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Abstract

In this paper, we introduce the concepts of the Wijsman
I2-statistical convergence, Wijsman I2-lacunary statistical
convergence and Wijsman strongly I2-lacunary convergence of
double sequences of sets and investigate the relationship between
them.
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Introduction, Definitions and Notations

The concept of convergence of sequences of numbers has been
extended by several authors to convergence of sequences of sets.
The one of these such extensions considered in this paper is the
concept of Wijsman convergence (see, [2, 4, 11, 25, 27, 28]).
Nuray and Rhoades [17] extended the notion of convergence of set
sequences to statistical convergence, and gave some basic
theorems.
Ulusu and Nuray [25] defined the Wijsman lacunary statistical
convergence of sequence of sets, and considered its relation with
Wiijsman statistical convergence, which was defined by Nuray and
Rhoades.
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Introduction, Definitions and Notations

Recently, Kişi and Nuray [11] introduced a new convergence
notion, for sequences of sets, which is called Wijsman
I-convergence. The concepts of convergence, statistical
convergence and ideal convergence of double sequences of sets
were studied by Nuray et. al [19, 20, 21, 22].
Das et al. [5] introduced new notions, namely I-statistical
convergence and I-lacunary statistical convergence by using ideal.
Recently, Ulusu and Dündar [26] studied the concepts of Wijsman
I-statistical convergence, Wijsman I-lacunary statistical
convergence and Wijsman strongly I-lacunary convergence of
sequences of sets.
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Introduction, Definitions and Notations

Let (X , ρ) be a metric space. For any point x ∈ X and any
non-empty subset A of X , we define the distance from x to A by

d(x ,A) = inf
a∈A

ρ(x , a).

Throughout the paper, we let (X , ρ) be a metric space and A,Ak

be any non-empty closed subsets of X .
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Introduction, Definitions and Notations

Definition 1

([17]) We say that the sequence {Ak} is Wijsman statistical
convergent to A if for ε > 0 and for each x ∈ X ,

lim
n→∞

1

n
|{k ≤ n : |d(x ,Ak)− d(x ,A)| ≥ ε}| = 0.

In this case we write st − limW Ak = A or Ak → A(WS).
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Introduction, Definitions and Notations

By a lacunary sequence we mean an increasing integer sequence
θ = {kr} such that k0 = 0 and hr = kr − kr−1 →∞ as r →∞.
Throughout this paper the intervals determined by θ will be
denoted by Ir = (kr−1, kr ], and ratio kr

kr−1
will be abbreviated by qr .

Definition 2

([25]) We say that the sequence {Ak} is Wijsman lacunary
statistically convergent to A, if for ε > 0 and for each x ∈ X ,

lim
r

1

hr
|k ∈ Ir : |d(x ,Ak)− d(x ,A)| ≥ ε| = 0.
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Introduction, Definitions and Notations

Definition 3

([13]) A family of sets I ⊆ 2N is called an ideal if and only if

(i) ∅ ∈ I,
(ii) For each A,B ∈ I we have A ∪ B ∈ I,
(iii) For each A ∈ I and each B ⊆ A we have B ∈ I.
An ideal is called non-trivial if N /∈ I and non-trivial ideal is called
admissible if
{n} ∈ I for each n ∈ N.
Throughout the paper we take I2 as a nontrivial admissible ideal in
N× N.
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Introduction, Definitions and Notations

A nontrivial ideal I2 of N× N is called strongly admissible if
{i} × N and N× {i} belong to I2 for each i ∈ N.
It is evident that a strongly admissible ideal is admissible also.
I0

2 = {A ⊂ N× N : (∃m(A) ∈ N)(i , j ≥ m(A)⇒ (i , j) 6∈ A)}.
Then I0

2 is a nontrivial strongly admissible ideal and clearly an
ideal I2 is strongly admissible if and only if I0

2 ⊂ I2.
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Definition 4

([13]) A family of sets F ⊆ 2N is a filter if and only if

(i) ∅ /∈ F ,
(ii) For each A,B ∈ F we have A ∩ B ∈ F ,
(iii) For each A ∈ F and each B ⊇ A we have B ∈ F .

