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Abstract

In this paper, we investigate relationship between .#-convergence and .#,-Cauchy double sequences in fuzzy
normed spaces. After, we introduce the concepts of .Z-Cauchy double sequences and study relationships
between #,-Cauchy and .#;-Cauchy double sequences in fuzzy normed spaces.
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1. Introduction and background

Throughout the paper N and R denote the set of all positive integers and the set of all real numbers, respectively. The concept
of convergence of a sequence of real numbers has been extended to statistical convergence independently by Fast [1] and
Schoenberg [2]. A lot of developments have been made in this area after the various studies of researchers [3, 4]. The idea
of .#-convergence was introduced by Kostyrko et al. [5] as a generalization of statistical convergence which is based on the
structure of the ideal .# of subset of the set of natural numbers N. Das et al. [6] introduced the concept of .#-convergence of
double sequences in a metric space and studied some properties of this convergence. A lot of developments have been made in
this area after the works of [7, 8, 9, 10].

The concept of ordinary convergence of a sequence of fuzzy numbers was firstly introduced by Matloka [11] and proved
some basic theorems for sequences of fuzzy numbers. Nanda [12] studied the sequences of fuzzy numbers and showed that
the set of all convergent sequences of fuzzy numbers are a complete metric space. Sencimen and Pehlivan [13] introduced
the notions of statistically convergent sequence and statistically Cauchy sequence in a fuzzy normed linear space. Hazarika
[14] studied the concepts of .#-convergence, .# *-convergence and .#-Cauchy sequence in a fuzzy normed linear space.
Diindar and Talo [15, 16] introduced the concepts of .%,-convergence and .#;-Cauchy sequence for double sequences of fuzzy
numbers and studied some properties and relations of them. Hazarika and Kumar [17] introduced the notion of .%,-convergence
and .%,-Cauchy double sequences in a fuzzy normed linear space. Diindar and Tiirkmen [18] studied some properties of
H-convergence and %, -convergence of double sequences in fuzzy normed spaces. A lot of developments have been made in
this area after the various studies of researchers [19, 20, 21, 22].

Now, we recall the concept of ideal, convergence, statistical convergence, ideal convergence of sequence, double sequence
and fuzzy normed and some basic definitions (see [1, 3, 4, 13, 15, 20, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34]).

Fuzzy sets are considered with respect to a nonempty base set X of elements of interest. The essential idea is that each
element x € X is assigned a membership grade u(x) taking values in [0, 1], with u(x) = 0 corresponding to nonmembership,
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0 < u(x) < 1 to partial membership, and u(x) = 1 to full membership. According to Zadeh [35], a fuzzy subset of X is a
nonempty subset {(x,u(x)) : x € X} of X x [0,1] for some function u : X — [0, 1]. The function u itself is often used for the
fuzzy set.

A fuzzy set u on R is called a fuzzy number if it has the following properties:

1. u is normal, that is, there exists an xp € R such that u(xp) = 1;

2. u is fuzzy convex, that is, forx,y € Rand 0 < A < 1, u(Ax+ (1 —A)y) > min[u(x),u(y)];

3. u is upper semicontinuous;

4. suppu = cl{x € R:u(x) > 0}, or denoted by [u]o, is compact.

Let L(R) be set of all fuzzy numbers. If u € L(R) and u (t) = 0 for r < 0, then u is called a non-negative fuzzy number. We
write L*(R) by the set of all non-negative fuzzy numbers. We can say that u € L*(R) iff u, > 0 for each a € [0,1]. Clearly we
have 0 € L(R). For u € L(R), the a level set of u is defined by

W, = {xeR:ulx)>a}, if ae(0,1]
o = suppu, if «=0.

A partial order < on L(R) is defined by u < v if uy < v, and uj, < v, forall a € [0,1].
Arithmetic operation for r € R, ®,6,® and @ on L(R) x L(R) are defined by

(u@v) (1) = supseg {u(s) Av(i—s)}, (uev) (1) = supseg {u(s) Av(s—1)},
(u©V) (1) = supseg sz0 {u (s) Av(1/s)} and (u@v) () = supyeg {u(st) Av(s)}.

For k € RT, ku is defined as ku (t) = u(t/k) and Ou (¢t) = 0, ¢t € R.

Some arithmetic operations for ot—level sets are defined as follows:

u,v € L(R) and [u], = [ug,uy] and [v], = [vg,vé], o € (0,1]. Then,

@Vl = [ug +vasug +val SV = [ug —vg, ug —vql,
[u© V] = [ug.vg,ugvy] and [Tou], {% 1} uy > 0.
For u,v € L(R), the supremum metric on L(R) defined as

D(u,v)= sup max{|ug—v
0<a<l

_Va|}

It is known that D is a metric on L(R) and (L(R), D) is a complete metric space.

