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Chapter 1

Introdution

1.1 Elements of Real Banach Algebras

Definition 1.1.1 (Algebra). Let A be a non empty set. Then A is called an
algebra, if

1. (A,+, .) is a vector space over a field F.

2. (A,+, ◦) is a ring.

3. (α.a) ◦ b = α.(a ◦ b) = a ◦ (αb) for all a,b ∈ A and α ∈ F.

From here onwards we write ab instead of a ◦ b to denote the multiplication
of a, b ∈ A.

Note 1. An algebra A is called real is algebra if F = R the field of real numbers
and complex algebra if F = C, the field of complex numbers.

Example 1.1.2. R(R), C(R) are algebras with respect to addition and multi-
plications.

Definition 1.1.3. If A is a algebra and ||.|| is a norm on A satisfying
||ab|| ≤ ||a||||b||, ∀a, b ∈ A then (A, ||.||) is called normed algebra.

Example 1.1.4. R(R) , C(R) where ||a|| = |a|.
Definition 1.1.5. A complete normed algebra is called a Banach algebra.

Example 1.1.6. Let X be an compact Hausdorff topological space and

C(X) =
{
f : X → C is continuous

}
is the set of all complex valued continuous functions on X. Then C(X) is a
complex Banach algebra with the following operations;

(f + g)(x) = f(x) + g(x), ∀x ∈ X,
(fg)(x) = f(x)g(x),

||f || = sup
{
|f(x)| : ∀x ∈ X

}
.

5
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We discuss some examples of closed real sub algebras that are not complex sub
algebras.
Let Y be a closed subset of X. Consider CY = {f ∈ C(X) : f(Y ) ⊂ R}. If
Y = ∅, then CY = C(X). For every non empty set CY is a real commutative
Banach algebra.

Example 1.1.7. Let S be a non empty set. Define

B(S) = {f : S → C : f is bounded on S}.

Define operations on B(S) as follows;

(f + g)(x) = f(x) + g(x), ∀x ∈ X
(fg)(x) = f(x)g(x),

||f ||∞ = sup
{
|f(x)| : ∀x ∈ X

}
.

With above operators B(S) is a commutative Banach algebra.

Example 1.1.8. Let X be a locally compact Hausdorff space. If

Cb(X) = {f ∈ C(X) : f is bounded},

then Cb(X) is a commutative Banach algebra.

Example 1.1.9. Let H =
{
ao + a1i + a2j + a3k : a0, a1, a2, a3 ∈ R

}
is real

quaternion algebra. Here

i2 = j2 = k2 = −1,

i.j = k = −j.i,
j.k = i = −k.j,
k.i = j = −i.k.

For a = ao + a1i+ a2j + a3k in H. We define ‖a‖ = (a2
o + a2

1 + a2
2 + a2

3)
1
2 .

Example 1.1.10. Let Mn(C), where n ≥ 2 be the set of all n×n matrices with
respect to matrix addition and multiplication is an algebra. Define

||A|| =
( n∑
i,j=0

|aij |
)
.

Then Mn(C) is a non commutative unital Banach Algebra.

Example 1.1.11. Let W be the set of all complex valued functions on [0, 2π]
whose fourier series are absolutely convergent, that is, functions of the form

f(t) =

∞∑
n=−∞

cn exp(int), t ∈ [0, 2π],
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where cn is a complex number for each n and
∑∞
n=−∞ |cn| is finite. For such

functions f, we define

||f || =
∞∑

n=−∞
|cn|.

Under pointwise operations, W is a complex Banach algebra. This is known as
the Wiener algebra.

Definition 1.1.12. Given a real algebra A, the complexification B of A is the
set A×A with the operations of addition, multiplication and scalar multiplication
define by,

(a, b) + (c, d) = (a+ c, b+ d),

(α+ iβ)(a, b) = (αa− βb, αb+ βa),

(a, b)(c, d) = (ac− bd, ad+ bc),

for all a, b, c, d ∈ A and α, β ∈ R.

Definition 1.1.13 (Invertible element). Let A be a real or complex algebra with
unit 1 and a ∈ A. An element b ∈ A is called inverse of a, if ab = ba = 1. If a
has inverse, then a is called invertible or regular, otherwise singular.

Definition 1.1.14 (Spectrum of an element). Let A be a complex algebra with
unit 1 and a ∈ A, then spectrum of an element a ∈ A is defined by

Sp(a,A) =
{
λ ∈ C : a− λ is singular in A

}
.

Definition 1.1.15. Let A be a real algebra with unit 1. For a ∈ A, the spectrum
of a ∈ A is a subset of C, defined as follows;

Sp(a,A) = {s+ it : (a− s)2 + t2 is singular in A}.

Clearly, s+ it ∈ Sp(a,A) if and only if s− it ∈ Sp(a,A).

Remark 1.1.16. Note that we have used the symbol λ for the scalar and the
element λ.1 ∈ A.

Remark 1.1.17. If A is a complex algebra with unit 1 and if AR denotes A
regarded as a real algebra, then

Sp(a,AR) = Sp(a,A) ∪ {λ : λ ∈ Sp(a,A)}.

Remark 1.1.18. Let A be a real normed algebra and a ∈ A. The spectral
radius r(a) of a defined by r(a) = inf

{
‖an‖ 1

n : n = 1, 2, 3...
}
.

Lemma 1.1.19. Let A be a normed algebra and a ∈ A. Then r(a) = lim ‖an‖ 1
n .
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We know by definition r(a) = inf{‖an‖ 1
n : n = 1, 2, 3...

}
, r(a) ≤ ‖an‖ 1

n ∀n.
Now for a given ε > 0 there exist k such that r(a) + ε ≥ ‖ak‖ 1

k . By division
algorithm theorem for every natural number n, there exist unique non negative

integers p and q such that n = p.k+ q and q < k−1. As n→∞, q
n
→ 0. Hence

p.k

n
→ 1. Thus we have

‖an‖ 1
n = ‖apk+q‖ 1

n ≤ ‖apk‖ 1
n ‖aq‖ 1

n → ‖ak‖ 1
k < r(a) + εr(a) ≤ ‖an‖ 1

n ≤ r(a).

Hence lim ‖an‖ 1
n = r(a).

Lemma 1.1.20. Let A be a real Banach algebra with unity 1. Let a ∈ A and
s, t ∈ R;

1. If r(a) ≤ |s|, then a− s is regular in A and

2. (a− s)−1 = −
∑∞
n=0

an

sn+1 .

Proof. Let r(a) ≤ |s|, There exist p such that r(a) ≤ p ≤ |s|. Thus ‖an‖ ≤ pn

For all sufficiently large n. For such n, we have ‖ an

sn+1 ‖ ≤
pn

| s |n+1
. So

∑∞
n=0

an

sn+1

convergent absolutely. Since A is a Banach algebra, let c =−
∑∞
n=0

an

sn+1
and

cm = −
∑m
n=0

an

sn+1
. Then

cm(a− s) = −
(1

s
+

a

s2
+ ...+

am

sm+1

)
(a− s)

= 1− am+1

sm+1

= (a− s)cm.

Since (as )m tend to zero as m tends to infinity, if follows that c(a − s) = 1 =
(a− s)c, that is c is the inverse of a− s.

Corollary 1.1.21. Let A be a complex Banach algebra with unit 1. Let a ∈ A
and λ ∈ C. If r(a) < |λ|, then a− λ is regular in A and

(a− λ)−1 = −
∞∑
n=0

an

λn+1
.

Proof. Let λ = s + it. If t = 0, the conclusion follows from the above lemma.
Now let t 6= 0. Note that (a−s)2 +t2 = (a−λ)(a−λ̄) is invertible and its inverse
is d =

∑∞
n=0 bn, which is given in the second part of the lemma. Thus (a−λ)(a−

λ̄)d = 1 = (a− λ̄)d(a−λ). This implies that (a−λ) invertible and its inverse is
(a− λ̄)d =

∑∞
n=0(a−s).bn+i

∑∞
n=0 tbn the coefficient of an in

∑∞
n=0(a−s)bn, is

−[cos(n+ 1)θ]/qn+1 and the coefficient of an in
∑∞
n=0 tbn is [sin(n+ 1)θ]/qn+1,

where q = (s2 + t2)
1
2 = |λ|. Hence

(a− λ)−1 = (a− λ̄)d = −
∑∞
n=0

an

λn+1
.
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Corollary 1.1.22. Let A be a real Banach algebra with unit 1. Suppose that
a ∈ A is invertible and b ∈ A is such that ‖b−a‖ ≤ ε

‖a−1‖ with 0 < ε < 1. Then

b is invertible and ‖b−1 − a−1‖ ≤ ‖a
−1‖2‖b−a‖

1−ε .

Proof. We have

r(1− a−1b) ≤ ‖1− a−1b‖ = ‖a−1a− a−1b‖ ≤ ‖a−1‖‖a− b‖ ≤ ε < 1.

