CORE

Instantaneous Reactive Power Theory: A Reference in the Nonlinear Loads Compensation

Reyes S. Herrera and Patricio Salmerón7

Abstract

The instantaneous reactive power theory was published 25 years ago, in an IEEE Transactions. Since then, it has been the most used in nonlinear load compensation with active power filters. Its application allows constant source power to be obtained after compensation in a simple way. Moreover, some researches have showed up some limitations of the theory, i.e., it goes optimally with source voltage balanced and sinusoidal, but not so good with source voltage unbalanced and/or nonsinusoidal, since the source current obtained is not balanced and sinusoidal. This paper presents a new compensation strategy in phase coordinates, equivalent to the original theory's one. Its simplicity, due to the nonnecessity of coordinate mathematical transformation, makes easier the modifications necessary to obtain alternative compensation objectives. In this way, this paper presents those modifications and derives compensation strategies that obtain alternative compensation objectives: unity power factor or balanced and sinusoidal source current. Finally, compensation strategies are applied to a practical power system, and the results are presented.

Index Terms—Active power filters (APFs), instantaneous reactive power theory, power quality.

I. INTRODUCTION

THE instantaneous reactive power theory was initially published in English in the Proceedings of the International Power Electronics Conference in 1983 [1]. However, it was in 1984, after its publication in an IEEE TRANSACTIONS, when this theory became well known worldwide [2]. Since then, the instantaneous reactive power theory has been the most used compensation strategy in active power filters (APFs). Indeed, the strategy proposed obtains sinusoidal and balanced currents, constant instantaneous power, and unity power factor in the source side when the voltage applied is balanced and sinusoidal [2]. In any other case, i.e., when the voltage is unbalanced and/or nonsinusoidal, the instantaneous power is constant after compensation in the source side, but the current is not balanced and sinusoidal, and the power factor is not the unity [3], [4].

Thus, from the point of view of research, the publication of the instantaneous reactive power theory caused a great impact in compensation techniques. Therefore, many approaches have been published since then [5]-[14]. In fact, in the 1990s, the interest was specially focused on the study of three-phase four-wire systems at most general conditions: unbalanced and nonsinusoidal source and nonlinear unbalanced load. The first objective was to find control strategies which allow the neutral

[^0]current elimination with a null average power transferred by 47 the compensator. Thus, besides the original formulation, among 48 others, the modified $p-q$ or cross product formulation [5]-[7] 49 stand out. A comparative evaluation of those theories was 50 carried out when they were applied to obtain active power 51 line conditioners control algorithms for unbalanced systems 52 with nonsinusoidal voltage. At these conditions, each theory 53 produced different results, without obtaining the opportunity to 54 establish, in a general way, the advantage of any one theory over 55 the others [8]. Other remarkable formulations are the $d-q$ [9], 56 or its alternative, the $i d-i q[10]$ in the rotating frame, the $p-q-r 57$ formulation [14], and the vectorial formulation [11], [12]. All 58 of them relate the energy transfer in a three-phase system in 59 function to the instantaneous power (instantaneous real power) 60 $p(t)$ and to the instantaneous imaginary (or reactive) power, 61 depending on the formulation. This last quantity establishes the 62 difference between the instantaneous reactive power theory and 63 the rest of other possible theories about the electric power. 64
All of these works have been published trying to improve the 65 results obtained by the instantaneous reactive power theory in 66 three-phase four-wire systems in any voltage supply conditions. 67 In [13], the results of applying the compensation strategies 68 derived from those relevant theories to a same power system are 69 presented. It shows that none of those theories obtain balanced 70 and sinusoidal source current if the voltage is unbalanced and 71 nonsinusoidal.

In this paper, the instantaneous reactive power theory is 73 presented, and its compensation strategy is applied to a three- 74 phase four-wire power system. In addition, an equivalent for- 75 mulation developed in phase coordinates is presented. It is 76 not a new theory but a different formulation. Thus, the results 77 obtained by both are the same. However, the simplicity of the 78 new formulation makes easier the derivation of compensation 79 strategy. Moreover, the simplicity of the new formulation in 80 phase coordinates allows alternative compensation strategies 81 to be obtained which produce balanced and sinusoidal source 82 current in any voltage supply conditions. The results obtained 83 when applying the compensation strategies in phase coordinates 84 to a three-phase four-wire system are presented.

This paper is organized as follows. In Section II, the in- 86 stantaneous reactive power theory is presented. In Section III, 87 the formulation developed in phase coordinates is presented, 88 as well. The results obtained when applying the compensation 89 strategy in phase coordinates to a practical nonlinear three- 90 phase system are presented. In Section IV, alternative strategies 91 corresponding to different compensation objectives are derived. 92 They are applied to the practical system, and the results are pre- 93 sented. Finally, in Section V, some conclusions are established. 94

95

II. Instantaneous Reactive Power Theory

96 The voltage vector in phase coordinates corresponding to a 97 three-phase system is expressed as follows:

$$
\vec{u}=\left[\begin{array}{lll}
u_{1} & u_{2} & u_{3} \tag{1}
\end{array}\right]^{t}
$$

98 Therefore, the current vector

$$
\vec{i}=\left[\begin{array}{lll}
i_{1} & i_{2} & i_{3} \tag{2}
\end{array}\right]^{t}
$$

