

Title	Mechanism of Electrolytic Reduction of SiO at Liquid Zn Cathode in Molten CaCl
Author(s)	Ma, Yuanjia; Ido, Akifumi; Yasuda, Kouji; Hagiwara, Rika; Homma, Takayuki; Nohira, Toshiyuki
Citation	Journal of The Electrochemical Society (2019), 166(6): D162- D167
Issue Date	2019-03-13
URL	http://hdl.handle.net/2433/245274
Right	© The Electrochemical Society, Inc. 2019. All rights reserved. Except as provided under U.S. copyright law, this work may not be reproduced, resold, distributed, or modified without the express permission of The Electrochemical Society (ECS). The archival version of this work was published in J. Electrochem. Soc. 2019 volume 166, issue 6, D162-D167; This is not the published version. Please cite only the published version. この 論文は出版社版でありません。引用の際には出版社版を ご確認ご利用ください。
Туре	Journal Article
Textversion	author

1	

2	Title
3	Mechanism of Electrolytic Reduction of SiO ₂ at Liquid Zn Cathode in Molten CaCl ₂
4	
5	Authors
6	Yuanjia Ma ¹ , Akifumi Ido ² , Kouji Yasuda ^{2, 3, *} , Rika Hagiwara ^{2, *} , Takayuki Homma ^{4, *} ,
7	Toshiyuki Nohira ^{1, *, Z}
8	
9	Affiliations
10	¹ Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
11	² Graduate School of Energy Science, Kyoto University, Yoshida-honmachi, Sakyo-ku,
12	Kyoto 606-8501, Japan
13	³ Agency for Health, Safety and Environment, Yoshida-honmachi, Sakyo-ku, Kyoto
14	606-8501, Japan
15	⁴ Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku,
16	Tokyo 169-8555, Japan
17	*Electrochemical Society Active Member.
18	^Z Corresponding author: nohira.toshiyuki.8r@kyoto-u.ac.jp

20 Abstract

The reaction mechanism of electrolytic reduction of SiO₂ at a liquid Zn cathode 21 in molten CaCl₂ was investigated with the aim of establishing a new production process 22 of solar-grade Si. Three types of Zn/SiO₂ contacting electrodes were prepared 23 depending on the objectives. Cyclic voltammetry suggested two reduction mechanisms 24 of SiO₂ at a Zn electrode. One is a direct electrolytic reduction that proceeds at 25 potentials more negative than 1.55 V vs. Ca^{2+}/Ca . The other is an indirect reduction by 26 liquid Ca-Zn alloy at potentials more negative than 0.85 V. The both reduction 27 mechanisms were confirmed to proceed at 0.60 V by electrolysis and immersion 28 experiments. Impurity analysis by ICP-AES was conducted for the Si prepared by 29 30 potentiostatic electrolysis at 0.60 V, and confirmed that the concentrations of the metal elements and P were lower than the target levels for primary Si before directional 31 solidification process. 32

33

34 **1. Introduction**

Photovoltaic (PV) power generation has attracted attention as a source of green
 energy that can substitute the conventional fossil-based energy. The global production of

PV cells has experienced a rapid growth in the last decade. Accordingly, their 37 production volume increased in the 21st century by a factor of approximately 250 i.e., 38 from 0.285 GW in 2000 to 75.5 GW in 2016. Among the many types of solar cells, 39 crystalline Si solar cells accounted for 94.3% of the worldwide production in 2016¹. The 40 global production of high-purity crystalline Si also increased to 412,600 tons in 2016 41 i.e., by a factor of approximately 18 over the level achieved in 2000². Therefore, 42 crystalline Si solar cells would most likely remain the main product of the PV industry 43 in the long term. 44

The high-purity Si used in crystalline Si solar cells is known as solar-grade Si 45 (SOG-Si), and requires a purity of 6–7N. Approximately 90% of SOG-Si is currently 46 produced by the Siemens $process^{3-5}$. To develop a next-generation production process 47 for SOG-Si, purification of metallurgical-grade Si⁶⁻¹¹ and metallothermic reduction of 48 silicon halides by metal reductants^{12–15} were investigated. One of the metallothermic 49 reduction processes proposed is a reduction of SiCl₄ by Zn, and is known as the Du Pont 50 process, which was the commercial process for high-purity Si production before the 51 Siemens process was introduced¹². There are two major advantages of the Du Pont 52 53 process. One is no formation of Si-Zn intermetallic compounds due to the low chemical affinity of Zn with Si¹⁶. The other is the easy removal of the unreacted Zn and ZnCl₂ 54

55 generated from the Si product because of their high vapor pressures.

For the past two decades, we have been studying the direct electrolytic reduction of solid SiO₂ to Si in molten CaCl₂ as a new production process of SOG-Si^{17–} 20 . Here, since purification of SiO₂ up to 6-7N is possible at low cost^{21,22}, such purified SiO₂ is assumed to be used as the raw material²². In this process, electrochemical reduction of insulating SiO₂ is realized by using a SiO₂ contacting electrode, which provides the three-phase zone of conductor/SiO₂/CaCl₂¹⁷.

$$\operatorname{SiO}_2(s) + 4 e^- \to \operatorname{Si}(s) + 2 \operatorname{O}^{2^-}$$
[1]

62 Several other research groups have also investigated the direct electrolytic reduction of 63 SiO_2^{23-34} . One of the challenges faced in the industrial application of this process is the 64 efficient recovery and separation of the powdery Si product from unreacted SiO₂ and 65 molten CaCl₂³⁵.