Hence, a−1b is invertible, a is invertible implies b is invertible. Further,

‖b−1‖‖a−1‖ ≤ ‖b−1 − a−1‖ = ‖b−1 − b−1ba−1‖ ≤ ‖b−1‖‖1− ba−1‖ ≤ ε‖b−1‖.

Hence, ‖b−1‖ ≤ ‖a
−1‖

1−ε .
We have

‖b−1 − a−1‖ ≤ ‖b−1‖‖a− b‖‖a−1‖

≤ ‖a
−1‖2‖a− b‖

1− ε
.

Hence proved.

Remark 1.1.23. Let A be a Banach algebra with unity 1. Let Inv(A) denote
the set of all invertible elements in A. Thus Inv(A) group under multiplication.
Corollary 1.1.14 says that Inv(A) is an open set in A and the map a→ a−1 is
continuous on Inv(A) .

Theorem 1.1.24. Let A be a real Banach algebra with unit 1 and a ∈ A. Then

r(a) = sup{(s2 + t2)
1
2 : s+ it ∈ Sp(a,A)}.

In particular, Sp(a,A) is non empty.

Proof. Let α = sup{(s2 + t2)
1
2 : s + it ∈ Sp(a,A)}. We know that r(a) <

(s2 + t2)2. Then(a − s)2 + t2 is regular in A. (a − s)2 + t2 is not regular in A

implies that r(a) ≥ (s2 + t2)
1
2 , from this s+ it ∈ Sp(A) then r(a) ≥ (s2 + t2)

1
2

Hence, r(a) ≥ α. We now prove r(a) < α. Let r(a) = 0. If 0 /∈ Sp(a,A), then
a is invertible. Since a and a−1 commute, we have 1 = r(aa−1) = 0, which is
contradiction, hence α ≥ 0 = r(a).

Corollary 1.1.25. Let A be a real Banach algebra with unit 1 and a ∈ A. Then
Sp(a,A) is a compact subset of C.

Proof. We know that (s2 + t2)
1
2 < r(a) < ‖a‖. That is, Sp(a) is bounded. Thus

it is enough show that Sp(a) is closed. For this, it is enough to show C\Sp(a)
is open. Suppose s+ it ∈ C\Sp(a). Then (a− s)2 + t2 is not singular. That is,
(a − s)2 + t2 is invertible. Hence (a − s)2 + t2 ∈ Inv(A). The map f : C → A
defined by

f(x+ iy) = (a− x)2 + y2

is continuous and Inv(A) is an open neighbourhood of f(s + it). Hence there
exist an open neighbourhood U of s + it such that f(U) ⊂ Inv(A). But then
U ⊂ C\Sp(A). Thus C\Sp(a) is open. Hence Sp(a) is closed.
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Definition 1.1.26 (Homomorphism). Let A and B be algebras over a field F
and φ : A → BB is said to be homomorphism if

1. φ is linear.

2. φ is multiplicatives. i.e φ(a.b) = φ(a)φ(b), for all a, b ∈ A.

Definition 1.1.27 (Isomorphism). Let A and B be algebras over a field F and
φ : A → B is said to be isomorphism if

1. φ is homomorphism.

2. φ is one one and onto.

Definition 1.1.28 (Isometry). Let X and Y be two normed linear spaces over
C or R. Then a linear map S : X → Y is called isometry if ‖S(x)‖ = ‖x‖ for
every x ∈ X. An isometrically isomorphism between two normed algebras is a
map which is both an isomorphism and an isometry.

Example 1.1.29. Let X is real commutative normed algebra. A = BL(X), the
set of all bounded linear functionals on X. Define Tx : A → R by

Tx(f) = f(x) for x ∈ X.

Then T is a homomorphism.

Example 1.1.30. We know that A = Mn×n(R) is a real algebra. X is fixed
element of A with det(X) 6= 0. Define T : A → A by

T (B) = XBX−1, for all B ∈ A.

Then T is a homomorphism.

Corollary 1.1.31. Let A and B be normed algebras with units and T : A → B
be a homomorphism. Then r(T (a)) ≤ r(a) for every a ∈ A.

Proof. We denote the unit of both A and B by the same symbol 1. Then
T (1) = 1. Let s+ it /∈ sp(a,A) then there is b ∈ A such that [(a− s)2 + t2]b =
1 = b[(a−s)2 +t2]. Hence [(T (a)−s)2 +t2]T (b) = 1 = T (b)[(T (a)−s)2 +t2] T (a)
is invertible in B. Hence s+ it /∈ Sp(T (a)). Thus Sp(T (a),B) ⊂ Sp(a,A).

Remark 1.1.32. If T is an isomorphism, then r(T (a)) = r(a).

Definition 1.1.33 (Spectrally normed algebra). Suppose B has the property
‖b‖ ≤ k.r(b) for every b ∈ B. Then B is called spectral normed algebra. Note
‖T (a)‖ ≤ k.r(T (a)) ≤ k.r(a) ≤ k‖a‖ a ∈ A thus every homomorphism of A
into a spectrally normed Banach algebra is continuous. In particular, every
homomorphism of A into R or C is continuous.

Theorem 1.1.34 (Mazur-Gelfand theorem). Let A be Banach division algebra.

1. If A is complex algebra, then A isometrically isomorphic to C.
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2. If A is real algebra such that x, y ∈ A and x2 + y2 = 0 implies that
x = y = 0 then A is isometrically isomorphic to R.

3. If A is commutative real algebra and A does not satisfy x, y ∈ A and
x2 + y2 = 0 implies that x = y = 0 then A is isomorphic to C.

Proof. 1) Let a ∈ A and λ ∈ Sp(a,A) a − λ is singular. Hence a − λ = 0 thus
a = λ.1 and ‖a‖ = |λ|.‖1‖ = |λ|.
2) Let a ∈ A and λ ∈ Sp(a,A) (a− s)2 + t2 is singular. Hence (a− s)2 + t2 = 0
implies that a = s and t = 0. Also ‖a‖ = |s|, hence proved.
3) Given that A is a division algebra and not satisfying the condition x2+y2 = 0
implies that x = y = 0 means that there exist x, y ∈ A such that x2 + y2 = 0
at least one of x and y is nonzero. Let a ∈ A and s+it∈Sp(a). Then as above
(a− s)2 + t2 = 0, so that (a− (s+ it))(a− (s− it)) = (a− s)2 + t2 = 0. Hence
a = s + it or a = s − it, as a division algebra. Thus span{1, i}, i2 = −1,, that
is, A isomorphic to C.

Definition 1.1.35. A subset D of C is said to be symmetric about real axis if
z̄ ∈ D for every z in D.

Let D ⊂ C be symmetric about the real axis. By PR(D) we denote the
algebra of all polynomials on D with real coefficients. Note that D is an infinite
set, then a polynomial p with complex coefficients belongs to PR(D) if and only
if p(z̄) = p̄(z) for every z ∈ D.

Let A be a real Banach Algebra with unit and a ∈ A. Note that Sp(a,A) is
symmetric about real axis.

Theorem 1.1.36. Let A be a Banach algebra with unit 1 and a ∈ A. Let D be
an open neighborhood of Sp(a,A) which is symmetric about real axis. Then the
mapping p 7→ p(a) is a homomorphism of PR(D) into A which satisfies

Sp(p(a),A) = {p(z) : z ∈ Sp(a,A)}.

Proof. We know that p 7→ p(a) is a homomorphism of PR(D) into A. Let λ ∈ C
and p in PR(D) be of degree n. Then there exist β, α1, ...αn in C such that

λ− p(z) = β(α1 − z)...(αn − z), ∀z ∈ D. (1.1)

Since z ∈ D implies that z̄ ∈ D, replacing z by z̄

λ− p(z̄) = β(α1 − z̄)...(αn − z̄), ∀z ∈ D. (1.2)

Note that p(z̄)=p̄(z) and taking complex conjugates both sides in 1.2 we get

λ̄− p(z) = β̄(ᾱ1 − z)...(ᾱn − z). (1.3)

from 1.1 and 1.3 we obtain

(λ− p(z))(λ̄− p(z)) = |β|2(α1 − z)(ᾱ1 − z)...(αn − z)(ᾱn − z). (1.4)
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Take λ = s + it and αk = sk + itk, k = 1, 2, 3, ...n. Then the equation 1.4
becomes

(s− p(z))2 + t2 = |β|2[(s1 − z)2 + t2]...[(sn − z)2 + t2. (1.5)

Since p 7→ p(a) is a homomorphism from PR(D) intoA, we have (s−p(a))2+t2 =
|β|2[(s1−a)2+t21]....[(sn−a)2+t2n]. When p is non constant β 6= 0, (s−p(a))2+t2

is singular if and only if [(sk−a)2 +t2k] is singular for some k. Thus λ ∈ Sp(p(a))
if and only if λ = p(z) for some z in Sp(a). Hence proved.

