
Bayesian Analysis (2019) TBA, Number TBA, pp. 1–28

Determinantal Point Process Mixtures Via
Spectral Density Approach

Ilaria Bianchini∗, Alessandra Guglielmi† and Fernando A. Quintana‡

Abstract. We consider mixture models where location parameters are a priori
encouraged to be well separated. We explore a class of determinantal point pro-
cess (DPP) mixture models, which provide the desired notion of separation or
repulsion. Instead of using the rather restrictive case where analytical results are
partially available, we adopt a spectral representation from which approximations
to the DPP density functions can be readily computed. For the sake of concrete-
ness the presentation focuses on a power exponential spectral density, but the
proposed approach is in fact quite general. We later extend our model to incorpo-
rate covariate information in the likelihood and also in the assignment to mixture
components, yielding a trade-off between repulsiveness of locations in the mixtures
and attraction among subjects with similar covariates. We develop full Bayesian
inference, and explore model properties and posterior behavior using several sim-
ulation scenarios and data illustrations. Supplementary materials for this article
are available online (Bianchini et al., 2019).

Keywords: density estimation, nonparametric regression, repulsive mixtures,
reversible jumps.

1 Introduction

1.1 Mixture models

Mixture models are an extremely popular class of models, that have been successfully
used in many applications. For a review, see, e.g. Frühwirth-Schnatter (2006). Such
models are typically stated as

yi | k,θ,π iid∼
k∑

j=1

πjf(yi | θj), i = 1, . . . , n, (1)

where π = (π1, . . . , πk) are constrained to be nonnegative and sum up to 1, θ =
(θ1, . . . , θk), and 1 ≤ k ≤ ∞, with k = ∞ corresponding to a nonparametric model. A
common prior assumption is that π ∼ Dirichlet(δ1, . . . , δk) and that the components
of θ are drawn i.i.d. from some suitable prior p0. However, the weights π may be con-
structed differently, e.g. using a stick-breaking representation (finite or infinite), which
poses a well-known connection with more general models, including nonparametric ones.
See, e.g., Ishwaran and James (2001) and Miller and Harrison (2017). A popular class
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of Bayesian nonparametric models is the Dirichlet process mixture (DPM) model, in-
troduced in Ferguson (1983) and Lo (1984). It is well-known that this class of mixtures
usually overestimates the number of clusters, mainly because of “the rich gets richer”
property of the Dirichlet process. By this we mean that both prior and posterior dis-
tributions are concentrated on a relatively large number of clusters, but a few are very
large while the rest have very small sizes. Mixture models may even be inconsistent;
see Rousseau and Mengersen (2011), where concerns about over-fitted mixtures are
illustrated, and Miller and Harrison (2013), for inconsistency features of DPMs.

Despite their success, models like (1) tend to use excessively many mixture compo-
nents. Xu et al. (2016) point out that this is due to the fact that the component-specific
parameters are a priori i.i.d., and therefore, free to move. This motivated Petralia et al.
(2012), Fúquene et al. (2016) and Quinlan et al. (2017) to explicitly define joint distri-
butions for θ having the property of repulsion among its components, i.e. p(θ1, . . . , θk)
puts higher mass on configurations with well separated components. See also Quinlan
et al. (2018) for an application to density estimation. For a different approach, via
sparsity in the prior, see Malsiner-Walli et al. (2016).

Xu et al. (2016) explored a similar way to accomplish separation of mixture compo-
nents, by means of a Determinantal Point Process (DPP) acting on the parameter space.
DPPs have recently received increased attention in the statistical literature (Lavancier
et al., 2015). DPPs are point processes having a product density function expressed as
the determinant of a certain matrix constructed using a covariance function, evaluated
at the pairwise distances among points, in such a way that higher mass is assigned to
configurations of well-separated points. We give details below. DPPs have been used to
make inference mostly on spatial data. Bardenet and Titsias (2015) and Affandi et al.
(2014) applied DPPs to model spatial patterns of nerve fibers in diabetic patients, a
basic motivation being that such fibers become more clustered as diabetes progresses.
The latter discussed also applications to image search, showing how such processes could
be used to study human perception of diversity in different image categories. Similarly,
Kulesza and Taskar (2012) show how DPPs can be applied to various problems that are
relevant to the machine learning community, such as finding diverse sets of high-quality
search results, building informative summaries by selecting diverse sentences from doc-
uments, modeling non-overlapping human poses in images or videos, and automatically
building timelines of important news stories. More recently, Shirota and Gelfand (2017)
have described an approximate Bayesian computation method to fit DPPs to spatial
point pattern data. Historically, the first paper where DPPs were adopted as a prior
for statistical inference in mixture models is Affandi et al. (2013). The statistical liter-
ature also includes a number of papers illustrating theoretical properties for estimators
of DPPs from a non-Bayesian viewpoint; see, for instance, Biscio and Lavancier (2016,
2017) and Bardenet and Titsias (2015).

1.2 Main contributions of this work

We discuss full Bayesian inference for a class of mixture densities where the locations
follow stationary DPPs. Our first contribution is the introduction of an approach that
generalizes and extends the model studied in Xu et al. (2016) who base their analysis
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on a special, finite state space case of DPPs called L-ensembles, and with a particular
closed-form expression for the determinant, in terms of a Gaussian covariance function.
Instead, we resort to the spectral representation of the covariance function defining the
determinant as the joint distribution of component-specific parameters. Our methods
can thus be used with any such valid spectral representation, as described by Lavancier
et al. (2015), which implies great generality of the proposal, that goes well beyond
the Gaussian covariance function with a squared exponential kernel case of Xu et al.
(2016). The extensions considered here are stated in the context of both uni- and multi-
dimensional responses, and with different spectral densities. For brevity of presentation,
we defer details of computational implementation to Section 1 of the on-line Supple-
mentary Material file. For the sake of concreteness, our illustrations focus on the case of
power exponential spectral representation; see examples with different spectral densities
in Section 2 of the on-line Supplementary Material. This particular specification allows
for flexible repulsion patterns, and we discuss how to set up different types of prior be-
havior, shedding light on the practical use of our approach in that particular scenario.
Although we limit ourselves to the case of isotropic DPPs, inhomogeneous DPPs can be
obtained by transforming or thinning a stationary process (Lavancier et al., 2015). A
crucial point in our models and algorithms is the DPP density expression with respect
to the unit rate Poisson process. This density is only defined for DPPs restricted to
compact subsets S of the state space, and if it exists, it explicitly depends on S. A suf-
ficient condition for the existence of the density is that all the eigenvalues of (Mercer’s
Theorem representation of) covariance function, restricted to S, are smaller than 1. We
follow the spectral approach and assume that the covariance function defining the DPP
has a spectral representation. One basic motivation for our choice is that conditions for
the existence of a density become easier to check. Another motivation is the flexibility
in assuming different degrees of repulsion in the DPP by way of the spectral density.
We review here the basic theory on DPPs, making an effort to be as clear and concise
as possible in the presentation of our subsequent models. We discuss applications in the
context of synthetic and real data applications.

A second contribution of this work is the extension of the proposed spectral DPP
model to incorporate covariate information in the likelihood and also in the assignment
to mixture components. In particular, subjects with similar covariates are a priori more
likely to co-cluster, just as in mixtures of experts models (see, e.g., McLachlan and
Peel, 2005), where weights are defined as normalized exponential functions. From a
computational viewpoint, a third contribution of our work is the generalization of the
reversible jump (RJ) MCMC posterior simulation scheme proposed by Xu et al. (2016)
to the general spectral approach and also to the covariate-dependent extensions we
consider. We discuss two RJ MCMC versions, one for each of uni- and multi-variate
responses. In all cases the algorithms require computing the DPP density with respect
to the unit rate Poisson process. We explain how to carry out the calculations, and
discuss the required restriction of the process to compact subsets. When extending the
model to incorporate covariate information in both likelihood and prior assignment to
mixture components, we discuss how to modify the RJ MCMC algorithms; see Section 3
of the on-line Supplementary Material.