A sequence x = (x;) of fuzzy numbers is said to be convergent to the fuzzy number xo, if for every € > 0 there exists a
positive integer kg such that D (x;,x) < € for k > ko and a sequence x = (x;) of fuzzy numbers convergent to levelwise to
xo if and only if kh_r)rolo (%], = [%0], and ,(15330 [k]q = [x0]g, where [x],, = [(x%) g » (%) o] and [xo],, = [(x0) , (x0) 5] for every

€(0,1).

Let X be a vector space over R, |.|| : X — L*(R) and the mappings L;R (respectively, left norm and right norm) :
[0,1] x [0,1] — [0, 1] be symetric, nondecreasing in both arguments and satisfy L(0,0) =0 and R(1,1) = 1.

The quadruple (X, ||.]|,L,R) is called fuzzy normed linear space (briefly FNS) and ||.|| a fuzzy norm if the following axioms
are satisfied

1. ||x]| =0iffx=0
2. |rxll =[rl©|lx]| forx € X, r € R,

3. Forallx,y e X
(@) [[x-+ ] (s-+1) = L] (). Y] (1)) . whenever s < [lx|[; .t < [y]}; and s+ < |x+y]];.
() [lx+yl[ (s+2) < R(|lxl| (s), I (), whenever s > |[x[|; 2 > [|yl[; and s +7 > [x+y]; .

Let (X,].||) be an ordinary normed linear space. Then, a fuzzy norm ||.|| on X can be obtained by

0, if 0 <t <allx||c ort>b|x|,
el () =< T=anETe ~ e Falldic <t <l

m + b%la if ||x||c str< bllx”C

where ||x|| is the ordinary norm of x (#0),0 <a <1 and 1 < b < co. For x = 0, define ||x|| = 0. Hence, (X, ||.||) is a fuzzy
normed linear space.

Let us consider the topological structure of an FNS (X, ||.||). For any € > 0,0 € [0,1] and x € X, the (&, o) — neighborhood
of xis the set A5 (g,0) ={yeX : [x—y|& <€}
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Let (X, ||.|]) be an FNS. A sequence (x,);_, in X is convergent to x € X with respect to the fuzzy norm on X and we denote
by x, Ny, provided that (D) —lim,_,.. ||x, —x|| = 0; i.e., for every & > 0 there is an N (€) € N such that D (||x,, —x|| ,6) < ¢ for
alln > N (€) . This means that for every € > O there is an N (&) € N such that foralln > N (€), sup |jx, —x||; = [|x, — x[|g <€.

ael0,1

Let (X, ||.|[) be an FNS. Then a double sequence (x ) is said to be convergent to x € X with respect to the fuzzy norm on

X if for every € > 0 there exist a number N = N (€) such that D (ijk —xH ,6) < ¢, forall j,k>N.

In this case, we write x ji XM, x. This means that, for every € > 0 there exist a number N =N (&) such that sup ijk - xH; =
ael0,1]

ijk —)c||:)r < g, for all j,k> N. In terms of neighnorhoods, we have x j N x provided that for any € > 0, there exists a
number N = N (€) such that x; € .45 (€,0), whenever j,k > N.

Let X # 0. A class .# of subsets of X is said to be an ideal in X provided:

H0e.#, (i)A,Be 7 impliessAUBc ¥, (ili)A€ ¥, BCAimpliesB € .#.

Z is called a nontrivial ideal if X ¢ .#. A nontrivial ideal .# in X is called admissible if {x} € .# for each x € X.

A nontrivial ideal .#, of N x N is called strongly admissible if {i} x N and N x {i} belong to .#, for each i € N. It is evident
that a strongly admissible ideal is also admissible. Throughout the paper we take .#, as a strongly admissible ideal in N x N.

Let 77 = {A C NxN: (3m(A), (i, j) > m(A) = (i, j) A)}. Then .#) is a nontrivial strongly admissible ideal and clearly
an ideal .# is strongly admissible if and only if 7Y C .%5.

Let X # 0. A non empty class .% of subsets of X is said to be a filter in X provided:

Ho¢F, (i)A,Be F impliesANBe #, (iii))Ac.#,AC Bimplies Be .F.

Let .# is a nontrivial ideal in X, X # 0, then the class # (&) ={M C X : (3A € .#)(M = X\A)} is a filter on X, called the
filter associated with .#.