Recently, we proposed an electrolytic reduction process of SiO₂ using a liquid Zn cathode in molten CaCl₂. Since the electrolysis product is liquid Si–Zn alloy, its separation from unreacted SiO₂ and molten salt is expected to be easier than that entailed in the use of the conventional solid cathode^{36, 37}. The choice of Zn as an alloying element stems from the very factors that render the Du Pont process advantageous, i.e., the use of Zn ensures the formation of no intermetallic compounds with Si, and facilitates easy removal of both Zn and ZnCl₂. Here, the most important point is that the existence of molten salt over liquid Zn effectively suppresses the evaporation of Zn even at high temperatures such as 1123 K. Figure 1 schematically illustrates the proposed process^{36, 37}. The overall process consists of three major steps: electrolysis, precipitation, and refining. In the electrolysis step, solid SiO₂ is reduced to form liquid Si–Zn alloy at a liquid Zn cathode.

In the precipitation step, solid Si is recovered by lowering the temperature of the liquid
Si–Zn alloy.

Si–Zn (*l*, high Si conc.)
$$\rightarrow$$
 Si(s) + Si–Zn (*l*, low Si conc.) [3]

Since the solubility of Si in liquid Zn is 6 at.% at 1123 K and 1 at.% at 923 K³⁸, 5 at.% of solid Si with reference to Zn is theoretically recovered when the temperature is lowered from 1123 K to 923 K. After the precipitation step, the Si–Zn alloy with a low concentration of Si is reused as the cathode in the electrolysis step. The Si recovered is then subjected to the refining step: that entails vacuum refining to remove residual Zn and directional solidification to manufacture SOG-Si ingots.

86 In our previous study, the suppression of evaporation of Zn metal by covering it

with molten CaCl₂ was confirmed at 1123 K^{36, 37}. Moreover, the alloying rate between solid Si and liquid Zn was measured, and the formation of liquid Si–Zn alloy at a liquid Zn cathode was demonstrated^{36, 37}. After potentiostatic electrolysis at 0.9 V, Si particles of sizes in the range 2–30 μ m were precipitated in the solidified Zn matrix. The formation of liquid Ca–Zn alloy (reaction [4]) was also suggested by cyclic voltammetry.

$$Zn(l) + Ca^{2+} + 2e^{-} \rightarrow Ca - Zn(l)$$
[4]

Based on these results, the electrolytic reduction of SiO₂ at a liquid Zn cathode was
considered to be a mixed mechanism of (A) direct electrolytic reduction of SiO₂
(reaction [5]), and (B) indirect reduction of SiO₂ by liquid Ca–Zn alloy (reaction [6]).

$$\operatorname{SiO}_2(s) + \operatorname{Zn}(l) + 4 e^- \to \operatorname{Si-Zn}(l) + 2 \operatorname{O}^{2-}$$
[5]

$$SiO_2(s) + Ca - Zn(l) \rightarrow Si - Zn(l) + 2 CaO(l)$$
 [6]

However, the evidence of (B) i.e., indirect reduction was not seen, and the contributions
of (A) and (B) were not investigated.

In the present study, a series of electrolysis and immersion experiments were conducted to confirm the indirect reduction of SiO_2 . Based on the results, the mixed reduction mechanism was discussed in terms of reduction rate. Finally, impurity analysis was performed for the Si particles produced at the Zn cathode.

103 2. Experimental

104 All experiments were performed in a dry Ar atmosphere at 1123 K. An Ag^+/Ag 105 electrode was used as the reference electrode in the experiments. The experimental 106 conditions for (a) cyclic voltammetry, (b) electrolytic reduction of SiO₂ plates, and (c) 107 electrolytic reduction of SiO₂ particles are described below.

108

109 (a) Cyclic Voltammetry

Figure 2 shows a schematic illustration of the electrolysis cell for the 110 observation of the reduction behavior of SiO_2 at a liquid Zn cathode. Figure 3(a) 111 schematically illustrates the structure of the liquid Zn working electrode for cyclic 112 voltammetry. Approximately 70 g of Zn (Wako Pure Chemical Corp., reagent grade, 113 granule) was charged into a small Al₂O₃ crucible (AS ONE, o.d. 45 mm × height 36 mm, 114 115 >99%). The small Al₂O₃ crucible was placed at the bottom of another Al₂O₃ crucible (AS ONE, o.d. 90 mm \times i.d. 80 mm \times height 140 mm, >99%), and approximately 500 g 116 of CaCl₂ (Kojundo Chemical Laboratory Co., Ltd., >99%) was charged. A W wire (The 117 118 Nilaco Corporation, diameter 2.0 mm, 99.95%) threaded into an Al₂O₃ tube (Nikkato Corp., SSA-S grade, o.d. 6.0 mm \times i.d. 4.0 mm) or a SiO₂ tube (Soei Riken Corp., o.d. 119

120	6.0 mm \times i.d. 2.0 mm) was used as the current lead and immersed in the liquid Zn in the
121	small Al_2O_3 crucible. The direct electrolytic reduction of SiO_2 occurs at the three-phase
122	interface of (Al ₂ O ₃ or SiO ₂)/CaCl ₂ (l)/Zn (l), as shown in Fig. 3(a). For comparison, a
123	square-shaped plate of single-crystal Si (ca. 30 mm \times 5 mm \times 0.5 mm, p-type, (100),
124	$1.53.0\times10^{-3}~\Omega$ cm at 298 K) was also used as the working electrode. The counter
125	electrode was a square graphite bar (Toyo Tanso Co., Ltd., 5 mm \times 5 mm \times height 50
126	mm).