99 The instantaneous reactive power theory, also named $p-q$ 100 formulation [1], [2], is based on the Clarke coordinates trans101 formation, which, applied to the voltage and current vectors in 102 phase coordinates, gives those vectors in $0 \alpha \beta$ coordinates

$$
\begin{align*}
& {\left[\begin{array}{c}
u_{0} \\
u_{\alpha} \\
u_{\beta}
\end{array}\right]=\sqrt{\frac{2}{3}}\left[\begin{array}{ccc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
1 & -\frac{1}{2} & -\frac{1}{2} \\
0 & \frac{\sqrt{3}}{2} & -\frac{\sqrt{3}}{2}
\end{array}\right]\left[\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3}
\end{array}\right]} \tag{3}\\
& {\left[\begin{array}{c}
i_{0} \\
i_{\alpha} \\
i_{\beta}
\end{array}\right]=\sqrt{\frac{2}{3}}\left[\begin{array}{ccc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
1 & -\frac{1}{2} & -\frac{1}{2} \\
0 & \frac{\sqrt{3}}{2} & -\frac{\sqrt{3}}{2}
\end{array}\right]\left[\begin{array}{l}
i_{1} \\
i_{2} \\
i_{3}
\end{array}\right] .} \tag{4}
\end{align*}
$$

103 In the new coordinates system, three power terms are defined: 104 zero-sequence instantaneous real power p_{0}, instantaneous real 105 power $p_{\alpha \beta}$, and instantaneous imaginary power $q_{\alpha \beta}$

$$
\begin{align*}
p_{0}(t) & =u_{0} i_{0} \tag{5}\\
p_{\alpha \beta}(t) & =\left[\begin{array}{ll}
u_{\alpha} & u_{\beta}
\end{array}\right] \quad\left[\begin{array}{c}
i_{\alpha} \\
i_{\beta}
\end{array}\right]=u_{\alpha} i_{\alpha}+u_{\beta} i_{\beta} \tag{6}\\
q_{\alpha \beta} & =\left\|\vec{q}_{\alpha \beta}(t)\right\|=\left\|\left[\begin{array}{ll}
u_{\alpha} & u_{\beta}
\end{array}\right]^{t} \wedge\left[\begin{array}{ll}
i_{\alpha} & i_{\beta}
\end{array}\right]^{t}\right\| \\
& =\left(-u_{\beta} i_{\alpha}+u_{\alpha} i_{\beta}\right) \tag{7}
\end{align*}
$$

106 where the instantaneous imaginary power has been defined as 107 the norm of the instantaneous imaginary power vector $\vec{q}_{\alpha \beta}(t)$. 108 This has been defined as the cross product of voltage and 109 current vector in $\alpha \beta$ coordinates.
110 Equations (5)-(7) define the three power variables, which 111 may be expressed in matrix form as follows:

$$
\left[\begin{array}{c}
p_{0} \tag{8}\\
p_{\alpha \beta} \\
q_{\alpha \beta}
\end{array}\right]=\left[\begin{array}{ccc}
u_{0} & 0 & 0 \\
0 & u_{\alpha} & u_{\beta} \\
0 & -u_{\beta} & u_{\alpha}
\end{array}\right]\left[\begin{array}{c}
i_{0} \\
i_{\alpha} \\
i_{\beta}
\end{array}\right]
$$

112 From this equation, current may be expressed according to the 113 power quantities as

$$
\left[\begin{array}{c}
i_{0} \tag{9}\\
i_{\alpha} \\
i_{\beta}
\end{array}\right]=\frac{1}{u_{0} u_{\alpha \beta}^{2}}\left[\begin{array}{ccc}
u_{\alpha \beta}^{2} & 0 & 0 \\
0 & u_{0} u_{\alpha} & -u_{0} u_{\beta} \\
0 & u_{0} u_{\beta} & u_{0} u_{\alpha}
\end{array}\right]\left[\begin{array}{c}
p_{0} \\
p_{\alpha \beta} \\
q_{\alpha \beta}
\end{array}\right]
$$

114 where $u_{\alpha \beta}^{2}=u_{\alpha}^{2}+u_{\beta}^{2}$.
115 From now on, it is possible to talk about compensation. 116 The compensation current in matrix form derived from the 117 instantaneous reactive power theory is

$$
\left[\begin{array}{c}
i_{C 0} \tag{10}\\
i_{C \alpha} \\
i_{C \beta}
\end{array}\right]=\frac{1}{u_{0} u_{\alpha \beta}^{2}}\left[\begin{array}{ccc}
u_{\alpha \beta}^{2} & 0 & 0 \\
0 & u_{0} u_{\alpha} & -u_{0} u_{\beta} \\
0 & u_{0} u_{\beta} & u_{0} u_{\alpha}
\end{array}\right]\left[\begin{array}{c}
p_{C 0} \\
p_{C \alpha \beta} \\
q_{C \alpha \beta}
\end{array}\right]
$$

where the subindex " C " means compensation component. It 118 is, $p_{C 0}$ means the compensation zero-sequence instantaneous 119 power, $p_{C \alpha \beta}$ the compensation instantaneous power with- 120 out zero-sequence, and $q_{C \alpha \beta}$ the compensation instantaneous 121 imaginary power. The values assigned to $p_{C 0}, p_{C \alpha \beta}$, and $q_{C \alpha \beta} 122$ are established applying the constant power compensation de- 123 veloped along the present section.

Moreover, in addition to the constant power compensation 125 imposed by the original $p-q$ authors, they add the constraint 126 of eliminating the neutral current. Therefore, the current zero- 127 sequence component must be

$$
\begin{equation*}
i_{C 0}=i_{L 0}=\frac{p_{L 0}}{u_{0}} \tag{11}
\end{equation*}
$$

where the subindex " L " means incoming to the load.
On the other hand, the $p-q$ formulation evolves the total 130 compensation of the instantaneous imaginary power. Therefore, 131

$$
\begin{equation*}
q_{C \alpha \beta}=q_{L \alpha \beta} \tag{12}
\end{equation*}
$$

With respect to instantaneous power, the $p-q$ formulation 132 considers the constraint of eliminating the active power sup- 133 plied by the compensator besides the achievement of constant 134 source power. In this way, the instantaneous power required by 135 the load is

$$
\begin{equation*}
p_{L}(t)=p_{S}(t)+p_{C}(t) \tag{13}
\end{equation*}
$$

where subindex " S " means "source component." The load 137 instantaneous power can be expressed as follows, too:

$$
\begin{equation*}
p_{L}(t)=\tilde{p}_{L \alpha \beta}(t)+P_{L \alpha \beta}+\tilde{p}_{L 0}(t)+P_{L 0} \tag{14}
\end{equation*}
$$

where the uppercase P means the instantaneous real power av- 139 erage value, and the symbol " \sim " over the letter, the oscillating 140 component [4].

