

Available online at www.sciencedirect.com

http://actams.wipm.ac.cn

\mathcal{I}_2 -CONVERGENCE AND \mathcal{I}_2 -CAUCHY DOUBLE SEQUENCES*

Erdinç DÜNDAR[†]

Department of Mathematics, Afyon Kocatepe University, 03200 Afyonkarahisar, Turkey E-mail: erdincdundar79@gmail.com; edundar@aku.edu.tr

$Bilal \ ALTAY$

Department of Elementary Education, İnönü University, 44280 Malatya, Turkey E-mail: bilal.altay@inonu.edu.tr

Abstract In this article, we prove a decomposition theorem for \mathcal{I}_2 -convergent double sequences and introduce the notions of \mathcal{I}_2 -Cauchy and \mathcal{I}_2^* -Cauchy double sequence, and then study their certain properties. Finally, we introduce the notions of regularly $(\mathcal{I}_2, \mathcal{I})$ -convergence and $(\mathcal{I}_2, \mathcal{I})$ -Cauchy double sequence.

 $\mathbf{Key \ words} \quad \mathrm{Ideal; \ double \ sequences; } \mathcal{I}\text{-}\mathrm{convergence; } \mathcal{I}\text{-}\mathrm{Cauchy.}$

2010 MR Subject Classification 40A35; 40B05

1 Introduction

The concept of convergence of a sequence of real numbers was extended to statistical convergence independently by Fast [1] and Schoenberg [2]. A lot of development were made in this area after the works of Šalát [3] and Fridy [4, 5]. In general, statistically convergent sequences satisfy many of the properties of ordinary convergent sequences in metric spaces [1, 4-6]. This concept was extended to the double sequences by Mursaleen and Edely [7] and Tripathy independently [8]. Çakan and Altay [9] presented multidimensional analogues of the results presented by Fridy and Orhan [10]. They presented statistically bounded sequences, statistical inferior and statistical superior of double sequences. In addition to these results, they investigated statistical core for double sequences. Tripathy and Sarma [11] defined the notion of statistically convergent difference double sequence spaces.

The idea of \mathcal{I} -convergence was introduced by Kostyrko, Šalát, and Wilczyński [12] as a generalization of statistical convergence, which is based on the structure of the ideal \mathcal{I} of subset of the set of natural numbers. Nuray and Ruckle [13] indepedently introduced the same with another name generalized statistical convergence. Kostyrko, Mačaj, Šalát, and Sleziak [14] gave some of basic properties of \mathcal{I} -convergence and dealt with extremal \mathcal{I} -limit points. Das, Kostyrko, Wilczyński and Malik [15] introduced the concept of \mathcal{I} -convergence of double sequences in a metric space and studied some properties of this convergence. Also, Das and

^{*}Received October 8, 2012; revised April 16, 2013.

Malik [16] introduced the concept of \mathcal{I} -limit points, \mathcal{I} -cluster points and \mathcal{I} -limit superior, and \mathcal{I} -limit inferior of double sequences.

Nabiev, Pehlivan, and Gürdal [17] proved a decomposition theorem for \mathcal{I} -convergent sequences and introduced the notions of \mathcal{I} -Cauchy sequence and \mathcal{I}^* -Cauchy sequence, and then studied their certain properties. A lot of development were made in this area after the works of [18–36].

In this article, first we investigate some properties of \mathcal{I} -convergent of double sequences in a linear metric space. Next, we prove the decomposition theorem of \mathcal{I} -convergent of double sequences in a linear metric space and give some results regarding this theorem. Also, we introduce the notions of \mathcal{I} -Cauchy double sequence and \mathcal{I}^* -Cauchy double sequence, and study their certain properties. Finally, we introduce the notions of regularly ($\mathcal{I}_2, \mathcal{I}$)-convergence and regularly ($\mathcal{I}_2, \mathcal{I}$)-Cauchy double sequence.

2 Definitions and Notations

Throughout this article, \mathbb{N} denotes the set of all positive integers, χ_A -the characteristic function of $A \subset \mathbb{N}$, \mathbb{R} the set of all real numbers.

Now, we recall the concept of statistical and ideal convergence of the sequences and basic definitions [1, 7, 12, 15, 27, 37, 38]

Definition 2.1 A subset A of \mathbb{N} is said to have asymptotic density d(A) if

$$d(A) = \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} \chi_A(k).$$

A sequence $x = (x_n)_{n \in \mathbb{N}}$ of real numbers is said to be statistically convergent to $L \in \mathbb{R}$ if for any $\varepsilon > 0$, we have $d(A(\varepsilon)) = 0$, where $A(\varepsilon) = \{n \in \mathbb{N} : |x_n - L| \ge \varepsilon\}$.

A double sequence $x = (x_{mn})_{m,n \in \mathbb{N}}$ of real numbers is said to be convergent to $L \in \mathbb{R}$ in Pringsheim's sense if for any $\varepsilon > 0$, there exists $N_{\varepsilon} \in \mathbb{N}$ such that $|x_{mn} - L| < \varepsilon$, whenever $m, n > N_{\varepsilon}$. In this case, we write

$$\lim_{n,n\to\infty} x_{mn} = L.$$

A double sequence $x = (x_{mn})$ of real numbers is said to be bounded if there exists a positive real number M such that $|x_{mn}| < M$, for all $m, n \in \mathbb{N}$. That is

$$\|x\|_{\infty} = \sup_{m,n} |x_{mn}| < \infty.$$

Let $K \subset \mathbb{N} \times \mathbb{N}$. Let K_{mn} be the number of $(j,k) \in K$ such that $j \leq m, k \leq n$. If the sequence $\{\frac{K_{mn}}{m.n}\}$ has a limit in Pringsheim's sense, then we say that K has double natural density and is denoted by

$$d_2(K) = \lim_{m,n \to \infty} \frac{K_{mn}}{m.n}.$$

A double sequence $x = (x_{mn})$ of real numbers is said to be statistically convergent to $L \in \mathbb{R}$ if for any $\varepsilon > 0$, we have $d_2(A(\varepsilon)) = 0$, where $A(\varepsilon) = \{(m, n) \in \mathbb{N} \times \mathbb{N} : |x_{mn} - L| \ge \varepsilon\}$.