128 (b) Electrolytic reduction of SiO₂ plates

Figure 3(b) shows a schematic illustration of the liquid Zn cathode for the 129 investigation of the effect of indirect reduction of SiO₂ by liquid Ca-Zn alloy. 130 131 Approximately 125 g of Zn was charged into a small ZrO₂ crucible (AS ONE, ZrO₂ 91.5%, Y_2O_3 8%, o.d. 60 mm × i.d. 52 mm × height 35 mm). The ZrO₂ crucible was 132 133 placed in a graphite crucible (Toyo Tanso Co., Ltd., IG-110 grade, o.d. 100 mm × i.d. 90 mm × height 120 mm) to which a graphite rod (Toyo Tanso Co., Ltd., IG-110 grade, 134 diameter 9 mm) was fixed using a stainless steel screw. Approximately 500 g of CaCl₂ 135 136 was charged into the graphite crucible. A SiO₂ plate (Soei Riken Corp., 25 mm \times 10 mm \times thickness 1 mm), fixed to an insulating tube of Al₂O₃ (Nikkato Corp., SSA-S grade, 137

o.d. 2.5 mm \times i.d. 1.5 mm) by winding a Mo wire (The Nilaco Corporation, diameter 138 0.20 mm, 99.95%), was immersed into the liquid Zn in the small ZrO₂ crucible. The 139 counter electrode was the graphite crucible, and the graphite rod was used as the current 140 141 lead. The test piece prepared by electrolysis or immersion of SiO₂ plate was washed with distilled water to remove the salt, and then immersed in HCl aq. (3 wt.%, prepared 142 from Fujifilm Wako Pure Chemical Corporation, reagent grade, 36 wt.%) overnight to 143 144 dissolve the Zn metal on the surface of the plate. An optical microscope (Thanko Inc., DILITE30) was used for surface observation, and the masses of the SiO₂ plates were 145 measured before and after the experiment. 146

147

148 (c) Electrolytic reduction of SiO₂ particles

Figure 4 schematically illustrates a cell for the electrolytic reduction of SiO₂ particles. A total of 335 g of Zn and 349 g of CaCl₂ were charged into an Al₂O₃ crucible. After the temperature was raised to 1123 K, a total of 16.2 g of SiO₂ particles (Kojundo Chemical Laboratory Co., Ltd., 0.25-1.00 mm, 99.995%) was charged into molten salt uniformly using a quartz funnel. The SiO₂ particles floated on the surface of liquid Zn in molten CaCl₂ because the densities of liquid CaCl₂, solid SiO₂, and liquid Zn are 2.05 g cm⁻³, 2.2 g cm⁻³, and 5.9 g cm⁻³, respectively, at 1123 K. A W wire (The Nilaco

156	Corporation, diameter 1.0 mm, 99.95%) threaded into an alumina tube was used as the
157	current lead for liquid Zn. The counter electrode was a graphite rod (Toyo Tanso Co.,
158	Ltd., IG-110 grade, diameter 20 mm \times height 40 mm) fixed to a thinner graphite rod
159	(Toyo Tanso Co., Ltd., IG-110 grade, diameter 9 mm \times height 500 mm). The sample
160	obtained after electrolysis was cooled from 1123 K to 773 K for 35 h, then maintained
161	at 773 K for 10 h, and further cooled to 298 K for 5 h. The ingot of Zn metal was
162	recovered after the removal of $CaCl_2$ by flowing water. The Zn metal ingot was
163	dissolved in HCl aq. (20 wt.%). The particles recovered after the dissolution of HCl
164	were further washed; they were alternately immersed in HCl aq. (10 wt.%) twice and in
165	HF aq. (5 wt.%, prepared from Tama Chemicals Co., Ltd., AA-100 grade, 38 wt.%)
166	once overnight. The analysis was conducted using X-ray diffraction (XRD, Rigaku,
167	Ultima 4, Cu-K α , λ = 1.5418 Å, 40 kV, 40 mA) and inductively coupled plasma atomic
168	emission spectroscopy (ICP-AES; AMETEK, Inc., SPECTROBLUE).