Suppose A is a real Banach algebra with unit 1. Let a ∈ A and Sp(a) ⊂ D,
where D is a disk symmetric about real axis. In particular, the center of D is
real number. Let α be the center of D. Let ρ be the radius of D and (HR(D))
denote the algebra of analytic functions f in D satisfying f(z̄) = f̄(z) for all
z ∈ D. Such an f can be expanded in Taylor series around α so that

f(z) =

∞∑
n=0

λn(z − α)n, for all z ∈ D with λn ∈ R

and limn→∞ |λn| ≤
1

ρ
. Since Sp(a) ⊂ D, we have Sp(a − α) ⊂ {z : |z| < ρ} so

that r(a− α) < η < ρ. Hence for a large n

‖λn(a− α)n‖ ≤ (n/ρ)n

converges as
∑∞
n=0 λn(a−α)n convergent to an element of A, which is denoted

by f(a).

Theorem 1.1.37 (Spectral mapping theorem ). Let A be a real Banach algebra
with unit 1. For a ∈ A, suppose that Sp(a) ⊂ D = {z ∈ C : |z−α| < ρ}, α ∈ R.
Then the mapping f 7→ f(a) is a homomorphism of HR(D) into A, satisfying
Sp(f(a), A) = {f(z) : z ∈ Sp(a,A)}.

Proof. Observe that the mapping f 7→ f(a) is a homomorphism. Let f ∈
HR(D), then f(z) =

∑∞
n=0 λn(z − α)n. Consider pm(z) =

∑m
n=0 λn(z − α)n,

m= 0, 1,2, 3, ... λn in R, z in D. Then pm(z) ∈ PR(D) for all m=1,2,3,4....
||pm(a) − f(a)|| → 0 and pm convergent uniformly to f over each close disc
contained in D.

Let λ ∈ Sp(a), f(λ) = s+ it and pm(λ) = sm+ itm. Since pm(a)→ f(a) and
sm + itm → s+ it we have (sm − pm(a))2 + t2m → (s− f(a))2 + t2 as m→∞.
If s + it /∈ Sp(f(a)) then (s − f(a))2 + t2 is invertible and (sm − Pm(a))2 + t2

is not invertible. For a large m, hence for such pm(λ) = sm + itm /∈ Sp(pm(a)).
This is contradiction to {Sp(p(a),A) = {p(z) : z ∈ Sp(a,A)}.

Hence Sp(f(a),A) ⊂ {f(z) : z ∈ Sp(a,A)}.
Next, let z ∈ Sp(f(a)) then f(Sp(a)) := {f(λ) : λ ∈ Sp(a)} is a compact

set. Let A be real Banach algebra with unit 1 and a ∈ A then Sp(a,A) is a
compact subset of C. If z /∈ f(Sp(a)) then δ := inf{|z − f(λ)| : λ ∈ Sp(a)} > 0.
Again Sp(a), being compact is contained in a closed disk contained in D. And
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pn → f uniformly over such disk contained in D.
Hence we have to find m0 such that for all m ≥ m0 and λ ∈ Sp(a), we have
pm(λ) − f(λ) < δ

2 but then for all λ in Sp(a) and m ≥ m0 |z − pm(λ)| ≥
|z − f(λ)| − |f(λ)pm(λ)| ≥ δ

2 > 0, this implies that z /∈ Sp(Pm(a)) for all
m ≥ m0. Let z=s+it and bm = (s− pm(a))2 + t2. Then bm is invertible for all
m> m0 we have m > m0, We have

r(b−1) = sup{|((s− pm(λ))2 + t2)−1| : λ ∈ Sp(a)}
= sup{|((z − pm(λ))|−1|z̄ − pm(λ)|−1| : λ ∈ Sp(a)}

≤ 4

δ2
.

Let b = (s − f(a))2 + t2, then bm → b as m → ∞. Hence we can find m ≥ m0

such that ||bm − b|| < δ2

4 . Note that bm commutes with b.
r(1 − b−1b) = r(b−1

m (bm − b)) ≤ r(b−1
m )r(bm − b) ≤ 4

δ2 ||bm − b|| < 1. Hence bmb
is invertible and consequently b is invertible. Hence Sp(f(a)) ⊂ f(Sp(a)).

Remark 1.1.38. Let A be a real Banach algebra with unit 1. Since exp(z) is

an entire function and

∞∑
n=0

zn

n!
converges uniformly to exp(z) over every closed

disk with center at 0. We have exp(a) =

∞∑
n=0

an

n!
and we want to show that if a

and b are commutes, then exp(a+b) = exp(a) exp(b). Hence exp(a) is invertible
and its inverse is exp(−a). Now let

C+ ≡ {s+ it ∈ C : s > 0 or t 6= 0}
= C\{t ∈ R : t ≤ 0}.

For z in C+, z = exp(iθ), r > 0,−π < θ < π. We denote Ln(z) the principle
branch of the logarithm of z, that is, Ln(z) = ln r + iθ,−π < θ < π Then

ln(exp(z)) = z, ∀z ∈ C and

exp(ln(z)) = z, ∀z ∈ C+.

By the spectral mapping theorem, if Sp(a) ⊂ {z ∈ C : |z − α| < ρ} ⊂ C+ for
some α ∈ R then Ln(a) ∈ A and

exp(ln(a)) = a, ln(exp(a)) = a.

Corollary 1.1.39. Let A be a real Banach algebra with unit 1 and a ∈ A. If
r(1− a) < 1, then

ln(a) = −
∞∑
n=1

(1− a)n

n
∈ A
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Proof. Since r(1 − a) < 1, then Sp(a) ⊂ {z ∈ C : |z − 1| < 1} ⊂ C+.
Hence ln(a) ∈ A. Also Taylor series expansion of ln(z) around 1 is ln(z) =

−
∑∞
n=1

(1− z)n

n
. Hence proved.

Lemma 1.1.40. Let A be real or complex Banach algebra with unit 1. Then

1. Sp(ab)\{0} for all a,b in A, so that r(ab) = r(ba).

2. For all a in A r(ab) = r(ba), and ||ba|| ≤ k||ab|| for all a, b ∈ A.

If there exist k > 0 such that ||a||2 ≤ k||a2|| for all a ∈ A, then A is spectrally
normed algebra, in fact, ||a||2 ≤ kr(a).

Proof. 1) First, let A be a real Banach algebra. Let s+it be in C, s2 + t2 = 1
and s+ it be not in Sp(ab). Let c denote the inverse of (ab− s)2 + t2, then it is
followed by direct calculation that 1+b(2s−ab)ca is the inverse of (ba−s)2 +t2,
so that s+ it /∈ Sp(ba). Hence r(ba) = r(ab).
2) Since ||a||2 ≤ k||a2|| for all a ∈ A. We have by induction, We prove that
||a||2n ≤ k2n−1||a2n || for all n = 1, 2, 3 · · ·

(||a||2
n+1

) = (||a||2
n

)2

≤ (k2n−1||an||)2

≤ k2n+1−2k||a2n+1

||

≤ k2n+1−1||a2n+1

||.

Hence (||a||2n

) ≤ k2n−1||a2n || for all n = 1, 2, 3... We know that r(a) =

limn→∞ ||an||
1
n

lim
n→∞

(||a||) ≤ lim
n→∞

k1− 1
2n ||a2n

|| 1
2n ||a|| ≤ kr(a).

Now it follows from (1) that ||ba|| ≤ kr(ba) ≤ kr(ab) ≤ k||ab||..

Theorem 1.1.41. Suppose that A is a Banach algebra with unit 1 satisfying
one of the following conditions

1. A is a complex algebra then there exist a positive constant k such that
||a||2 ≤ k||a2|| for all a ∈ A.

2. A is a real algebra then there exist a positive integer k such that ||a||2 ≤
k||a2 + b2|| for all a, b ∈ A with ab = ba.

Then A is commutative.

Proof. In both the cases, ||a||2 ≤ k||a2|| for all a ∈ A.

||ba|| ≤ ||ab|| for all a, b ∈ A.
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Now φ is a continuous linear function on A and a, b ∈ A. Suppose A satisfies
the condition (1). Define f : C→ C by

f(z) = φ(exp(za)b exp(−za)) forz ∈ C.

Then f is entire function. Further by(1)

|f(z)| ≤ ||φ|||| exp(za)b exp(−za)||
≤ k||φ|| ||b exp(za) exp(−za)|| = k||φ|| ||b||.

Thus f is bounded and hence it is constant by Liouville’s theorem. f(0) = f(1)
implies that

φ(b) = φ[exp(a)b exp(−a)]. (1.6)

Next suppose A satisfy the condition (2). Define u : R2 → R by

u(x, y) = φ{(exp(xa)[(cosya)b cosya+ (sinya)b sinya] exp(−xa)}, for (x, y) ∈ R2

Then u(x, y) is harmonic function in R2.

|u(x, y)| ≤ ||φ||||(exp(xa)[(cosya)b cosya+ (sinya)b sinya] exp(−xa)||
≤ k||φ|| ||[(cosya)b cosya+ (sinya)b sinya]||
≤ k||φ|| ||b|| ||cosya||2 + ||sinya||2

≤ 2k2||φ|| ||b|| ||cos2ya+ sin2||
≤ 2k2||φ|| ||b||.