Let $X \neq \emptyset$. A class \mathcal{I} of subsets of X is said to be an ideal in X provided:

(

- i) $\emptyset \in \mathcal{I}$,
- ii) $A, B \in \mathcal{I}$ implies $A \cup B \in \mathcal{I}$,

iii) $A \in \mathcal{I}, B \subset A$ implies $B \in \mathcal{I}$.

 \mathcal{I} is called a nontrivial ideal if $X \notin \mathcal{I}$.

Let $X \neq \emptyset$. A nonempty class \mathcal{F} of subsets of X is said to be a filter in X provided:

i) $\emptyset \notin \mathcal{F}$, ii) $A, B \in \mathcal{F}$ implies $A \cap B \in \mathcal{F}$, iii) $A \in \mathcal{F}$, $A \subset B$ implies $B \in \mathcal{F}$.

Lemma 2.2 ([12]) If \mathcal{I} is a nontrivial ideal in $X, X \neq \emptyset$, then the class

$$\mathcal{F}(\mathcal{I}) = \{ M \subset X : (\exists A \in \mathcal{I}) (M = X \setminus A) \}$$

is a filter on X, called the filter associated with \mathcal{I} .

A nontrivial ideal \mathcal{I} in X is called admissible if $\{x\} \in \mathcal{I}$ for each $x \in X$.

Throughout this article, we take \mathcal{I}_2 as a nontrivial admissible ideal in $\mathbb{N} \times \mathbb{N}$.

A nontrivial ideal \mathcal{I}_2 of $\mathbb{N} \times \mathbb{N}$ is called strongly admissible if $\{i\} \times \mathbb{N}$ and $\mathbb{N} \times \{i\}$ belong to \mathcal{I}_2 for each $i \in N$.

It is evident that a strongly admissible ideal is admissible also.

 $\mathcal{I}_2^0 = \{A \subset \mathbb{N} \times \mathbb{N} : (\exists m(A) \in \mathbb{N}) (i, j \ge m(A) \Rightarrow (i, j) \notin A)\}.$ Then, \mathcal{I}_2^0 is a nontrivial strongly admissible ideal and clearly an ideal \mathcal{I}_2 is strongly admissible if and only if $\mathcal{I}_2^0 \subset \mathcal{I}_2$.

In this section, we consider the \mathcal{I}_2 and \mathcal{I}_2^* -convergence of double sequences in the more general structure of a metric space (X, ρ) . Unless otherwise mentioned, we shall denote the metric space (X, ρ) by X only.

Let (X, ρ) be a linear metric space and $\mathcal{I}_2 \subset 2^{\mathbb{N} \times \mathbb{N}}$ be a strongly admissible ideal. A double sequence $x = (x_{mn})$ in X is said to be \mathcal{I}_2 -convergent to $L \in X$, if for any $\varepsilon > 0$, we have

$$A(\varepsilon) = \{(m, n) \in \mathbb{N} \times \mathbb{N} : \rho(x_{mn}, L) \ge \varepsilon\} \in \mathcal{I}_2.$$

In this case, we say that x is \mathcal{I}_2 -convergent and write

$$\mathcal{I}_2 - \lim_{m \to \infty} x_{mn} = L$$

If \mathcal{I}_2 is a strongly admissible ideal on $\mathbb{N} \times \mathbb{N}$, then usual convergence implies \mathcal{I}_2 -convergence. Let (X, ρ) be a linear metric space and $\mathcal{I}_2 \subset 2^{\mathbb{N} \times \mathbb{N}}$ be a strongly admissible ideal. A double sequence $x = (x_{mn})$ of elements of X is said to be \mathcal{I}_2^* -convergent to $L \in X$ if and only if there exists a set $M \in \mathcal{F}(\mathcal{I}_2)$ (that is, $\mathbb{N} \times \mathbb{N} \setminus M \in \mathcal{I}_2$) such that

$$\lim_{m,n\to\infty} x_{mn} = L,$$

for $(m, n) \in M$ and we write

$$\mathcal{I}_2^* - \lim_{m,n \to \infty} x_{mn} = L.$$

Let (X, ρ) be a linear metric space and $\mathcal{I}_2 \subset 2^{\mathbb{N} \times \mathbb{N}}$ be a strongly admissible ideal. A double sequence $x = (x_{mn})$ of elements of X is said to be \mathcal{I}_2 -Cauchy if for every $\varepsilon > 0$, there exist $s = s(\varepsilon), t = t(\varepsilon) \in \mathbb{N}$, such that

$$A(\varepsilon) = \{ (m, n) \in \mathbb{N} \times \mathbb{N} : \rho(x_{mn}, x_{st}) \ge \varepsilon \} \in \mathcal{I}_2.$$

We say that an admissible ideal $\mathcal{I}_2 \subset 2^{\mathbb{N}\times\mathbb{N}}$ satisfies the property (AP2) if for every countable family of mutually disjoint sets $\{A_1, A_2, \cdots\}$ belonging to \mathcal{I}_2 , there exists a countable family of sets $\{B_1, B_2, \cdots\}$ such that $A_j \Delta B_j \in \mathcal{I}_2^0$, that is, $A_j \Delta B_j$ is included in the finite union of rows and columns in $\mathbb{N} \times \mathbb{N}$ for each $j \in \mathbb{N}$ and $B = \bigcup_{j=1}^{\infty} B_j \in \mathcal{I}_2$ (hence $B_j \in \mathcal{I}_2$ for each $j \in \mathbb{N}$). Now, we begin with quoting the lemmas due to Das, Kostyrko Wilczyńki and Malik [15] which are needed throughout this article.