Let (X,p) be a linear metric space and .#, C 2N be a strongly admissible ideal. A double sequence x = (X,,,) in X
is said to be #-convergent to L € X, if for any € > 0 we have A(€) = {(m,n) € NXN: p(xpn,L) > €} € # and we write

fz — lim Xmn — L.
m,n—oo

Let (X, |.||) be fuzzy normed space. A sequence x = (X )men in X is said to be .# — convergent to L € X with respect to

fuzzy norm on X if for each & > 0, the set A (¢) = {m € N : |[x;, —L||§ > €} belongs to .#. In this case, we write x,, LESS
The element L is called the .# —limit of (x;,) in X.
Let (X, |.|[) be a fuzzy normed space. A double sequence x = (Xyun) jm,n)enxny in X is said to be %, — convergent to L; € X

with respect to fuzzy norm on X if for each € > 0, the set A (¢) = {(m,n) ENXN: |[xmn — Ly ||8' > 8} € %. In this case, we
write X, FA Ly or Xy — L1 (FS) or FP) — hIB Xmn = Ly . The element L, is called the F .9 —limit of (x,,,) in X. In
m,n—oo

terms of neighborhoods, we have x,,, % L provided that for each € > 0, {(m,n) € NxN:x,, ¢ A7, (€,0)} € #. A useful
interpretation of the above definition is the following;

BZ .
X B3 Ly & F 9y — lim | — L[| =0.
m,n—oo
Note that F.%, — lil’Ll [%mn — L1l = O implies that
m,n—oo

F.% —lim|\xu, —Li||, = Fﬂg—limemn—LlH;:O,

for each & € [0, 1], since 0 < [[xyn — L1 ||y < |[%mn — L1 || < ||%mn — L1]|¢ holds for every m,n € N and for each « € [0, 1].
Let (X,]|.||) be a fuzzy normed space. A double sequence x = (x,;;,) in X is said to be .#,-Cauchy (or F.#,-Cauchy) double
sequence with respect to the fuzzy norm on X if, for each € > 0, there exists integers p = p(€) and g = g (€) such that the set

{(m,n) € NXN: || —quH(J)r > 8} belongs to .%5.
We say that an admissible ideal .#> C 2NV*N satisfies the property (AP2), if for every countable family of mutually disjoint
sets {A1,A», ...} belonging to .%,, there exists a countable family of sets {By,B,,...} such that A;NB; € 9 ie., AjNB;jis

included in the finite union of rows and columns in N x N for each j € N and B = U;":I Bj € % (hence B; € %, for each
jeN).

Lemma 1.1. ([27], Theorem 3.3) Let {P;};. | be a countable collection of subsets of N x N such that P; € F (%) for each i,
where F (%) is a filter associated with a strongly admissible ideal %, with the property (AP2). Then there exists a set P C
N x N such that P € F (%) and the set P\P, is finite for all i.
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Lemma 1.2. ([17], Theorem 3.5) Let (X, ||.||) be fuzzy normed space and %, be a admissible ideal. Then, every .%;-convergent
sequence is 9-Cauchy sequence.

2. Main results

In this section, we investigate relationship between .#,-convergence and .#,-Cauchy double sequences in fuzzy normed spaces.
After, we introduce the concepts of .#;"-Cauchy double sequences and study relationships between .#>-Cauchy and .#;'-Cauchy
double sequences in fuzzy normed spaces.

Theorem 2.1. Let (X, ||.||) be a fuzzy normed space. Then, a double sequence (X,) is F -%5-convergent if and only if it is
F %-Cauchy double sequence.

Proof. Hazarika and Kumar proved that every F.%-convergent sequence is F .%-Cauchy sequence in Lemma 1.2.

Assume that (x,,,) is F .#>-Cauchy double sequence. We prove that (x,,,) is F.#>-convergent. To this effect, let (g,,) be a
strictly decreasing sequence of numbers converging to zero. Since (xp,) is F.#—Cauchy double sequence, there exist two
strictly increasing sequences (k) and (I,) of positive integers such that the set

Algyy) = {<m,n> €NXN: [t — iy, || 2 gpq}
belongs to .%,, (p,q € N). This implies that

0+ {(m,n) eNxN: ||xmn—xkp1q

+
< e,,q} 2.1
belongs to F (£), (p,q € N). Let p, q,s,t be four positive integers such that p # ¢ and s # t. By (2.1), both the sets

D(gpq) = {(m,n) e NxN: ||xmn — Xk, 1,

+
}o < &pq}
and

C(ey) = {(m,n) € Nx N |[xym —xip, ||g < &}

are non empty sets in .# (#). Since .7 (%) is a filter on N x N, therefore 0 # D (&,4) NC (&y) € .F (#2). Thus, for each pair
(p,q) and (s,t) of positive integers with p # ¢ and s # ¢, we can select a pair (m(p,q),(s,t)7”(p7q),(s,t)) € N x N such that

Hx’”pqv"pqxt — Yhply H(-: < €pq and Hx’”pqxt"ﬂqsf = Xkl ‘g < &s-

It follows that

|(J)r < ||xmpqs‘t”pqst Xkl H(T + Hx’”pqsf”pqa‘f — Xsly |(J)r

< Epgt+&r—0,asp,q,s,t —oo.

ety =,

This implies that (xkpl q) (p,q € N) is a Cauchy double sequence in fuzzy normed space, therefore it satisfies the Cauchy
convergence criterion. Thus, the sequence (xk ,,lq) converges to a finite limit L; that is,

p};gooxkvlq =L

Also, we have €,;, — 0 as p,qg — oo, so for each € > 0 we can choose the positive integers po,go such that for p > py and
q 2 9o,
€ + €
Epoay < 7 and o1, = La |y < ok (22)

Now, we define the set
Ae)= {(m,n) eNxN: men—Lng > 8}.