Thus u(x, y) is bounded harmonic function on R2. Hence u is constant. There-
fore u(0,0)=u(1,0) again implies equation (1.6). Since equation (1.6) for every
continuous linear functional φ on A, we have

b = exp(a)b exp(−a).

That is,

b exp(a) = exp(a)b for all a, b in A. (1.7)

Let c and d any two elements of A. If ||c|| < 1 there exist a in A such that
1 + c = exp(a). From (1.7) that is, d(1 + c) = (1 + c)d or dc = cd the restriction
||c|| < 1 can we removing by considering c

2||c|| if c 6= 0.

1.2 Commutative Real Banach Algebras

Definition 1.2.1. Let A be a real algebra. The carrier space of A denoted by
Car(A), is the set of all nonzero homomorphisms from A to C.
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Let φ ∈ CarA and define φ̄ by φ̄(a) = φ(a) for a ∈ A. Then it is easy to see
that φ̄ ∈ CarA. Also we have the following

φ(a+ b) = φ(a+ b)

= φ(a) + φ(b)

φ(αa) = φ(αa), α ∈ R.

= αφ(a)

Hence φ̄ is linear.

φ(a.b) = φ(a.b)

= φ(a).φ(b)

= φ(a).φ(b)

= φ̄(a).φ̄(b)

That is, φ̄ is multiplicative. Hence φ̄ ∈ A.

Definition 1.2.2 (Gelfand topology). For a ∈ A, the Gelfand transformation
is a map â : CarA → C, given by â(φ) = φ(a) for φ ∈ CarA. The weakest
topology on CarA that makes â continuouns on Car(A) for all a ∈ A is called
the Gelfand topology on Car(A).

Note that, if A has unit 1 and φ ∈ Car(A), then φ(1) = 1 because φ is a
nonzero homomorphism. If a is invertible then φ(a−1)φ(a) = 1. Thus φ(a) is
non zero for every invertible element a.

Lemma 1.2.3. Let be a real Banach algebra with unity 1 and φ ∈ Car(A).
Then ‖φ‖ := sup{|φ(a)| : a ∈ A, ‖a‖ ≤ 1} = 1.

Proof. We know that φ is a homomorphism from A to C. Also r(φ(a)) =
|φ(a)|for every a ∈ A. We have |φ(a)| = r(φ(a)) ≤ r(a) ≤ ‖a‖ ≤ 1 for ev-
ery a ∈ A. Hence ‖φ‖ ≤ 1. Since φ(1) = 1, we have ‖φ‖ = 1.

The following example shows that Car(A) can be empty. Consider the
quaternion algebra H= {a0 + a1i+ a2j + a3k : a0, a1, a2, a3 ∈ R} Suppose that
φ ∈ Car(H) then

φ(2k) = φ(ij − ji)
= φ(i)φ(j)− φ(j).φ(i) = 0.

Since 2k is invertible, we have 1 = φ(1) = φ(2k).φ((2k)−1) = 0, which is a
contradiction. Hence Car(H) is empty. We shall however show in the sequel
that if A is a commutative normed algebra, then Car(A) is non empty.

Definition 1.2.4 (Ideal). Let A be a real or complex algebra with unit. A
subspace I of A is called a left ideal if a ∈ I and x ∈ A imply that xa ∈ I.
Similarly, a right ideal is defined. The space I is called an ideal if I is both a
left and a right ideal.
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An ideal is called proper if it is different from A. When A is commutative,
every left ideal or right ideal is ideal.

Definition 1.2.5 (Maximal ideal ). A maximal ideal is a proper ideal M which
is not contained in any other proper ideal, that is if I is an ideal and M ⊂ I ⊂ A
then M = I or I = A.

Lemma 1.2.6. Let M be a closed ideal in a normed algebra A with unit. Let
A
M denote the set of all cosets of the form

M + a = {x+ a : x ∈M}.

For a, b in A and α ∈ R, define

(M + a) + (M + b) = M + (a+ b)

(M + a).(M + b) = M + ab

α(M + a) = M + αa.

Then the operations are well defined and under these operations AM is an algebra
with unit M + 1. Further define ‖M + a‖ = inf{‖x + a‖ : x ∈ M} for a ∈ A.
Then A

I is a normed algebra with respect to this norm. If A is Banach algebra,

then AI is Banach algebra.

Proof. First we need to prove that ‖M + a‖ = inf{‖x + a‖ : x ∈ M} is well
defined, Note that
1) The above norm is clearly non negative.
2) We need to prove second property ‖x‖ = 0 if and only if x = 0. If a+M = M
implies ‖0 +M‖ = 0. If

‖x+M‖ = 0 =⇒ inf{x+m : m ∈M} = 0.

By the definition of the norm, we assert the existence of a sequence < xn > in
M such that

lim
n→∞

‖x+ xn‖ = ‖x+M‖ =⇒ ‖x+ xn‖ → 0

=⇒ x+ xn → 0 =⇒ xn → −x.

Using the fact that M is closed, we say that −x ∈ M because it is the limit of
a Cauchy sequence of points of M which implies x+M = M.
3) Let a ∈ F . Then

‖ax+M‖ = inf
m∈M

‖ax+M‖

= inf
m∈M

‖ax+ am‖

= |a| inf
m∈M

‖x+m‖

= |a|‖x+M‖.
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4) Since ‖x + y + M‖ has been defined as greatest lower bound, we can assert
the existence of sequences of points < xn > and < yn > in M such that

lim
n→∞

‖x+ xn‖ = ‖x+M‖ and lim
n→∞

‖y + yn‖ = ‖y +M‖.

For any n, this implies

‖x+ y +M‖ ≤ |x+ y + xn + yn| ≤ ‖x+ xn‖+ ‖y + yn‖.

Since the above statement true for any n , it must also be true in the limit. Thus

‖x+ y +M‖ ≤ ‖x+M‖+ ‖y +M‖

Thus triangle inequality satisfied. Hence
X

M
is a normed linear space.

Suppose that < xn + M > is a Cauchy sequence of points of
X

M
. It follows

that if a convergent sequence can be extracted from it then the entire sequence
must convergent, and furthermore, it must convergent to same limit as the
subsequence.
The sequence < xi +M > has a subsequence < yi +M >,

‖(yi+1 +M − (yi +M)‖ = ‖(yi+1 − yi) +M‖ < 1/2i.

By virtue of the definition of this norm, there existence hi ∈ (yi+1 − yi) + M
such that ‖hi‖ < 1/2i.
Choose z1 ∈ y1 +M and suppose z1, z2, ...zn have been chosen such that
zi+1 ∈ yi+1 +M and

zi+1 − zi = hi (1.8)

for i = 1, 2, 3, ..., n− 1. We wish to demonstrate that an (n+ 1)th vector can be
add to the list having, the same properties. To this end we write

hn = yn+1 − yn +m and zn +m
′
.

Where m,m
′ ∈M .

The first equation implies that

hn + yn = yn+1 +m.

Adding m
′

to both sides and letting m+m
′

= m
′′

this completes the induction
process concerning the existence of vector z1, z2, ... having the properties (1.7)
it will be shown that zn is Cauchy sequence. suppose n > m, and consider

‖zn − zm‖ ≤ ‖zn − zn−1‖+ ...+ ‖zm+1 − zm‖
≤ ‖hn−11‖+ ‖hn−2‖+ ...+ ‖hm‖ from (1.7)

≤ 1

2n−1
+

1

2n−2
+ ...+

1

2m

≤ 1

2m−1
.
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It is clear that (zn)∞n=1 is a Cauchy sequence of elements from X. Since X is
Banach space, most convergent to some point z of X. Further the sequence of
elements < yi+M > from X/M , approaches (z+M) as a limit.For yi+1 +M =
zi +M and

‖z +M − (yi +M)‖ = ‖z +M − (zi +M)‖. But ‖z − zi +M‖ ≤ ‖z − zi‖ → 0.

This implies zi+M → z+M. This proves that the original sequence {xi+M}∞n=1

convergence to z +M . Hence X/M is a Banach space.

Lemma 1.2.7. Let I be a proper ideal in a (real or complex) commutative Ba-
nach algebra A with unit 1. Then closure J of I is a proper ideal. In particular,
every maximal ideal is closed.

Proof. We claim that closure J of an ideal I is an ideal. Let x ∈ Ī = J implies
x ∈ I or x /∈ I. Suppose xınI implies a.x ∈ I for all a ∈ A . Supposex /∈ I, x ∈ J
implies that s < xn > inI convergent to x. Hence a.xn → a.x for every a ∈ A.
Hence a.x ∈ J for every a ∈ A. Similarly J is subspace of A. Hence J is ideal.
Next, we claim that J is proper ideal of A.