Although not our primary target, a sub-product of the approach is the estimation of
a partition in the sample. Specifically, we consider the partition minimizing the posterior
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expectation of Binder’s loss function (Binder, 1978) under equal misclassification costs, a
common choice in the applied Bayesian nonparametric literature (Lau and Green, 2007).
Nevertheless, we emphasize one conceptual advantage of the separation induced by the
prior assumption, namely, the reduction in the estimated number of clusters a posteriori
compared to the usual mixture models without this feature. The fact that our prior
generates components from a repulsive process, automatically penalizes redundancy,
thus inducing fewer clusters than if they were allowed to be independently selected.
Reducing the effective number of clusters a posteriori helps scaling up our model –
better than alternatives with no separation – when the sample size grows. We discuss
this particular point in our data illustrations.

We also provide comparison with alternative models, via predictive goodness-of-
fit tools. We specifically consider some “natural competitors”, namely DPMs and the
repulsive mixtures such as those introduced in Petralia et al. (2012) and Quinlan et al.
(2017), as well as finite mixture models, as implemented in the package Mclust (Fraley
et al., 2012). We find that our model is a competent alternative to those previously
listed.

1.3 Outline

The rest of this article is organized as follows. Section 2 presents notation and theoretical
background necessary to understand how DPP mixture models are constructed; we also
sketch alternative repulsive models already introduced in the literature, later to be used
as a comparison in the context of specific illustrative examples. Section 3 illustrates the
covariate-dependent extension. Here we build on regular mixture models, incorporating
covariate dependence in the mixture weights and optionally in the likelihood, which
still allows for repulsion among components after correcting for the regression effect.
Section 4 presents results from a simulation study and for unidimensional and bidimen-
sional reference datasets, and an application to Biopic data is discussed in Section 5. We
conclude in Section 6 with final comments and discussion. The on-line Supplementary
Material contains a description of the two RJ MCMC algorithms, additional illustrative
examples based on the well-known Galaxy dataset, supplemental figures, and additional
application to Air Quality Index data.

2 Using DPPs to induce repulsion

We review here the basic theory on DPPs to the extent required to explain our mixture
model. We use the same notation as in Lavancier et al. (2015), where further details on
this theory may be found.

2.1 Basic theory on DPPs

Let B ⊆ R
d; we mainly consider the cases B = R

d and B = S, a compact subset in
R

d . Let X be a simple locally finite spatial point process defined on B, i.e. the num-
ber of points of the process in any bounded region is a finite random variable, and
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there is at most one point at any location. See Daley and Vere-Jones (2003; 2007)
for a general presentation on point processes. The class of DPPs we consider is de-
fined in terms of their moments, expressed by their product density functions ρ(n) :
Bn → [0,+∞), n = 1, 2, . . .. Intuitively, for any pairwise distinct points x1, . . . , xn ∈ B,
ρ(n)(x1, . . . , xn)dx1 · · · dxn is the probability that X has a point in an infinitesimal small
region around xi of volume dxi, for each i = 1, . . . , n. More formally, X has n-th or-
der product density function ρ(n) : Bn → [0,+∞) if this function is locally integrable
(i.e.

∫
S
|ρ(n)(x)|dx < +∞ for any compact S) and, for any Borel-measurable function

h : Bn → [0,+∞),

E

⎛⎝ �=∑
x1,...,xn∈X

h(x1, . . . , xn)

⎞⎠ =

∫
Bn

ρ(n)(x1, . . . , xn)h(x1, . . . , xn)dx1 · · · dxn,

where the �= sign over the summation means that x1, . . . , xn are pairwise distinct. See
also Møller and Waagepetersen (2007).

Let C : B×B → R denote a covariance function. A simple locally finite spatial point
process X on B is called a determinantal point process with kernel C if its product
density functions are

ρ(n)(x1, . . . , xn) = det[C](x1, . . . , xn), (x1, . . . , xn) ∈ Bn,

for n = 1, 2, . . ., where [C](x1, . . . , xn) is the n × n matrix with entries C(xi, xj). We
write X ∼ DPPB(C); when B = R

d we write X ∼ DPP (C). Note that, if A is a Borel
subset of B, then the restriction XA := X ∩A of X to A is a DPP with kernel given by
the restriction of C to A×A.

By Theorem 1 in Lavancier et al. (2015), first proved by Macchi (1975), such DPP’s
exist under the two following conditions:

• C is a continuous covariance function, hence, by Mercer’s Theorem, for any com-
pact subset S,

C(x, y) =

+∞∑
k=1

λS
kφk(x)φk(y), (x, y) ∈ S × S,

where {λS
k } and {φk(x)} are the eigenvalues and eigenfunctions in Mercer’s The-

orem representation of C restricted to S × S, respectively;

• λS
k ≤ 1 for all compact S in R

d and all k.

Note that, since ρ(n)(x1, . . . , xn) defined above has the interpretation of the den-
sity of a point (x1, . . . , xn), and the determinant of the matrix [C](x1, . . . , xn) is the
hypervolume of the parallelepiped spanned by the columns of this matrix, the density
grows as the columns become more separated. Continuity of the covariance function C
implies that ρ(n)(x1, . . . , xn) converges to 0 if xi → xj for some i �= j. Moreover, since
the determinant of [C](x1, . . . , xn) is less than or equal to the product of its diagonal



6 Determinantal Point Process Mixtures Via Spectral Density Approach

elements, then ρ(n)(x1, . . . , xn) ≤ ρ(x1) · · · ρ(xn), where ρ(x) = ρ(1)(x) = C(x, x) is
the intensity function; this can be interpreted as follows: the joint probability of any
configuration of points is less than if they were placed independently from each other
placement. All this motivates the use of the term repulsive processes for determinantal
point processes; see Lavancier et al. (2015), Section 2.2.

Formula (2.10) in Lavancier et al. (2015) reports the distribution of the number
N(S) of points of X in S, for any compact S:

N(S)
d
=

+∞∑
k=1

Bk, E(N(S)) =

+∞∑
k=1

λS
k , Var(N(S)) =

+∞∑
k=1

λS
k (1− λS

k ), (2)

where Bk
ind∼ Be(λS

k ), i.e. the Bernoulli random variable with mean λS
k . In practice, all

these summations have to be numerically evaluated. When restricted to any compact
subset S, the DPP has a density with respect to the unit rate Poisson process which,
when λS

k < 1 for all k = 1, 2, . . ., has the following expression:

f({x1, . . . , xn}) = e|S|−DSdet[C̃](x1, . . . , xn), (3)

for n = 1, 2, . . ., where |S| =
∫
S
dx, DS = −

∑+∞
1 log(1− λS

k ) and

C̃(x, y) =

+∞∑
1

λS
k

1− λS
k

φk(x)φk(y), x, y ∈ S. (4)

When n = 0 the density (as well as the determinant) is defined to be equal to 0. See
Møller and Waagepetersen (2007) for a thorough definition of absolute continuity of a
spatial process with respect to the unit rate Poisson process. However, note that from
the first part of (2) we have P(N(S) = 0) =

∏+∞
k=1(1 − λS

k ); this probability could be
positive due to the assumption λS

k < 1 for all k = 1, 2, . . ..