The compensation instantaneous power can be divided into 142 its zero-sequence component and its $\alpha \beta$ component and accord- 143 ing to (11)

$$
\begin{equation*}
p_{C}(t)=p_{C 0}(t)+p_{C \alpha \beta}(t)=p_{L 0}(t)+p_{C \alpha \beta}(t) \tag{15}
\end{equation*}
$$

Considering (13)-(15)

$$
\begin{align*}
p_{S}(t)+p_{C}(t) & =p_{S}(t)+p_{C \alpha \beta}(t)+p_{C 0}(t) \\
& =p_{L}(t)=\tilde{p}_{L \alpha \beta}(t)+P_{L \alpha \beta}+\tilde{p}_{L 0}(t)+P_{L 0} \tag{16}
\end{align*}
$$

Taking into account that the source must supply the constant 146 component of the instantaneous power incoming to the load

$$
\begin{equation*}
p_{S 0}(t)=P_{L \alpha \beta}+P_{L 0} \tag{17}
\end{equation*}
$$

Moreover, introducing (17) in (16), it is

$$
\begin{align*}
& P_{L \alpha \beta}+P_{L 0}+p_{C \alpha \beta}(t)+p_{C 0}(t) \\
& \quad=\tilde{p}_{L \alpha \beta}(t)+P_{L \alpha \beta}+\tilde{p}_{L 0}(t)+P_{L 0} \tag{18}
\end{align*}
$$

Operating and according to (11), (18) is
149

$$
\begin{equation*}
P_{L \alpha \beta}+P_{L 0}+p_{C \alpha \beta}(t)=\tilde{p}_{L \alpha \beta}(t)+P_{L \alpha \beta} \tag{19}
\end{equation*}
$$

Fig. 1. Voltage vectors in a three-phase system.
150 Finally, the $\alpha \beta$-component of the instantaneous real power 151 transferred by the compensator is

$$
\begin{equation*}
p_{C \alpha \beta}=\tilde{p}_{L \alpha \beta}-P_{L 0} \tag{20}
\end{equation*}
$$

152 Therefore, the complete compensation strategy in matrix 153 form is as follows:

$$
\left[\begin{array}{c}
i_{C 0} \tag{21}\\
i_{C \alpha} \\
i_{C \beta}
\end{array}\right]=\frac{1}{u_{0} u_{\alpha \beta}^{2}}\left[\begin{array}{ccc}
u_{\alpha \beta}^{2} & 0 & 0 \\
0 & u_{0} u_{\alpha} & -u_{0} u_{\beta} \\
0 & u_{0} u_{\beta} & u_{0} u_{\alpha}
\end{array}\right]\left[\begin{array}{c}
p_{L 0} \\
\tilde{p}_{L}-P_{L 0} \\
q_{L}
\end{array}\right] .
$$

154 Therefore, the $p-q$ theory compensates the oscillating com155 ponent of the total instantaneous real power and the total instan156 taneous imaginary power. Moreover, it eliminates the neutral 157 current and the active power exchanged by the compensator 158 is null.

159
 160
 III. Instantaneous Reactive Power Formulation in Phase Coordinates System

161 In this section, an alternative formulation is presented. It 162 is equivalent to the derived in the previous section from the 163 instantaneous reactive power theory, although its formulation 164 is simpler than the other. This simplicity makes possible the 165 achievement of modified compensation strategies which ob166 tains balanced and sinusoidal source current in any voltage 167 conditions.
168 Considering the voltage and current vectors in phase coordi169 nates presented in (1) and (2), a zero-sequence voltage vector 170 can be defined as follows:

$$
\begin{align*}
\vec{v}_{0} & =\left[\begin{array}{lll}
\frac{v_{0}}{\sqrt{3}} & \frac{v_{0}}{\sqrt{3}} & \frac{v_{0}}{\sqrt{3}}
\end{array}\right]^{t} \\
v_{0} & =\frac{u_{1}+u_{2}+u_{3}}{\sqrt{3}} \tag{22}
\end{align*}
$$

171 The zero-sequence axis is orthogonal to the plane $\alpha \beta$ and to 172 the plane 123 according to the Clark transformation. Thus, 173 applying vectorial algebra, the definition of a voltage vector 174 without zero-sequence component \vec{v} is possible

$$
\begin{equation*}
\vec{v}=\vec{u}-\vec{v}_{0} . \tag{23}
\end{equation*}
$$

175 The zero sequence voltage vector and the voltage vector 176 without zero-sequence component are orthogonal (Fig. 1). 177 Thus, two current vectors can be defined as the projections
of the current vector over both. Therefore, the zero-sequence 178 current vector is defined as follows:

$$
\begin{equation*}
\vec{i}_{0}(t)=\frac{\vec{i} \cdot \vec{v}_{0}}{v_{0}^{2}} \vec{v}_{0}=\frac{p_{0}(t)}{v_{0}^{2}} \vec{v}_{0} \tag{24}
\end{equation*}
$$

where $p_{0}(t)$ agrees with the zero-sequence instantaneous power 180 defined in the $p-q$ formulation. Equation (24) is based on the 181 fact that one vector and the projection of another vector over 182 the first are in the same direction. Therefore, considering that 183 the only component of the load current that is in the \vec{v}_{0} direction 184 is \vec{i}_{0}, it is

$$
\begin{equation*}
\vec{i} \cdot \vec{v}_{0}=\vec{i}_{0} \cdot \vec{v}_{0}=i_{0} \cdot v_{0} \tag{25}
\end{equation*}
$$