Lemma 2.3 ([15], Theorem 1) Let $\mathcal{I}_2 \subset 2^{\mathbb{N} \times \mathbb{N}}$ be a strongly admissible ideal. If $\mathcal{I}^*_2 - \lim_{m,n\to\infty} x_{mn} = L$, then $\mathcal{I}_2 - \lim_{m,n\to\infty} x_{mn} = L$.

Lemma 2.4 ([15], Theorem 3) If \mathcal{I}_2 is an admissible ideal of $\mathbb{N} \times \mathbb{N}$ having the property (AP2) and (X, ρ) is an arbitrary metric space, then for an arbitrary double sequence $x = (x_{mn})_{m,n\in\mathbb{N}}$ of elements of $X, \mathcal{I}_2 - \lim_{m,n\to\infty} x_{mn} = L$ implies $\mathcal{I}_2^* - \lim_{m,n\to\infty} x_{mn} = L$.

Lemma 2.5 ([15], Theorem 6) (a) Let $\mathcal{I}_2 \subset 2^{\mathbb{N} \times \mathbb{N}}$ be a strongly admissible ideal. If $\lim_{m,n\to\infty} x_{mn} = L$, then $\mathcal{I}_2 - \lim_{m,n\to\infty} x_{mn} = L$.

(b) Let $\mathcal{I}_2 \subset 2^{\mathbb{N} \times \mathbb{N}}$ be a admissible ideal. If $\mathcal{I}_2 - \lim_{m,n \to \infty} x_{mn} = L$ and $\mathcal{I}_2 - \lim_{m,n \to \infty} y_{mn} = K$, then

(i)
$$\mathcal{I}_2 - \lim_{m,n\to\infty} (x_{mn} + y_{mn}) = L + K;$$

(ii) $\mathcal{I}_2 - \lim_{m,n\to\infty} (x_{mn}y_{mn}) = LK.$

3 The Decomposition Theorem for \mathcal{I}_2 -Convergence of Double Sequences

We extend the decomposition theorem of Nabiev, Pehlivan and Gürdal [17] from ordinary (single) to double sequences as follows.

Theorem 3.1 Let (X, ρ) be a linear metric space, $\mathcal{I}_2 \subset 2^{\mathbb{N} \times \mathbb{N}}$ be a strongly admissible ideal having the property (AP2) and $x = (x_{mn})_{m,n \in \mathbb{N}}$ be a double sequence in X. Then, the following conditions are equivalent:

- (i) $\mathcal{I}_2 \lim_{m,n \to \infty} x_{mn} = L$,
- (ii) There exist $y = (y_{mn})_{m,n \in \mathbb{N}}$ and $z = (z_{mn})_{m,n \in \mathbb{N}}$ be two sequences in X such that

$$x = y + z$$
, $\lim_{m,n\to\infty} \rho(y_{mn},L) = 0$ and supp $z \in \mathcal{I}_2$,

where $\operatorname{supp} z = \{(m, n) \in \mathbb{N} \times \mathbb{N} : z_{mn} \neq \theta\}$ and θ is the zero element of X.

Proof (i) \Rightarrow (ii) Let $\mathcal{I}_2 - \lim_{m,n\to\infty} x_{mn} = L$. Then by Lemma 2.4 there exists a set $M \in \mathcal{F}(\mathcal{I}_2)$ (that is, $H = \mathbb{N} \times \mathbb{N} \setminus M \in \mathcal{I}_2$) such that

$$\lim_{\substack{m,n\to\infty\\(m,n)\in M}}\rho(x_{mn},L)=0.$$

Let us define the double sequence $y = (y_{mn})_{m,n \in \mathbb{N}}$ by

$$y_{mn} = \begin{cases} x_{mn}, & (m,n) \in M \\ L, & (m,n) \in \mathbb{N} \times \mathbb{N} \backslash M. \end{cases}$$
(3.1)

It is clear that $y = (y_{mn})$ is in X and

$$\lim_{m,n\to\infty}\rho(y_{mn},L)=0$$

Also, let

$$z_{mn} = x_{mn} - y_{mn}, \quad m, n \in \mathbb{N}.$$

$$(3.2)$$

As

$$\{(m,n)\in\mathbb{N}\times\mathbb{N}: x_{mn}\neq y_{mn}\}\subset\mathbb{N}\times\mathbb{N}\backslash M\in\mathcal{I}_2,$$

we have

$$\{(m,n)\in\mathbb{N}\times\mathbb{N}: z_{mn}\neq\theta\}\in\mathcal{I}_2.$$

It follows that $\operatorname{supp} z \in \mathcal{I}_2$ and by (3.1) and (3.2), we get x = y + z.

(ii) \Rightarrow (i) Suppose that there exist two sequences $y = (y_{mn})$ and $z = (z_{mn})$ in X such that

$$x = y + z$$
, $\lim_{m,n\to\infty} \rho(y_{mn},L) = 0$, and $\operatorname{supp} z = \{(m,n)\in\mathbb{N}\times\mathbb{N}: z_{mn}\neq\theta\}\in\mathcal{I}_2$. (3.3)

We show that

$$\mathcal{I}_2 - \lim_{m,n \to \infty} x_{mn} = L.$$

Let

$$M = \{(m, n) \in \mathbb{N} \times \mathbb{N} : z_{mn} = \theta\} = \mathbb{N} \times \mathbb{N} \text{supp } z.$$
(3.4)

As supp $z \in \mathcal{I}_2$, from (3.3) and (3.4), we have $M \in \mathcal{F}(\mathcal{I}_2)$, $x_{mn} = y_{mn}$ for $(m, n) \in M$ and

$$\mathcal{I}_2^* - \lim_{\substack{m,n \to \infty \\ (m,n) \in M}} \rho(x_{mn}, L) = 0.$$

By Lemma 2.3, it follows that

$$\mathcal{I}_2 - \lim_{m \to \infty} x_{mn} = L.$$

This completes the proof of theorem.

