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Abstract

The dynamics of time-delayed systems (TDS) are governed by delay differential equa-
tions (DDEs), which are infinite dimensional and pose computational challenges. The
Galerkin approximation method is one of several techniques to obtain the spectrum of DDEs
for stability and stabilization studies. In the literature, Galerkin approximations for DDEs
have primarily dealt with second-order TDS (second-order Galerkin method), and the for-
mulations have resulted in spurious roots, i.e., roots that are not among the characteristic
roots of the DDE. Although these spurious roots do not affect stability studies, they never-
theless add to the complexity and computation time for control and reduced-order modelling
studies of DDEs. A refined mathematical model, called the first-order Galerkin method, is
proposed to avoid spurious roots, and the subtle differences between the two formulations
(second-order and first-order Galerkin methods) are highlighted with examples.

For embedding the boundary conditions in the first-order Galerkin method, a new
pseudoinverse-based technique is developed. This method not only gives the exact location
of the rightmost root but also, on average, has a higher number of converged roots when
compared to the existing pseudospectral differencing method. The proposed method is
combined with an optimization framework to develop a pole-placement technique for DDEs
to design closed-loop feedback gains that stabilize TDS. A rotary inverted pendulum system
apparatus with inherent sensing delays as well as deliberately introduced time delays is used
to experimentally validate the Galerkin approximation-based optimization framework for the
pole placement of DDEs.

Optimization-based techniques cannot always place the rightmost root at the desired
location; also, one has no control over the placement of the next set of rightmost roots.
However, one has the precise location of the rightmost root. To overcome this, a pole-
placement technique for second-order TDS is proposed, which combines the strengths of the
method of receptances and an optimization-based strategy. When the method of receptances
provides an unsatisfactory solution, particle swarm optimization is used to improve the
location of the rightmost pole. The proposed approach is demonstrated with numerical
studies and is validated experimentally using a 3D hovercraft apparatus.

The Galerkin approximation method contains both converged and unconverged roots
of the DDE. By using only the information about the converged roots and applying the
eigenvalue decomposition, one obtains an r-dimensional reduced-order model (ROM) of the
DDE. To analyze the dynamics of DDEs, we first choose an appropriate value for r; we
then select the minimum value of the order of the Galerkin approximation method system
at which at least r roots converge. By judiciously selecting r, solutions of the ROM and the
original DDE are found to match closely. Finally, an r-dimensional ROM of a 3D hovercraft
apparatus in the presence of delay is validated experimentally.
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Chapter 1

Introduction

A control system is a subsystem comprising sensors, actuators, and controllers that
helps in obtaining a desired output. Many modern-day applications are unimaginable
without the presence of control systems. Some examples include anti-lock braking
systems, sorting robots in warehouses, rocket guidance systems, heating systems, and
autonomous vehicles.

There are two main kinds of control system configuration, namely open-loop and
closed-loop systems. In an open-loop control system, also referred to as a non-feedback
system, the input signal is not affected by the output of the system. On the other
hand, in a closed-loop control system, also known as a feedback control system, the
output of the system is either totally or partially fed back into the system, which
influences the input to the controller.

In literature, there are two approaches for the analysis and design of control
systems: classical or frequency-domain modelling, and modern or time-domain mod-
elling (also referred to as state-space modelling). With the advent of complex control
systems and their demanding nature, time-domain modelling, which has many advan-
tages over frequency-domain modelling, has gained traction. According to [3], “The
state-space approach (also referred to as the modern, or time-domain, approach) is a
unified method for modelling, analyzing, and designing a wide range of systems.”

To control the dynamics of a system effectively, it is necessary to first develop
a mathematical model of its behavior. Defining A as the system/state transition
matrix, B as the input matrix, C as the output matrix and D as the feedforward
matrix, the linearized system dynamics around an operating point can be represented

1



2 Chapter 1 Introduction

in state-space form as follows:

ẋ(t) = Ax(t) + Bu(t), (1.1a)

y(t) = Cx(t) + Du(t), (1.1b)

where x(t) is the state vector, ẋ(t) is its time derivative, y(t) is the output vector,
and u(t) is the input or control vector. To understand the stability characteristics of
the system represented by Eqs. (1.1a) and (1.1b), the eigenvalues of the state matrix
A must be obtained. If the eigenvalues of A lie in the left half of the complex plane,
the system is stable. If at least one of the eigenvalues of A is in the right half of the
complex plane, then the system is unstable.