From (25),

$$
\begin{equation*}
i_{0}=\frac{\vec{i} \cdot \vec{v}_{0}}{v_{0}} \tag{26}
\end{equation*}
$$

Moreover, the product of (26) and the unitary vector corre- 187 sponding to \vec{v}_{0} is

$$
\begin{equation*}
\vec{i}_{0}=i_{0} \frac{\vec{v}_{0}}{v_{0}}=\frac{\vec{i} \cdot \vec{v}_{0}}{v_{0}} \frac{\vec{v}_{0}}{v_{0}}=\frac{\vec{i} \cdot \vec{v}_{0}}{v_{0}^{2}} \vec{v}_{0} \tag{27}
\end{equation*}
$$

The development follows is valid for any waveform and no 189 constrains have been applied. Thus, it is good for unbalanced 190 and/or nonsinusoidal voltages and currents.

In the same way, the instantaneous active current without 192 zero-sequence component is defined as

$$
\begin{equation*}
\vec{i}_{v}(t)=\frac{\vec{i} \cdot \vec{v}}{v^{2}} \vec{v}=\frac{p_{v}(t)}{v^{2}} \vec{v} \tag{28}
\end{equation*}
$$

where $p_{v}(t)$ agrees with the $\alpha \beta$ instantaneous real power de- 194 fined in the $p-q$ formulation. Total instantaneous real power can 195 be calculated as follows:

$$
\begin{equation*}
p(t)=\vec{u} \cdot\left(\vec{i}_{0}+\vec{i}_{v}\right)=p_{0}(t)+p_{v}(t) . \tag{29}
\end{equation*}
$$

The difference between load current and the sum of zero- 197 sequence current and instantaneous active current without zero- 198 sequence component is named instantaneous reactive current $\vec{i}_{q} 199$

$$
\begin{equation*}
\vec{i}_{q}=\vec{i}-\vec{i}_{0}-\vec{i}_{v} \tag{30}
\end{equation*}
$$

As the first two current components, instantaneous reactive 200 current can be calculated as the projection of the current vector 201 over a new voltage vector, named orthogonal voltage vector $\vec{v}_{q}, 202$ which is calculated as follows [11]:
$\vec{v}_{q}=\frac{1}{\sqrt{3}}\left[\begin{array}{ccc}0 & 1 & -1 \\ -1 & 0 & 1 \\ 1 & -1 & 0\end{array}\right]\left[\begin{array}{l}u_{1} \\ u_{2} \\ u_{3}\end{array}\right]=\frac{1}{\sqrt{3}}\left[\begin{array}{l}u_{2}-u_{3} \\ u_{3}-u_{1} \\ u_{1}-u_{2}\end{array}\right]$.
The orthogonal voltage vector is orthogonal to the volt- 204 age vector and to the voltage vector without zero-sequence 205 component.

206
Therefore, the instantaneous reactive current can be ex- 207 pressed as 208

$$
\begin{equation*}
\vec{i}_{q}(t)=\frac{\vec{i} \cdot \vec{v}_{q}}{v_{q}^{2}} \vec{v}_{q}=\frac{q(t)}{v_{q}^{2}} \vec{v}_{q} \tag{32}
\end{equation*}
$$

209 where the numerator $q(t)$ is the instantaneous imaginary power 210 defined in the $p-q$ theory.
211 Therefore, the load current can be expressed as the sum of 212 the three components calculated above

$$
\begin{equation*}
\vec{i}_{L}(t)=\frac{p_{L v}(t)}{v^{2}} \vec{v}+\frac{q_{L}(t)}{v_{q}^{2}} \vec{v}_{q}+\vec{i}_{L 0}(t) \tag{33}
\end{equation*}
$$

213 Now, the compensation strategy is developed.

214 A. Constant Power Compensation

215 In this new framework, it is possible to obtain constant 216 power after compensation. In this case, the source current 217 must be

$$
\begin{equation*}
\vec{i}_{S}=\frac{P_{L}}{u^{2}} \vec{u} . \tag{34}
\end{equation*}
$$

218 Combining (33) and (34), the compensation current is

$$
\begin{equation*}
\vec{i}_{C}=\frac{p_{L v}(t)}{v^{2}} \vec{v}+\frac{q_{L}(t)}{v_{q}^{2}} \vec{v}_{q}+\vec{i}_{L 0}(t)-\frac{P_{L}}{u^{2}} \vec{u} . \tag{35}
\end{equation*}
$$

219 Introducing (23) in (35), we obtain

$$
\begin{equation*}
\vec{i}_{C}=\left(\frac{p_{L v}(t)}{v^{2}}-\frac{P_{L}}{u^{2}}\right) \vec{v}+\frac{q_{L}(t)}{v_{q}^{2}} \vec{v}_{q}+\vec{i}_{L 0}(t)-\frac{P_{L}}{u^{2}} \vec{v}_{0} . \tag{36}
\end{equation*}
$$

220 The compensation current formal expression divided in three 221 components (zero-sequence component, component without 222 zero sequence, and orthogonal component) is as follows:

$$
\begin{equation*}
\vec{i}_{C}=\frac{p_{C}(t)}{v^{2}} \vec{v}+\frac{q_{C}(t)}{v_{q}^{2}} \vec{v}_{q}+\vec{i}_{C 0}(t) \tag{37}
\end{equation*}
$$