Clearly J is an ideal. If a ∈ I ‖1 − a‖ < 1, then a is invertible (because
r(a) < |s|, then a − s is invertible ) implies that I is not proper ideal. Thus
‖1 − a‖ ≥ 1 for every a in I and hence for every a in J. Hence 1 /∈ J , so J is
proper ideal.

Claim : maximal ideal is closed. Let M is a maximal ideal of algebra A.
We know that M ⊂ M̄ ⊂ A because closure of every proper ideal is proper. We
know M is maximal ideal hence M = M̄. Hence M is closed.

Theorem 1.2.8. Let A be a real commutative Banach algebra with unit 1.

1. If φ ∈ Car(A), then the kernel of φ, denoted by kerφ = {a ∈ A : φ(a) = 0}
is maximal ideal in A.

2. If M is a maximal ideal in A, then M = kerφ for some φ ∈ Car(A).

3. For φ, ψ in Car(A), if kerφ = kerψ, then ψ = φ or ψ = φ̄.

Proof. 1) If a ∈ kerφ, b ∈ A, then φ(ab) = φ(a).φ(b) = 0 hence ab ∈ kerφ,
hence kerφ is ideal. Since φ(1) = 1, kerφ is proper. Suppose that kerφ is
properly contained in an ideal I. We consider two cases to show that I = A.

Case(a): Suppose that φ(A) ⊂ R. Then we can find b ∈ I such that φ(b) =
s 6= 0, s ∈ R. Let a ∈ A. If c = a−φ(a)b/s, then φ(c) = 0. Hence c ∈ ker(φ) ⊂
I. Thus a = c+ φ(a)b/s ∈ I. This shows that I = A.

Case(b) If φ(A) is not contained in R, we can find b ∈ A such that φ(b) =
s + it and t 6= 0 let c = (b − s)/t then φ(c) = i. There exist d in I such that
φ(d) = p + iq 6= 0, p, q in R. Let e = d(−pc2 − qc)/(p2 + q2). Then e ∈ Iand
φ(e) = 1. Let a ∈ A and φ(a) = x + iy. Then a− xe− yce ∈ ker(φ) ⊂ I Also,
xe+ yce ∈ I . Hence a ∈ I. This shows that I = A.

Let M be a maximal ideal. Then M is a closed. Show that A/M is a real
commutative Banach algebra with unit. Since M is a maximal, it is easy to
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prove that A/M is division algebra. Hence by the Mazur - Gelfand theorem.
A/M is isomorphic to R or C. Let θ be such isomorphism and π : A → A/M
be the canonical map, then φ = θ ◦ π ∈ Car(A).

ker(φ) = {a : θ ◦ π(a) = 0}
= {a : θ(π(a)) = 0}
= {a : θ(a+M) = 0} (θ is isomorphism = {a : a+M = M})
= M.

(3) Let φ, ψ ∈ Car(A) and ker(φ) = ker(ψ). Let π : A → A/M be a
canonical map and φ̃ and ψ̃ be defined by φ̃((M +a)) = φ(a) and ψ̃((M +a)) =
ψ(a) for a in A. Then φ̃ and ψ̃ are both isomorphisms from A/M to R or C.
Hence φ̃ ◦ (ψ̃)−1 is isomorphism from R to R or C to C. he only isomorphism
from R to R is the identity map and the only isomorphism from C to C, where
C is regarded as real algebra are the identity map the complex conjugation that

is, the map z 7→ z̄ this implies that φ̃ = ψ̃ or φ̃ =
¯̃
ψ. Since φ = φ̃ ◦ π and

ψ = ψ̃ ◦ π, we have φ = ψ or φ = ψ̄.

Remark 1.2.9. The set of all maximal ideals of real commutative Banach alge-
bra with unit 1 is denoted by M(A) and is called the maximal ideal space of
A. The above theorem shows that the map ker : Car(A)→M(A) (i.e the map
φ 7→ kerφ ) is onto. Thus implies that Car(A) is non empty. Further, for M in
M(A), the inverse image ker−1(M) consists of {φ, φ̄} for some φ in Car(A).

Remark 1.2.10. Let A be a complex commutative Banach algebra with unit
1. The carrier space A, denoted by Car(A), is the set of all non zero homo-
morphisms from A to C. Where c is regarded as a complex algebra. Hence if
φ ∈ Car(A), then φ(i) = i. Let AR denote A, regarded as a real algebra. It is
easy to see that if φ ∈ Car(A), then φ as well as φ̄ are in Car(AR), on other
hand, if φ ∈ Car(AR), then φ(i)2 = −1, φ(i) = ±i thus exactly one of φ and φ̄
belongs to Car(A), that is Car(AR) = Car(A)

⋃
{φ̄ : φ ∈ CarA}.

Theorem 1.2.11. Let A be a real commutative Banach algebra with unit 1.
Then

1. Car(A) endowed with the Gelfand topology, is compact Hausdorff space.

2. The map τ : Car(A) → Car(A), defined by τ(φ) = φ̄ is homomorphism
and τ ◦ τ is identity map on Car(A).

3. The set of all fixed points of τ is close in Car(A).

4. The mapping a 7→ ã, a ∈ A, is a isomorphism of A into C(Car(A)).

5. a is singular in A if and only if ã(φ) = 0 for some φ in Car(A).

6. For a ∈ A , ã(Car(A)) = Sp(a,A).

7. ‖ã‖ = sup{|ã(φ)| : φ ∈ Car(A)} = r(a).
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Proof. 1) Let φ, ψ ∈ Car(A) and ψ 6= ψ. This means that for some a ∈ A,
φ(a) 6= ψ(a); that is ã(φ) 6= ã(ψ). Since ã is continuous with respect to Gelfand
topology, we enclose φ and ψ in disjoint open sets, namely

Nφ = {θ ∈ Car(A) : |φ̃(a)− ψ̃(a)| < ε} and
Nψ = {θ ∈ Car(A) : |ã(ψ)− ã(θ)| < ε}

with 0 < ε < |φ(a)− ψ(a)|/2. Nφ ∩Nψ = φ. Thus Car(A) is Hausdorff.
To prove we proceed as follows. For each a ∈ A, let Ka = {z ∈ C : |z| ≤ ‖a‖}

and K =
∏
a∈AKa be a topological product. Since each Ka is compact, K is

compact by Tychonoffs theorem. We have φ ∈ Car(A) and a ∈ A, |φ(a)| ≤ ‖a‖.
Thus φ(a) ∈ Ka. Hence φ can be considered as a point of K. Consequently,
Car(A) can be considered as a subset of K. Further, it is clear that the Gelfand
topology on Car(A) is same as the (relative ) topology of Car(A) as subspace
of K. Thus to prove the compactness of Car(A), it is sufficient to show that
Car(A) is closed in K. Let ψ ∈ K be in the closure of Car(A). Since ψ ∈ K,ψ
is a function on A such that |φ(a)| ≤ ‖a‖ for each a in A. Since ψ is in the
closure of Car(A). There is net {ψα} in Car(A) converging to ψ this means
that ψα(a)→ ψ(a) for every a ∈ A. Hence, for a, b ∈ A,

ψ(a+ b) = limψα(a+ b)

= lim(ψα(a) + ψα(b)

= ψ(a) + ψ(b).

ψ(sa) = limψα(sa)

= s limψα(a)

= sψ(a)

ψ(ab) = limψα(ab)

= limψα(a)ψα(b)

= ψ(a)ψ(b).

And ψ(1) = 1 for a, b ∈ A and s ∈ R. Thus ψ ∈ Car(A). Hence Car(A) is
closed subset of K. Hence Car(A) is compact.

(2) Clearly, τ ◦ τ(φ) = τ(φ̄) = φ for all φ in Car(A). Now suppose that a
net {φα} convergent to φ in Car(A). Then for each a ∈ A, ã(φα)→ ã(φ) hence

φα(a) → φ(a) or φα(a) → φ(a) ; that is, ã(τ(φα)) → ã((̃φ)) this means that
τ(φα)→ τ(φ). Thus τ is continuous. Since τ−1 = τ, τ is a homeomorphism.
3) S = {φ : τ(φ) = φ}, S is closed because τ is continuous on Car(A).

4) Let a, b ∈ A and s ∈ R. For each φ in Car(A), we have φ(a + b) =

φ(a) + φ(b) that is (a+ b)̃ = ã+ b̃ similarly (sa)̃ = sã and (ab)̃ = ãb̃.

5) If a is invertible, then φ(a)φ(a−1) = 1, hence φ(a) 6= 0 for every φ in
Car(A). If a is singular, then I = {ab : b ∈ A} is proper ideal. I is contained
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in a maximal ideal M . HenceM = kerφ for some φ in Car(A). For this
φ(a) = 0 = ã(φ).
(6) s+ it ∈ ã(Car(A)) if and only if s+ it = φ(a), for some φ in Car(A) if and
only if φ((a− s)2 + t2) = 0 for some φ in Car(A) if and only if (a− s)2 + t2 is
singular in A. If and only if s+ it ∈ Sp(a,A).
(7) We know that r(a) = sup{(s2 + t2)1/2 : s+ it ∈ p(a,A)}
from 6) ã(CarA) = Sp(a,A).

