Fψ
to satisfy a decay estimate of the form

|Fψ(ω)| = O
(
|ω|−L

)
for every L > 0,

then by (4.6) we have that

z(ω) := 1−
∫

[0,2π)×(0,1)

|Fψ(AaR
−1
φ ω)|2dφ

da

a

=

∫
[0,2π)×[1,+∞)

|Fψ(AaR
−1
φ ω)|2dφ

da

a

.
∫

[0,2π)×[1,+∞)

a−2L|ω|−2L da

a
dφ

. |ω|−2L.

Therefore, there exists a smooth function Φ such that FΦ(ω) =
√
z(ω), so that (4.10)

holds true.
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Finally, let us show that the first term in the right-hand side of (4.13) may be
expressed in terms of Rpolf only. We readily derive

〈f, TbΦ〉 = 〈f, π(b, 0, 1)Φ〉 = 〈Qf,Qπ(b, 0, 1)Φ〉
= 〈Qf, π̂(b, 0, 1)QΦ〉
= 〈IRpolf, π̂(b, 0, 1)IRpolΦ〉
= 〈Rpolf, π̂(b, 0, 1)I2RpolΦ〉,(4.14)

where we observe that IRpolΦ is always in the domain of the operator I since∫
[0,π)×R

|τ ||(I ⊗F)IRpolΦ(θ, τ)|2dθdτ =

∫
[0,π)×R

|τ |2|(I ⊗F)RpolΦ(θ, τ)|2dθdτ

=

∫
[0,π)×R

|τ |2|FΦ(τw(θ))|2dθdτ

=

∫
R2

|ω||FΦ(ω)|2dω < +∞,

since by definition Φ is a smooth function. Therefore, reconstruction formula (4.13)
reads

‖f‖2 =

∫
R2

|〈Rpolf, π̂(b, 0, 1)I2RpolΦ〉|2db+

∫
R2o([0,2π)×(0,1))

|G(b, φ, a)|2dbdφ
da

a5
,

where all the coefficients depend on f only through its polar Radon transform.
It is worth observing that the domain of R is related to the domain of C, which

defines the admissible vectors of π. By Theorem 3.3 (ii), the operator |R| is a positive
self-adjoint operator semi-invariant with weight χ(b, φ, a) = a−1/2, which is a power
of the modular function ∆(b, φ, a) = a−2, i.e., χ(b, φ, a) = ∆(b, φ, a)1/4. On the other
hand, C is a positive self-adjoint operator semi-invariant with weight ∆1/2 and is
such that ψ ∈ L2(R2) is an admissible vector of the square-integrable representation
π if and only if ψ ∈ domC and ‖Cψ‖ = 1. Therefore, |R| and C are both positive
self-adjoint operators on L2(R2) semi-invariant with a power of the modular function
of SIM(2) as weight. Finally, consider the subspace

Ds =

{
f ∈ L2(R2) :

∫
R2

|ω|2s|Ff(ω)|2dω < +∞
}

of L2(R2). It is not difficult to verify that the Fourier multiplier As : Ds → L2(R2)
defined by

FAsf(ω) = |ω|sFf(ω)(4.15)

is a densely defined positive self-adjoint operator and is semi-invariant with weight
χs(b, φ, a) = ∆(b, φ, a)−s/2 = as. Thus, by Theorem 3.3 (i), the operators |R| and C
are given, up to a constant, by (4.15) with s = −1/2 and s = −1, respectively. The
above argument explains why the domain of R and the domain of C, and thus the
admissibility condition (4.6) of π, are strictly related. A similar result can be proved
for the examples illustrated in section 5.
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5. Examples. In this section, we illustrate two additional examples.

5.1. The affine Radon transform and the shearlet transform.

5.1.1. Groups and spaces. The (parabolic) shearlet group S is the semidirect
product of R2 with the closed subgroup K = {NsAa ∈ GL(2,R) : s ∈ R, a ∈ R×},
where

Ns =

[
1 −s
0 1

]
, Aa = a

[
1 0
0 |a|−1/2

]
.