From now on we restrict our attention to stationary DPP’s, that is, when C(x, y) =
C0(x− y), where C0 ∈ L2(Rd) is such that its spectral density ϕ exists, i.e.

C0(x) =

∫
R

d
ϕ(y) cos(2πx · y)dy, x ∈ R

d

and x · y is the scalar product in R
d . If ϕ ∈ L1(Rd) and 0 ≤ ϕ ≤ 1, then the DPP (C)

process exists. Summing up, the distribution of a stationary DPP can be assigned by
its spectral density; see Corollary 1 in Lavancier et al. (2015). Notice that C0, which
defines the covariance function to be isotropic, is the Fourier transform of ϕ, so that
they are in one-to-one correspondence. Therefore, we can indistinctly identify one by
the other, which explains why we can define the DPP by ϕ.

To explicitly evaluate (3) over S =

[
−1

2
,
1

2

]d
, we approximate C̃ as suggested in

Lavancier et al. (2015). In other words, we approximate the density of X on S by

fapp({x1, . . . , xn}) = e|S|−Dappdet[C̃app](x1, . . . , xn), (5)
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where {x1, . . . , xn} ⊂ S and

C̃app(x, y) = C̃app,0(x− y) =
∑
k∈Zd

[
ϕ(k)

1− ϕ(k)

]
cos(2πk · (x− y)), x, y ∈ S, (6)

Dapp =
∑
k∈Zd

log

(
1 +

ϕ(k)

1− ϕ(k)

)
. (7)

To understand why the approximation C(x, y) ≈ Capp,0(x− y) for x− y ∈ S follows, as
well as the corresponding approximation for the tilted versions of these functions, we
observe that the exact Fourier expansion of C0(x−y) in S is as in (6) with the real part
of

∫
S
C0(y)e

−2πik·ydy instead of ϕ(k); assuming C0 is such that C0(t) ≈ 0 for t �∈ S,
then

Re

(∫
S

C0(y)e
−2πik·ydy

)
≈ ϕ(k) := Re

(∫
R

d
C0(y)e

−2πik·ydy

)
.

See also Lavancier et al. (2015), Section 4.1. See Figure 1 in the Supplementary Material,
where we display an example of the function C0. Note that the above approximation im-
plies that λS

k is numerically approximated by ϕ(k). Indeed, all the quantities in formula
(2) can be obtained in this way.

When S = R is a rectangle in R
d , we can always find an affine transformation T

such that T (R) = S =

[
−1

2
,
1

2

]d
. Define Y = T (X). If fapp

Y is the approximate density

of Y as in (5), we can then approximate the density of XR by

fapp({x1, . . . , xn}) = |R|−ne|R|−|S|fapp
Y (T ({x1, . . . , xn})), (8)

for {x1, . . . , xn} ⊂ R. In practice, the summation over Zd in (6) above is truncated to
Z
d
N , where ZN := {−N,−N+1, . . . , 0, . . . , N−1, N} (see Section 4.3 in Lavancier et al.,

2015).

As mentioned in the Introduction, one particular example of spectral density that
we found useful is

ϕ(x; ρ, ν) = sd exp

⎧⎨⎩−
(

s√
π

)ν
(
Γ(d2 + 1)

Γ( dν + 1)

)νd

ρνd‖x‖ν
⎫⎬⎭ , ρ, ν > 0, (9)

for fixed s ∈ (0, 1) (e.g. s = 1
2 ) and ‖x‖ is the Euclidean norm of x ∈ R

d . This function
is the spectral density of a power exponential spectral model. See (3.7) in Lavancier et al.
(2015) setting α = s αmax(ρ, ν). In this case, we write X ∼ PES − DPP (ρ, ν). The
corresponding spatial process is isotropic. When ν = 2, the spectral density is

ϕ(x; ρ, ν) = sd exp

{
−s2ρ2d√

π
‖x‖2

}
, ρ > 0,

corresponding to the Gaussian spectral density. We discuss more specifically the choice
of (9) later in Section 4.
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2.2 The mixture model with repulsive means

To deal with limitations of model (1) or DPMs, we consider repulsive mixtures. Our
aim is to estimate a random partition of the available subjects, and we want to do so
using “few” groups. By repulsion we mean that cluster locations are a priori encour-
aged to be well separated, thus inducing fewer clusters than if they were allowed to
be independently selected. We start from parametric densities f(·; θ), which we take to
be Gaussian, and assume that the collection of location parameters follows a DPP. We
specify a hierarchical model that achieves the goals previously described. Concretely,
we propose:

yi | si = k, {μk}, {σ2
k},K

ind∼ N
(
yi;μk, σ

2
k

)
for each i (10)

X = {μ1, μ2, . . . , μK ,K} ∼ PES −DPP (ρ, ν) (11)

(ρ, ν) ∼ π (12)

p(si = k) = wk, k = 1, . . . ,K for each i (13)

w1, . . . , wK | K ∼ Dirichlet(δ, δ, . . . , δ) (14)

σ−2
k | K iid∼ Gamma(a0, b0), (15)

where the PES-DPP(ρ, ν) assumption (11) is regarded as a default choice that could
be replaced by any other valid DPP alternative. We stress the explicit role of K in
formula (12), where K represents the (random) total number of points generated by
the determinantal point process prior. By the approximation procedure described in
Section 2.1,K represents the total numberN(S) of points in the compact set S, assumed
to be large enough to contain all required latent cluster means (points); see (2). Recall
also that in practice all we need is to work on the cube [−1/2, 1/2]d and then use a
linear transformation of this cube onto a cube large enough to cover all required centers,
as just described. The choice of π in (12) will be discussed below in Section 4. We note
that, as stated, the prior model may assign a positive probability to the case K = 0.
This case of course makes no sense from the viewpoint of the model described above.
Nevertheless, we adopt the working convention of redefining the prior to condition on
K ≥ 1, i.e., truncating the DPP to having at least one point. In practice, the posterior
simulation scheme later described simply ignores the case K = 0, which produces the
desired result. Note also that we have assumed prior independence among blocks of
parameters not involving the locations μk.

Model (10)-(15) is a DPP mixture model along the lines proposed in Xu et al. (2016).
Indeed, we both use DPPs as priors for location points in the mixture of parametric
densities. However, the specific DPP priors are different, as they restrict to a particular
case of DPPs (L-ensembles) that require a finite state space, and choose a Gaussian
covariance function for which eigenvalues and eigenfunctions in the corresponding Mer-
cer’s Theorem representation are analytically available. We adopt instead the spectral
approach for assigning the prior (11), which implies great generality of the proposal.
Similar to Xu et al. (2016), we carry out posterior simulation using a reversible jump step
as part of the Gibbs sampler. However, when updating the location points μ1, . . . , μK
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we refer to formulas (5)-(8). Xu et al. (2016) take advantage of the analytical expres-
sions that we do not have for our case, and that are also unavailable in other possible
specific choices of the spectral density.

As a general comment, we underline that the numerical evaluation of the DPP den-
sity, involving the computation of the determinant of a K×K matrix, is not particularly
expensive, even in case of a large dataset; in this case, the repulsion property will fa-
vor a moderate number K of clusters. See Section 4.4, where we describe applications
of this model to datasets, using the posterior simulation algorithms described in Sec-
tion 1 in the Supplementary material. In our experience, the proposed model scales well
compared to mixtures with independent components.