Consider an nth-order system represented in state-space form as follows:

ẋ(t) = Ax(t) + Bu(t), (1.2a)

y(t) = Cx(t), (1.2b)

where x(t) ∈ Rn×1, A ∈ Rn×n, and B ∈ Rn×m. In order to stabilize the system
represented by Eqs. (1.2a) and (1.2b), it must be controllable. A system is said to be
controllable “if an input to a system can be found that takes every state variable from a
desired initial state to a desired final state”; otherwise, the system is uncontrollable [3].
If the rank of the controllability matrix CM , [B AB A2B · · · An−1B] is n,
then the system represented by Eqs. (1.2a) and (1.2b) is controllable. For systems
in which CM is of rank n, a control vector of the form u(t) = −KTx(t), where K
is the feedback vector, can be found to control the system. The feedback vector
K can be obtained using the pole-placement (full state feedback) technique or the
optimal control technique. In this thesis, the pole-placement technique is employed to
obtain K. The pole-placement technique for ordinary differential equations (ODEs)
is explained briefly in the next section.

1.1 Pole placement for ODEs

The pole-placement technique forms the basis of this thesis, and is explained here.
Consider a spring-mass-damper system as shown in Fig. 1.1.
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Figure 1.1: Spring-mass-damper system.

The linearized dynamics of the spring-mass-damper system shown in Fig. 1.1 are
governed by:

mẍ(t) + cẋ(t) + kx(t) = u(t), (1.3)

where m is the mass, c is the damping coefficient, and k is the spring constant.
Defining x(t) , [x(t), ẋ(t)]T, Eq. (1.3) can be written as a system of two first-order
ODEs as follows:

ẋ(t) =
 0 1
− k
m
− c
m

x(t) +
 0

1
m

u(t) =⇒ ẋ(t) = Ax(t) + Bu(t). (1.4)

Defining m = 1, c = 0.5 and k = 1.5, Eq. (1.4) can be written as:

ẋ(t) =
 0 1
−1.5 −0.5

x(t) +
0

1

u(t). (1.5)

The eigenvalues of A are located at 1.5 and−1 and, hence, the system is unstable. The
system is controllable as the rank of CM = [B AB] is 2. We define K = [k1, k2]T such
that u(t) = −KTx(t), where k1 and k2 are the feedback gains for the displacement
and velocity feedback, respectively. Equation (1.4) can then be written as follows:

ẋ(t) = [A−BKT]x(t) =⇒ ẋ(t) =
 0 1
−1.5− k1 −0.5− k2

x(t). (1.6)

Defining the closed-loop pole locations of Eq. (1.6) to be −1 ± i and using the
Ackermann’s formula [3], the values of k1 and k2 are obtained as 0.5 and 1.5, respec-
tively. The procedure described above is one of the various possible pole-placement
techniques for the systems governed by ODEs [3].
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Now, consider u(t) of the form u(t− τ) in Eq. (1.3), where τ is a time delay. The
delay τ can arise due to lags in sensing, communication, and actuation. Systems that
have a delay are called time-delayed systems (TDS) and their governing equations
are delay differential equations (DDEs). TDS are also referred to as systems with
aftereffect or dead-time, hereditary systems, equations with deviating argument, or
differential-difference equations [4]. Due to the delay τ , the control input now becomes
u(t− τ) = −KTx(t− τ).

Substituting u(t− τ) in Eq. (1.5), we get:

ẋ(t) =
 0 1
−1.5 −0.5

x(t) +
 0 0
−k1 −k2

x(t− τ). (1.7)

Substituting x(t) = x0e
λt in Eq. (1.7) and equating the determinant to zero, we get:

det
(
λI−A−BKTe−λτ

)
= 0. (1.8)

Equation (1.8) has infinitely many roots due to the presence of the transcendental
term e−λτ . The infinite dimensionality of Eq. (1.8) can be easily understood by using
the Taylor series expansion for the transcendental term e−λτ . Expanding e−λτ about
τ = 0 using the Taylor series, Eq. (1.8) can be written as:

det
(
λI−A−BKT

(
1−λτ+λ2τ 2

2 −λ
3τ 3

6 +λ4τ 4

24 ∓. . .+(−1)nλ
nτn

n! +. . .
))

= 0. (1.9)

Equation (1.9) has infinitely many roots and, hence, has infinite dimensionality. How-
ever, as can be seen from Eq. (1.8), we have only a finite number of parameters k1

and k2 to control an infinite-dimensional system using the pole-placement technique.
Hence, pole placement for systems governed by DDEs is a challenging and complex
task [5–7].