We can identify the element NsAa with the pair (s, a) and we write (b, s, a) for the
elements in S. With this identification the product law amounts to

(b, s, a)(b′, s′, a′) =
(
b+NsAab

′, s+ |a|1/2s′, aa′
)

and the inverse of (b, s, a) is given by

(b, s, a)−1 =
(
−A−1

a N−1
s b,−|a|−1/2s, a−1

)
.

A left Haar measure of S is

dµ(b, s, a) = |a|−3dbdsda

with db, ds, and da the Lebesgue measures on R2, R, and R×, respectively. The group
S acts transitively on X = R2 by

(b, s, a)[x] = NsAax+ b.

By (2.5), we have α(b, s, a) = |a|3/2.
Furthermore, the shearlet group acts transitively on Ξ = R× R by the action

(b, s, a)−1.(v, t) =

(
|a|−1/2(v − s), t− n(v) · b

a

)
,

where n(v) = t(1, v). The isotropy at ξ0 = (0, 0) is

H = {((0, b2), 0, a) : b2 ∈ R, a ∈ R×},

so that Ξ = S/H. It is immediate to verify that the Lebesgue measure dξ = dvdt is a
relatively invariant measure on Ξ with positive character β(b, s, a) = |a|3/2. Now, we
consider the sections s : R2 → S and σ : R× R→ S defined by

s(x) = (x, 0, 1), σ(v, t) = ((t, 0), v, 1).

Thus, we have that

ξ̂0 = H[x0] = {(0, b2) : b2 ∈ R} ' R,
x̌0 = K.ξ0 = {(s, 0) : s ∈ R} ' R.

It is easy to check that the Lebesgue measure db2 on ξ̂0 is a relatively H-invariant
measure with γ((0, b2), 0, a) = |a|1/2. Further, we can compute

(̂v, t) = σ(v, t)[ξ̂0] = {x ∈ R2 : x · n(v) = t},

which is the set of all points lying on the line of equation x · n(v) = t and

x̌ = s(x).x̌0 = {(v, t) ∈ R× R : t− n(v) · x = 0},

which parametrizes the set of all lines passing through the point x except the hori-

zontal one. Thus, the maps x 7→ x̌ and (v, t) 7→ (̂v, t) are both injective. Therefore,
X = R2 and Ξ = R× R are homogeneous spaces in duality.



4376 G. S. ALBERTI, F. BARTOLUCCI, F. DE MARI, AND E. DE VITO

5.1.2. The representations. The (parabolic) shearlet group S acts on L2(R2)
via the shearlet representation, namely

π(b, s, a)f(x) = |a|−3/4f(A−1
a N−1

s (x− b)).(5.1)

It is well known that the shearlet representation is irreducible [9].
Furthermore, since β(b, s, a) = |a|3/2, the group S acts on L2(R×R) by means of

the quasi-regular representation π̂ defined by

π̂(b, s, a)F (v, t) = |a|− 3
4F

(
|a|−1/2(v − s), t− n(v) · b

a

)
.(5.2)

By the Mackey imprimitivity theorem [13], one can show that also π̂ is irreducible.

5.1.3. The Radon transform. By (2.11), the Radon transform between the
homogeneous spaces in duality R2 and R× R is defined as

Rafff(v, t) =

∫
R
f(t− vy, y)dy,(5.3)

which is the so-called affine Radon transform [8, 17].
Following [5], we define

A =

{
f ∈ L1(R2) ∩ L2(R2) :

∫
R2

|Ff(ω)|2

|ω1|
dω < +∞

}
,

where ω = (ω1, ω2) ∈ R2, which is π-invariant and is such that Rafff ∈ L2(R × R)
for all f ∈ A (we refer to [5] for more details). Furthermore, it is easy to show that
the restriction R of Raff to A is closable. Suppose that (fn)n ⊆ A is a sequence such
that fn → f in L2(R2) and Rafffn → g in L2(R × R). Since I ⊗ F is unitary from
L2(R × R) onto L2(R × R), we have that (I ⊗ F)Rafffn → (I ⊗ F)g in L2(R × R).
Since fn ∈ A, by the Fourier slice theorem adapted to the affine setting [5], for every
(v, τ) ∈ R× R

(I ⊗F)Rafffn(v, τ) = Ffn(τn(v)).