Proposition 2.1

([13]) I is a non-trivial ideal in N if and only if

F (I) = {M ⊂ N : (∃A ∈ I)(M = N\A)}

is a filter in N.
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Definition 5

([6]) We say that an admissible ideal I2 ⊂ 2N×N satisfies the
property (AP2) if for every countable family of mutually disjoint
sets {A1,A2, ...} belonging to I2, there exists a countable family of
sets {B1,B2, ...} such that Aj∆Bj ∈ I0

2 , i.e., Aj∆Bj is included in
the finite union of rows and columns in N× N for each j ∈ N and
B =

⋃∞
j=1 Bj ∈ I2 (hence Bj ∈ I2 for each j ∈ N).

Throughout the paper, we let (X , ρ) be a separable metric space,
I ⊆ 2N be an admissible ideal, I2 ⊆ 2N×N be a strongly admissible
ideal and A,Akj be any non-empty closed subsets of X .
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Definition 6

([12]) We say that the sequence {Ak} is Wijsman I-statistical
convergent to A or S (IW )-convergent to A if for each ε > 0,
δ > 0 and for each x ∈ X ,{

n ∈ N :
1

n
|{k ≤ n : |d(x ,Ak)− d(x ,A)| ≥ ε}| ≥ δ

}
belongs to I. In this case, we write Ak → A (S (IW )) .
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Definition 7

([12]) Let θ be lacunary sequence. We say that the sequence {Ak}
is Wijsman I-lacunary statistical convergent to A or
Sθ (IW )-convergent to A if for each ε > 0, δ > 0 and for each
x ∈ X ,{

r ∈ N :
1

hr
| {k ∈ Ir : |d(x ,Ak)− d(x ,A)| ≥ ε} | ≥ δ

}
belongs to I. In this case, we write Ak → A (Sθ (IW )) .
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Definition 8

([12]) Let θ be lacunary sequence. We say that the sequence {Ak}
is said to be Wijsman strongly I-lacunary convergent to A or
Nθ[IW ]-convergent to A if for each ε > 0 and for each x ∈ X ,r ∈ N :

1

hr

∑
k∈Ir

|d(x ,Ak)− d(x ,A)| ≥ ε


belongs to I. In this case, we write Ak → A (Nθ [IW ]) .
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Definition 9

([21]) We say that the double sequence {Akj} is Wijsman
statistically convergent to A if for each ε > 0 and for each x ∈ X ,

lim
m,n→∞

1

mn
|{k ≤ m, j ≤ n : |d(x ,Akj)− d(x ,A)| ≥ ε}| = 0,

that is,
|d(x ,Akj)− d(x ,A)| < ε, a.a. (k,j).

In this case we write st2 − limW Ak = A.
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Introduction, Definitions and Notations

The double sequence θ = {(kr , js)} is called double lacunary
sequence if there exist two increasing sequence of integers such
that

k0 = 0, hr = kr − kr−1 →∞ as r →∞

and
j0 = 0, h̄u = ju − ju−1 →∞ as u →∞.

We use following notations in the sequel:

kru = kr ju, hru = hr h̄u,

Iru = {(k, j) : kr−1 < k ≤ kr and ju−1 < j ≤ ju},

qr =
kr

kr−1
and qu =

ju
ju−1

.
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Definition 10

([22]) We say that the double sequence {Akj} is Wijsman lacunary
statistically convergent to A, if for each ε > 0 and for each x ∈ X ,

lim
r ,u→∞

1

hr h̄u
|{(k , j) ∈ Iru : |d(x ,Akj)− d(x ,A)| ≥ ε}| = 0.