223 From (36) and (37), the formal term related to the instanta224 neous power without zero-sequence component has the follow225 ing expression

$$
\begin{equation*}
\frac{p_{C}(t)}{v^{2}}=\left(\frac{p_{L v}(t)}{v^{2}}-\frac{P_{L}}{u^{2}}\right) . \tag{38}
\end{equation*}
$$

226 The term related to the instantaneous reactive current

$$
\begin{equation*}
\frac{q_{C}(t)}{v_{q}^{2}}=\frac{q_{L}(t)}{v_{q}^{2}} \tag{39}
\end{equation*}
$$

227 Moreover, the compensation current zero-sequence compo228 nent is

$$
\begin{equation*}
\vec{i}_{C 0}(t)=\vec{i}_{L 0}(t)-\frac{P_{L}}{u^{2}} . \tag{40}
\end{equation*}
$$

229 Therefore, from (38), the compensation instantaneous power 230 without zero-sequence component is

$$
\begin{equation*}
p_{C}(t)=p_{L v}(t)-\frac{P_{L}}{u^{2}} v^{2} \tag{41}
\end{equation*}
$$

231 The compensation instantaneous reactive power

$$
\begin{equation*}
q_{C}(t)=q_{L}(t) \tag{42}
\end{equation*}
$$

Moreover, the compensation zero-sequence instantaneous 232 power 233

$$
\begin{equation*}
p_{C 0}(t)=p_{L 0}(t)-\frac{P_{L}}{u^{2}} v_{0}^{2} . \tag{43}
\end{equation*}
$$

B. Constant Power Compensation Eliminating the

Zero-Sequence Component Current
If, besides constant power after compensation, the neutral 236 current must be eliminated, the source current should be 237

$$
\begin{equation*}
\vec{i}_{S}=\frac{P_{L}}{v^{2}} \vec{v} \tag{44}
\end{equation*}
$$

Following the development presented in the previous section, 238 compensation current corresponding to this new variant has the 239 next value

$$
\begin{align*}
\vec{i}_{C} & =\frac{p_{L v}(t)}{v^{2}} \vec{v}+\frac{q_{L}(t)}{v_{q}^{2}} \vec{v}_{q}+\vec{i}_{L 0}(t)-\frac{P_{L}}{v^{2}} \vec{v} \tag{240}\\
& =\frac{p_{L v}(t)-P_{L}}{v^{2}} \vec{v}+\frac{q_{L}(t)}{v_{q}^{2}} \vec{v}_{q}+\vec{i}_{L 0}(t) \tag{45}
\end{align*}
$$

where the term related to the instantaneous power without zero- 241 sequence component has the following expression

$$
\begin{equation*}
\frac{p_{C}(t)}{v^{2}}=\frac{p_{L v}(t)-P_{L}}{v^{2}} \tag{46}
\end{equation*}
$$

The term related to the instantaneous reactive power

$$
\begin{equation*}
\frac{q_{C}(t)}{v_{q}^{2}}=\frac{q_{L}(t)}{v_{q}^{2}} \tag{47}
\end{equation*}
$$

Moreover, the compensation current zero-sequence compo- 244 nent is

$$
\begin{equation*}
\vec{i}_{C 0}(t)=\vec{i}_{L 0}(t) \tag{48}
\end{equation*}
$$

Therefore, the compensation instantaneous power without 246 zero-sequence component is

$$
\begin{equation*}
p_{C}(t)=\tilde{p}_{L v}(t)-P_{L 0} \tag{49}
\end{equation*}
$$

The compensation instantaneous reactive power

$$
\begin{equation*}
q_{C}(t)=q_{L}(t) \tag{50}
\end{equation*}
$$

Moreover, the compensation instantaneous power zero- 249 sequence component is 250

$$
\begin{equation*}
p_{C 0}(t)=p_{L 0}(t) \tag{51}
\end{equation*}
$$

The compensation current calculated in (45) to obtain con- 251 stant power eliminating neutral current, can be expressed in the 252 $\alpha \beta$ coordinates system. In this way, and taking into account that 253

$$
\begin{align*}
v^{2} & =u_{\alpha \beta}^{2} \\
\vec{v} & =\left[\begin{array}{lll}
0 & u_{\alpha} & u_{\beta}
\end{array}\right]^{T} \tag{52}\\
\vec{v}_{q} & =\left[\begin{array}{lll}
0 & -u_{\beta} & u_{\alpha}
\end{array}\right]^{T} \\
\vec{i}_{0} & =\left[\begin{array}{lll}
0 & 0 & i_{0}
\end{array}\right] \tag{53}
\end{align*}
$$

254 (45) can be expressed as

$$
\vec{i}_{C}=\frac{\tilde{p}_{L \alpha \beta}(t)-P_{L 0}}{u_{\alpha \beta}^{2}}\left[\begin{array}{c}
0 \tag{54}\\
u_{\alpha} \\
u_{\beta}
\end{array}\right]+\frac{q_{L \alpha \beta}(t)}{u_{\alpha \beta}^{2}}\left[\begin{array}{c}
0 \\
-u_{\beta} \\
u_{\alpha}
\end{array}\right]+\left[\begin{array}{c}
i_{0} \\
0 \\
0
\end{array}\right]
$$

255 where the following equalities have been considered about the 256 parameter in both coordinate systems

$$
\begin{align*}
p_{L \alpha \beta} & =p_{L v} \\
q_{L \alpha \beta} & =q_{L} \tag{55}
\end{align*}
$$

257 From (24), (54) is as follows:

$$
\vec{i}_{C}=\frac{\tilde{p}_{L \alpha \beta}(t)-P_{L 0}}{u_{\alpha \beta}^{2}}\left[\begin{array}{c}
0 \tag{56}\\
u_{\alpha} \\
u_{\beta}
\end{array}\right]+\frac{q_{L \alpha \beta}(t)}{u_{\alpha \beta}^{2}}\left[\begin{array}{c}
0 \\
-u_{\beta} \\
u_{\alpha}
\end{array}\right]+\frac{p_{L 0}(t)}{u_{0}^{2}}\left[\begin{array}{c}
u_{0} \\
0 \\
0
\end{array}\right] .
$$