We prove that A (€) C A(&p,q, ). Let (m,n) € A (&), then by second half of (2.2) we have

. + +
e< ||xmn —L ”0 < men _xkﬂolqo 0 + kal’ol‘fo —L HO
+ &
< — —.
< men Mpolao || + >
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This implies that

+

< men - xkp0 lgo

N M

0
and therefore by first half of (2.2) we have

+

Epogo <

Xmn _xkl’ol‘i() 0’

This implies that (m,n) € A(€y,q,) and therefore A (g) is contained in A (&, ). Since A (&4, ) belongs to .# therefore, A (€)
belongs to .#,. This proves that (x,,,) is F.#;-convergent to L. O

Definition 2.2. Let (X, ||.||) be a fuzzy normed space. A double sequence x = (Xu,) in X is said to be .75 -Cauchy (or F .7 -
Cauchy) double sequence with respect to fuzzy norm on X if, there exists a set M € F (%) (i.e., H=NxN\M € %) and
ko = ko(€) such that for every € > 0 and for (m,n), (s,t) € M, ||Xmn —xst||g < €, whenever m,n,s,t > kq. In this case, we write

lim ||xmn—xs,\|6r =0.
m,n,s,t—oo

Theorem 2.3. Letr %, be an admissible ideal of N x N. If a double sequence (x,) in X is an F 75 -Cauchy sequence, then it is
F %-Cauchy sequence.

Proof. Suppose that (x,,,) is an F .#;-Cauchy sequence. Then, there exists a set M € .Z (%) (i.e., H=NxN\M € .%) and
ko = ko(€) such that for every € > 0 and for (m,n), (s,1) € M ||Xn — X« || < €, Whenever m,n,s,t > ko. Then,

A(e) = {(mn) ENXN:||[xpm —xy|y > €}
C HUMNO(({1,...ko} x N)U(Nx {1,....,ko }))].

Since %, be an admissible ideal, then
HUMN(({1,....ko} x N)U(N x {1,....ko}))] € £.
Therefore, we have A(g) €.%,. This shows that (x,,) is F.#;-Cauchy sequence in X. O

Theorem 2.4. Let .9, be an admissible ideal of N x N with the property (AP2) and (xyy,) be a double sequence in X. Then,
the concepts %> —Cauchy double sequence with respect to fuzzy norm on X and .#5 -Cauchy double sequence with respect to
fuzzy norm on X coincide.

Proof. If a double sequence is F.#, -Cauchy, then it is F.#>-Cauchy by Theorem 2.3, where .%> need not have the property
(AP2). Now, it is sufficient to prove that a double sequence (x,,,) in X is a F.#*-Cauchy double sequence under assumption
that it is an F.%,-Cauchy double sequence. Let (x;,,) be an F.#;-Cauchy double sequence in X. Then, there exists s = s(€), =
t (&) € N such that for every € > 0,

A(g)={(mn) eNxN: [[%mn — Xge || > e} € .

Let
L
P = (m,n) € NN [ — x4y < e

where s5; = s (1\i), (i € N), t; = ¢(1\i). It is clear that P, € .% (%) for all i € N. Since .#, has the property (AP2), then by
Lemma 1.1 there exists a set P C N x N such that P € .7 (.#;) and P\P, is finite for all i € N. Now we show that

lim % —xstHg =0,
mn,s,t—oo

for (m,n),(s,t) € P. To prove this, let € > 0 and j € N such that j > 2/e. If (m,n),(s,t) € P then P\P, is a finite set, so there
exists N = N(j) such that (m,n), (s,t) € P; for all m,n,s,t > N(j). Therefore,

1 1
men*xsz‘li”a_ < ; and [|xg 7x“'i’i||8_ <=,
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for all m,n,s,t > N(j). Hence it follows that

[|Xn *st||0+ < Jxmn *xSili”g + [|x5 7xSifiH(J)r
1 1 2
§ —t+t-==< g,
J J J

for all m,n,s,t > N(j). Thus, for any € > O there exists N = N(¢&) such that for m,n,s,t > N (j) and (m,n), (s,t) € P we have

|E *xsz”a_ <E.

This shows that the double sequence (x,,,,) in X is an F.#;’-Cauchy double sequence in fuzzy normed spaces. O
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