In this case we write st2 − limWθ
Akj = A.
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Definition 11

([19]) We say that the double sequence of sets {Akj} is
IW2-convergent to A, if for every x ∈ X and for every ε > 0,

{(k , j) ∈ N× N : |d(x ,Akj)− d(x ,A)| ≥ ε} ∈ I2.

In this case we write IW2 − lim
k,j→∞

Akj = A.
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Main Results

In this section, we define the concepts of Wijsman I2-statistical
convergence, Wijsman I2-lacunary statistical convergence and
Wijsman strongly I2-lacunary convergence of double sequences of
sets and investigate the relationship between them.
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Definition 12

We say that the sequence {Akj} is Wijsman I2-statistical
convergent to A or S (IW2)-convergent to A if for each ε > 0,
δ > 0 and for each x ∈ X , the set{

(m, n) ∈ N× N :
1

mn
|{k ≤ m, j ≤ n : |d(x ,Akj)− d(x ,A)| ≥ ε}| ≥ δ

}
belongs to I2. In this case, we write Akj → A (S (IW2)) .

The set of Wijsman I2-statistical convergent double sequences will
be denoted by {S (IW2)}.
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Definition 13

Let θ be a double lacunary sequence. We say that the sequence
{Akj} is said to be Wijsman I2-lacunary convergent to A or
Nθ(IW2)-convergent to A if for each ε > 0 and for each x ∈ X , the
set (r , u) ∈ N× N :

( 1

hrhu

∑
(k,j)∈Iru

d(x ,Akj)− d(x ,A)
)
≥ ε


belongs to I2. In this case, we write Akj → A (Nθ (IW2)) .
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Definition 14

Let θ be a double lacunary sequence. We say that the sequence
{Akj} is said to be Wijsman strongly I2-lacunary convergent to A
or Nθ[IW2 ]-convergent to A if for each ε > 0 and for each x ∈ X ,(r , u) ∈ N× N :

1

hrhu

∑
(k,j)∈Iru

|d(x ,Akj)− d(x ,A)| ≥ ε

 ∈ I2.

In this case, we write Akj → A (Nθ [IW2 ]) .

The set of Wijsman strongly I2-lacunary convergent double
sequences will be denoted by {Nθ [IW2 ]} .
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Definition 15

Let θ be a double lacunary sequence. We say that the sequence
{Akj} is Wijsman I2-lacunary statistical convergent to A or
Sθ (IW2)-convergent to A if for each ε > 0, δ > 0 and for each
x ∈ X ,{

(r , u) ∈ N× N :
1

hrhu

| {(k , j) ∈ Iru : |d(x ,Akj)− d(x ,A)| ≥ ε} | ≥ δ
}

belogs to I2. In this case, we write Akj → A (Sθ (IW2)) .

The set of Wijsman I2-lacunary statistical convergent double
sequences will be denoted by {Sθ (IW2)}.
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Definition 16

A double sequence {Akj} is said to be bounded if there exists a
positive real number M such that

|d(x ,Akj)| < M,

for each x ∈ X and for all k, j ∈ N. That is

sup
k,j

d(x ,Akj) <∞.

The set of all bounded double sequences of sets will be denoted by
L2
∞.
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Theorem 17

Let θ be a double lacunary sequence. Then,
Akj → A(Nθ[IW2 ])⇒ Akj → A(Sθ(IW2)).
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Proof: Let Akj → A(Nθ[IW2 ]) and ε > 0. Then, for each x ∈ X
we can write

∑
(k,j)∈Iru

|d(x ,Akj)− d(x ,A)| ≥
∑

(k,j)∈Iru
|d(x ,Akj )−d(x ,A)|≥ε

|d(x ,Akj)− d(x ,A)|

≥ ε{(k , j) ∈ Iru : |d(x ,Akj)− d(x ,A)| ≥ ε}

and so
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Proof:

1

ε · hrhu

∑
(k,j)∈Iru

|d(x ,Akj)− d(x ,A)|

≥ 1

hrhu

{(k , j) ∈ Iru : |d(x ,Akj)− d(x ,A)| ≥ ε}
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Proof: Hence, for each x ∈ X and for any δ > 0,{
(r , u) ∈ N× N :

1

hrhu

|{(k , j) ∈ Iru : |d(x ,Akj)− d(x ,A)| ≥ ε}| ≥ δ
}

⊆

{
(r , u) ∈ N× N :

1

hrhu

∑
(k,j)∈Iru

|d(x ,Akj)− d(x ,A)| ≥ ε · δ

}
∈ I2.