Many practical systems and dynamic processes can be aptly described as time-
delayed systems. As shown in Eq. (1.7), for a TDS, time derivatives of the state vari-
ables are explicit functions of past states. Some of the problems in which time delays
play an important role are control of human balance with reflex delays [8–12], thermoa-
coustic instability (TAI) in combustion systems [13–17], robotics [18], machining pro-
cesses [18–23], vibrations of heat-exchanger tubes under cross-flow [24, 25], feedback-
controller systems [26–29], population dynamics [30, 31], neural networks [32–34],
shimmy dynamics [35–37], and traffic flow dynamics [38–41]. Next, the challenges
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associated with pole placement for a TDS are explained using a spring-mass-damper
system (see Fig. 1.1) that is governed by a second-order DDE.

1.1.1 Example of a TDS

In the absence of time delay (τ = 0), by selecting k1 = 0.5 and k2 = 1.5, the closed-
loop poles of Eq. (1.6) can be placed at −1 ± i. In this section, the effect of delay τ
on the system dynamics is explored. Considering u(t− τ) = −KTx(t− τ), Eq. (1.7)
can be written as:

ẋ(t) =
 0 1
−1.5 −0.5

x(t) +
 0 0
−0.5 −1.5

x(t− τ). (1.10)

The characteristic equation is obtained by substituting x(t) = x0e
λt in Eq. (1.10) and

equating the determinant to zero as follows:

det
(
λI−A−BKTe−λτ

)
= 0. (1.11)

Equation (1.11) is infinite dimensional. Figures 1.2(a) and 1.2(b) show the time
responses of Eq. (1.10) for τ = 0.5 and τ = 1 respectively. It can be seen that a
small variation in τ affects the stability and dynamics of the system substantially.
Figures 1.3(a) and 1.3(b) show the first few rightmost roots of Eq. (1.10) for τ = 0.5
and τ = 1, respectively. The system is stable for τ = 0.5 (see Fig. 1.3(a)) but unstable
for τ = 1 (see Fig. 1.3(b)). It should be noted that only k1 and k2 can be varied to
control the infinite-dimensional system and that, for a DDE to be stable, the rightmost
root must be in the left half of the complex plane.

In the above example, the delay τ is constant. However, τ can also be time
varying, for instance time periodic. The knowledge of the rightmost root of a DDE
is imperative to perform control studies or develop finite-dimensional (reduced-order)
models since the DDE is stable only if its rightmost root is in the left half of the
complex plane.

The above example clearly illustrates the necessity to obtain the spectrum (char-
acteristic roots) of DDEs for performing control studies; it is also important for devel-
oping the reduced-order models (ROMs). The next section focuses on the literature
covering various techniques to obtain the spectrum of DDEs, their control strategies,
and development of reduced-order models.
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Figure 1.2: Time response of the spring-mass-damper system given by Eq. (1.10)
with delays (a) τ = 0.5 and (b) τ = 1.
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Figure 1.3: Characteristic roots of the spring-mass-damper system given by
Eq. (1.10) with delays (a) τ = 0.5 and (b) τ = 1.

1.2 Literature review

Over the past few decades, researchers have carried out studies to gain a better under-
standing of the stability, stabilization, and reduced-order modelling of TDS/DDEs.
In this section, we present a review of past work to obtain the characteristic roots
of DDEs, to stabilize a DDE (with constant/discrete delays), and to understand the
dynamics of DDEs by reducing them to finite-dimensional systems.
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1.2.1 Spectrum of DDEs

The spring-mass-damper system, as explained in Section 1.1.1, clearly demonstrates
the need to study the spectrum of a DDE to understand its stability characteristics.
This section explores the various methods used to obtain the spectrum of DDEs.
Several methods exist for analyzing the stability of DDEs with constant/discrete de-
lays, including the Lambert-W function [5, 42–45], Galerkin approximations [46–49],
Laplace transforms [50], semi-discretization [51], pseudo-spectral collocation [52–54],
time finite elements [55, 56], continuous-time approximation [57, 58], and finite-
difference methods [59, 60]. Recently, Pekař and Gao have presented an exhaustive list
of various methods to study the stability of DDEs with constant/discrete/distributed
delays [61]. The Galerkin approximation and pseudo-spectral collocation methods fall
under the broad category of spectral methods. A key advantage of spectral methods is
the convergence property of the approximate eigenvalues – specifically, the rightmost
characteristic root of the DDE converges first [62]. The location of the rightmost char-
acteristic root is critical when analyzing stability; thus, spectral methods are favorable
in this context.