Corollary 3.2 Let (X, ρ) be a linear metric space and $\mathcal{I}_2 \subset 2^{\mathbb{N} \times \mathbb{N}}$ be a strongly admissible ideal having the property (AP2). Then,

$$\mathcal{I}_2 - \lim_{m,n \to \infty} x_{mn} = L$$

if and only if there exist $y = (y_{mn})$ and $z = (z_{mn})$ in X such that

$$x = y + z$$
, $\lim_{m,n\to\infty} \rho(y_{mn}, L) = 0$, and $\mathcal{I}_2 - \lim_{m,n\to\infty} z_{mn} = \theta$.

Proof Let $\mathcal{I}_2 - \lim_{m,n\to\infty} x_{mn} = L$ and $y = (y_{mn})$ is the sequence defined by (3.1). Consider the sequence

$$z_{mn} = x_{mn} - y_{mn}. (3.5)$$

Then, we have

$$\lim_{m,n\to\infty}\rho(y_{mn},L)=0$$

and as \mathcal{I}_2 is a strongly admissible ideal, so

$$\mathcal{I}_2 - \lim_{m,n \to \infty} y_{mn} = L.$$

By Lemma 2.5 and by (3.5), we have

$$\mathcal{I}_2 - \lim_{m,n \to \infty} z_{mn} = \theta.$$

 $\lim_{m,n\to\infty}\rho(y_{mn},L)=0 \ and \ \mathcal{I}_2-\lim_{m,n\to\infty}z_{mn}=\theta.$

As \mathcal{I}_2 is a strongly admissible ideal, so

$$\mathcal{I}_2 - \lim_{m,n \to \infty} y_{mn} = L$$

and by Lemma 2.5, we have

$$\mathcal{I}_2 - \lim_{m,n \to \infty} x_{mn} = L.$$

Remark 3.3 In Theorem 3.1, if (ii) is satisfied, then the strongly admissble ideal \mathcal{I}_2 need not have the property (*AP2*). As

$$\{(m,n)\in\mathbb{N}\times\mathbb{N}:\rho(z_{mn},\theta)\geq\varepsilon\}\subset\{(m,n)\in\mathbb{N}\times\mathbb{N}:z_{mn}\neq\theta\}\in\mathcal{I}_2$$

for each $\varepsilon > 0$, then

$$\mathcal{I}_2 - \lim_{m,n\to\infty} z_{mn} = \theta.$$

Thus, we have

$$\mathcal{I}_2 - \lim_{m,n \to \infty} x_{mn} = L$$

4 I_2 -Cauchy Double Sequences

Now, we introduce the notion of \mathcal{I}_2^* -Cauchy double sequence.

Definition 4.1 Let (X, ρ) be a linear metric space and $\mathcal{I}_2 \subset 2^{\mathbb{N} \times \mathbb{N}}$ be a strongly admissible ideal. A double sequence $x = (x_{mn})$ in X is said to be \mathcal{I}_2^* -Cauchy sequence if there exists a set $M \in \mathcal{F}(\mathcal{I}_2)$ (that is, $H = \mathbb{N} \times \mathbb{N} \setminus M \in \mathcal{I}_2$) such that for every $\varepsilon > 0$ and for $(m, n), (s, t) \in M$, $m, n, s, t > k_0 = k_0(\varepsilon)$

$$\rho(x_{mn}, x_{st}) < \varepsilon.$$

In this case, we write

$$\lim_{m,n,s,t\to\infty}\rho(x_{mn},x_{st})=0.$$

Theorem 4.2 Let (X, ρ) be a linear metric space and $\mathcal{I}_2 \subset 2^{\mathbb{N} \times \mathbb{N}}$ be a stronly admissible ideal. If $x = (x_{mn})$ in X is an \mathcal{I}_2^* -Cauchy sequence, then it is \mathcal{I}_2 -Cauchy.

Proof Suppose that $x = (x_{mn})$ is an \mathcal{I}_2^* -Cauchy sequence. Then, there exists a set $M \in \mathcal{F}(\mathcal{I}_2)$ (that is, $H = \mathbb{N} \times \mathbb{N} \setminus M \in \mathcal{I}_2$) such that

$$\rho(x_{mn}, x_{st}) < \varepsilon,$$

for any $\varepsilon > 0$ and for all $(m, n), (s, t) \in M, m, n, s, t \ge k_0 = k_0(\varepsilon)$ and $k_0 \in \mathbb{N}$. Then,

$$A(\varepsilon) = \{(m,n) \in \mathbb{N} \times \mathbb{N} : \rho(x_{mn}, x_{st}) \ge \varepsilon\}$$

$$\subset H \cup \left[M \cap \left((\{1,2,3,\cdots,(k_0-1)\} \times \mathbb{N}) \cup (\mathbb{N} \times \{1,2,3,\cdots,(k_0-1)\})\right)\right].$$

As \mathcal{I}_2 be a strongly admissible ideal, then,

$$H \cup \left[M \cap \left((\{1, 2, 3, \cdots, (k_0 - 1)\} \times \mathbb{N}) \cup (\mathbb{N} \times \{1, 2, 3, \cdots, (k_0 - 1)\}) \right) \right] \in \mathcal{I}_2.$$

Therefore, we have

$$A(\varepsilon) \in \mathcal{I}_2.$$

This shows that the double sequence $x = (x_{mn})$ is \mathcal{I}_2 -Cauchy.