This proof is completed.
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Theorem 18

Let θ be a double lacunary sequence. Then, {Akj} ∈ L2
∞ and

Akj → A(Sθ(IW2))⇒ Akj → A(Nθ[IW2 ]).
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Proof: Suppose that Akj → A(Sθ(IW2)) and Akj ∈ L2
∞. Then,

there exists an M > 0 such that

|d(x ,Akj)− d(x ,A)| ≤ M

for each x ∈ X and all k , j ∈ N.
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Proof: Given ε > 0, for each x ∈ X we have

1

hrhu

∑
(k,j)∈Iru

|d(x ,Akj)− d(x ,A)|

=
1

hrhu

∑
(k,j)∈Iru

|d(x ,Akj )−d(x ,A)|≥ ε
2

|d(x ,Akj)− d(x ,A)|

+
1

hrhu

∑
(k,j)∈Iru

|d(x ,Akj )−d(x ,A)|< ε
2

|d(x ,Akj)− d(x ,A)|

≤ M

hrhu

{(k , j) ∈ Iru : |d(x ,Akj)− d(x ,A)| ≥ ε

2
}+

ε

2
.
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Proof: Hence, for each x ∈ X we have

(r , u) ∈ N× N :
1

hrhu

∑
(k,j)∈Iru

|d(x ,Akj)− d(x ,A)| ≥ ε

 ⊆

{(r , u) ∈ N×N :
1

hrhu

{(k , j) ∈ Iru : |d(x ,Akj)−d(x ,A)| ≥ ε

2
} ≥ ε

2M
} ∈ I2.

This proof is completed.
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We have the following Theorem by Theorem 17 and Theorem 18.

Theorem 19

Let θ be a double lacunary sequence. Then,
{Sθ(IW2)} ∩ L2

∞ = {Nθ[IW2 ]} ∩ L2
∞.

Theorem 20

Let θ be a double lacunary sequence. If lim infr qr > 1 and
lim infu qu > 1 then, Akj → A(S(IW2)) implies Akj → A(Sθ(IW2)).
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Proof: Assume that lim infr qr > 1 and lim infu qu > 1, then there
exist λ, µ > 0 such that

qr ≥ 1 + λ and qu ≥ 1 + µ

for sufficiently large r , u which implies that

hrhu

kru
≥ λµ

(1 + λ)(1 + µ)
.
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Proof: If Akj → A(S(IW2), then for every ε > 0, for each x ∈ X
and for sufficiently large r , u, we have

1

kr ju
|{k ≤ kr , j ≤ ju : |d(x ,Akj)− d(x ,A)| ≥ ε}|

≥ 1

kr ju
|{(k , j) ∈ Iru : |d(x ,Akj)− d(x ,A)| ≥ ε}|

≥ λµ

(1 + λ)(1 + µ)
.

(
1

hrhu

|{(k , j) ∈ Iru : |d(x ,Akj)− d(x ,A)| ≥ ε}|
)
.
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Proof: Hence, for each x ∈ X and for any δ > 0 we have{
(r , u) ∈ N× N :

1

hrhu

|{(k , j) ∈ Iru : |d(x ,Akj)− d(x ,A)| ≥ ε}| ≥ δ
}

⊆
{

(r , u) ∈ N× N :
1

kr ju
|{k ≤ kr , j ≤ ju : |d(x ,Akj)− d(x ,A)| ≥ ε}| ≥ δλµ

(1 + λ)(1 + µ)

}
∈ I2.

