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Abstract 

 

The double layer capacitance of an activated carbon nanofiber (ACNF) with a 

100~200 nm fiber-diameter, prepared by the polymer blend spinning technique, was 

investigated using 1-ethyl-3-methylimidazolium tetrafluoroborate (EMImBF4) as the 

electrolyte.  The conventional activated carbon fiber (ACF) with the fiber-diameter of 

~ 10 µm and narrow micropores (~ 0.7 nm pore-width) showed a significant irreversible 

adsorption of EMIm+ cation in EMImBF4, however, the ACNF effectively suppress the 

irreversibility even with the pore structure comparable to the conventional ACF.  This 

suggests the effect of the short pass length on the ion adsorbing/desorbing process.  

The decreased capacitance by the cycling in EMImBF4 was recovered by the addition of 

propylene carbonate as an organic solvent to the electrolyte.  This means that the 

irreversible adsorbed ions can be desorbed using propylene carbonate.  
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Introduction 

Recently, an ionic liquid, i.e., a room-temperature molten salt, has become 

very attractive as an electrolyte for the electric double layer capacitor (EDLC) due to its 

high chemical stability, high ionic conductivity, and non-flammable property [1,2].  

Therefore, the capacitance behavior of activated carbons in an ionic liquid has been 

characterized and the following two characteristic points were recently determined.  

The first one is that a higher capacitance is observed in the 

1-ethyl-3-methylimidazolium-based ionic liquid compared to the typical organic 

electrolyte for EDLC [3,4].  Watanabe, et al. proposed the influence of higher carrier 

concentration on the double layer structure of the carbon surface [3], but the details 

have not been clarified.  The second one is that activated carbons with narrow 

micropores cause a drastic capacitance decline in the 

1-ethyl-3-methylimidazolium-based ionic liquid [4].  For the propylene carbonate 

electrolyte, the activated carbons with narrow micropores such as ~ 0.7nm showed a 

low capacitance due to strong ion sieving, but the capacitance cycling was stable.  This 

capacitance decline in the ionic liquid might be due to the presence of an interaction 

between the imidazolium cation and the carbon micropore.  Chen et al. reported that 

the narrow hollow in multi-walled carbon nanotube promotes the crystallization of 

1-butyl-3-methylimidazolium hexafluorophosphate, which suggests the effect of 

nanospace on the physicochemical behavior of the ionic liquid [5].  This interaction 

can be expected to depend on the pore structure.  In fact, our previous paper reported 

that mesoporous carbon black showed no capacitance decline in spite of only an ~1000 

m2g-1 BET specific surface area [4].  Similarly, the short pore-length might suppress 

the capacitance decline. 
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Our group recently succeeded in a preparing phenolic resin based-carbon 

nanofiber (CNF) by the polymer blend spinning technique [6,7].  This technique 

produces bundles of CNFs with a several hundred nm fiber-diameter.  Furthermore, 

the resulting CNFs can be gasified by the traditional activation technique such as steam 

or CO2 to form a well-developed micropore structure with a specific surface area of > 

1000 m2g-1 since the phenolic resin is a good precursor for activated carbon.  The 

resulting activated carbon nanofiber (ACNF) should have shorter micropore-length 

because of a nano-sized fiber-diameter, compared with the conventional activated 

carbon fiber (ACF).  Based on the difference in fiber length between the ACNF and 

the ACF, the micropore length of the ACNF can be considered to be around 1/100 of 

that of the ACF.   

In the present report, we address the capacitance behavior in 

1-ethyl-3-methylimidazolium tetrafluoroborate (EMImBF4) of the ACNF to clarify the 

effect of the short micropore length on suppressing the capacitance decline in EMImBF4.  

EMImBF4 is a good standard ionic liquid since BF4
- anion is the most used anion for 

EDLC and the capacitance behavior of activated carbons in EMIm+ based ionic liquid 

has been investigated well [1,2,8].   

 

Experimental 

The original CNFs are prepared by the spinning and carbonization of a 

polymer blend composed of phenolic resin and polyethylene in the same manner as 

previously reported [6,7].  The CNFs were steam-activated to develop the micropores.  