‖ã‖ = sup{|ã(φ)| : φ ∈ Car(A)}
= sup{|ã(φ)| : ã(φ) ∈ ã(Car(A))}
= sup{|φ(a)| : φ(a) ∈ Sp(a,A)}
= r(a).



Chapter 2

Gleason - Kahane - Zelazko
theorem

2.1 Introduction

In theory of Banach algebras, the theorem which yields global conclusions from
local hypothesis, are considered quite significant. An example of such theorem
is the Gleason- Kahane - Zalazko theorem. Let A be a complex Banach algebra
with unit element 1 and φ be function on A such that φ(1) = 1 and φ(a) 6= 0
for every invertible element a ∈ A. Then φ is multiplicative.

This theorem is not true in real Banach algebra. This can be seen by the
following example.

Let A = CR[0, 1], the algebra of real valued continuous functions on [0, 1]

and defined φ as φ(f) =
∫ 1

0
f(t)dt for f in A. Then to see that φ(1) = 1, φ(f) 6= 0

for every invertible element f in A, but φ is not multiplicative.

2.1.1 Definitions and Notations

Let A be real algebra with unit element 1 and a be an element of A. Then the
spectrum, SpA(a) = {s+ it : (a− s)2 + t2 is singular in A}.

Lemma 2.1.2. Let A be a real algebra with unit element 1 and φ : A → C
a linear map with satisfying φ(a2) = φ(a)2 for every a in A. Then φ(ab) =
φ(a)φ(b) for every a, b ∈ A.

Proof. Let a, b ∈ A, then by hypothesis, we have φ((a+b)2) = (φ(a+b))2. After
simplifying this we get φ(ab+ba) = 2φ(a)φ(b). This implies φ 6= 0 and φ(1) = 1.
If φ is not multiplicative, there exist x, y ∈ A such that φ(xy)−φ(x)φ(y) = k 6= 0
We claim that there exist a, b ∈ A such that φ(a) = 0 and φ(ab) 6= 0. Let
φ(x) = s+ it, φ(y) = p+ iq.

23
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Case(i): Assume that either t = 0 or q = 0.Without loss of generality, we assume
that suppose t = 0. Let a = x−s, b = y. Then φ(a) = 0 and φ(ab) = φ((x−s)y)
= φ(xy)− φ(x)φ(y) = k.

Case(ii) Suppose t 6= 0 and q 6= 0. Consider x
′

= x−s
t , and y

′
= y−p

q . Then

φ(x
′
) = i = φ(y

′
) and

φ(x
′
y
′
) =

1

tq
φ((x− s)(y − p))

=
k

tq
− 1.

Set a = x
′ − y′ , b = y

′
. Then φ(a) = 0 and

φ(ab) = φ(x
′
y
′
− (y

′
)2)

= φ(x
′
y
′
)− (φ(y

′
))2

=
k

tq
6= 0.

Let a, b belongs to A such that φ(a) = 0 and φ(ab) = r 6= 0 then φ(ba) = −r.
For c = bab, we get

0 = 2φ(a)φ(c) = φ(ac+ ca)

= φ((ab)2 + (ba)2)

= 2r2 6= 0.

This is a contradiction. Hence φ is multiplicative.

Theorem 2.1.3. Let A be a real commutative Banach algebra with unit element
1 and φ : A → C be a non zero linear map. Then the following are equivalent.

1. φ(ab) = φ(a)φ(b) for all a, b in A.

2. φ(1) = 1 and φ(a)2 + φ(b)2 belongs to SpA(a2 + b2) for all a, b in A.

3. φ(1) = 1 and φ(a)2 + φ(b)2 6= 0 for all a, b in A such that (a2 + b2) is
invertible.

Proof. (1) =⇒ (2) Let φ is multiplicative, φ(1) = 1 and ǎ(CarA) = Sp(a).
This implies φ(a) ∈ Sp(a), ∀φ ∈ CarA, thus φ(a2 + b2) ∈ Sp(a2 + b2).
(2) =⇒ (3) If a2 + b2 is not invertible, then 0 does not belongs to Sp(a2 + b2).
Hence φ(a)2 + φ(b)2 is non zero.
(3) =⇒ (2) First we prove that φ(a) ≤ ‖a‖. Let a ∈ A and s + it ∈ C such
that s2 + t2 > ‖a‖2. Then (a − s)2 + t2 is invertible in A. By our hypothesis
φ(a− s)2 + φ(t2) 6= 0, this implies that φ(a) 6= s+ it. Hence |φ(a)| ≤ ‖a‖.

For a ∈ A, define the functions u, v as follows.

u(x, y) = φ([(exp(a)cos(ya)]) and

v(x, y) = φ[(expxa)sin(ya)] for all real x, y.
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Define F (z) = F (x + iy) = u(x, y) + iv(x, y) for z = x + iy in C. A simple
calculation shows that F (z) = 1 +

∑∞
n=1

1
n!φ(an)zn, for all z in C.

|F (z)| ≤ 1 +

∞∑
n=1

1

n!
|φ(an)||z|n

= exp(||a|||z|)for all z in C.

Thus F (z) is entire function of the exponential type. Since

[exp(xa) cos(ya)]2 + [exp(xa) sin(ya)2 = exp(2xa)

is invertible, this implies that F (z) 6= 0 for every z ∈ C. By the Hadamard’s
factorization theorem, then there exist α ∈ C such that F (z) = exp(αz) i.e
F (z) = 1 +

∑∞
n=1

1
n!α

nzn for all z ∈ C. We get φ(a) = α and φ(a2) = α2 =
φ(a)2.

Thus we get φ(a2) = φ(a)2, for every a in A. Hence by the Lemma 1.1.2, φ
is multiplicative.

Theorem 2.1.4. Let A be a real Banach algebra with unit element 1 and let
φ : A → C be a non zero linear map. Then the following are equivalent.

1. φ(ab) = φ(a)φ(b).

2. φ(1) = 1 and φ(a)2 + φ(b)2 belongs to Sp(a2 + b2) for all a, b ∈ A such
that ab = ba.

3. φ(1) = 1 and φ(a)2 + φ(b)2 6= 0, if ab = ba and a2 + b2 is invertible.

Proof. (1) =⇒ (2) That φ(1) = 1. It is easy to see that φ(1) = 1. Let a2 +b2 =
c and φ(a)2 +φ(b)2 = φ(c) = s+it. If s+it does not belongs to Sp(c), then there
exist d in A such that 1 = φ(1) = φ([(c−s)2 + t2]d) = ([((c)−s)2 + t2])φ(d) = 0,
which is contradiction.
(2) =⇒ (3) Observe that, a2 + b2 is invertible implies that 0 /∈ Sp(a2 + b2).
Hence φ(a2 + b2) 6= 0.
(3) =⇒ (1) Let a be an element of A and B a closed commutative sub algebra
of A, containing a. By apply theorem(1.1.3), we get φ(a2) = φ(a)2 for every
element a in A. The result follows from lemma (1.1.2) that φ is commutative.

Corollary 2.1.5. Let A be a real algebra with unit element 1. If φ is a linear
functional on A such that every pair of elements a, b in A with ab = ba and
a2 + b2 invertible, we have φ(a) 6= 0 or φ(b) 6= 0 then φ(ab) = φ(a)φ(b) for all
a, b in A.

Proof. Note that φ satisfy the condition (3) of theorem(1.1.4). Hence by this φ
is multiplicative.
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Corollary 2.1.6. Let A be a real Banach algebra with unit 1 and X a linear
subspace of A of codimension 1 with the following property: for every a, b in A
such that ab = ba and a2 + b2 is invertible, a is not in X or b is not X. Then
X is a maximal ideal of A.

Proof. Since 1 /∈ X, there exist a linear functional φ on A such that φ(1) = 1
and X = kerφ = {a ∈ A : φ(a) = 0}. Apply corollary 1.1.5 to φ as a2 + b2

is invertible this implies φ(a)2 + φ(b)2 6= 0, Hence a /∈ X or b /∈ X. Thus φ is
multiplicative. Hence X = kerφ is maximal ideal.

Theorem 2.1.7. Let A be a complex Banach algebra with unit 1 and φ a non
zero linear functional on A. Then the following condition are equivalent.

1. φ(ab) = φ(a)φ(b) for all a, b in A.

2. φ(a) lies in Sp(a) for all a in A.

3. φ(1) = 1 and φ(a) 6= 0 if a is invertible.

Proof. (1) =⇒ (2) =⇒ (3) are straight forward. The only non trivial impli-
cation is (3) =⇒ (1).

Let a, b belongs to A such that ab = ba and a2 +b2 is invertible. As a2 +b2 =
(a + ib)(a − ib), so both a + ib and a − ib are invertible. Hence φ(a + ib) =
φ(a) + iφ(b) 6= 0 as well as φ(a− ib) = φ(a)− iφ(b) 6= 0 and φ(a2)2 + φ(b2)2 =
[φ(a) + iφ(b)][φ(a) − iφ(b)] 6= 0. Thus, φ satisfy the conditions (3) of theorem
(1.1.3). Hence φ is multiplicative.