170 **3. Result and Discussion**

171 (a) Cyclic Voltammetry

Figure 5 shows the cyclic voltammograms at the liquid Zn (black color) and Si
plate (red color) electrodes. As for the Si electrode, the cathodic and anodic current

174	peaks at around 1.3–1.4 V vs. Ca^{2+}/Ca correspond to the reduction of surface SiO ₂ film
175	to metallic Si and the oxidation of Si into SiO ₂ layer, respectively ^{35, 39} . The smaller
176	anodic current compared with the cathodic current is due to the passivation effect of the
177	formed SiO ₂ layer. The redox at 0.5 V is attributed to CaSi ₂ /Si ^{35, 39} . The solid and
178	broken black lines show the voltammograms at Zn electrodes using $\mathrm{Al}_2\mathrm{O}_3$ and SiO_2
179	tubes, respectively. A sharp increase in cathodic current at 0.85 V is seen at both the Zn
180	electrodes. Since the electrochemical reduction of Al_2O_3 does not occur in the potential
181	range measured ⁴⁰ , the cathodic current is attributed to the formation of liquid Ca–Zn
182	alloy, which was already confirmed by potentiostatic electrolysis at potentials more
183	negative than 0.85 V^{37} . In the case of the Zn electrode with SiO ₂ , the rest potential is
184	1.55 V, which is more positive than that of the Si plate electrode (1.47 V), and the
185	cathodic current is observed from the rest potential in the negative scan even at
186	potentials more positive than 1.3 V. These results suggest the formation of liquid Si-Zn
187	alloy with Si activity lower than unity with respect to pure solid Si. The cathodic current
188	at the Zn electrode with SiO_2 was 80 mA larger than that with Al_2O_3 , which also
189	suggests electrolytic reduction of SiO_2 (reaction [5]).

191 (b) Electrolytic reduction of SiO₂ plates

192	On the basis of the voltammetry results, potentiostatic electrolysis was first
193	conducted at 0.60 V and then at 0.90 V. Specifically, the experiments were conducted in
194	the following order: [A1] electrolysis at 0.90 V for 30 min, [B1] immersion for 30 min,
195	[A2] electrolysis at 0.60 V for 30 min, and [B2] immersion for 30 min. Here, a new
196	SiO ₂ plate was used in each step. As a result, four samples, A1, B1, A2 and B2, were
197	prepared. Since electrolysis was not conducted for the samples B1 and B2, the reduction
198	of SiO ₂ could be advanced only due to indirect reduction by liquid Ca-Zn alloy
199	(reaction [6]). On the other hand, the reduction of the samples A1 and A2 could proceed
200	by a mixed reduction mechanism comprising direct electrolytic reaction (reaction [5])
201	and indirect reduction by liquid Ca–Zn alloy.
201 202	and indirect reduction by liquid Ca–Zn alloy. The optical images of the samples A1, B1, A2, and B2 are shown in Figure 6.
202	The optical images of the samples A1, B1, A2, and B2 are shown in Figure 6.
202 203	The optical images of the samples A1, B1, A2, and B2 are shown in Figure 6. For the sample A1, which was electrolyzed at 0.90 V, a change in color from transparent
202 203 204	The optical images of the samples A1, B1, A2, and B2 are shown in Figure 6. For the sample A1, which was electrolyzed at 0.90 V, a change in color from transparent i.e., no color to dark brown is observed in a portion lower than the Zn/CaCl ₂ interface (8
202203204205	The optical images of the samples A1, B1, A2, and B2 are shown in Figure 6. For the sample A1, which was electrolyzed at 0.90 V, a change in color from transparent i.e., no color to dark brown is observed in a portion lower than the Zn/CaCl ₂ interface (8 mm from the bottom of the SiO ₂ plate). Also, a decrease in plate thickness is clearly
 202 203 204 205 206 	The optical images of the samples A1, B1, A2, and B2 are shown in Figure 6. For the sample A1, which was electrolyzed at 0.90 V, a change in color from transparent i.e., no color to dark brown is observed in a portion lower than the Zn/CaCl ₂ interface (8 mm from the bottom of the SiO ₂ plate). Also, a decrease in plate thickness is clearly observed. In the case of the sample A2, which was electrolyzed at 0.60 V, the entire area

210	comparison with the two-phase interface of Zn/SiO_2 in liquid Zn. This is explained by
211	higher solubility and faster diffusion of O^{2-} ions in molten CaCl ₂ compared with those
212	in liquid Zn. As for the immersion sample B1, no dark brown part is observed,
213	indicating no progress of indirect reduction. Concerning the sample B2, which was
214	immersed after electrolysis at 0.60 V, the color of the immersed portion changed to dark
215	brown. This is explained by the indirect reduction. The weight losses of the samples
216	were 0.03 g (A1), 0.07 g (A2), 0.00 g (B1), and 0.03 g (B2).
217	By comparing the samples A1 and B1, it can be inferred that only the direct
218	reduction of SiO ₂ (reaction [5]) occurs at 0.90 V. On the other hand, the results for
219	sample A2 and B2 conclude that comparable amount of reduction proceeded in the
220	indirect reaction, i.e., reduction by liquid Ca–Zn alloy (reaction [6]), in the electrolysis
221	at 0.60 V to the direct reduction.
222	

223 (c) Electrolytic reduction of SiO_2 particles

224	To prepare a sample for impurity analysis, potentiostatic electrolysis of SiO_2
225	particles was conducted at 0.60 V for 50 h. Figure 7(a) shows a photograph of the
226	granules recovered after the dissolution of Zn by HCl solution and the treatment of acid
227	washing. The XRD analysis confirms that the granules are crystalline Si (Figure 7(b)).