2.3 Competitor repulsive models

We briefly introduce the class of parsimonious mixture models in Quinlan et al. (2017),
to be used as a competitor model for our applications. Quinlan et al. (2017) exploit
the idea of repulsion, i.e. when any two mixture components are encouraged to be well
separated, as we do. For the sake of comparison, we introduce their model for unidimen-
sional data: similarly to our case, they consider a mixture of K Gaussian components,
but assume a fixed value k for K in (10) and (13)-(15). The prior for the location param-
eters μ1, . . . , μk is called repulsive distribution, and denoted by NRepk(μ,Σ, τ), where
μ ∈ R, Σ, τ > 0; see (3.4)-(3.6) in Quinlan et al. (2017). This prior is characterized by
a repulsion potential that assumes the following expression:

φ1(r; τ) = − log
(
1− e−

1
2τ r2

)
1(0,+∞)(r), τ > 0 ;

Petralia et al. (2012) use a similar model, where the repulsion potential is

φ2(r; τ) =
τ

r2
1(0,+∞)(r), τ > 0 .

Potential φ2 introduces a stronger repulsion than φ1, in the sense that in Petralia et al.
(2012), locations are encouraged to be further apart than in Quinlan et al. (2017). Note
also that, by nature of the point process, our approach does not require an upper bound
on the allowed number of mixture components (similar to DPM models), contrary to
the approach in Quinlan et al. (2017) and Petralia et al. (2012).

All models under comparison for a specific application will be matched in such a
way that they have the same prior expected number K of components in the mix-
tures.

3 Generalization to covariate-dependent models

The methods discussed in Section 2 were devised for density estimation-like prob-
lems. We now extend the previous modeling to the case where p-dimensional covariates
z1, . . . , zn are recorded as well. We do so by allowing the mixture weights to depend on
such covariates. In this case, there is a trade-off between repulsiveness of locations in
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the mixtures and attraction among subjects with similar covariates. We also entertain
the case where covariate dependence is added to the likelihood part of the model. Our
modeling choice here is akin to mixtures of experts models (see, e.g., McLachlan and
Peel, 2005), i.e., the weights are defined by means of normalized exponential function.

Building on the model from Section 2.2, we assume the same likelihood (10) and the
DPP prior for X = {μ1, μ2, . . . , μK ,K} in (11)-(12), but change (13) and (14) to

p(si = k) = wk(zi) =
exp

(
βT
k zi

)∑K
l=1 exp

(
βT
l zi

) , k = 1, . . . ,K (16)

β2, . . . , βK | K iid∼ Np (β0,Σ0) , β1 = 0, (17)

where the β1 = 0 assumption is to ensure identifiability. To complete the model, we
assume (15) as the conditional marginal for σ2

k; the prior for (ρ, ν) in (12) is later
specified. Here β0 ∈ R

p, and to choose Σ0, we use a g-prior approach, namely Σ0 =

φ×
(
ZTZ

)−1
, where φ is fixed, typically of the same order of magnitude of the sample

size (see Zellner, 1986). Here Z denotes the design matrix.

Assuming now (10) on top of (16)-(17) rules out the case of a likelihood explicitly
depending on covariates, which instead would generally achieve a better fit than other-
wise. Of course, there are many ways in which such dependence may be added. For the
sake of concreteness, we assume here a Gaussian regression likelihood, where only the
intercept parameters arise from the DPP prior. More precisely, we assume

yi | si = k, zi, {μk}, {σ2
k},K

ind∼ N
(
yi;μk + zTi γk, σ

2
k

)
(18)

for all i = 1, . . . , n, and

γi | K,σ2
i

ind∼ N (γ0, σ
2
iΛ0) and σ−2

i
iid∼ Gamma(a0, b0), (19)

where the γk’s are p-dimensional regression coefficients, γ0 ∈ R
p and Λ0 is a covariance

matrix. The prior for {si} and βj ’s is given in (16)-(17) as in the previous model. Note
that (18) implies that only the intercept term is distributed according to the repulsive
prior. Thus, we allow the response mean to be corrected by a linear combination of the
covariates with cluster-specific coefficients, with the repulsion acting only on the residual
of this regression. The result is a more flexible model than the repulsive mixture (10)-
(15). Observe that there is no need to assume the same covariate vector in (18) and
(16), but we do so for illustration purposes only.

The Gibbs sampler algorithm employed to carry out posterior inference for this
model is detailed in Section 3 of the Supplementary material. However, it is worth noting
that the reversible jump step related to updating the number of mixture components
K and the update of the coefficients {β2, β3, . . . , βK} are complicated by the presence
of the covariates. For the β coefficients, we resort to a Metropolis-Hastings step, with a
multivariate Gaussian proposal centered in the current value. For K, we employ an ad
hoc Reversible Jump move.
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4 Simulated data and reference datasets

Before illustrating the application of our models to specific datasets, we discuss some
general choices that apply to all examples.

4.1 Spectral density and other general choices

As discussed earlier, our methods are quite general in the sense that they can be used
with any valid spectral density. Practical implementation, however, requires choosing
one such function, and the power exponential function in (9) is a convenient and flexible
choice. In this case, note that ϕ(x; ρ, ν) < 1 when 0 < s < 1 for any x ∈ R

d , ρ, ν > 0, so
that XS has a density as described in (3). Figure 2 in the Supplementary material shows
a plot of the power exponential spectral density (9) for different values of parameters ρ,
ν. Note that ν controls the shape of ϕ(x; ρ, ν), which ranges from a slowly decreasing
function of x when ν is small, to an indicator function when ν is large. On the other
hand ρ plays the role that resembles a location parameter, with higher values retarding
the decay speed of ϕ(x; ρ, ν). As discussed in Section 2.1, knowledge about the spectral
density is all that is needed for the approximations to work. Moreover, even if the
analytic expression of C(x, y), (x, y) ∈ R

d × R
d is known, as in, e.g. (9), we still need

to compute the eigenvalues and eigenfunctions (of Mercer’s Theorem representation) of
C restricted to S × S for any compact S, and this may be analytically impossible. A
potential disadvantage derived from this is that parameter interpretation in the spectral
domain becomes unclear. We reckon this is a problem that arises for any particular
parametrized version of ϕ one may choose.

Prior elicitation for (ρ, ν) is complicated due to the reasons stated above. Therefore,
an extensive sensitivity analysis regarding π(ρ, ν) was carried out for the datasets con-
sidered below. See Sections 4.2 and 4.3. We point out that an initial prior independence
assumption π(ρ, ν) = π(ρ) π(ν) produced bad mixing of the chain. In particular, when ρ
is small with respect to ν, the spectral function ϕ(·) has a very narrow support, concen-

trated near the origin, forcing the covariance function C̃app(x, y) in (6) to become nearly
constant for x, y ∈ S and thus producing nearly singular matrices. We next investigated
the case π(ρ, ν) = π(ρ | ν)× πν(ν), where

ρ | ν d
= M(s, ε, ν) + ρ0, ρ0 ∼ Gamma(aρ, bρ).

Here, M(s, ε, ν) is a constant that is the minimum value of ρ such that ϕ(2) > ε (here
ϕ(2) is a reference value chosen to avoid a small support), and ε is a threshold value,
assumed to be small (0.05, for instance). From Figure 2 in the Supplementary Material,
it is clear that ϕ(·; ρ, ν) goes to 0 too fast when ν is small relative to ρ. It follows that

M(s, ε, ν) =
2sΓ(1/ν + 1)π1/2

Γ(3/2)
(
log

(s
ε

))1/ν
.