258 Finally, (56) can be expressed in matrix form as

$$
\left[\begin{array}{c}
i_{C 0} \tag{57}\\
i_{C \alpha} \\
i_{C \beta}
\end{array}\right]=\frac{1}{u_{0} u_{\alpha \beta}^{2}}\left[\begin{array}{ccc}
u_{\alpha \beta}^{2} & 0 & 0 \\
0 & u_{0} u_{\alpha} & -u_{0} u_{\beta} \\
0 & u_{0} u_{\beta} & u_{0} u_{\alpha}
\end{array}\right]\left[\begin{array}{c}
p_{L 0}(t) \\
p_{L \alpha \beta}(t)-P_{L 0} \\
q_{L \alpha \beta}(t)
\end{array}\right]
$$

AQ2 259 This strategy is the same as the one presented in (21). It ob260 tains constant power after compensation and eliminates neutral 261 current. The result (57) shows that compensation currents $i_{C 0}$, $262 i_{C \alpha}, i_{C \beta}$ obtained according to the development presented in 263 this section are the same as the ones obtained according to the 264 development corresponding to the original $p-q$ formulation.

265 C. Simulation Results

266 This compensation objective (constant power) develops the 267 compensation of total instantaneous imaginary power and vari268 able part of instantaneous power.
269 Notice that to reduce the line losses as much as possible 270 without altering the instantaneous power (or the instantaneous 271 active current), i.e., without using energy storage, the imag272 inary power, or equivalently the instantaneous reactive cur273 rent, should be annihilated. The magnitude of instantaneous 274 imaginary power or the length of the instantaneous reactive 275 current characterizes the instantaneous line loss component 276 which can be reduced by elements without energy storage. The 277 compensation with energy storage corresponds to reducing the 278 average loss, without altering the average power transfer. This 279 is the case of constant power after compensation.
280 This strategy has been applied to the power system shown in 281 Fig. 2. It is a three-phase four-wire system whose load is made 282 up of three face-to-face SRCs with a star connected resistor 283 on the right-hand side. The source impedance is 1Ω in each 284 phase, and the values of the load resistors are 10,5 , and 15Ω 285 corresponding to phases 1,2 , and 3 , respectively. It makes the 286 load unbalanced.
287 The results of applying the compensation strategy to the 288 system shown in Fig. 2 when the source is balanced and 289 sinusoidal with a rms value of 100 V are shown in Figs. 3 and 4.

Fig. 2. Experimental prototype.

(a)

(b)

Fig. 3. Instantaneous power (two periods, 0.04 s). (a) Before compensation. (b) After compensation with balanced sinusoidal voltage supply.

In fact, the instantaneous power after compensation is constant. 290 In addition, the source current is balanced and sinusoidal. 291

If source voltage is unbalanced with rms values of 100, 80,292 and 110 V corresponding to phases 1,2 , and 3, respectively, the 293 instantaneous power after applying the compensation strategy 294 to the same power system is constant (688 W) although the 295 source voltage is not balanced and sinusoidal. The source 296 current is shown in Fig. 5. It is not sinusoidal, although the 297 distortion presented by the waveform after compensation is 298 much lower than the one presented before.

Fig. 4. Source current (two periods, 0.04 s). (a) Before compensation. (b) After compensation with balanced sinusoidal voltage supply.

Fig. 5. Source current (two periods, 0.04 s) after compensation with unbalanced sinusoidal voltage supply.

300 In the case of distorted voltage supply, the instantaneous 301 power after applying the compensation strategy to the same 302 power system is constant (757 W) although the source voltage 303 is not balanced and sinusoidal. The source current, as shown in 304 Fig. 6, is not sinusoidal, although the distortion presented by 305 the waveform after compensation is much lower than the one 306 presented before.

Fig. 6. Source current (two periods, 0.04 s) after compensation with unbalanced sinusoidal voltage supply.

The results shown in Figs. 3-6 are the same as the ones 307 obtained by the original theory. It proves that the compensation 308 strategy proposed is not a new theory but a new formulation 309 whose expression is easier to obtain than the original theory's. 310 On the other hand, to obtain sinusoidal source current, as some 311 other authors consider [13]-[17], the instantaneous reactive 312 power theory has to be submitted to a few modifications [4], 313 as presented in next section. This calculation becomes easier 314 from the phase coordinate expression.

IV. Balanced and Sinusoidal Source Current

The strategies presented in Section III obtain constant source 317 power, unity power factor, and balanced and sinusoidal source 318 currents when the voltage applied is balanced and sinusoidal. 319 Nevertheless, if the voltage applied is unbalanced and sinu- 320 soidal, the source current after compensation is not balanced 321 and sinusoidal. Besides, if the voltage applied is balanced 322 nonsinusoidal, the source current is distorted, too. Therefore, 323 in the case of unbalanced and/or nonsinusoidal voltage, the 324 compensation strategy has to be modified to obtain balanced 325 and sinusoidal source current [4].

Therefore, according to [14]-[17], the source current must 327 be proportional to a balanced and sinusoidal voltage vector, 328 i.e., the voltage vector positive-sequence phase component. The 329 proportional constant value must guarantee a null active power 330 supplied by the compensator. Thus, the source current is 331

$$
\begin{equation*}
\vec{i}_{S}=\frac{P}{U^{+2}} \vec{u}^{+} \tag{58}
\end{equation*}
$$

where U^{+}is the voltage vector positive sequence component 332 rms value

$$
\begin{equation*}
U^{+2}=\frac{1}{T} \int_{T}\left(u_{1}^{+2}+u_{2}^{+2}+u_{3}^{+2}\right) d t \tag{59}
\end{equation*}
$$

and u_{1}^{+}, u_{2}^{+}, and u_{3}^{+}are the components of the positive se- 334 quence voltage vector \vec{u}^{+}.