228 The current efficiency (η) is calculated by the following equations:

$$\eta = \frac{W_{\text{act.}}}{W_{\text{theo}}} \times 100$$
^[7]

$$W_{\text{theo.}} = \frac{Q}{4F} \times M_{\text{Si}}$$
[8]

where Q is the quantity of electric charge during electrolysis, F is Faraday's constant (96485 C mol⁻¹), M_{Si} is the molar weight of Si (28.1 g mol⁻¹), $W_{act.}$ is the actual weight of the Si recovered, and $W_{theo.}$ is the theoretical weight of Si by Faraday's law in reaction [5]. From the values of $W_{act.} = 3.02$ g and $Q = 1.48 \times 10^5$ C, η is calculated to be 28%. One of the reasons for the low current efficiency is the loss during acid washing. Another is the formation of liquid Ca–Zn alloy as a side reaction; a part of it contributes to the indirect reduction of SiO₂ and the other remains as Ca–Zn alloy.

Table 1 lists the impurity contents of the Si granules after the treatment of acid 236 washing. It also lists the acceptable levels for SOG-Si⁴¹, segregation coefficients⁷, and 237 target levels for primary Si for directional solidification. For comparison, the impurity 238 contents of the Si sample obtained by solid electrolytic reduction at 0.60 V for 5 h in 239 molten $CaCl_2$ are also shown⁴². The impurity levels of the metallic elements (Al, Ca, Fe, 240 and Ti) in the Si granules meet the target levels for the primary Si that is to be further 241 242 purified by unidirectional solidification according to the process proposed in Figure 1. The content of P is also lower than the target level for the primary Si, and this is 243

244	noteworthy because the removal of P from elemental Si is known to be difficult. The
245	content of B is higher than the target level, and this needs to be improved in the future.
246	Overall, a comparison between the impurity concentrations in the Si products obtained
247	by electrolysis at a liquid Zn cathode and at a solid electrode indicates that higher purity
248	is achieved by the use of the liquid Zn electrode. The main reason for the higher purity
249	is the solidification refining during the precipitation of Si from the Si-Zn alloy wherein
250	most impurities remain in the liquid Zn phase. It should be mentioned that the Ca
251	concentration is lower than the target level for the primary Si in spite of the use of
252	indirect reduction by liquid Ca–Zn at 0.60 V. Calcium is also expected to be removed to
253	the Zn phase during precipitation. Although a relatively large amount of Zn (6055
254	ppmw) remained in the Si granules, this can be easily removed in the gas phase during
255	the refining process owing to its high vapor pressure.

256

4. Conclusion 257

The reaction mechanism of electrolytic reduction of SiO₂ at a liquid Zn cathode 258 was investigated in molten $CaCl_2$ at 1123 K. Cyclic voltammetry suggested that 259 electrolytic reduction of SiO₂ started from the rest potential (1.55 V), and liquid Ca–Zn 260 alloy was formed at potentials more negative than 0.85 V. The progress of the indirect 261

262	reduction of SiO ₂ by liquid Ca–Zn alloy was confirmed by electrolysis and immersion
263	experiments. The reduction at 0.60 V proceeded by a mixed reduction mechanism of
264	direct electrolytic reaction and indirect reduction by Ca-Zn alloy. Impurity analysis
265	confirmed that the concentrations of the metal elements and P were lower than the target
266	levels for primary Si. The indirect reduction of SiO ₂ by liquid Ca–Zn does not increase
267	the Ca content of the Si product because it is removed to the Zn phase during
268	precipitation.
269	
270	Acknowledgements
271	This study was partially supported by Core Research for Evolutionary Science
272	and Technology (CREST) from the Japan Science and Technology Agency (JST);
273	Grant-in-Aid for Scientific Research A, Grant Number 16H02410, from the Japan
274	Society for the Promotion of Science (JSPS); the Kato Foundation for Promotion of
275	Science; and The Joint Usage/Research Center for Zero Emission Energy Research
276	(ZE28A12), Institute of Advanced Energy, Kyoto University.
277	
278	References

279 1. Photovoltaic Market 2017, RTS Corp. (2017). [in Japanese]

280 2. Industrial Rare Metal 2017, Arumu Publ. Co. (2017).