The micropore structure was controlled by the activation duration.  The BET specific 

surface area, pore volume, and mean micropore size were calculated from the nitrogen 
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adsorption isotherm at 77K [9].  The morphology of the ACNFs was observed by a 

field emission type scanning electron microscope (FE-SEM).  

We used the EMImBF4 synthesized by the direct reaction of EMIm(HF)2.3F 

with BF3 gas [10].  The water content of the EMImBF4 was less than 150 ppm.  A 

composite pellet electrode (diameter : 13 mm) was prepared from ground ACNF (0.05 

g), acetylene black as the conductor, and the PTFE-binder.  The ratio of the sample, 

acetylene black, and binder in the electrode was 80, 10, and 10 wt%, respectively.  Al 

mesh (20 mm×40mm, 0.1t, LW:SW:W = 2:1:0.2, Thank-metal Co. Ltd., Japan) was 

used as the current collector for the composite electrode.  The capacitance 

measurement was conducted by a galvanostatic method using a three-electrode system 

in the same way as the previous report [4].  The ACF corresponding to the sample 

“ACF-60” or “ACF120” in the previous report was also use as reference carbon 

materials for the electrochemical behavior.  Additionally, the capacitance measurement 

in propylene carbonate (PC) solution containing EMImBF4 as electrolyte salt was also 

carried out after the measurement in the pure EMImBF4 to realize the recovery of the 

lost capacitance by the electrochemical operation in the EMImBF4.  The EMImBF4 

was dissolved in PC (Capacitor grade, Kishida Chemical, Co. Ltd., Japan) to prepare the 

PC solution containing 0.5 moldm-3 EMImBF4 (0.5M EMImBF4/PC).  The electrode 

was transferred from the cell for the pure EMImBF4 electrolyte to that for the 0.5M 

EMImBF4/PC electrolyte after finishing the measurement in the pure EMImBF4. 

 

Results and discussion 

The FE-SEM image (Fig. 1) showed that ACNF-3 is composed of a bundle of 

carbon nanofibers with 100~200 nm diameter.  This fiber diameter is about 1% of the 



 6 

conventional activated carbon fibers such as ACF60 or ACF120.  The other ACNFs 

also show a morphology similar to ACNF-3.  Table 1 shows the pore structure 

parameters of various ACNFs and ACFs.  All the ACNFs were porous carbons with 

specific surface areas of 900 ~ 2000 m2g-1.  The pore volume data (Vmeso, V micro) 

showed that ACNF-1 and ACNF-2 were microporous carbons, while ACNF-3 also had 

a comparable mesopore volume to the micropore.  Yang et al. also succeeded in the 

preparation of the activated CNF using an electro-spinning method of the PAN polymer, 

but their BET specific surface area was not higher than 1200 m2g-1 [11].  The widely 

controllable pore-structure is a characteristic point of our activated CNF.  Comparing 

ACNF-1 and ACF60, they basically had a comparable pore structure although the SBET 

and Vmicro values of ACNF-1 were slightly lower than those of ACF60.  The mesopore 

volume of ACNF-1 was greater than that of ACF60, however, the N2 adsorption 

isotherm and the pore size distribution curve in the mesopore region (data not shown) 

suggest that the mesoporosity of ACNF-1 is mainly related to the inter-space (nearly 

macropore region) between the fibers rather than the presence of mesopores in the 

carbon surface.  The surface oxygen functionalities were also checked by X-ray 

phoroelectron spectroscopy.  The chemical state and the amount of the surface oxygen 

were very similar for ACNFs and ACFs.  Therefore, ACNF-1and ACF60 can be 

considered as good samples to investigate the effect of the fiber diameter on the 

capacitance. 

Fig. 2 shows the chronopotentiograms of the first, second, and third cycles for 

the ACNFs.  The potentiogram profiles of all the samples started around 3.2 V vs. 