1.2.2 Pole placement for TDS

Time delays can introduce instability or undesirable behavior to an otherwise stable
closed-loop system. In the design of closed-loop control systems, delay plays an im-
portant role in applying the pole-placement technique to arrive at the final feedback
gain parameters. A system governed by DDEs can be stabilized by adjusting the sys-
tem parameters and/or tuning delays [63–65], using optimization-based [66–68] and
non-optimization-based [69] strategies. Michiels et al. [66] proposed a continuous pole-
placement technique using the gradient-sampling algorithm [70], which was among the
first attempts at applying an eigenvalue optimization approach to infinite-dimensional
systems. Optimization strategies were also used by Vanbiervliet et al. [71] for stabi-
lizing time-delayed systems by tuning system parameters, and by Vyhĺıdal et al. [68]
for stabilizing time-delayed systems using state-derivative feedback controllers. Yi et
al. [7, 72] solved the eigenvalue assignment problem using the Lambert-W function,
which allows one to write the analytical expressions in terms of the system parameters,
similar to the state-transition matrix in linear ODE systems. The method of Yi et
al. was limited to systems comprising a single discrete delay; Wei et al. [73] extended
the Lambert-W function to handle distributed delays. Niu et al. [69] proposed an
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eigenvalue assignment technique based on the generalized Runge–Kutta method, but
applied their method to DDEs with only a single delay.

1.2.3 Algebraic pole placement frameworks for TDS

The optimization-based framework for the pole placement of DDEs as proposed in [74]
focuses on the placement of only the rightmost root of the DDE at the desired location
in the left half of the complex plane. Sometimes, however, the rightmost root is
not placed at the desired location using optimization-based techniques. Moreover,
there is no control over the placement of the next set of rightmost roots. To address
this, analytical approaches for the pole placement of DDEs such as the method of
receptances (MoR) [75, 76] have been explored. The MoR, a popular algebraic strategy
for the pole-placement problem in TDS, was developed by Ram et al. [75, 76]. Ram
et al. [75] used MoR to place 2n poles (eigenvalues of the characteristic polynomial)
of a second-order system with n degrees of freedom—that is, for a system with 2n
states when written in first-order form. Later, Ram et al. [76] proposed a hybrid
method for partial pole placement of second-order systems. As its name suggests, this
work placed only m < 2n poles at specified locations, leaving the remaining spectrum
of 2n − m poles undisturbed. Although computationally straightforward, the MoR
approach has several drawbacks: the poles placed at the specified locations may not
be dominant (referred to as “spillover”), a separate analysis must be carried out to
determine whether the resulting closed-loop system is stable, and multiple delays
cannot be accommodated. In Ram et al. [75], the time delay was handled using
the Taylor series expansion; however, Insperger [77] demonstrated that the results
obtained using a Taylor series expansion for time delays are often inaccurate.

Several authors have advanced the field in recent years; here, a brief chronology of
these developments is provided. Pratt et al. [78] defined the pole-placement problem
for a TDS as a quadratic partial eigenvalue assignment problem with time delay, and
proposed a “direct and partial modal” approach for active vibration problems. As with
the method of Ram et al. [75], the approach proposed by Pratt et al. [78] was limited
by its use of the Taylor series for incorporating the time delay and by the requirement
to perform an a posteriori analysis to evaluate the stability of the resulting system.
Ouyang and Singh [79] used MoR in one of the first applications of pole placement
to asymmetric systems with time delay. Once again, this approach has the drawback
that stability is not guaranteed.
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Singh and Datta [80] obtained a closed-form solution to compute control gains
for zero assignment in active vibration control problems. As with the work of Ram
et al. [75], an a posteriori analysis is required to compute the primary eigenvalues of
the system, which increases the complexity of computation. Bai et al. [81] formulated
the pole-placement problem for second-order systems as a partial quadratic eigen-
value assignment problem (PQEAP) and proposed a multi-step hybrid method for
solving symmetric systems. The proposed approach was applied to a multiple-input
system, wherein the system matrices were combined with the measured receptances.
A limitation of this approach is that it can be applied only to symmetric systems.
Furthermore, the effects of high time delays (i.e., τ > 0.1) were not explored. Bai et
al. [82] later proposed an optimization-based approach to solve the PQEAP, extending
the single-input hybrid method proposed by Ram et al. [76]. The optimization-based
hybrid method of Bai et al. minimizes the feedback norms of the multi-input PQEAP
with time delay.