- 281 3. H. Schweickert, K. Reusche and H. Gustsche, U.S. Patent 3011877, (1961).
- 282 4. H. Gutsche, U.S. Patent 3011877, (1962).
- 283 5. C. Bye and B. Ceccaroli, Sol. Energ. Mater. Sol. C., 130, 634 (2014).
- 6. G. Burns, J. Rabe and S. Yilmaz, PCT International Patent WO2005/061383,
 (2005).
- 286 7. F. A. Trumbore, *Bell Syst. Tech. J.*, **39**, 205 (1959).
- 287 8. X. Ma, T. Yoshikawa and K. Morita, Sep. Purif. Technol., 125, 264 (2014).
- 288 9. Y. Wang, X. Ma and K. Morita, Metall. Mater. Trans. B, 45, 334 (2014).
- 289 10. K. Tang, S. Andersson, E. Nordstrand and M. Tangstad, JOM, 64, 952 (2012).
- 290 11. K. Hanazawa, N. Yuge and Y. Kato, Mater. Trans., 45, 844 (2004).
- 291 12. D. W. Lyon, C. M. Olson and E. D. Lewis, J. Electrochem. Soc., 96, 359 (1949).
- 13. S. Yoshizawa, T. Hatano and S. Sakaguchi, Kogyo Kagaku Zasshi, 64, 1347
- 293 (1961). [in Japanese]
- I4. J. M. Blocher, Jr., M. F. Browning and D. A. Seifert, DOE/JPL Report
 954339-81/21 (1981).
- 296 15. A. Sanjurjo, PCT International Patent WO1983/002443, (1983).
- T. B. Massalski, H. Okamoto, P. R. Subramanian and L. Kacprzak, *Binary Alloy Phase Diagrams, 2nd ed.*, ASM International, Metals Park, Ohio, USA (1990).
- 299 17. T. Nohira, K. Yasuda and Y. Ito, *Nat. Mater.*, **2**, 397 (2003).
- 300 18. K. Yasuda, T. Nohira, K. Amezawa, Y. H. Ogata and Y. Ito, *J. Electrochem. Soc.*,
 301 152, D69 (2005).
- 302 19. K. Yasuda, T. Nohira, R. Hagiwara and Y. H. Ogata, *Electrochim. Acta*, 53, 106
 303 (2007).
- 304 20. T. Nohira, Yoyuen Oyobi Koon Kagaku, 54, 95 (2011). [in Japanese]
- 305 21. M. Bessho, Y. Fukunaka, H. Kusuda and T. Nishiyama, *Energy Fuels*, 23, 4160
 306 (2009).
- 307 22. T. Homma, N. Matsuo, X. Ynag, K. Yasuda, Y. Fukunaka and T. Nohira,
 308 *Electrochim. Acta*, **179**, 512 (2015).
- 309 23. X. Jin, P. Gao, D. Wang, X. Hu and G. Z. Chen, *Angew. Chem. Int. Ed.*, 43, 733
 310 (2004).
- 311 24. P. C. Pistorius and D. J. Fray, J. SAIMM, 106, 31 (2006).
- 312 25. S. Lee, J. Hur and C. Seo, J. Ind. Eng. Chem., 14, 651 (2008).
- 313 26. J. Yang, S. Lu, S. Kan, X. Zhang and J. Du, Chem. Commun., 3273 (2009).
- 314 27. E. Juzeliunas, A. Cox and D. J. Fray, *Electrochem. Commun.*, **12**, 1270 (2010).
- 315 28. W. Xiao, X. Jin, Y. Deng, D. Wang and G. Z. Chen, J. Electroanal. Chem., 639,
- 316 130 (2010).

- 317 29. E. Ergül, İ. Karakaya and M. Erdoğan, J. Alloy. Compd., 509, 899 (2011).
- 318 30. S. Cho, F. F. Fan and A. J. Bard, *Electrochim. Acta*, **65**, 57 (2012).
- 31. H. Nishihara, T. Suzuki, H. Itoi, B. An, S. Iwamura, R. Berenguer and T. Kyotani,
 320 *Nanoscale*, 6, 10574 (2014).
- 32. S. Fang, H. Wang, J. Yang, S. Lu, B. Yu, J. Wang and C. Zhao, *Mater. Lett.*, 160, 1
 (2015).
- 323 33. S. Fang, H. Wang, J. Yang, S. Lu, B. Yu, J. Wang and C. Zhao, *Rare Metal*, **89**, 1
 324 (2016).
- 325 34. S. Fang, H. Wang, J. Yang, S. Lu, B. Yu, J. Wang and C. Zhao, *J. Phys. Chem.*326 Solids, 89, 1 (2016).
- 327 35. T. Toba, K. Yasuda, T. Nohira, X. Yang, R. Hagiwara, K. Ichitsubo, K. Masuda
 328 and T. Homma, *Electrochemistry*, **81**, 559 (2013).
- 329 36. T. Nohira, A. Ido, T. Shimao, X. Yang, K. Yasuda, R. Hagiwara and T. Homma,
 330 *ECS Trans.*, **75**, 17 (2016).
- 331 37. K. Yasuda, T. Shimao, R. Hagiwara, T. Homma and T. Nohira, *J. Electrochem.* 332 *Soc.*, **164**, H5049 (2017).
- 333 38. R. W. Olensinski and G. J. Abbaschian, Bull. Alloy Phase Diagr., 5, 271 (1984).
- 334 39. K. Yasuda, T. Nohira and Y. Ito, J. Phys. Chem. Solids, 66, 443 (2005).
- 40. H. Kadowaki, Y. Katasho, K. Yasuda and T. Nohira, *J. Electrochem. Soc.*, 165, D83 (2018).
- 41. N. Yuge, M. Abe, K. Hanazawa, H. Baba, N. Nakamura, Y. Kato, Y. Sakaguchi, S.
 Hiwasa and F. Aratani, *Prog. Photovolt. Res. Appl.*, 9, 203 (2001).
- 339 42. X. Yang, K. Yasuda, T. Nohira, R. Hagiwara and T. Homma, *Metall. Mater. Trans.*340 *E*, **3**, 145 (2016).
- 341