Hence, passing to a subsequence if necessary,

Ffn(τn(v))→ (I ⊗F)g(v, τ)

for almost every (v, τ) ∈ R× R. Therefore, for almost every (v, τ) ∈ R× R

(I ⊗F)g(v, τ) = lim
n→+∞

Ffn(τn(v)) = Ff(τn(v)),

where the last equality holds true using a subsequence if necessary. Therefore, if
(hn)n ∈ A is another sequence such that hn → f in L2(R2) and Raffhn → h in
L2(R× R), then, for almost every (v, τ) ∈ R× R

(I ⊗F)h(v, τ) = Ff(τn(v)).

Therefore,
(I ⊗F)g(v, τ) = (I ⊗F)h(v, τ)

for almost every (v, τ) ∈ R × R. Then limn→+∞Rafffn = limn→+∞Raffhn, the
operator R is closable and we denote its closure by R. However, it is also possible
to prove the closability of the operator R reasoning as in section 3.8 by choosing a
“minimal” domain of the form span{π(g)f0 : g ∈ G}.
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5.1.4. The unitarization theorem. Since α(b, s, a) = |a|3/2, β(b, s, a) = |a|3/2,
and γ(b, s, a) = |a|1/2 the affine Radon transform satisfies the intertwining property

Raffπ(b, s, a) = χ(b, s, a)−1π̂(b, s, a)Raff,

where χ(b, φ, a)−1 = |a|1/2.
By Lemma 3.5, the closure R of the affine Radon transform is a semi-invariant

operator with weight χ(b, s, a) = |a|−1/2. Therefore, by Theorem 3.9, there exists a
positive self-adjoint operator I : dom(I) ⊆ L2(R × R) → L2(R × R) semi-invariant
with weight ζ(g) = χ(g)−1 = |a|1/2 such that IRaff extends to a unitary operator
Q from L2(R2) onto L2(R × R), which intertwines the quasi-regular (irreducible)
representations π and π̂. Reasoning as in Example 2.2, it is possible to show that the
operator I is defined by

(I ⊗F)If(v, τ) = |τ | 12 (I ⊗F)f(v, τ), f ∈ D,

where

D =

{
f ∈ L2(R× R) :

∫
R×R
|τ ||(I ⊗F)f(v, τ)|2 dvdτ < +∞

}
.

We refer to [5] for technical details.

5.1.5. The inversion formula. It is known that the shearlet representation π
is square-integrable and its admissible vectors are the functions ψ in L2(R2) satisfying∫

R2

|Fψ(ω)|2

|ω1|2
dω = 1,(5.4)

where ω = (ω1, ω2) ∈ R2 [9]. The shearlet transform is Sψf(b, s, a) = 〈f, π(b, s, a)ψ〉
and is a multiple of an isometry from L2(R2) into L2(S) provided that ψ satisfies the
admissible condition (5.4). By Theorem 4.1, for any f ∈ A we have the reconstruction
formula

f =

∫
R2×R×R×

Sψf(b, s, a)π(b, s, a)ψ
dbdsda

|a|3
,(5.5)

where the coefficients Sψf(b, s, a) are given by

Sψf(b1, b2, s, a) = |a|−5/4

∫
R×R
Rafff(v, t)Ψ

(
v − s
|a|1/2

,
t− n(v) · b

a

)
dvdt.

If we choose Ψ such that Ψ(v, t) = Ψ2(v)Ψ1(t), then

Sψf(b1, b2, s, a) = |a|−3/4

∫
R
WΨ1

(Rafff(v, ·))(n(v) · b, a)Ψ2

(
v − s
|a|1/2

)
dv,(5.6)

provided that Ψ1 is a one-dimensional wavelet.
This argument gives an alternative proof of Theorems 8 and 10 in [5], where it is

also proved that formula (5.6) can actually be extended to the whole L1(R2)∩L2(R2).
Formula (5.5) is a continuous version of the reconstruction formula presented in [8,
Theorem 3.3].
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5.2. The spherical means Radon transform.