Wang and Zhang [83] proposed a direct method to solve the partial eigenvalue
assignment problem for high-order control systems with time delay, without first con-
verting the system into first-order form. The proposed method requires only partial
knowledge of the eigenvalues and corresponding eigenvectors of the matrix polynomial;
however, the Taylor series was used to address the transcendental terms, which will fail
to provide accurate results at higher delays. Mao and Dai [84] analyzed the sensitiv-
ity of closed-loop eigenvalues to perturbations in time delay during partial eigenvalue
assignment. Li and Chu [85] generalized the well-known Kautsky, Nichols, and Van
Dooren algorithm to solve the pole-placement problem for linear and quadratic TDS.
They demonstrated that the results for systems with time delay are similar to those
without delay, except for the presence of secondary eigenvalues.

Singh and Ouyang [86] proposed a method for assigning complex poles to second-
order damped asymmetric systems using a constant-time-delay state-feedback con-
troller. Again, an a posteriori analysis was necessary because the eigenvalues that
are placed at the desired locations are not guaranteed to be the primary eigenval-
ues. Mao [87] proposed a partial eigenvalue assignment problem for TDS based on
the orthogonality relations of the quadratic pencil (characteristic equation). Mao
demonstrated the partial assignment of eigenvalues in a TDS without disturbing the
remaining spectrum, obtained the explicit solution for the single-input case, and re-
ported the parametric solution for the multi-input case. Singh et al. [88] defined a
pole-placement problem without first transforming a given second-order system into a
standard state-space form. Employing a sophisticated mathematical theory, Singh et
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al. were able to guarantee that the unassigned eigenvalues do not reside to the right
of the assigned poles in the complex plane (i.e., there is no spillover).

Schmid and Nguyen [89] proposed a parametric formula for the feedback-gain
matrix that will produce a desired set of closed-loop eigenvalues for a TDS. By con-
sidering only small time delays in the input, Schmid and Nguyen used unconstrained
optimization to obtain the state-feedback matrix, minimizing the sensitivity of the
eigenvalues to input delays. Schmid et al. [90] extended this approach to TDS with
multiple time delays by first designing the control law for a non-delayed system, then
investigating its applicability to the corresponding TDS. Schmid et al. demonstrated
that it is possible to place the poles of a TDS at the same locations as for the sys-
tem without delay. An a posteriori analysis using the quasi-polynomial root-finder
(QPmR) algorithm [91] was performed to study the stability of the resulting system.

Zhang [92] proposed an explicit algorithm to assign the eigenvalues for multi-
input, high-order control systems with time delay. Zhang demonstrated that this
method avoids spillover and can be implemented with only partial information of
the eigenvalues and corresponding eigenvectors of the matrix polynomial. Wang and
Zhang extended their earlier work on partial assignment [83] and applied it to a multi-
input TDS without use of the Sherman–Morrison formula [93]. Ariyatanapol et al. [94]
proposed a receptance-based method for partial pole placement in asymmetric TDS
that requires no knowledge of the mass, damping, or stiffness matrices. Ariyatanapol
et al. used a single-input state-feedback controller and determined the critical sta-
bility of the system using the frequency-sweeping test. An a posteriori analysis was
performed to calculate the first few dominant poles of the resulting closed-loop system
and, thus, to analyze the stability of the system. Zhang and Shan [95] extended the
work of Ram et al. [76] to solve the partial pole–zero placement problem in high-order
systems using MoR.