343 **Table and Figure captions**

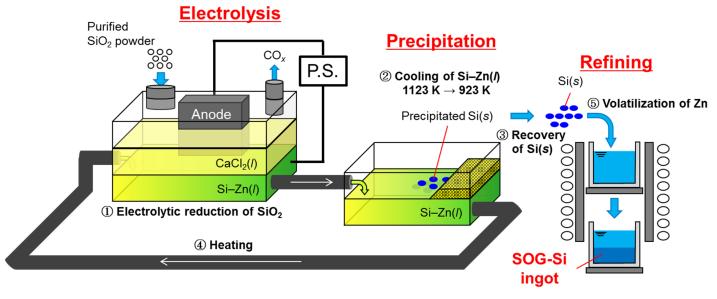
Impurity contents of Si granules obtained after acid leaching, and target levels 344 Table 1 for primary Si of SOG-Si. The electrolytic reduction of SiO₂ particles was 345 conducted at 0.6 V for 50 h at a liquid Zn cathode in molten CaCl₂ at 1123 K. 346 Figure 1 Schematic drawing of SOG-Si production process using electrochemical 347 reduction of SiO₂ powder at a liquid Si–Zn alloy cathode in molten CaCl₂.^{36,37} 348 Figure 2 Schematic illustration of the electrolysis cell for observation of SiO₂ 349 reduction behavior at liquid Zn cathode. (a) Ag^+/Ag reference electrode, (b) 350 Ca²⁺/Ca dynamic reference electrode on a Mo wire, (c) liquid Zn electrode 351 with Al_2O_3/SiO_2 tube, (d) graphite counter electrode, (e) Al_2O_3 crucible, (f) 352 molten $CaCl_2$, (g) small Al_2O_3 crucible, and (h) liquid Zn. 353 354 Figure 3 Schematic illustrations of the liquid Zn electrode for (a) cyclic voltammetry and (b) electrolytic reduction of SiO₂ plate. 355 Figure 4 Schematic illustration of the electrolysis cell for the electrolytic reduction of 356 SiO₂ particles. (a) Ag^+/Ag reference electrode, (b) Ca^{2+}/Ca dynamic reference 357 electrode on a Mo wire, (c) W lead wire, (d) graphite counter electrode, (e) 358 359 Al₂O₃ crucible, (f) molten CaCl₂, (g) SiO₂ particle, and (h) liquid Zn. Figure 5 Cyclic voltammograms for liquid Zn electrode with an Al₂O₃ tube or a SiO₂ 360

361		tube (left axis) and for Si plate electrode (right axis) in molten $CaCl_2$ at 1123
362		K. Scan rate: 100 mV s^{-1} .
363	Figure 6	Optical images of the SiO ₂ plates after electrolysis at liquid Zn electrode or
364		immersion into liquid Zn for 30 min in molten $CaCl_2$ at 1123 K. (a)
365		potentiostatic electrolysis at 0.9 V, (b) immersion after electrolysis (a), (c)
366		potentiostatic electrolysis at 0.6 V, and (d) immersion after electrolysis (c).
367	Figure 7	(a) An optical image and (b) XRD pattern of the Si granules obtained after
368		acid leaching of Zn ingots. The electrolytic reduction of SiO_2 particles was
369		conducted at 0.6 V for 50 h at a liquid Zn cathode in molten $CaCl_2$ at 1123 K.
370		

Table 1. Impurity contents of Si granules obtained after acid leaching, and target levels
for primary Si of SOG-Si. The electrolytic reduction of SiO₂ particles was conducted at

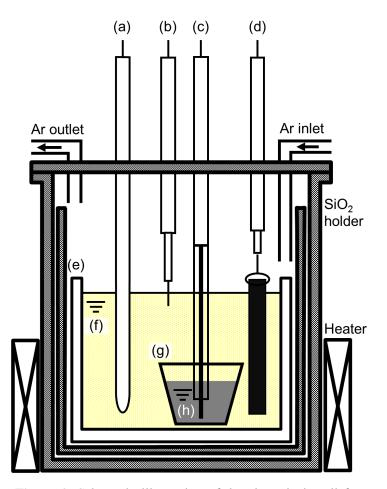
374	0.6 V for 50 h at a liquid Zn cathode in molten CaCl ₂ at 1123 K.
-----	---

Impurity element, A	Acceptable level for SOG-Si ⁴¹ , $x_{A(SOG-Si)}$ / ppmw	Segregation coefficient ⁷ , k°_{A}	Target level for primary Si ^a , $x_{A(primary)}$ / ppmw	Impurity content of Si granules by electrochemical reduction at liquid Zn cathode, x_A / ppmw ^b	Impurity content of Si by direct electrochemica l reduction ⁴² , x_A^{-} / ppmw ^c
В	0.1–0.3	0.8	0.13-0.38	1.5	2.6
Р	0.03–0.04	0.35	0.086–0.4	<0.2	6.4
Al	<0.1	2 x 10^{-3}	<50	8	600
Ca	<0.2	1.6×10^{-3}	<125	85	5800
Fe	<0.1	8 x 10 ⁻⁶	<12500	110	30
Ti	<10 ⁻³	9 x 10^{-6}	<100	25	19
Zn	d	d	d	6055	2.1