Hence, Akj → A(Sθ(IW2)).
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Theorem 21

Let θ be a double lacunary sequence. If lim supr qr <∞ and
lim supu qu <∞ then, Akj → A(Sθ(IW2)) implies
Akj → A(S(IW2)).
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Proof: If lim supr qr <∞ and lim supu qu <∞, then there is an
M,N > 0 such that qr < M and qu < N, for all r , u. Suppose that
Akj → A(Sθ(IW2)) and let

Uru = U(r , u, x) :=
∣∣∣{(k, j) ∈ Iru : |d(x ,Akj)− d(x ,A)| ≥ ε

}∣∣∣.
Since Akj → A(Sθ(IW2)), it follows that for each x ∈ X , for every
ε > 0 and δ > 0{

(r , u) ∈ N× N :
1

hrhu

∣∣∣{(k , j) ∈ Iru : |d(x ,Akj)− d(x ,A)| ≥ ε
}∣∣∣ ≥ δ}

=

{
(r , u) ∈ N× N :

Uru

hrhu

≥ δ
}
∈ I2.
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Proof: Hence, we can choose a positive integers r0, u0 ∈ N such
that

Uru

hrhu

< δ, for all r > r0, u > u0.

Now let
K := max

{
Uru : 1 ≤ r ≤ r0, 1 ≤ u ≤ u0

}
and let t and v be any integers satisfying kr−1 < t ≤ kr and
ju−1 < v ≤ ju.

DÜNDAR I2-Lacunary Statistical Convergence of Double Sequences Of Sets40/58



Abstract
Introduction, Definitions and Notations

Main Results
References

Main Results

Proof: Then we have

1

tv

∣∣∣{k ≤ t, j ≤ v : |d(x ,Akj)− d(x ,A)| ≥ ε
}∣∣∣

≤ 1

kr−1ju−1

∣∣∣{k ≤ kr , j ≤ ju : |d(x ,Akj)− d(x ,A)| ≥ ε
}∣∣∣

=
1

kr−1ju−1

(
U11 + U12 + U21 + U22 + · · ·+ Ur0u0 + · · ·+ Uru

)

≤ K

kr−1ju−1
· r0u0 +

1

kr−1ju−1

(
hr0hu0+1

Ur0,u0+1

hr0hu0+1

+ hr0+1hu0

Ur0+1,u0

hr0+1hu0

+ · · ·+ hrhu
Uru

hrhu

)
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Proof:

≤ r0u0 · K
kr−1ju−1

+
1

kr−1ju−1

 sup
r>r0

u>u0

Uru

hrhu

(hr0hu0+1 + hr0+1hu0 + · · ·+ hrhu

)

≤ r0u0 · K
kr−1ju−1

+ ε · (kr − kr0)(ju − ju0)

kr−1ju−1

≤ r0u0 · K
kr−1ju−1

+ ε · qr · qu ≤
r0u0 · K
kr−1ju−1

+ ε ·M · N.
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Proof: Since kr−1ju−1 →∞ as t, v →∞, it follows that

1

tv

∣∣∣{k ≤ t, j ≤ v : |d(x ,Akj)− d(x ,A)| ≥ ε
}∣∣∣→ 0

and consequently, for any δ1 > 0, the set{
(t, v) ∈ N×N :

1

tv

∣∣{k ≤ t, j ≤ v : |d(x ,Akj)−d(x ,A)| ≥ ε
}∣∣ ≥ δ1

}
∈ I2.

This shows that Akj → A(S(IW2)).
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Theorem 22

Let θ be a double lacunary sequence. If
1 < lim infr qr ≤ lim supr qr <∞ and
1 < lim infu qu ≤ lim supu qu <∞ then {Sθ(IW2)} = {S(IW2)}.