5.2.1. Groups and spaces. Take the same group G = SIM(2) as in Exam-
ple 2.2, namely G = R2 oK, with K = {RφAa ∈ GL(2,R) : φ ∈ [0, 2π), a ∈ R+}.
First, we choose X = R2 and, for what concerns this space, we keep the notation as
in Example 2.2. Then, we consider the space Ξ = R2 × R+, which we think of as
parametrizing centers and radii of circles in R2, with the action

(b, φ, a).(c, r) = (b+ aRφc, ar).(5.7)

An immediate calculation shows that the isotropy at ξ0 = ((1, 0), 1) is

H = {
(
(1− cosφ,− sinφ), φ, 1

)
: φ ∈ [0, 2π)}.

By direct computation, recalling that x0 = 0,

ξ̂0 = H[x0] = {(1− cosφ,− sinφ) : φ ∈ [0, 2π)}

is the circle with center (1, 0) and radius 1 and

x̌0 = K.ξ0 = {((a cosφ, a sinφ), a) : φ ∈ [0, 2π), a ∈ R+}

is the family of circles passing through the origin. The measure dm0 = dφ is H-
invariant on ξ̂0, since the action of H on ξ̂0 is given by a simple rotation of a fixed
angle. This gives γ(h) ≡ 1.

We define the section σ : Ξ → SIM(2) by σ(c, r) = (c − (r, 0), 0, r). Thus, for
ξ = (c, r) ∈ Ξ we have

ξ̂ = σ(c, r)[ξ̂0] = {c− rw(φ) : φ ∈ [0, 2π)},(5.8)

namely, the circle with center c and radius r, and for x ∈ R2 we have

x̌ = s(x).x̌0 = {(x+ (a cosφ, a sinφ), a) : φ ∈ [0, 2π), a ∈ R+},

that is, the family of circles passing through the point x. It is easy to see that the
maps x 7→ x̌ and ξ 7→ ξ̂ are both injective. Thus, X = R2 and Ξ = R2 × R+ are
homogeneous spaces in duality.

We now determine a class of relatively invariant measures on Ξ. Given α ∈ R, we
have ∫

R2×R+

f
(
(b, φ, a)−1.(c, r)

)
dc

dr

rα
= a3−α

∫
R2×R+

f(c, r)dc
dr

rα
,

so that the measure dξ = dc dr
rα is a relatively invariant measure on Ξ with character

β(b, φ, a) = a3−α. As shown in the next section, not all choices of α are equally good
for our purposes.

5.2.2. The representations. Since the group G is the same as in Example 2.2,
the representation π is given by (2.8), whereas we have to compute the quasi-regular
representation π̂ acting on L2(Ξ,dξ). Since β(b, φ, a) = a3−α, by (2.6) and (5.7) we
have

π̂(b, φ, a)F (c, r) = a
α−3
2 F

((
−A−1

a R−1
φ b,−φ mod 2π, a−1

)
.(c, r)

)
= a

α−3
2 F (a−1R−φ(c− b), a−1r),

(5.9)

which is irreducible by Mackey imprimitivity theorem [13].
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5.2.3. The Radon transform. By (5.8) and (2.11), the Radon trasform in this
case is given by

Rcirf(c, r) =

∫ 2π

0

f(c− rw(φ))dφ,

namely, the integral of f over the circle of center c and radius r. This is the so-called
spherical means Radon transform [25]. It is worth observing that more interesting
problems arise when the available centers and radii are restricted to some hypersurface:
this does not easily fit into our assumptions, and it is left for future investigation.