Theorem 4.3 Let (X, ρ) be a linear metric space, $\mathcal{I}_2 \subset 2^{\mathbb{N} \times \mathbb{N}}$ be an arbitrary strongly admissible ideal and (x_{mn}) in X. Then, \mathcal{I}_2 - $\lim_{m,n\to\infty} x_{mn} = L$ implies that (x_{mn}) is an \mathcal{I}_2 -Cauchy sequence.

Proof Suppose that $x = (x_{mn})$ is \mathcal{I}_2 -convergent to L. Let $\varepsilon > 0$ be given. Then,

$$A(\frac{\varepsilon}{2}) = \{(m,n) \in \mathbb{N} \times \mathbb{N} : \rho(x_{mn},L) \ge \frac{\varepsilon}{2}\} \in \mathcal{I}_2.$$

This implies that the set

$$A^{c}(\frac{\varepsilon}{2}) = \{(m,n) \in \mathbb{N} \times \mathbb{N} : \rho(x_{mn},L) < \frac{\varepsilon}{2}\} \in \mathcal{F}(\mathcal{I}_{2})$$

and therefore $A^c(\frac{\varepsilon}{2})$ is non-empty. So, we can choose positive integers k and l such that $(k, l) \notin A(\frac{\varepsilon}{2})$, but then we have

$$\rho(x_{kl},L) < \frac{\varepsilon}{2}.$$

Let

$$B(\varepsilon) = \{ (m, n) \in \mathbb{N} \times \mathbb{N} : \rho(x_{mn}, x_{kl}) \ge \varepsilon \}.$$

We prove that $B(\varepsilon) \subset A(\frac{\varepsilon}{2})$. Let $(m, n) \in B(\varepsilon)$, then we have

$$\varepsilon \le \rho(x_{mn}, x_{kl}) \le \rho(x_{mn}, L) + \rho(x_{kl}, L) < \rho(x_{mn}, L) + \frac{\varepsilon}{2}.$$

This implies that

$$\frac{\varepsilon}{2} < \rho(x_{mn}, L)$$

and therefore $(m,n) \in A(\frac{\varepsilon}{2})$. As $B(\varepsilon) \subset A(\frac{\varepsilon}{2})$ and $A(\frac{\varepsilon}{2}) \in \mathcal{I}_2$, we have

$$B(\varepsilon) \in \mathcal{I}_2.$$

This completes the proof.

5 Regularly \mathcal{I}_2 -Convergence and Regularly \mathcal{I}_2 -Cauchy Double Sequences

Now, we denote regularly $(\mathcal{I}_2, \mathcal{I})$ -convergence and regularly $(\mathcal{I}_2, \mathcal{I})$ -Cauchy double sequences and study their certain properties.

Definition 5.1 ([29]) Let \mathcal{I}_2 be an ideal of $\mathbb{N} \times \mathbb{N}$ and \mathcal{I} be an ideal of \mathbb{N} , then a double sequence $x = (x_{mn})$ in X is said to be regularly $(\mathcal{I}_2, \mathcal{I})$ -convergent $(r(\mathcal{I}_2, \mathcal{I})$ -convergent) if it is \mathcal{I}_2 -convergent in Pringsheim's sense and for every $\varepsilon > 0$, the followings hold:

$$\{m \in \mathbb{N} : |x_{mn} - L_n| \ge \varepsilon\} \in \mathcal{I},\tag{5.1}$$

for some $L_n \in X$, for each $n \in \mathbb{N}$ and

$$\{n \in \mathbb{N} : |x_{mn} - K_m| \ge \varepsilon\} \in \mathcal{I},\tag{5.2}$$

for some $K_m \in X$, for each $m \in \mathbb{N}$.

Definition 5.2 Let \mathcal{I}_2 be an ideal of $\mathbb{N} \times \mathbb{N}$, \mathcal{I} be an ideal of \mathbb{N} and (X, ρ) be a linear metric space, then a double sequence $x = (x_{mn})$ in X is said to be $r(\mathcal{I}_2^*, \mathcal{I}^*)$ -convergent if there exist the sets $M \in \mathcal{F}(\mathcal{I}_2)$ (that is, $\mathbb{N} \times \mathbb{N} \setminus M \in \mathcal{I}_2$), $M_1 \in \mathcal{F}(\mathcal{I})$, and $M_2 \in \mathcal{F}(\mathcal{I})$ (that is, $\mathbb{N} \setminus M \in \mathcal{I}_2$) and $M_1 \in \mathcal{F}(\mathcal{I})$, and $M_2 \in \mathcal{F}(\mathcal{I})$ (that is, $\mathbb{N} \setminus M \in \mathcal{I}_2$) such that the limits

$$\lim_{\substack{m,n\to\infty\\(m,n)\in M}} x_{mn}, \lim_{\substack{m\to\infty\\m\in M_1}} x_{mn}, (n\in\mathbb{N}) \text{ and } \lim_{\substack{n\to\infty\\n\in M_2}} x_{mn}, (m\in\mathbb{N})$$

exist. Note that if $x = (x_{mn})$ in X is regularly convergent to $L \in X$, then the limits $\lim_{m \to \infty} \lim_{n \to \infty} x_{mn}$ and $\lim_{n \to \infty} \lim_{m \to \infty} x_{mn}$ exist and are equal to $L \in X$.

Theorem 5.3 Let \mathcal{I}_2 be a strongly admissible ideal of $\mathbb{N} \times \mathbb{N}$, \mathcal{I} be an admissible ideal of \mathbb{N} , and (X, ρ) be a linear metric space. If a double sequence $x = (x_{mn})$ in X is $r(\mathcal{I}_2^*, \mathcal{I}^*)$ -convergent, then $r(\mathcal{I}_2, \mathcal{I})$ -convergent.