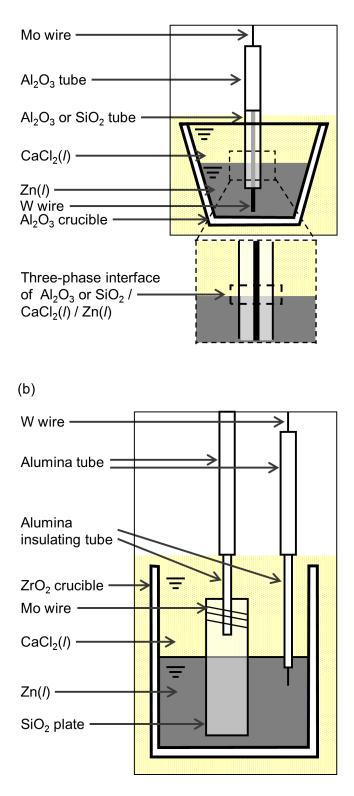

375 a: $x_{A(\text{primary})} = x_{A(\text{SOG-Si})} / k_A^{\circ}$

376 b: Analyzed by ICP-AES

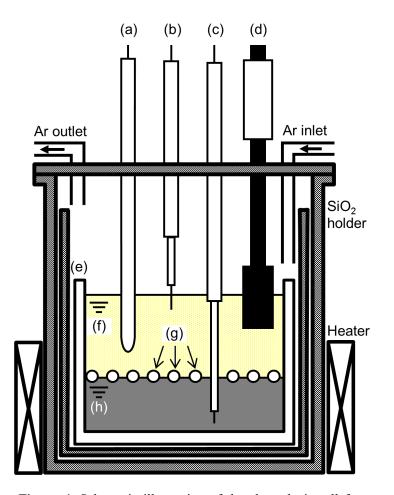
377 c: Analyzed by glow discharge-mass spectrometry (GD-MS)

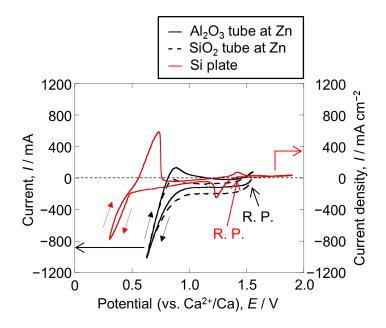

d: No data

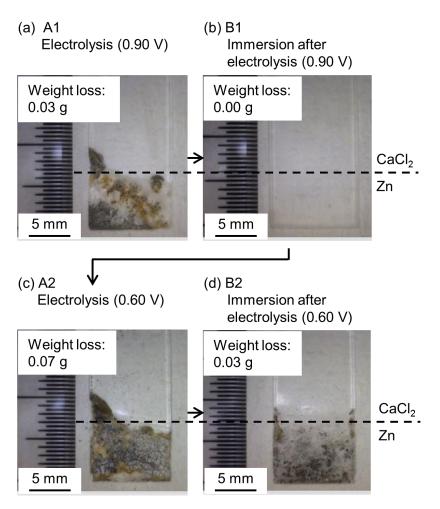
379



(6) Directional solidification


Figure 1. Schematic drawing of SOG-Si production process using electrochemical reduction of SiO₂ powder at a liquid Si–Zn alloy cathode in molten $CaCl_2$.³⁸


Figure 2. Schematic illustration of the electrolysis cell for observation of SiO₂ reduction behavior at liquid Zn cathode. (a) Ag⁺/Ag reference electrode, (b) Ca²⁺/Ca dynamic reference electrode on a Mo wire, (c)liquid Zn electrode with Al₂O₃/SiO₂ tube, (d) graphite counter electrode, (e) Al₂O₃ crucible, (f) molten CaCl₂, (g) small Al₂O₃ crucible, and (h) liquid Zn.


Figure 3. Schematic illustrations of the liquid Zn electrode for (a) cyclic voltammetry and (b) electrolytic reduction of SiO_2 plate

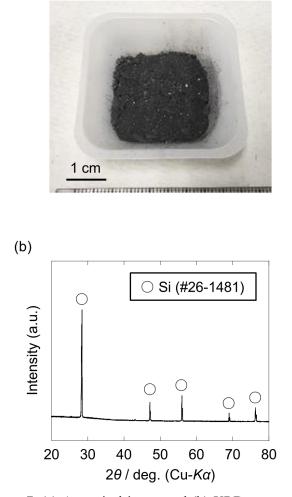

Figure 4. Schematic illustration of the electrolysis cell for the electrolytic reduction of SiO₂ particles. (a) Ag⁺/Ag reference electrode, (b) Ca²⁺/Ca dynamic reference electrode on a Mo wire, (c) W lead wire, (d) graphite counter electrode, (e) Al₂O₃ crucible, (f) molten CaCl₂, (g) SiO₂ particle, and (h) liquid Zn.

Figure 5. Cyclic voltammograms for liquid Zn electrode with an Al_2O_3 tube or a SiO_2 tube (left axis) and for Si plate electrode (right axis) in molten $CaCl_2$ at 1123 K. Scan rate: 100 mV s⁻¹.

Figure 6. Optical images of the SiO₂ plates after electrolysis at liquid Zn electrode or immersion into liquid Zn for 30 min in molten CaCl₂ at 1123 K. (a) potentiostatic electrolysis at 0.9 V, (b) immersion after electrolysis (a), (c) potentiostatic electrolysis at 0.6 V, and (d) immersion after electrolysis (c).

Figure 7. (a) An optical image and (b) XRD pattern of the Si granules obtained after acid leaching of Zn ingots. The electrolytic reduction of SiO₂ particles was conducted at 0.6 V for 50 h at a liquid Zn cathode in molten CaCl₂ at 1123 K.