Theorem 2.1.8. Let A and B two real Banach algebras with unit 1. Suppose
that B is commutative semi-simple. Let T : A → B be a linear map such that
T (1) = 1. Then the following are equivalent.

1. T (ab) = T (a)T (b) for all a, b in A.

2. Sp(T (a)2 + T (b)2) ⊂ (Sp(a2 + b2)) for all a, b in A such that ab = ba.

3. T (a)2 + T (b)2 is invertible for all a, b in A such that ab = ba and a2 + b2

is invertible.

Proof. (1) implies (2): Let c = a2 + b2. Suppose s + it is not in Sp(c). Then
(c− s)2 + t2 is invertible, that is, [(c− s)2 + t2]d = 1 for some d in A. Therefore,
1 = T (1) = T [(c− s)2 + t2]T (d) = [(T (c)− s)2 + t2]T (d). Thus, (T (c)− s)2 + t2,
hence s+it does not belongs to Sp(T (c)) = Sp(T (a2 +b2)) = Sp(T (a)2 +T (b)2).
Hence Sp(T (a)2 + T (b)2) ⊂ (Sp(a2 + b2)).

(2) implies (3) Let a, b belongs toA such that ab = ba and a2+b2 is invertible.
Then 0 is not Sp(a2 + b2) and hence not in Sp(T (a)2 + T (b)2). In other words,
T (a)2 + T (b)2 is invertible.

(3) implies (1): The Carrier space of B, Car(B) is the space of all non-zero
real linear homomorphism of B to the complex plane C. Let φ be any element
of CarB. Define ψ : A → C as ψ = φ ◦ T. Then ψ(1) = φ ◦ T (1) = φ(1) = 1.
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Also, if a, b belongs to A such that ab = ba and a2 + b2 is invertible, then
φ(T (a)2 + T (b)2) is non-zero, that is, ψ(a)2 + ψ(b)2 6= 0, by Theorem 1.1.4.
ψ(ab) = ψ(a)ψ(b) for all a, b ∈ A. That is,

φ(T (ab)) = φ(T (a))φ(T (b))

= φ(T (a)T (b) for all a, b in A.

As φ arbitrary element of CarB and B is semi simple we have T (ab) = T (a)T (b)
for all a, b in A. This completes the proof.

Remark 2.1.9. Note that the assumption, B is commutative and semi simple
is used only in proving the assertion (3) implies (1) in Theorem 2.1.8. The
other two assertions, namely (1) implies (2) and (2) implies (3) are valid for
any for real Banach algebra B with 1. However we cannot altogether drop the
assumptions that B is commutative and semi simple. The following examples
illustrate this.

Example 2.1.10. Let A = B = B(H), where B(H) is algebra of bounded linear
operators on real Hilbert space H. (In particulars we may consider A and B as
the algebra of 3 × 3 real matrices ). Let T : A → A be defined as T (a) = a∗,
where a∗ The adjoint of a in A. Then T (1) = 1. Although we can find a, b ∈ A
such that ab = ba and a2 + b2 is invertible, but T is not multiplicative.
Thus the assumption of commutativity cannot be dropped.

Example 2.1.11. Let L1[0, 1] be the space of all absolutely integrable complex
functions on the interval [0, 1] with the norm given by

‖f‖ =

∫ 1

0

|f(t)|dt ∀f ∈ L1[0, 1], (2.1)

and product defined as convolution

f ∗ g(x) =

∫ 1

0

f(x− t)g(t)dt, 0 ≤ x ≤ 1 ∀f, g ∈ L1[0, 1]

This is a Banach algebra without unit. Let A be the algebra obtained by formally
adjoining a unit e to L1[0, 1]. Then it is not simple. Also every a ∈ A can be
written, uniquely as, a = f + s.e where f in L1[0, 1] and s is in R. Moreover,
where a is invertible, if and only if, s 6= 0. Define T : A → A as T (a) =
−f+s.e where a = f+s.e in A. Then T (e) = e. Let a = f+s.e, b = g+t.e ∈ A
such that a2 + b2 is invertible. Now, a2 + b2 = f2 + g2 + 2(sf + tg) + (s2 + t2)e.
If s2 + t2 6= 0 then

T (a)2 + T (b)2 = (−f + s.e)2 + (−g + t.e)2

= (f2 + g2)− 2(sf + tg) + (s2 + t2)e.

is invertible. This shows that the assumption of semi simplicity cannot be
dropped.
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Chapter 3

Real Function Algebras

3.1 Notation

Let X be a compact Hausdorff space. For a nonempty subset K of X and f in
C(X), we denote ‖f‖K = sup{|f(x)| : x ∈ K}.

Definition 3.1.1. Let X be compact Hausdorff space and A be a non empty
subset of C(X). For each x ∈ X, the evaluation map at x, denoted by ex is
defined by

ex(f) = f(x) ∀f ∈ A.

It is easy to seen that if A is a subspace, then ex : A → C is a linear map
and if A is a subalgebra, then ex is a homomorphism. If A contains 1, then
ex(1) = 1 and ex 6= 0. Next theorem shows that all the non zero homomorphism
from C(X) to C are of this form.

Let F be a collection of sets. Then F is said to have the finite intersection
property if for every finite collection of sets {F1, F2, F3, ...Fn} ⊂ F we have that
that ∩n1Fn 6= φ.

Theorem 3.1.2. Let X be a topological space. Then X is compact if and only
if for every collection of closed sets F in X, that is if F has a finite intersection
property then ∩F∈FF 6= φ.

Theorem 3.1.3. Let X be compact Hausdorff space. Then Car(C(X)) = {ex :
x ∈ X}.

Proof. We know that if A is a complex commutative Banach algebra with unit
1 and φ, ψ ∈ Car(A), with kerφ = kerψ, then φ = ψ.

We have observed that ex ∈ Car(A) for each x ∈ A. Let φ ∈ Car(C(X)). It
is enough to prove that kerφ = kerex for some x ∈ X. Let Z(f) = {y : f(y) =
0}, for f ∈ C(X).

We claim that K = ∩{Z(f) : kerφ} is non empty. Since each Z(f) is closed
subset, by the finite intersection property of compact space X, it is enough to

29
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prove that for f1, f2, f3...fn ∈ kerφ, Z(f1) ∩ Z(f2) ∩ Z(f3)... ∩ Z(fn) is non
empty.

If possible, assume that Z(f1) ∩ Z(f2) ∩ Z(f3)... ∩ Z(fn) is empty. Then
g =

∑n
i=1 fif̄i ∈ kerφ. Since fi are no common zero, g(y) > 0 for all y ∈ X.

Hence g is invertible, So that φ(g) 6= 0 this is contradiction to (g ∈ kerφ) this
proves the claim.

Now I = {f ∈ C(X) : f ≡ 0 on K} is proper Ideal of C(X). By above claim,
kerφ ⊂ I. Since kerφ is maximal Ideal, we get kerφ = I and K is singleton,
say K = {x}. Hence kerφ = kerex and as a consequence φ = ex for some x in
X.

Corollary 3.1.4. Let (C(X))R denote C(X), as a real algebra. Then Car(C(X))R
={ex : x ∈ X} ∪ {ēx : x ∈ X}. This proof follows from the following result:
Let A be a real commutative Banach algebra with unit 1 and φ, ψ ∈ Car(A), if
kerφ = kerψ, then ψ = φ or ψ = φ̄.

3.2 Involutions

Definition 3.2.1. (Topological Involutions ) Let X be a topological space. A
map τ : X → X is called a topological involution on X, if τ is a homeomorphism
and τ(τ(x)) = x for all x ∈ X.

Definition 3.2.2. (Linear Involution) Let A be a real or complex vector space.
A linear involution on A is a map a→ a∗ from A into A satisfying the following
axioms: For a, b ∈ A and a scalar α

1. (a+ b)∗ = a∗ + b∗.

2. (αa)∗ = ᾱa∗.

3. (a∗)∗ = a.

The scalar α can be real or complex number depending on whether A is a
real or complex vector space. Note that if A is a complex vector space, then a
linear involution on A is not a linear map, but is conjugate linear.

Definition 3.2.3. ( Algebra Involution ) Let A be an algebra over R or C. An
algebra involution is a linear involution on A satisfying (ab)∗ = (a)∗(b)∗ for
a, b ∈ A.

Let X be a compact Hausdorff space and τ a topological involution on X.
Then the algebra C(X, τ) defined as

C(X, τ) = {f ∈ C(X) : f(τ(x)) = f̄(x) for all a ∈ X}.

Theorem 3.2.4. Let X be compact Hausdorff space and τ be a topological
involution on X. Define σ : C(X)→ C(X) by

σ(f)(x) = f̄(τ(x))

for f ∈ C(X), x ∈ X. Then
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1. σ is an algebra involution on C(X) and

C(X, τ) = {f ∈ C(X) : σ(f) = f}.