Let us now determine a suitable π-invariant subspace A of L2(R2) as in (A6).
In order to do that, it is useful to derive a Fourier slice theorem for Rcir. For any
f ∈ L1(R2) ∩ L2(R2), by Fubini’s theorem and using [11, equation 10.9.1], we have

(F ⊗ I)Rcirf(τ, r) =

∫ 2π

0

∫
R2

f(c− rw(φ))e−2πic·τdcdφ

=

∫ 2π

0

e−2πirw(φ)·τdφ

∫
R2

f(c)e−2πic·τdc

= 2πJ0(2π|τ |r)Ff(τ),

where J0 is the Bessel function of the first kind. As a consequence, by the Plancherel
theorem, recalling that dξ = dc dr

rα we obtain∥∥Rcirf
∥∥2

L2(Ξ,dξ)
=
∥∥(F ⊗ I)Rcirf

∥∥2

L2(Ξ,dτ dr
rα )

= cα

∫
R2

|Ff(τ)|2|τ |α−1 dτ,

where

cα = (2π)α+1

∫
R+

|J0(r)|2

rα
dr.(5.10)

Observe that cα is finite if and only if α ∈ (0, 1), so that from now on we assume that
α ∈ (0, 1) and we set

Aα =

{
f ∈ L1(R2) ∩ L2(R2) :

∫
R2

|Ff(τ)|2|τ |α−1 dτ < +∞
}
,

which is π-invariant and is such that Rcirf ∈ L2(Ξ,dξ) for all f ∈ Aα. Furthermore,
as in Example 5.1, it is easy to show that Rcir, regarded as operator from Aα to
L2(Ξ,dξ), is closable. We stress that, if α /∈ (0, 1), the set

{f ∈ L2(X,dx) : Rcirf ∈ L2(Ξ,dξ)} = {0},

i.e., it is trivial. This motivates the role of assumption (A6) in our construction.

5.2.4. The unitarization theorem. By (3.1) and (3.2) we have that

Rcirπ(b, φ, a) = a
1−α
2 π̂(b, φ, a)Rcir,

since α(b, φ, a) = a2, β(b, φ, a) = a3−α, and γ(b, φ, a) = 1, and so χ(b, φ, a) = a
α−1
2 .

By Theorem 3.9, there exists a positive self-adjoint operator I, semi-invariant with

weight a
1−α
2 , such that IRcir extends to a unitary operator Q : L2(R2)→ L2(Ξ,dξ).

Moreover, Q intertwines π and π̂, namely

π̂(b, φ, a)Qπ(b, φ, a)−1 = Q, (b, φ, a) ∈ SIM(2).
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As in the other examples, by using Theorem 3.3, part (i), it is possible to show that
there exists a constant kα ∈ R+ such that I = kαJ with

(F ⊗ I)J f(τ, r) = |τ |
1−α
2 (F ⊗ I)f(τ, r), f ∈ D,

where

D =

{
f ∈ L2(Ξ,dξ) :

∫
R2×R+

|τ |1−α|(F ⊗ I)f(τ, r)|2 dτ
dr

rα
< +∞

}
.

Using the same argument as in Example 2.2, it is possible to determine the constant
kα. Take a function f ∈ Aα \ {0}. By Plancherel theorem and the Fourier slice theorem
obtained for Rcir we have that

‖f‖2 =
∥∥IRcirf

∥∥2

L2(R2×R+)
= k2

α

∥∥(F ⊗ I)JRcirf
∥∥2

L2(R2×R+)

= k2
α

∫
R2×R+

|τ |1−α|(F ⊗ I)Rcirf(τ, r)|2dτ
dr

rα

= k2
αcα‖f‖2,

where cα is given by (5.10). Thus, we obtain that kα = c
−1/2
α .

5.2.5. The inversion formula. Applying Theorem 4.1 to Rcir we obtain the
inversion formula for f ∈ Aα

f =

∫
SIM(2)

a
α−9
2 〈Rcirf, π̂(b, φ, a)Ψ〉L2(Ξ,dξ) ψ

(
R−φ

x− b
a

)
dbdφda,

where we used that χ(b, φ, a) = a
α−1
2 , the expression for the Haar measure of SIM(2)

given in (2.7), and the expression for the representation π given in (2.8).
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