Proof Let $x = (x_{mn})$ be $r(\mathcal{I}_2^*, \mathcal{I}^*)$ -convergent. Then, it is \mathcal{I}_2^* -convergent and by Lemma 2.3, \mathcal{I}_2 -convergent. Also, there exist the sets $M_1 \in \mathcal{F}(\mathcal{I})$ and $M_2 \in \mathcal{F}(\mathcal{I})$, such that

 $(\forall \varepsilon > 0) \ (\exists m_0 \in \mathbb{N}) \ (\forall m \ge m_0) \ (m \in M_1) \ \rho(x_{mn}, L_n) < \varepsilon,$

for some $L_n \in X$ and for each $n \in \mathbb{N}$ and

$$(\forall \varepsilon > 0) \ (\exists n_0 \in \mathbb{N}) \ (\forall n \ge n_0) \ (n \in M_2) \ \rho(x_{mn}, K_m) < \varepsilon,$$

for some $K_m \in X$ and for each $m \in \mathbb{N}$. Hence, we have

$$A_1(\varepsilon) = \{m \in \mathbb{N} : \rho(x_{mn}, L_n) \ge \varepsilon\} \subset H_1 \cup \{1, 2, \cdots, m_0 - 1\} \text{ for each } n \in \mathbb{N}$$

and

$$A_2(\varepsilon) = \{n \in \mathbb{N} : \rho(x_{mn}, K_m) \ge \varepsilon\} \subset H_2 \cup \{1, 2, \cdots, n_0 - 1\} \text{ for each } m \in \mathbb{N},$$

for $H_1, H_2 \in \mathcal{I}$. As \mathcal{I} is admissible ideal, we have

$$H_1 \cup \{1, 2, \cdots, m_0 - 1\}, \ H_2 \cup \{1, 2, \cdots, n_0 - 1\} \in \mathcal{I}$$

and

$$A_1(\varepsilon), A_2(\varepsilon) \in \mathcal{I}$$

This shows that the sequence $x = (x_{mn})$ is $r(\mathcal{I}_2, \mathcal{I})$ -convergent.

Definition 5.4 Let \mathcal{I}_2 be a strongly admissible ideal of $\mathbb{N} \times \mathbb{N}$, \mathcal{I} be an admissible ideal of \mathbb{N} , and (X, ρ) be a linear metric space, then a double sequence $x = (x_{mn})$ in X is said to be regularly $(\mathcal{I}_2, \mathcal{I})$ -Cauchy $(r(\mathcal{I}_2, \mathcal{I})$ -Cauchy) if it is \mathcal{I}_2 -Cauchy in Pringsheim's sense and for every $\varepsilon > 0$, there exist $k_n = k_n(\varepsilon)$ and $l_m = l_m(\varepsilon) \in \mathbb{N}$ such that the followings hold:

$$A_1(\varepsilon) = \{ m \in \mathbb{N} : \rho(x_{mn}, x_{k_n n}) \ge \varepsilon \} \in \mathcal{I} \ (n \in \mathbb{N})$$

and

$$A_2(\varepsilon) = \{ n \in \mathbb{N} : \rho(x_{mn}, x_{ml_m}) \ge \varepsilon \} \in \mathcal{I} \ (m \in \mathbb{N}).$$

A double sequence $x = (x_{mn})$ in X is said to be regularly $(\mathcal{I}_2^*, \mathcal{I}^*)$ -Cauchy $(r(\mathcal{I}_2^*, \mathcal{I}^*)$ -Cauchy) if there exist the sets $M \in \mathcal{F}(\mathcal{I}_2)$, $M_1 \in \mathcal{F}(\mathcal{I})$, and $M_2 \in \mathcal{F}(\mathcal{I})$ (that is, $\mathbb{N} \times \mathbb{N} \setminus M \in \mathcal{I}_2$, $\mathbb{N} \setminus M_1 \in \mathcal{I}$, and $\mathbb{N} \setminus M_2 \in \mathcal{I}$) and for every $\varepsilon > 0$, there exist $N = N(\varepsilon) \in \mathbb{N}$, $s = s(\varepsilon)$, $t = t(\varepsilon)$, $k_n = k_n(\varepsilon)$, $l_m = l_m(\varepsilon) \in \mathbb{N}$ such that

$$\rho(x_{mn}, x_{st}) < \varepsilon \quad \text{(for } (m, n), (s, t) \in M, \, m, n, s, t > N\text{)},$$

$$\rho(x_{mn}, x_{k_n n}) < \varepsilon \text{ (for each } m \in M_1 \text{ and for each } n \in \mathbb{N}), \tag{5.3}$$

and

$$\rho(x_{mn}, x_{ml_m}) < \varepsilon \text{ (for each } n \in M_2 \text{ and for each } m \in \mathbb{N}\text{)}, \tag{5.4}$$

whenever $m, n, k_n, l_m > N$.

Theorem 5.5 Let \mathcal{I}_2 be a strongly admissible ideal of $\mathbb{N} \times \mathbb{N}$, \mathcal{I} be an admissible ideal of \mathbb{N} , and (X, ρ) be a linear metric space. If the double sequence $x = (x_{mn})$ in X is $r(\mathcal{I}_2^*, \mathcal{I}^*)$ -Cauchy, then $r(\mathcal{I}_2, \mathcal{I})$ -Cauchy.