Proof: This follows from Theorem 20 and Theorem 21.
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Theorem 23

Let I2 ⊆ 2N×N be a strongly admissible ideal satisfying property
(AP2) and θ ∈ F(I2). If {Akj} ∈ {S(IW2)} ∩ {Sθ(IW2)}, then
S(IW2)− lim Akj = Sθ(IW2)− lim Akj .
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Proof: Assume that S(IW2)− lim Akj = A and
Sθ(IW2)− lim Akj = B and A 6= B. Let

0 < ε <
1

2
|d(x ,A)− d(x ,B)|

for each x ∈ X . Since I2 satisfies the property (AP2), there exists
M ∈ F(I2) (i .e., N× N\M ∈ I2) such that for each x ∈ X and
for (m, n) ∈ M,

lim
m,n→∞

1

mn
|{k ≤ m, j ≤ n : |d(x ,Akj)− d(x ,A)| ≥ ε}| = 0.
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Proof: Let

P = {k ≤ m, j ≤ n : |d(x ,Akj)− d(x ,A) ≥ ε|}

and
R = {k ≤ m, j ≤ n : |d(x ,Akj)− d(x ,B)| ≥ ε} .

Then, mn = |P ∪ R| ≤ |P|+ |R|. This implies that

1 ≤ |P|
mn

+
|R|
mn

.

Since
|R|
mn
≤ 1 and lim

m,n→∞

|P|
mn

= 0,

so we must have

lim
m,n→∞

|R|
mn

= 1.
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Proof: Let M∗ = M ∩ θ ∈ F(I2). Then, for (kl , jt) ∈ M∗ the
kl jtth term of the statistical limit expression

1

mn
|{k ≤ m, j ≤ n : |d(x ,Akj)− d(x ,B)| ≥ ε}|

is

1

kl jt

∣∣∣∣∣∣
(k , j) ∈

l ,t⋃
r ,u=1,1

Iru : |d(x ,Akj)− d(x ,B)| ≥ ε


∣∣∣∣∣∣

=
1

l ,t∑
r ,u=1,1

hrhu

l ,t∑
r ,u=1,1

vruhrhu, (3.1)
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Proof: where

vru =
1

hrhu

|{(k , j) ∈ Iru : |d(x ,Akj)− d(x ,B)| ≥ ε}| I2→ 0

because {Akj} → B(Sθ(IW2)). Since θ is a double lacunary
sequence, (3.1) is a regular weighted mean transform of vru’s and
therefore it is also I2-convergent to 0 as l , t →∞, and so it has a
subsequence which is convergent to 0 since I2 satisfies property
(AP2).

DÜNDAR I2-Lacunary Statistical Convergence of Double Sequences Of Sets49/58



Abstract
Introduction, Definitions and Notations

Main Results
References

Main Results

Proof: But since this is a subsequence of{
1

mn
| {k ≤ m, j ≤ n : |d(x ,Akj)− d(x ,B)| ≥ ε} |

}
(m,n)∈M

,

we infer that{
1

mn
| {k ≤ m, j ≤ n : |d(x ,Akj)− d(x ,B)| ≥ ε} |

}
(m,n)∈M

is not convergent to 1. This is a contradiction. Hence the proof is
completed.

DÜNDAR I2-Lacunary Statistical Convergence of Double Sequences Of Sets50/58



Abstract
Introduction, Definitions and Notations

Main Results
References

References I

J.-P. Aubin, H. Frankowska, Set-valued analysis, Birkhauser,
Boston (1990).

M. Baronti, P. Papini, Convergence of sequences of sets, In:
Methods of functional analysis in approximation theory, ISNM
76, Birkhauser-Verlag, Basel (1986).

G. Beer, On convergence of closed sets in a metric space and
distance functions, Bull. Aust. Math. Soc. 31 (1985) 421–432.

G. Beer, Wijsman convergence: A survey, Set-Valued Var.
Anal. 2 (1994) 77–94.
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P. Das, E. Savaş, S. Kr. Ghosal, On generalized of certain
summability methods using ideals, Appl. Math. Letter 36
(2011) 1509–1514.

P. Das, P. Kostyrko, W. Wilczyński, P. Malik, I and
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