The compensation current is

$$
\begin{equation*}
\vec{i}_{C}=\vec{i}-\vec{i}_{S} \tag{60}
\end{equation*}
$$

(b)

Fig. 7. Source current after compensation with (a) unbalanced and sinusoidal and (b) balanced and nonsinusoidal supply voltage.

337 On the other hand, if the voltage is balanced nonsinusoidal, to 338 obtain a sinusoidal source current and according to [14]-[17], 339 the compensation strategy must be the following:

$$
\begin{equation*}
\vec{i}_{S}=\frac{P}{U_{f}^{2}} \vec{u}_{f} \tag{61}
\end{equation*}
$$

340 where \vec{u}_{f} is the voltage vector fundamental component and U_{f} 341 its rms value

$$
\begin{equation*}
U_{f}^{2}=\frac{1}{T} \int_{T}\left(u_{1 f}^{2}+u_{2 f}^{2}+u_{3 f}^{2}\right) d t \tag{62}
\end{equation*}
$$

342 and $u_{1 f}, u_{2 f}$, and $u_{3 f}$ are the components of the voltage vector 343 fundamental component \vec{u}_{f}.
344 If the voltage applied is unbalanced and nonsinusoidal, 345 the compensation strategy is a composition of the two pre346 vious ones

$$
\begin{equation*}
\vec{i}_{S}=\frac{P}{U_{f}^{+2}} \vec{u}_{f}^{+} \tag{63}
\end{equation*}
$$

347 where U_{1}^{+}is the voltage vector positive sequence fundamental 348 component rms value

$$
\begin{equation*}
U_{f}^{+2}=\frac{1}{T} \int_{T}\left(u_{1 f}^{+2}+u_{2 f}^{+2}+u_{3 f}^{+2}\right) d t \tag{64}
\end{equation*}
$$

Fig. 8. Source current after compensation in an experimental prototype with an unbalanced voltage supply applying (a) traditional strategy and (b) new strategy.
and $u_{1 f}^{+}, u_{2 f}^{+}$, and $u_{3 f}^{+}$are the components of the voltage vector 349 positive-sequence fundamental component \vec{u}_{f}^{+}.

The compensation current is calculated as in (60). The global 351 compensation strategy presented in (61)-(64) guarantees the 352 achievement of balanced and sinusoidal source current with any 353 voltage conditions.

Fig. 7 shows the results of applying this strategy to the 355 system shown in Fig. 2. Fig. 7(a) corresponds to an unbalanced 356 and sinusoidal voltage supply and Fig. 7(b) to a balanced and 357 nonsinusoidal one. In both cases, the source current is balanced 358 and sinusoidal, as can be seen.

An experimental prototype has been developed correspond- 360 ing to the power system shown in Fig. 2. The trigger control, 361 for power electronic devices that constitute the APF, has been 362 implemented through a digital signal processor control board 363 system. The constant power compensation strategy (proposed 364 in [1] and [2]) and the new one (sinusoidal balanced compensa- 365 tion strategy) have been implemented in the control system. The 366 experimental results corresponding to an unbalanced voltage 367 supply are shown in Fig. 8. There, constant power compen- 368 sation strategy presents a source current waveform [Fig. 8(a)] 369 different from the sinusoidal waveform than that obtained ap- 370 plying the new strategy [Fig. 8(b)].

As reference, both waveforms total harmonic distortion mea- 372 sures are indicated. Thus, the corresponding to the constant 373 power compensation is 16%, and the corresponding to the 374

375 sinusoidal and balanced source current compensation is 6%. 376 Besides, applying the last strategy, the source current after 377 compensation is balanced. In any case, it is necessary to 378 consider that these are experimental results where there is an 379 unavoidable ripple due to the threshold band imposed by the 380 pulsewidth modulation control.

381

V. CONCLUSION

382 The original $p-q$ formulation has been analyzed. An equiv383 alent development has been presented in phase coordinates, 384 which allows compensation strategy in a simpler way than the 385 corresponding to the original formulation to be obtained. The 386 new development makes possible, in an easy way, alternative 387 compensation objectives. Thus, the analysis of constant power 388 compensation and constant power compensation eliminating 389 neutral current have been carried out. On the other hand, alter390 native compensation strategies are derived that obtain balanced 391 and sinusoidal source current in any supply voltage conditions. 392 These new developments have been applied as simulation and 393 experimental example to a three-phase four-wire power system, 394 and the results are presented.