We considered two different choices for πν : a gamma distribution, which gave a bad
chain mixing, and a discrete distribution on V2 = {0.5, 1, 2, 3, 5, 10, 15, 20, 30, 50} (or on
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one of its subsets). In this case, the mixing of the chain was better, but the posterior for
ν did not discriminate among the values in the support. For this reason, in Sections 4.5
and 5 and in Section 5 of the Supplementary Material, we assume ν = 2, s = 1/2 and

ρ
d
=

√
π

log( 1
2ε )

+ ρ0, ρ0 ∼ Gamma(aρ, bρ). (20)

These choices guarantee that a reasonable number of nonzero terms are present when
evaluating C̃app(x, y), avoiding either too few, and hence a near singularity when eval-
uating (8), or too many, which will cause excessive computational burden.

In what follows, every run of the Gibbs sampler (implemented in R) produced a final
sample size of 5,000 or 10,000 iterations (unless otherwise specified), after a thinning
of 10 and initial burn-in of 5,000 iterations. In all cases, convergence was checked using
both visual inspection of the chains and standard diagnostics available in the CODA

package.

4.2 Data illustration on reference datasets without covariates

We illustrate our model via two datasets without covariates with unidimensional
(Galaxy data) and bidimensional (Air Quality data) observations, both publicly avail-
able in R (galaxy from the DPpackage and airquality in the base version). For the
latter data set we removed 42 incomplete observations.

The popular dataset Galaxy contains n = 82 measured velocities of different galaxies
from six well-separated conic sections of space. Values are expressed in Km/s, scaled
by a factor of 10−3. We set the hyperparameters in this way: for the variance σ2

k of the
components, (a0, b0) = (3, 3) (such that the mean is 1.5 and the variance is 9/4) and for
the weights {wk} the Dirichlet has parameter (1, 1, . . . , 1). The other hyperparameters
are modified in the tests, as in Table 1, where we report summaries of interest, such as
the prior and posterior mean and variance for the number of components K. In addition,
we also display the mean squared error (MSE) and the log-pseudo marginal likelihood
(LPML) as indices of goodness of fit, defined as MSE =

∑n
i=1(yi − ŷi)

2 and LPML =∑n
i=1 log

(
f(yi | y(−i))

)
, where ŷi is the posterior predictive mean and f(yi | y(−i)) is the

i−th conditional predictive ordinate, that is the predictive distribution obtained using
the dataset without the i−th observation. Figure 1 shows density estimates and the
estimated partition of the data, obtained as the partition that minimizes the posterior
expectation of Binder’s loss function under equal misclassification costs (see Lau and
Green, 2007). The points at the bottom of the plots represent observations, while colors
refer to the corresponding cluster. See Figure 4 below for the posterior distribution of
K for Test 4 and 6 in Table 1.

As a comparison, the same posterior quantities than in Table 1 were computed
using the DPM, the Repulsive Gaussian Mixture Models (RGMM) by Quinlan et al.
(2017), and also the proposal by Petralia et al. (2012). To make results comparable, we
assumed the same prior information on hyperparameters common to all the mixture
models. See Table 4. From these tables, it is clear that alternative repulsive models are
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Test ρ ν E(K) V ar(K) E(K|data) V ar(K|data) MSE LPML

1 2 2 2 1.67 6.09 1.10 78.95 -171.72

2 5 10 5.00 7.12 6.07 1.09 78.33 -167.96

3 aρ = 1, bρ = 1 2 2.18 1.978 6.10 1.10 73.89 -164.47

4 aρ = 1, bρ = 1 10 2.73 2.15 6.11 1.12 74.93 -162.71

5 aρ = 1, bρ = 1 discr(V1) 2.47 2.21 6.06 1.08 74.02 -172.54

6 aρ = 1, bρ = 1 discr(V2) 2.51 2.27 6.10 1.13 76.64 -170.94

Table 1: Prior specification for (ρ, ν) and K and posterior summaries for the
Galaxy dataset; (aρ, bρ) appear in (20); here V1 is {1, 2, 5, 10, 20} and V2 =
{0.5, 1, 2, 3, 5, 10, 15, 20, 30, 50}.

Figure 1: Density estimates and estimated partition for the Galaxy dataset under Test 4
in Table 1, including 90% credibility bands (light blue).

good competitors to ours, and that they generally achieve a better fit to the dataset.
The tests showing the best indexes of goodness of fit are typically those overestimating
the number of clusters. It is well-known that, in general, clustering in the context of
DPMs and mixture models as those in Quinlan et al. (2017) and Petralia et al. (2012) is
affected by the base measure. Our model, on the other hand, avoids the delicate choice of
the base measure leading to more stable estimates of K. And in fact, we found that our
model has better goodness-of-fit indexes than the competitor repulsive mixtures in the
case of a simulated dataset with 8 well-separated mixture components; see Section 4.4.
This shows that our proposal is indeed a competitive alternative.

Finally, we recall that in Section 2 in the Supplementary material we report some
further tests on the Galaxy dataset to show the influence of various choices of spectral
density on the inference. We conclude that there is evidence that the approach is not
sensitive with respect to the choice of spectral density.
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We have considered one further application, this time using the same variables from
the dataset Air Quality (ozone and solar radiation) as considered in Quinlan et al.
(2017). Instead of (10), we assume that our likelihood is a bidimensional Gaussian,
with bidimensional mean vectors distributed according to the PES −DPP (ρ, ν) prior
as before, and with covariance matrices Σk independent and identically distributed ac-
cording to the inverse-Wishart distribution. See Section 1 in the Supplementary Material
for changes in the Gibbs sampler with multidimensional data points, this time adapted
from Dellaportas and Papageorgiou (2006). Table 2 reports summaries of interest for a
few tests carried out, including the prior and posterior mean and variance for the num-
ber of components K, and the LPML. As usual in the context of other mixture models,
we find that the inference depends on the chosen hyperparameters. If we compare with
corresponding inference in Quinlan et al. (2017), we got lower estimates of K, and a
better fit of the model to the data. The posterior predictive densities, not shown here,
seem very similar to those in Quinlan et al. (2017), Fig. 9 (b).

Test ρ ν E(K) V ar(K) E(K|data) V ar(K|data) LPML

7 3 2 3 2.62 2.18 0.39 -246.81
8 ρ0 ∼ Gamma(1, 0.5) 2 2.7 2.37 2.15 0.21 -257.66

Table 2: Prior specification for (ρ, ν) andK and posterior summaries for the airquality
dataset; ρ0 appear in (20).

4.3 Tests on data from a mixture with 8 components

We simulated a dataset with n = 100 observations from a mixture of 8 components. Each
component is the Gaussian density with mean θk and σ2

k = σ2 = 0.05: the means {θk}
are evenly spaced in the interval (−10, 10). In the model (10)-(15), we set a0 = 2.0025,
b0 = 0.050125 so that E(ρ0) = 0.05 and V ar(ρ0) = 1; again, s = 0.5 and δ = 1.

Table 3 reports hyperparameters values for different tests and posterior summaries
of interest, as well as prior mean and variance of K. In particular, we show the posterior
mean and variance for the number of components K (with which we assess the effec-
tiveness of the model for clustering), the mean squared error (MSE) and the log-pseudo
marginal likelihood (LPML) (that helps quantifying the goodness-of-fit). In all cases
we obtain a pretty satisfactory estimate of the exact number of components, which is
8: the posterior is concentrated around the true value with a very small variance. In
particular, we got that P(K = 8|data) is equal to 0.96 and 0.93 under Tests S2 and S7

in Table 3, respectively.