Proof As double sequence $x = (x_{mn})$ is $r(\mathcal{I}_2^*, \mathcal{I}^*)$ -Cauchy, so \mathcal{I}_2^* -Cauchy. We know that \mathcal{I}_2^* -Cauchy implies \mathcal{I}_2 -Cauchy by Theorem 4.2. Also, as double sequence $x = (x_{mn})$ is $r(\mathcal{I}_2^*, \mathcal{I}^*)$ -Cauchy, so there exist the sets $M_1 \in \mathcal{F}(\mathcal{I}), M_2 \in \mathcal{F}(\mathcal{I})$ (that is, $\mathbb{N} \setminus M_1 \in \mathcal{I}$ and $\mathbb{N} \setminus M_2 \in \mathcal{I}$) and for every $\varepsilon > 0$, there exist $k_n = k_n(\varepsilon), l_m = l_m(\varepsilon) \in \mathbb{N}$ such that

$$\rho(x_{mn}, x_{k_n n}) < \varepsilon \quad \text{(for each } m \in M_1 \text{ and for each } n \in \mathbb{N}\text{)}$$

$$(5.5)$$

and

$$\rho(x_{mn}, x_{ml_m}) < \varepsilon \quad \text{(for each } n \in M_2 \text{ and for each } m \in \mathbb{N}\text{)}$$
(5.6)

for $N = N(\varepsilon) \in \mathbb{N}$ and $m, n, k_n, l_m \ge N$. Hence, we have

$$A_1(\varepsilon) = \{m \in \mathbb{N} : \rho(x_{mn}, x_{k_n n}) \ge \varepsilon\} \subset H_1 \cup \{1, 2, \cdots, (N-1)\} \ (m \in M_1 \text{ and } n \in \mathbb{N})$$

and

$$A_2(\varepsilon) = \{n \in \mathbb{N} : \rho(x_{mn}, x_{ml_m}) \ge \varepsilon\} \subset H_2 \cup \{1, 2, \cdots, (N-1)\} \ (n \in M_2 \text{ and } m \in \mathbb{N})$$

for $H_1 = \mathbb{N} \setminus M_1, H_2 = \mathbb{N} \setminus M_2 \in \mathcal{I}$. As \mathcal{I} is admissible ideal,

$$H_1 \cup \{1, 2, \cdots, (N-1)\}, H_2 \cup \{1, 2, \cdots, (N-1)\} \in \mathcal{I}$$

Therefore, it is clear, $A_1(\varepsilon) \in \mathcal{I}$ and $A_2(\varepsilon) \in \mathcal{I}$. This shows that $x = (x_{mn})$ is $r(\mathcal{I}_2, \mathcal{I})$ -Cauchy.

Theorem 5.6 Let \mathcal{I}_2 be a strongly admissible ideal of $\mathbb{N} \times \mathbb{N}$, \mathcal{I} be an admissible ideal of \mathbb{N} , and (X, ρ) be a linear metric space. If the double sequence $x = (x_{mn})$ in X is $r(\mathcal{I}_2, \mathcal{I})$ -convergent, then (x_{mn}) is $r(\mathcal{I}_2, \mathcal{I})$ -Cauchy sequence.

Proof Let $x = (x_{mn})$ in X be a $r(\mathcal{I}_2, \mathcal{I})$ -convergent double sequence. By Theorem 4.3, $x = (x_{mn})$ is \mathcal{I}_2 -Cauchy sequence. Also, for every $\varepsilon > 0$, we have

$$A_1(\frac{\varepsilon}{2}) = \{ m \in \mathbb{N} : \rho(x_{mn}, L_n) \ge \frac{\varepsilon}{2} \} \in \mathcal{I},$$
(5.7)

for some $L_n \in X$, for each $n \in \mathbb{N}$ and

$$A_2(\frac{\varepsilon}{2}) = \{ n \in \mathbb{N} : \rho(x_{mn}, K_m) \ge \frac{\varepsilon}{2} \} \in \mathcal{I}$$
(5.8)

for some $K_m \in X$, for each $m \in \mathbb{N}$. As \mathcal{I} is admissible ideal, so the sets

$$A_1^c(\frac{\varepsilon}{2}) = \{m \in \mathbb{N} : \rho(x_{mn}, L_n) < \frac{\varepsilon}{2}\} (n \in \mathbb{N})$$

and

$$A_2^c(\frac{\varepsilon}{2}) = \{n \in \mathbb{N} : \rho(x_{mn}, K_m) < \frac{\varepsilon}{2}\} (m \in \mathbb{N})$$

are nonempty and belong to $\mathcal{F}(\mathcal{I})$. For $k_n \notin A_1(\frac{\varepsilon}{2})$ $(n \in \mathbb{N} \text{ and } k_n > 0)$, we have

$$\rho(x_{k_n n}, L_n) < \frac{\varepsilon}{2} \ (n \in \mathbb{N}).$$

Now, we define the set

$$B_1(\varepsilon) = \{ m \in \mathbb{N} : \rho(x_{mn}, x_{k_n n}) \ge \varepsilon \} \ (n \in \mathbb{N}),$$

where $k_n = k_n(\varepsilon)$ for $\varepsilon > 0$. We must prove that

$$B_1(\varepsilon) \subset A_1(\frac{\varepsilon}{2}).$$

Let $m \in B_1(\varepsilon)$. Then, for $k_n \notin A_1(\frac{\varepsilon}{2})$ $(n \in \mathbb{N} \text{ and } k_n > 0)$, we have

$$\varepsilon \le \rho(x_{mn}, x_{k_n n}) \le \rho(x_{mn}, L_n) + \rho(x_{k_n n}, L_n) < \rho(x_{mn}, L_n) + \frac{\varepsilon}{2}.$$

This shows that

$$\frac{\varepsilon}{2} < \rho(x_{mn}, L_n)$$

and therefore $m \in A_1(\frac{\varepsilon}{2})$. Hence, we have

$$B_1(\varepsilon) \subset A_1(\frac{\varepsilon}{2}).$$

Similarly, for $l_m \notin A_2(\frac{\varepsilon}{2})$ $(m \in \mathbb{N} \text{ and } l_m > 0)$, we have

$$o(x_{ml_m}, K_m) < \frac{\varepsilon}{2} \quad (m \in \mathbb{N})$$

Therefore, it can be seen that

$$B_2(\varepsilon) \subset A_2(\frac{\varepsilon}{2}),$$

where

$$B_2(\varepsilon) = \{ m \in \mathbb{N} : \rho(x_{mn}, x_{ml_m}) \ge \varepsilon \} \ (m \in \mathbb{N}).$$

This shows that (x_{mn}) is $r(\mathcal{I}_2, \mathcal{I})$ -Cauchy sequence.