395

REFERENCES

[1] H. Akagi, Y. Kanazawa, and A. Nabae, "Generalized theory of the instantaneous reactive power in three-phase circuits," in Proc. IPEC, Tokyo, Japan, 1983, pp. 1375-1386.
[2] H. Akagi, Y. Kanazawa, and A. Nabae, "Instantaneous reactive power compensators comprising switching devices without energy storage components," IEEE Trans. Ind. Appl., vol. IA-20, no. 3, pp. 625-630, May/Jun. 1984.
[3] M. Depenbrock, V. Staudt, and H. Wrede, "A theoretical investigation of original and modified instantaneous power theory applied to fourwire systems," IEEE Trans. Ind. Appl., vol. 39, no. 4, pp. 1160-1167, Jul./Aug. 2003.
[4] P. Salmeron, R. S. Herrera, and J. R. Vazquez, "Mapping matrices against vectorial frame in the instantaneous reactive power compensation," IET-Elect. Power Appl., vol. 1, no. 5, pp. 727-736, Sep. 2007.
[5] A. Nabae, H. Nakano, and S. Togasawa, "An instantaneous distortion current compensator without any coordinate transformation," in Proc. IEEJ IPEC, Yokohama, Japan, 1995, pp. 1651-1655.
[6] F. Z. Peng and J.-S. Lai, "Generalized instantaneous reactive power theory for three-phase power systems," IEEE Trans. Instrum. Meas., vol. 45, no. 1, pp. 293-297, Feb. 1996.
[7] J. L. Willems, "A new interpretation of the Akagi-Nabae power components for nonsinusoidal three-phase situations," IEEE Trans. Instrum. Meas., vol. 41, no. 4, pp. 523-527, Aug. 1992.
[8] H. Akagi, S. Ogasawara, and H. Kim, "The theory of instantaneous power in three-phase four-wire systems: A comprehensive approach," in Conf. Rec. IEEE IAS Annu. Meeting, 1999, vol. 1, pp. 431-439.
[9] S. Bhattacharya, D. M. Divan, and B. Banerjec, "Syncronous frame harmonic isolator using active series filter," in Proc. 4th Eur. Power Electron. Conf., 1991, pp. 30-35.
[10] V. Soares and P. Verdelho, "An instantaneous active and reactive cur- 425 rent component method for active filtres," IEEE Trans. Power Electron., 426 vol. 15, no. 4, pp. 660-669, Jul. 2000. 427
[11] P. Salmerón and J. C. Montaño, "Instantaneous power components in 428 polyphase systems under nonsinusoidal conditions," Proc. Inst. Elect. 429 Eng.-Sci. Meas. Technol., vol. 143, no. 2, pp. 151-155, Mar. 1996. 430
[12] P. Salmerón, J. C. Montaño, J. R. Vázquez, J. Prieto, and A. Pérez, 431 "Practical application of the instantaneous power theory in the compen- 432 sation of four-wire three-phase systems," in Proc. IEEE 28th Annu. Conf. 433 IECON, Nov. 5-8, 2002, vol. 1, pp. 650-655.
[13] R. S. Herrera, P. Salmerón, and H. Kim, "Instantaneous reactive power 435 theory applied to active power filter compensation: Different approaches, 436 assessment, and experimental results," IEEE Trans. Ind. Electron., vol. 55, 437 no. 1, pp. 184-196, Jan. 2008.

438
[14] Z. Du, L. M. Tolbert, J. N. Chiasson, and B. Ozpineci, "Reduced 439 switching-frequency active harmonic elimination for multilevel convert- 440 ers," IEEE Trans. Ind. Electron., vol. 55, no. 4, pp. 1761-1770, Apr. 2008. 441
[15] A. Pigazo, V. Moreno, M. Liserre, and A. Dell'Aquila, "FBD-method 442 based controller for shunt active power filters in marine vessels," in Proc. 443 IEEE ISIE, Jun. 30-Jul. 2, 2008, pp. 2253-2257.

444
[16] K. L Wei, K. Dai, Q. Lei, D. Xiang, Y. Kang, F. Luo, and G. Zhu, 445 "Performance analysis of three-phase three-wire shunt active power filter 446 compensating for unbalanced loads," in Proc. 33rd Annu. IEEE IECON, 447 Nov. 5-8, 2007, pp. 1875-1879.

448
[17] M. Abdusalam, P. Poure, and S. Saadate, "Study and experimental valida- 449 tion of harmonic isolation based on high selectivity filter for three-phase 450 active filter," in Proc. IEEE ISIE, Jun. 30-Jul. 2, 2008, pp. 166-171.

451

Reyes S. Herrera was born in Huelva, Spain. She 452 received the Industrial Engineering degree from the 453 University of Seville, Seville, Spain, in 1995, and 454 the Ph.D. degree in electrical engineering from the 455 University of Huelva, Huelva, Spain, in 2007. From 1996 to 2001, she was with Atlantic Copper 457 Smelter, Huelva, Spain. Since 2001, she has been a 458 Lecturer in the areas of electrotechnical and power 459 electronics with the Department of Electrical Engi- 460 neering, Escuela Politécnica Superior, University of 461 Huelva. Currently, her research includes electrical 462 power theory, electrical power systems, active power filters, and power con- 463 version systems.

Patricio Salmerón was born in Huelva, Spain, in 465 1958. He received the Dr. degree from the Electri- 466 cal Engineering Department, University of Seville, 467 Seville, Spain, in 1993.

468
In 1983, he joined the University of Seville as 469 an Assistant Professor, later becoming an Associate 470 Professor in the Department of Electrical Engineer- 471 ing. Since 1993, he has been a Professor with the 472 Escuela Politécnica Superior, University of Huelva, 473 Huelva, where he is also currently Dean of the 474 Escuela Politécnica Superior. He has joined various 475 projects in connection with research on power theory of nonsinusoidal systems 476 and power control in electrical systems. His research interests include electrical 477 power theory, electrical power systems, active power filters, and power conver- 478 sion systems.

AUTHOR QUERIES

AUTHOR PLEASE ANSWER ALL QUERIES

AQ1 = The acronym "APLCs" was defined as "active power line conditioners." Please check if correct. AQ2 = "Section 2" was deleted. Please check if OK.
AQ3 = Please provide the expanded form of the acronym "SRCs."
AQ4 $=$ All occurrences of " 0,04 " were changed to " 0.04 ." Please check if correct.

END OF ALL QUERIES

[^0]: Manuscript received May 29, 2008; revised January 27, 2009.
 The authors are with the Department of Electrical Engineering, Escuela Politécnica Superior, University of Huelva, Campus of La Rábida, 21819 Palos de la Frontera, Spain (e-mail: reyes.sanchez@die.uhu.es; patricio@uhu.es). Digital Object Identifier 10.1109/TIE.2009.2014749