Li/Li+, decreased to 2V vs. Li/Li+ and then increased to 4V vs. Li/Li+.  All the profiles 

were nearly straight lines, which kept constant gradients during the cycles.  The 
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inverse of the profile gradient corresponds to the capacitance of the galvanostatic 

method [6].  Therefore, Fig. 2 suggests that the capacitive behavior of these ACNFs is 

stable during the cycling and that the capacitance order is ACNF-3 > ACNF-2 > 

ACNF-1.  According to our previous reports [4], ACF60 and ACF120 showed the 

serious capacitance decline at the initial cycle in EMImBF4, compared to the other 

ACFs consisting of wider micropores.  The decline of ACF60 was larger than that of 

ACF120.  These suggest that the activated carbons with narrow micropores cause a 

significant irreversible ion-adsorption in EMImBF4.  However, ACNF-1 exhibited 

more stable cycling-performance, although it has a comparable or lower microporosity 

to ACF60 as shown in Table 1. 

The cycle dependence of the capacitance for the ACNFs and the ACFs is 

shown in Fig. 3.  ACNF-2 and ACNF-3 showed constant capacitances during the 20 

cycles in EMImBF4.  The capacitance of ACNF-1 gradually deceased with the 

increasing cycle numbers, but the decrease was not more significant than ACF60 and 

ACF120.  ACNF-1 had a higher capacitance than ACF60.  Moreover, ACNF-1 

showed a higher capacitance at the 3rd cycle than ACF120 although the initial 

capacitance of ACNF-1 was lower than that of ACF120.  This result suggests that the 

shorter pore length is effective for enhancing the capacitance and suppressing the 

capacitance decline in EMImBF4.  If the ion is moving in a short pore, the adsorbed 

ion in narrow micropore can be easily desorbed in the EMImBF4. 

Propylene carbonate (PC) is known to be a good solvent that dissolves 

EMImBF4.  Therefore, PC can be expected to release the immobile ions in the 

micropores during the cycling.  The capacitances of ACNF-1 and ACF120 in 0.5M 

EMImBF4/PC are also plotted in Fig. 3.  The EMImBF4/PC data was continuously 
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obtained using the same electrodes after the measurement in EMImBF4.  For both 

samples, the lost capacitance was recovered soon after using the EMImBF4/PC, 

suggesting that the propylene carbonate breaks the interaction between the carbon 

micropore wall and EMIm+ cation. 

 

Conclusion 

The activated carbon nanofiber (ACNF), which was prepared by the polymer 

blend spinning technique, had a comparable microporosity to the conventional activated 

carbon fiber (ACF).  The short micropore length of ACNF is effective in suppressing 

the significant capacitance decline caused by the cycling in EMImBF4.  The lost 

capacitances in EMImBF4 for ACNF and ACF were recovered in the propylene 

carbonate electrolyte, suggesting that the irreversible adsorbed ions can be desorbed 

using propylene carbonate. 
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Figure Captions 

 

Figure 1  Field emission type scanning electron microscopic (FE-SEM) image of 

activated carbon nanofiber (ACNF-3). 

 

Figure 2  Chronopotentiograms (potential-time curve at galvanostatic condition, 40 

mAg-1, 2~4V vs. Li/Li+) of ACNF electrodes in 1-ethyl-3-methylimidazolium 

tetrafluoroborate (EMImBF4). 

 

Figure 3  Dependence of the capacitance (40 mA g-1, 2 → 4V vs. Li/Li+) of ACNF and 

ACF electrodes on the cycle numbers in EMImBF4.and propylene carbonate solution 

containing 0.5 M EMImBF4 (0.5M EMImBF4 / PC) . 

 

 

 

 



Table1  Pore structure parameters and electrode bulk density of ACNFs and 
ACF

Sample  SBET Vmeso Vmicro wmicro d
 [m2g-1]  [mlg-1]  [mlg-1] [nm]       [gcm-3] 

ACNF-1   885 0.15 0.34 0.67 0.68
ACFN-2  1450 0.17 0.57 0.88 0.57
ACFN-3 2090 0.75 0.84 1.18 0.41
ACF60   970 0.06 0.37 0.66 0.87
ACF 120 1180 0.07 0.47 0.74 0.83

SBET; BET specific surface area.
Vmeso; mesopore (1.6~50nm) volume calculated by DH method.
Vmicro; micropore volume calculated by DR method.
wmicro; mean micropore width calculated by DR method.
d; bulk density of the composite electrode



Fig.1  S. Shiraishi, et al., Gunma University
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Fig.2  S. Shiraishi, et al., Gunma University
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Fig.3  S. Shiraishi, et al., Gunma University
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