References

- [1] Fast H. Sur la convergence statistique. Colloq Math 1951, 2: 241–244
- Schoenberg I J. The integrability of certain functions and related summability methods. Amer Math Monthly, 1959, 66: 361–375
- [3] Šalát T. On statistically convergent sequences of real numbers. Math Slovaca, 1980, **30**: 139–150
- [4] Fridy J A. On statistical convergence. Analysis, 1985, 5: 301–313
- [5] Fridy J A. Statistical limit points. Proc Amer Math Soc. 1993, 118: 1187-1192
- [6] Rath D, Tripaty B C. On statistically convergence and statistically Cauchy sequences. Indian J Pure Appl Math, 1994, 25(4): 381–386
- [7] Mursaleen, Edely O H H. Statistical convergence of double sequences. J Math Anal Appl, 2003, 288: 223–231
- [8] Tripathy B C. Statistically convergent double sequences. Tamkang Jour Math, 2003, 34(3): 231–237
- [9] Çakan C, Altay B. Statistically boundedness and statistical core of double sequences. J Math Anal Appl, 2006, 317: 690–697
- [10] Fridy J A, Orhan C. Statistical limit superior and inferior. Proc Amer Math Soc, 1997, 125: 3625–3631
- Tripathy B C, Sarma B. Statistically convergent difference double sequence spaces. Acta Math Sinica (Eng Ser), 2008, 24(5): 737–742
- [12] Kostyrko P, Šalát T, Wilczyński W. I-convergence. Real Anal Exchange, 2000, 26(2): 669-686
- [13] Nuray F, Ruckle W H. Generalized statistical convergence and convergence free spaces. J Math Anal Appl, 2000, 245: 513–527

- [14] Kostyrko P, Mačaj M, Šalát T, Sleziak M. I-convergence and extremal I-limit points. Math Slovaca, 2005, 55: 443–464
- [15] Das P, Kostyrko P, Wilczyński W, Malik P. I and I*-convergence of double sequences. Math Slovaca, 2008, 58(5): 605–620
- [16] Das P, Malik P. On extremal I-limit points of double sequences. Tatra Mt Math Publ, 2008, 40: 91–102
- [17] Nabiev A, Pehlivan S, Gürdal M. On I-Cauchy sequence. Taiwanese J Math, 2007, 11(2): 569–576
- [18] Balcerzak M, Dems K, Komisarski A. Statistical convergence and ideal convergence for sequences of functions. J Math Anal Appl, 2007, 328: 715–729
- [19] Demirci K. I-limit superior and limit inferior. Math Commun, 2001, 6: 165–172
- $[20]\,$ Dems K. On I-Cauchy sequence. Real Anal Exchange, 2004/2005, ${\bf 30}{\rm :}\,\,123{\rm -}128$
- [21] Komisarski A. Pointwise I-convergence and I*-convergence in measure of sequences of functions. J Math Anal Appl, 2008, 340: 770–779
- [22] Kumar V. On I and I^* -convergence of double sequences. Math Commun, 2007, 12: 171–181
- [23] Mursaleen M, Mohiuddine S A, Edely O H H. On ideal convergence of double sequences in intuitionistic fuzzy normed spaces. Comput Math Appl, 2010, 59: 603–611
- [24] Mursaleen M, Mohiuddine S A. On ideal convergence of double sequences in probabilistic normed spaces. Math Reports, 2010, 12(64)(4): 359–371
- [25] Mursaleen M, Mohiuddine S A. On ideal convergence in probabilistic normed spaces. Math Slovaca, 2012, 62: 49-62
- [26] Mursaleen M, Alotaibi A. On I-convergence in random 2-normed spaces. Math Slovaca, 2011, 61(6): 933– 940
- [27] Šalát T, Tripaty B C, Ziman M. On I-convergence field. Ital J Pure Appl Math, 2005, 17: 45–54
- [28] Şahiner A, Gürdal M, Saltan S, Gunawan H. Ideal convergence in 2-normed spaces. Taiwanese J Math, 2007, 11: 1477–1484
- [29] Tripathy B, Tripathy B C. On I-convergent double sequences. Soochow J Math, 2005, **31**: 549–560
- [30] Tripathy B C, Hazarika B. I-convergent sequence spaces associated with multiplier sequence spaces. Mathematical Inequalities and Applications, 2008, 11(3): 543–548
- [31] Tripathy B C, Hazarika B. Paranormed I-convergent sequences spaces. Math Slovaca, 2009, 59(4): 485–494
- [32] Tripathy B C, Mahanta S. On I-acceleration convergence of sequences. Journal of the Franklin Institute, 2010, 347: 591–598
- [33] Tripathy B C, Hazarika B. I-convergent sequences spaces defined by Orlicz function. Acta Math Applicatae Sinica, 2011, 27(1): 149–154
- [34] Tripathy B C, Sen M, Nath S. I-convergence in probabilistic n-normed space. Soft Comput, 2012, 16: 1021–1027
- [35] Tripathy B C, Dutta A J. On I-acceleration convergence of sequences of fuzzy real numbers. Math Modell Analysis, 2012, 17(4): 549–557
- [36] Tripathy B C, Sarma B. On I-convergent double sequences of fuzzy real numbers. Kyungpook Math Journal, 2012, 52(2): 189–200
- [37] Altay B, Başar F. Some new spaces of double sequences. J Math Anal Appl, 2005, 309(1): 70-90
- [38] Pringsheim A. Zur theorie der zweifach unendlichen Zahlenfolgen. Math Ann, 1900, 53: 289–321