2. C(X) = C(X,σ)⊕ iC(X, τ).

3. σ is isometry.

4. For f in C(X), define P (f) = [f + σ(f)]/2]. Then P is continuous linear
projection.

5. Every algebra involution on C(X) arise from a topological involution on
X in the manner described above.

Proof. (1) It is obvious.
(2) Since σ is an algebra involution, for f ∈ C(X), σ(f+σ(f)) = f+σ(f) and σ((f−
σ(f))/i) = (f − σ(f))/i.
Thus f = f + σ(f)/2 + i (f − σ(f))/2i in C(X, τ). Further, if h = f+ig with f
and g in C(X) then σ(h) = f − ig. Hence f = (h+σ(h))/2i, g = (h−σ(h))/2i.
This prove the uniqueness of f and g.
(3) Let f ∈ C(X). Then

‖σ(f)‖ = sup{|f̄(τ(x))| : x ∈ X}
= {|f(y)| : y ∈ X}
= ‖f‖.

The statement (4) follows from (1) and (3).
(5) Let σ be an algebra involution on C(X). We prove that σ is induced by a
topological involution τ on X. For x ∈ X. define φx : C(X) → C by φx(f) =
σ(f)(x), f ∈ C(X). φx is Homomorphism on C(X). Hence φx ∈ Car(C(X)).
Hence φx = ey for a unique y in X. We define y = τ(x). Thus we have f(τ(x)) =

σf(x) for all f ∈ C(X), x ∈ X. Replacing x by τ(x), f(τ(τ(x))) = σ(f)(τ(x)) =

σ(σ(f))(x) = f(x) for all f ∈ C(X). Hence τ(τ(x)) = x for all x in X. Thus it
remains only show that τ is continuous. First note that since σ(f)(x) = f(τ(x))
for f in C(X), x in X, and τ ◦ τ is identity map, we have ‖σ(f)‖ = ‖f‖. Hence
σ is continuous. Net suppose that a net xα convergence to the point in X. Then
for every f ∈ C(X), f(xα) → f(x). Since σ is continuous. This implies that
σ(f)(xα) → σ(f)(x). Hence f(τ(xα)) = σ(f)(xα) → σ(f)(x) = f(τ(x)). This
means that τ(xα)→ τ(x) ; that τ is continuous on X.
Hence τ is one- one onto, continuous, its inverse also continuous hence τ is
homeomorphism.

Definition 3.2.5. Let A be a set of function on a set X. We say that A separates
the points of X if for every every x, y ∈ X and x 6= y, there exist f ∈ A such
that f(x) 6= f(y).

Let τ be n involution on X and E be set of functions on X such that u◦τ = u
for every u ∈ E. We say that E separates the points of X/τ , if for every x, y ∈ X
and x 6= y, τ(x) 6= y, there exist u ∈ E such that u(x) 6= u(y).
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Lemma 3.2.6. Let X be a compact Hausdorff space and τ a topological invo-
lution on X. Let x, y ∈ X and x 6= y.

1. If y = τ(x), then there exist f in C(X, τ) such that f(x) = i and f(y) =
−i.

2. If y 6= τ(x), then there exist f in C(X, τ) such that f(x) = 1 and f(y) = 0.

Proof. We know that if h ∈ C(X), define σ(h) = h̄(τ(x)). Then, by the theorem
2.0.11, σ(h + σ(h)) = h + σ(h) and σ(hσ(h)) = hσ(h). Hence h + σh, and
hσ(h) ∈ C(X).
(1) We can find h in C(X) such that h(x) = i and h(y) = 0. It is possible
because of Urysohn’s lemma. Let f = h + σ(h) . Then f ∈ C(X, τ), f(x) =
h(x)+σ(h)(x) = h(x)+h(τ(x)) = h(x)+ h̄(y) = i, and f(y) = h(y)+h(τ(y)) =
h(y) + h̄(x) = −i
(2) We can find h in C(X) such that h(x) = i and h(y) = 0. Let f = hσ(h).
Then f ∈ C(X, τ) f(x)= h(x)σ(h)(x) = 1, and f(y) = h(y)σ(h)(y) = 0.

Definition 3.2.7. Let X be a compact Hausdorff space and τ is topological
involution on X. A real functional algebra on (X, τ) is a real sub algebra A of
C(X, τ) such that :

1. A is uniformly closed.

2. 1 ∈ A.

3. A separates the point of X.

A complex functional algebra A on compact Hausdorff space X is a complex sub
algebra of C(X) satisfying following conditions

1. A is uniformly closed.

2. 1 ∈ A.

3. A separates the point of X.

Lemma 3.2.8. Let X be a compact Hausdorff space and τ is topological invo-
lution on X. Let A be a sub algebra of C(X, τ) that separates the points of X
and contains 1. Let x, y ∈ X with x 6= y. Then:

1. If y = τ(x), then there exist f in A such that f(x) = i and f(y) = −i.

2. If y 6= τ(x), then there exists f in A such that f(x) = 1 and f(y) = 0.

Proof. We know that A separates points of X, so there exist f1 in A such that
α1 = f1(x) 6= f1(y) = β1.
(1) Let y = τ(x) and α1 = a+ ib. Then β1 = f1(y) = f1(τ(x)) = f1(x) = a− ib.
Hence β1 = a − ib, So that b 6= 0 Now f = (f1 − a)/b ∈ A, f(x) = i and
f(y) = −i.
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(2) Let y = τ(x). Then there is f2 in A such that α2 = f2(τ(x)) 6= f2(y) =
β2. Consider

f =
[
1− (f1 − α1)(f2 − α2)

(β1 − α1)(β2 − α2)

][
1− (f1 − ᾱ1)(f2 − ᾱ2)

(β̄1 − ᾱ1)(β̄2 − ᾱ2)

]
for this function f(x) = 1 and f(y) = 0.

Example 3.2.9. The disk algebra A(D) is set of holomorphic functions f :
D → C where D is open unit disk in complex plane C, f is extended continuous
function on closer of D That is

A(D) = H∞(D) ∩ C(D̄),

where H∞ is the set of all bounded analytic functions on unit disk D.

‖f‖ = sup{|f(z)| : z ∈ D} = max{|f(z)| : z ∈ D̄}

Example 3.2.10. Let X is a compact subset of C and B is a algebra of
all functions that are uniform limits of sequences of rational numbers p/q,
where p and q are polynomials and q has no zero on X. Then B is com-
plex functional algebra. Further, if X is symmetric about real axis, we define
τ : X → X by τ(z) = z̄, z ∈ X. Let

A = {f ∈ B : f(τ(z)) = f̄(z) for all z in X}.

Then A is real function algebra consisting of all uniform limits of sequences of
rational functions p/q, where p and q are polynomials with real coefficients and
q does not have any zero on X.

Example 3.2.11. Let 0 < c < d and X be a annular region X = {z ∈ C : c ≤
|z| ≤ d}. Let

B = {f ∈ C(X) : f is analytic in interior of X }.

Then B is complex function algebra on X. Let 0 < c < 1 and d = 1
c . Then

define a map τ(z) = 1
z̄ map is topological involution on X. Define

A = {f ∈ B : f(τ(z)) = f̄(z) for all z ∈ X}.

Then A is real function algebra on (X, τ).

Definition 3.2.12. A real uniform algebra is a real commutative Banach alge-
bra A with unit 1 such that ‖a‖2 = ‖a2‖ for all a ∈ A.

Example 3.2.13. Let D = {z ∈ C : |z| < 1} be a open unit disk and A be a set
of all complex valued bounded analytic functions f on D satisfying f(z̄) = f̄(z)
for all z ∈ D with supremum norm, A is obviously a real uniform algebra.
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Example 3.2.14. Let µ be a positive measure function on a σ algebra on a
measure space X, and τ : X → X be a map such that τ(τ(x)) = x for all x in
X, τ(E) is measurable when ever E is measurable subset of X. Let

A = {f ∈ L∞ : f(τ(x)) = f̄(x) for all x ∈ X}.

Then A is clearly real uniform algebra.

Theorem 3.2.15. Every uniform algebra isometrically isomorphic to a real
function algebra.

Proof. Let A be a real uniform algebra, X = Car(A) and τ : X → X be a map
define τ(φ) = φ̄. We know that Car(A) is compact Hausdorff space and τ is
a topological involution on X. Let Ã = {ã : a ∈ A} where ã denote Gelfand
transform of a. We know that Gelfand mapping is Isometric isomorphism from
A onto Ã Thus it suffices to prove that Ã is real functional algebra on (X, τ).
For each a ∈ A and φ in X, ã(τφ) = φ̄(a) = ã(φ). Hence ã ∈ C(X, τ). and
Ã is real sub algebra of C(X, τ). It contains constant function 1 and separates
points of X. Since ‖ã‖ = ‖a‖ for each a ∈ A, thus Ã is uniformly closed.
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