From the density estimation viewpoint, we have from Table 3 that both MSE and
LPML are similar for all the tests, thus indicating insensitiveness with respect to the
prior choice of parameters ρ and ν. However, preferable tests seem to be S2 and S7;
see Figure 2, where density estimates and estimated partitions for these two cases are
displayed. The posterior density of ρ under Tests S2 and S7 is shown in Figure 3.
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Prior specification
Test ρ ν E(K) V (K)
S0 9.00 1 8.98 45.12
S1 9 10 9 23.05
S2 aρ = 1, bρ = 1 1 1.94 1.99
S3 aρ = 1, bρ = 1 2 2.18 1.99
S4 aρ = 1, bρ = 1 10 2.74 2.17
S5 aρ = 1, bρ = 1 discr(2,5,20) 2.52 2.11
S6 aρ = 1, bρ = 1 discr(V1) 2.45 2.18
S7 aρ = 1, bρ = 1 discr(V2) 2.5 2.25

Posterior summaries
Test E(K | data) V (K | data) MSE LPML
S0 7.98 0.20 4.65 2.39
S1 7.99 0.19 4.62 3.10
S2 8.00 0.17 4.62 3.66
S3 7.991 0.16 4.62 3.03
S4 7.99 0.17 4.63 2.96
S5 7.99 0.16 4.63 3.61
S6 7.99 0.17 4.65 3.42
S7 7.99 0.18 4.63 3.36

Table 3: Prior specification for (ρ, ν) and the corresponding mean and variance induced
on K (top). Hyperparameters (aρ, bρ) appear in (20), while V1 = {1, 2, 5, 10, 20} and
V2 = V1 ∪ {0.5, 3, 15, 30, 50}. Posterior summaries for the simulated dataset from a
mixture with 8 components are in the bottom subtable.

Figure 2: Density estimate and estimated partition for the simulated dataset from the
mixture of 8 components under Tests S2 (left) and S7 (right) in Table 3. The points at
the bottom of the density estimate represent the data, and each color represents one of
the eight estimated clusters.
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Figure 3: Posterior distribution of ρ for the simulated dataset from the mixture of 8
components under Tests S2 (left) and S7 (right) in Table 3.

DPM

Test α E(K) E(K|data) V ar(K|data) MSE LPML

D1 Gamma(0.5, 1) 2.9 6.166 1.549 62.703 -151.797
D2 0.8 4.3 5.936 1.25 61.255 -151.146
D3 0.45 3 4.371 1.142 139.659 -169.978
D4 Gamma(4, 2) 7.7 7.271 1.594 36.708 -149.258

Repulsive models

Model E(K|data) V ar(K|data) MSE LPML

Quinlan et al. (2017) 6.462 0.440 38.122 -162.574
Petralia et al. (2012) 7.621 0.757 20.964 -156.522

Table 4: Prior specification for α and posterior summaries for the Galaxy dataset using
the function DPdensity in DPpackage (top) and repulsive models (bottom).

As a comparison, the same posterior quantities than in Table 1 were computed;
see Tables 4 and 5. The DPM was fitted via the function DPdensity available from
DPpackage (Jara et al., 2011), while the code for the alternative repulsive models was
gently provided by José Quinlan and Garritt Page.

4.4 Comparison to alternative models

We now consider fitting alternative models to the Galaxy and two simulated datasets,
one from the mixture with 8 components introduced in the previous section, and the
second consisting of 10,000 observations generated from a mixture of 20 components.
We consider first the gold standard of Bayesian nonparametric models, the DPM, and
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DPM

Test α E(K) E(K|data) V ar(K|data) MSE LPML

D5 0.43 3 7.961 0.5 4.779 -11.246
D6 Gamma(4, 2) 8.17 8.665 0.910 4.248 -10.116

Repulsive models

Model E(K|data) V ar(K|data) MSE LPML

Quinlan et al. (2017) 10.73 1.407 3.121 -4.754
Petralia et al. (2012) 8.51 0.357 4.152 -4.022

Table 5: Posterior summaries for the simulated dataset from the mixture of 8 compo-
nents using the function DPdensity in DPpackage (top) and repulsive models (bottom).

then the RGMM by Quinlan et al. (2017), and the similar specification in Petralia et al.
(2012). The same prior information on hyperparameters common to all the mixture
models was assumed, i.e. the same marginal prior for σ2

k and (w1, . . . , wk). Hyperpa-
rameter τ in the potentials φ1 and φ2 was set according to the suggestion in Quinlan
et al. (2017) (τ = 5.54).

Comparison of the tables above and Tables 1 and 3 show that the alternative repul-
sive models are good competitors to ours, and according to the dataset and hyperpa-
rameters specification, they may achieve a better (Galaxy) or worse (simulated data)
fit to the data. The tests showing the best indexes of goodness of fit are typically those
overestimating the number of clusters. It is well-known that, in general, clustering in
the context of nonparametric mixture models as DPMs is strongly affected by the base
measure (see, e.g. Miller and Harrison, 2017). The same disadvantage affects the mix-
ture models in Quinlan et al. (2017) and Petralia et al. (2012). Our model, on the other
hand, avoids the delicate choice of the base measure leading to more stable estimates
of K.

As a further comparison, see also Figure 4 which displays the posterior distribution
of K under the DPM mixture and our models for the Galaxy dataset.

For the second simulated dataset, we considered applicability for a moderately large
sample size, generating 10,000 observations from a 20-component mixture, 10 of them
being Gaussian, and the rest being skew-normal distributions with positive and negative
skewness. The true density is showed in Figure 5. To estimate the true number of
clusters, we fitted different alternative models to this dataset: our model, the repulsive
mixture models by Quinlan et al. (2017) and Petralia et al. (2012), and the finite mixture
model implemented in the mclust R package via the function Mclust (Fraley et al.,
2012) with a number of components between 10 and 25. The same prior information on
hyperparameters common to all the Bayesian mixture models was assumed. The Mclust
function returns the estimates of the number of components corresponding to the “best
three” models, in this case 11, 17 and 18. See Table 6 for posterior summaries of the
inference under the three repulsive models.
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Figure 4: Posterior distribution of the number K of components under Test 4 (black)
and 6 (blue) in Table 1 and under the DPM model (red) as in Test D1 in Table 4.

Figure 5: Histogram, true density (red) and density estimate (black) of the large simu-
lated dataset, including 90% credibility bands (light blue).

Model E(K|data) V ar(K|data) MSE LPML

PES −DPP 16.41 1.38 1356.43 -13239.54
Quinlan et al. (2017) 14.13 0.146 1475.98 -13771.56
Petralia et al. (2012) 20.81 0.564 1002.05 -12940.49

Table 6: Posterior summaries for the large simulated dataset.

Though the run-time for this application is around 15 times longer than in the case
of the Galaxy data, our algorithm reduces the effective number of clusters a posteriori,
thus helping our model scaling up. Intuitively, the increase in the run-time is mostly
due to the larger number of mixture components and the much larger sample size than
in the case of other datasets illustrated here.
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4.5 Simulated data with covariates

We consider the same simulated dataset as in Müller et al. (2011), Section 5.2; the
simulation “truth” consists of 12 different distributions, corresponding to different co-
variate settings (see Figure 1 of that paper). Model (10)-(12), (15)-(17) was fitted to

the dataset, assuming β0 = 0, Σ0 = 400 ×
(
ZTZ

)−1
, aρ = 1, bρ = 1.2, and a0, b0 such

that the prior mean of σ2
k is 50 and variance is 300. Recall also that here we assume

ν = 2.

As an initial step, inference for the complete dataset (1000 observations) was car-
ried out, yielding a posterior of K, not reported here, mostly concentrated over the
set {8, 9, . . . , 16}, with a mode at 11. Figure 3 in the Supplementary Material shows
posterior predictive distributions for the 12 different reference covariate values, along
with 90% credibility intervals. These are in good accordance with the simulation truth
(compare with Figure 1 in Müller et al., 2011).

To replicate the tests in Müller et al. (2011), a total of M = 100 datasets of size 200
were generated by randomly subsampling 200 out of the 1000 available observations.
Computational burden over multiple repetitions was controlled by limiting the posterior
sample sizes to 2,000. Table 7 displays the root MSE for estimating E(y | z1, z2, z3) for
each of the 12 covariate combinations defining the different clusters for our model and
for the PPMx, as in Table 1 of Müller et al. (2011). The computations also include
evaluation of the root MSE and LPML for all the 100 datasets for estimating the data
used to train the model, with MSEtrain =

∑n
i=1 (yi − ŷi)

2
, where ŷi is the expected

value of the estimated predictive distribution, and for a test dataset of 100 new data,
MSEtest =

∑n
i=1 (y

test
i − ŷi)

2
. In addition, we report LPMLtrain, value of the Log

Pseudo Marginal Likelihood for the training dataset. Table 8 shows the values compared
to other competitor models, i.e the linear dependent Dirichlet process mixture (LDDP)
defined in De Iorio et al. (2004), the product partition model (PPMx) in Müller et al.
(2011) and the linear dependent tailfree process model (LDTFP) in Jara and Hanson
(2011). The best values are in bold: our model performs well according to the LPML,
while the MSE suggests to use PPMx or LDTFP. In general, our model is competitive
with respect to other popular models in the literature. Moreover, in the LDDP case, we
have that the average number of clusters is 20.6 with variance 2.266, thus indicating a
less parsimonious model compared to ours.

In summary, our extensive simulations suggest that the proposed approach tends to
require less mixture components than non-repulsive counterpart, while still providing a
reasonably good fit to the data. Note that, with respect to other repulsive competitors,
our results are comparable.

5 Biopic movies dataset

For this illustrative example we consider the Biopics data available in the R pack-
age fivethirtyeight (Ismay and Chunn, 2017). This dataset is based on the IMDB
database, related to biographical films released from 1915 through 2014. An interest-
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z1 z2 z3 DPP PPMX

-1 0 0 6.1 7.9
0 0 0 6.7 3.9
1 0 0 7.2 2.8
-1 1 0 6.5 5.4
0 1 0 6.5 4.6
1 1 0 6.8 4.0
-1 0 1 6.8 6.1
0 0 1 6.1 4.2
1 0 1 5.7 4.5
-1 1 1 5.9 9.5
0 1 1 6.6 8.3
1 1 1 5.8 6.2

avg 6.4 5.6

Table 7: Root MSE for estimating E(y | z1, z2, z3) for 12 combinations of covariates
(z1, z2, z3) and PPMx as competing model of reference (compare also the results in
Table 1 of Müller et al., 2011).

DPPx LDDP PPMX LDTFP

Root MSEtrain 324.531 304.742 278.395 304.374
Root MSEtest 216.675 215.1694 217.2459 212.761
LPMLtrain -871.8 -902.2295 -873.1671 -901.465

Table 8: Comparison with competitors for the simulated dataset with covariates: best
values according to each index are in bold. DPPx denotes our model, while LDDP is
the linear dependent Dirichlet process mixture, PPMx is the product partition model
with covariates, and LDTFP is the linear dependent tailfree process model.

ing explorative analysis of the data can be found in https://fivethirtyeight.com/

features/straight-outta-compton-is-the-rare-biopic-not-about-white-

dudes/.

We consider the logarithm of the gross earnings at US box office as a response
variable, with the following covariates: (i) year of release of the movie (in a suitable
scale, continuous); (ii) a binary variable that indicates whether the main character is a
person of color; and (iii) a categorical variable that considers if the country of the movie
is US, UK or other. After removing the missing data from the dataset, we were left with
n = 437 observations and p = 4. We note that 76 biopics have a person of color as a
subject and the frequencies of the category “origin” are (256, 79, 64) for US, UK and
“other”, respectively; “other” means mixed productions (e.g. US and Canada, or US and
UK). In what follows, the hyperparameters in model (18)-(19), (11)-(12), (16)-(17) are
chosen as β0 = 0, (aρ, bρ) = (1, 1). The prior mean and variance of K induced by these
hyperparameters are 2.162 and 1.978, respectively. The scale hyperparameter φ in the
g-prior for β and (a0, b0) vary as determined in Table 9, where m and v denote the prior

https://fivethirtyeight.com/features/straight-outta-compton-is-the-rare-biopic-not-about-white-dudes/
https://fivethirtyeight.com/features/straight-outta-compton-is-the-rare-biopic-not-about-white-dudes/
https://fivethirtyeight.com/features/straight-outta-compton-is-the-rare-biopic-not-about-white-dudes/
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mean b0/(a0 − 1) and variance b20/((a0 − 1)2(a0 − 2)), respectively, of the inverse gamma
distribution for σ2

k as in (19). We also assume γ0 equal to the vector of all 0’s, while Λ0

is such that the marginal a priori variance of γk is equal to diag(0.01, 0.1, 0.1, 0.1), in
accordance to the variances of the corresponding frequentist estimators.

Test φ m v E(K | data) sd(K |data) MSE LPML
A 50 5 1 4.49 1.10 1126.32 -960.89
B 200 5 10 4.45 1.19 983.55 -954.55
C 50 3 +∞ 5.66 1.27 501.22 -918.74
D 200 10 5 4.21 1.33 1805.83 -980.61
E 100 2 1 5.31 1.21 564.26 -935.56
F 200 2 10 5.51 1.26 557.44 -925.22

Table 9: Prior specification for βk’s and σ2
k’s parameters and posterior summaries for

the Biopics dataset; m and v are prior mean and variance, respectively, of σ2
k. Posterior

mean and variance of the number K of mixture components are in the fifth and sixth
columns, respectively, while the last two columns report MSE and LPML, respectively.

We have found that the posterior of K is stable with respect to the choice of prior
hyperparameters, i.e. it does not change significantly when changing the prior hyperpa-
rameters; on the other hand, our results show that by not including covariates in the
likelihood, i.e. setting all γk’s are equal to 0, inference on K is much more sensitive to
the choice of (a0, b0) (results not shown here).

Predictive inference was also considered, by evaluating the posterior predictive dis-
tribution at the following combinations of covariate values: (i) (mean value for covari-
ate year, US, white); (ii) (mean value for covariate year, US, color); (iii) (mean value
for covariate year, UK, white); (iv) (mean value for covariate year, UK, color); (v)
(mean value for covariate year, “other”, white); and (vi) (mean value for covariate year,
“other”, color). Corresponding plots are shown in Figure 6. These distributions appear
to be quite different in the six cases: in particular, we can observe that in cases (i) and
(ii), the posterior is shifted towards higher values. This is quite easy to interpret, since
the measurements are given by the earnings in the US box offices; therefore, we expect
that in general US movies will be more profitable in that market. The difference due
to the race is, on the other hand, less evident. However, the predictive densities show
slightly higher earnings for movies where the subject is a person of color, if the origin
is “other” ((v) and (vi)). Movies from the UK, on the other hand, exhibit the opposite
behavior ((iii) and (iv)).

We report here the posterior cluster estimate for Test B in Table 9, that is, the
partition that minimizes the posterior expectation of Binder’s loss function under equal
misclassification costs (see Lau and Green, 2007). We note that here, as it is also a
common situation with point estimates of partitions, the number of clusters can be
different from the posterior mean of K, 4.45 in this case. Indeed, we found three groups,
with sizes 10, 193, 234, respectively; see Figure 7 for the estimated clusters and boxplots
of the response. As a comparison, it can be useful to report the total average values
for the response, 15.36, and for the covariates: 7.89 (year), 0.18 (UK), 0.15 (“other”),
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Figure 6: Predictive distribution for cases (i) − (vi) under Test E in Table 9 for the
Biopics dataset.

Figure 7: Cluster estimate (left) under our model (Test B in Table 9) for the Biopics
dataset. Each color represents one of the three estimated clusters. Coordinate y is the
response, i.e. box-office earning, while coordinate x is the covariate year of release. The
boxplot of the response per group is in the right panel.

0.83 (white). These 3 groups have a nice interpretation in terms of covariates: group
1 is the smallest, with a high average response (17.18), and it is characterized by a
high percentage of movies from “other” countries, with a person of color as its subject.
Group 2 corresponds also to a high average response (16.42), but the average values
of UK, “other” and person of color are similar to the total averages (0.14, 0.09, 0.84,
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respectively). The average response in group 3 is smaller (14.40) than the total sample
mean, while the average values of UK, “other” and person of color are 0.22, 0.17, 0.84,
respectively.

To assess effectiveness of the proposed model, we compare the results with the lin-
ear dependent Dirichlet process mixture model introduced in De Iorio et al. (2004) and
implemented in the LDDPdensity function of DPpackage (Jara et al., 2011). Prior infor-
mation has been fixed as follows: for Test G the mass parameter of the Dirichlet process
α is set equal to 0.3 such that E(K) = 2.87 and V ar(K) = 1.81, that approximately
match the prior information we gave on the parameter K. Similarly, under Test H, α
is distributed according to the Gamma(1/4, 1/2), such that the prior mean on K is 3.6
and variance 22.18. The normal baseline distribution is a multivariate Gaussian with
mean vector 0 and a random covariance matrix which is given a non-informative prior
and the inverse-gamma distribution for the variances of the mixture components has
parameters such that mean and variance are equal to 5, 1, respectively similarly as in
Table 9. Posterior summaries can be found in Table 10.

Case E(K | data) sd(K | data) MSE LPML
G 2.95 1.03 1282.49 -937.51
H 3.56 2.36 682.98 -914.00

Table 10: Posterior summaries for the tests on the Biopics dataset under a linear de-
pendent Dirichlet process mixture.

As a comparison between the estimated partitions under our model (Figure 7) and
the LDDP mixture model, Figure 4 in the Supplementary Material displays the esti-
mated partition obtained under the LDDP model under Test G, that has 3 groups with
sizes {300, 127, 10}.

6 Conclusion

This work deals with mixture models where the prior has the property of repulsion
across location parameters. Specifically, the discussion is centered on mixtures built on
determinantal point processes (DPPs), that can be constructed using a general spectral
representation. The methods work with any valid spectral density, but for the sake
of concreteness, illustrations were discussed in the context of the power exponential
case. Implementing the posterior inference for our models requires the use of numerical
approximations of the density function of the DPP.

Our approach has focused on mixture modeling. One may use essentially the same
models for clustering purposes. In such case, it is quite simple to modify the cluster-
specific covariance matrices to have any particular form, such as enforcing elliptically-
or circularly-shaped contours. We have here used standard assumptions such as un-
structured covariance matrices as a default choice in our discussion, but again, such
assumptions, or others, such as stick-breaking mixture weights, can be easily incorpo-
rated to the model definitions.
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Repulsiveness can be measured in a number of ways, as discussed in the online
supplementary material in Lavancier et al. (2015), Appendix J. These include Ripley’s
K-function and the Pair Correlation Function. They both measure how dispersed the
points appear to be and they are usually compared to the Poisson process, where for
a given a number of points, they are randomly scattered. Some analytical results can
be obtained, but in general, one must evaluate these functions numerically. The power
exponential case includes the most repulsive type of stationary DPP when ν → ∞.
When d = 2, this corresponds to a “jinc-like” covariance function, that is, the case
in which the spectral density is of the form ϕ(x) = I{‖x‖ ≤ τ}. We found out that
in most applications a value of ν = 2 is sufficient for reasonable inference results, but
larger values of ν also provide stable enough inference.

Though we limit ourselves to the case of isotropic DPPs, inhomogeneous DPPs
can be obtained by transforming or thinning a stationary process. However, we believe
that this case is not very interesting, unless there is a strong reason to assume non-
homogeneous locations a priori.

Our computational experiments and data illustrations show that the repulsion in-
duced by the DPP priors indeed tends to eliminate the annoying case of many very
small clusters that commonly arises when using models that do not constrain loca-
tion/centering parameters. This happens with very small sacrifice of model fit compared
to the usual mixture models. In this sense, since it is a parsimonious model with respect
to the clustering structure, interpretation is facilitated because there are typically less
clusters to interpret.

From a computational viewpoint, we found our model to scale reasonably well with
respect to sample size, compared to similar alternatives. However, scaling with respect
to data dimension is not a property we claim to have. In fact, this is a situation shared
with mixture models either with a finite or infinite number of components.

Another advantage of our model over DPMs and natural competitors in the repul-
sive mixture models framework, such as those in Quinlan et al. (2017) and Petralia
et al. (2012), is that we avoid the delicate choice of the base measure of the Dirichlet
process, leading to more stable estimates on the number K of components in the mix-
ture. Moreover, with respect to competitor repulsive mixtures, and just in the case of
DPM models, our approach does not require an upper bound on the allowed number
of mixture components. This particular aspect can also be considered as a con, because
the competitor repulsive mixtures may produce slightly better performance in terms
of goodness of fit. On the other hand, since K is finite and random, our algorithm re-
quires a reversible jump implementation, which could be seen in practice as an extra
computational price to pay when using the proposed model.

Another worth noting aspect of the model is the roles of subsets S and R. They are
both required to be compact so that the prior joint density of latent cluster centers is
well defined. Subset S, in practice fixed as the unit hypercube, is specifically needed to
guarantee that approximations (6) and (7) work well. In turn, the role of the rectangle
R is to cover the empirical data range, and the affine transformation T , which maps R
back onto S, is used to ensure that all calculations are carried in S. The size of R has
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little consequence in itself, beyond obvious changes in formula (8), because the prior
distribution of number of points is still determined by (2), i.e. by S and C0. And a very
large set R would simply have large portions with very low posterior mass assigned,
corresponding to places with no observed data.

Summing up, through extensive computational experience in various settings, we
believe our model to be a valid and competitive alternative that, with little sacrifice in
model fit, may help achieving a more parsimonious representation of mixtures, compared
to other similar models.

Supplementary Material

Supplementary Material for “Determinantal Point Process Mixtures Via Spectral Den-
sity Approach”
(DOI: 10.1214/19-BA1150SUPP; .pdf). Supplementary materials for this article are
available online. In particular, the document contains a description of the two Gibbs
samplers used for posterior inference under the DPP mixture model (Sections 1 and 3),
without and with covariate dependence, respectively. Moreover, a new test on the Galaxy
dataset when different spectral densities are considered (Section 2). Finally, supplemen-
tal figures that did not fit in the paper and additional analysis of an Air Quality Index
dataset are provided.
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