Santos et al. [96] generalized the single-input, single-output, first-order small-
gain theorem using the system receptances. Specifically, the small-gain theorem was
extended to second-order systems with multiple inputs and time-varying delays with
output feedback. Santos et al. also proposed a detuning strategy to address the trade-
off between performance and robustness with respect to variation in delay. Because
the closed-loop poles are not computed in this method, their proposed approach can
be used only to analyze delay uncertainty. Araújo [97] demonstrated use of system
margins and Nyquist plots to determine the closed-loop stability of TDS. It was also
shown that the Padé approximation for time delay in the frequency domain is as
accurate as the corresponding truncated Taylor exponential expansion.
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Experimental validation of stabilization techniques for TDS have not been widely
explored in the literature. Previous studies have reported experimental validation for
only a small number of control strategies, including semi-discretization [98], high-order
control design [98], and cluster treatment of characteristic roots [99]. However, none
of these studies have explored experimental validation of the pole-placement problem
using real-time experiments.

1.2.4 Reduced-order modelling of TDS

The mathematical process of approximating an infinite-dimensional system with a
finite-dimensional system without losing the essence of the original system is usually
referred to in the literature as reduced-order modelling. Thomson [100] carried out
some of the first work in the domain of reduced-order modelling for TDS. Thomson
investigated the approximation of time-delay networks obtained from infinite ladder
networks (Cauer canonical form) with a maximally flat frequency response. Later,
Storch [101] used Bessel polynomials to synthesize constant-time-delay networks. The
motive was to achieve a stable low-pass network with constraints on realizability and
circuit-loss in signal filtering, circuits, and networks. Rational-approximation prob-
lems associated with the Hankel norm were studied by Glader et al. [102]. A Fourier-
series-based model-reduction technique was studied by Gu et al. [103]. Lam studied
the Padé-approximated reduced-order modelling of delay systems [104, 105]. Lam cal-
culated the L2 and L∞ error bounds for reduced-order models (ROM) using different
classes of Padé approximants for various cases of the degrees of the numerator and
denominator. As the order of the Padé approximation increases, Lam experimentally
determined that Padé approximants in which the degree of the numerator is greater
than that of the denominator by either 1 or 2 provided a better approximation of
the time delay. Initial works that used Laguerre methods for the approximation of
TDS were investigated by Mäkilä [106, 107], who explored the use of Laguerre filters
to approximate infinite-dimensional systems. Fourier-Laguerre series for the approx-
imation of TDS was studied by Partington [108]. Lam [109] analyzed the use of the
Laguerre formula in the context of approximating TDS and showed that the L2 and
L∞ norms converged. Yoon and Lee [110] studied a new method for approximating
time delay (e−τs) using the Frostman theorem and Blaschke product, and obtained
the error bounds for the L2 and L∞ norms. The approximant formulated by this
method has a design parameter that can be adjusted to alter the real part locations
of pole-zeros of the approximant. Shift operators in terms of H∞ and H2/L2 norms
were analyzed by Mäkilä and Partington [111, 112]. Mäkilä and Partington [111, 112]
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showed that the simple Laguerre-shift formula gives good approximations for TDS.
Mäkilä and Partington also provide a generalized analysis of shift-operator-based ap-
proximations.

Harkort and Deutscher [113] developed a moment-matching approach, based on
the Krylov subspace method, to obtain ROMs for linear, time-invariant (LTI) TDS.
The reduced-order modelling method developed by Michiels et al. [114, 115] using
spectral discretization, and the Krylov subspace method, exhibited good spectral
approximations of the original model with well-approximated rightmost roots. The
reduction approach resulted in the formation of a standard LTI system enabling a
wide range of controller design techniques. An application of this methodology to
design a fixed-order H2 optimal controller can be found in [116]. Model reduction
by the dominant pole algorithm (DPA) for first-order, second-order, and multi-input
multi-output (MIMO) systems was studied by Rommes and Martins [117–119] and
Rommes and Sleijpen [120]. Using the balanced truncation method based on coordi-
nate transformation and delayed Lyapunov equation, Saadvandi et al. [121] proposed
an advanced version of the DPA whose main advantage was that it did not allow the
algorithm to converge to the same pole more than once. Zhang and Su [122] proposed
a memory-efficient method for reduced-order modelling of TDS. The method is sim-
ilar to the works proposed by Michiels et al. [114, 115]. However, a memory-efficient
construction of the orthonormal basis of the projection subspace was proposed using
the two-sided Arnoldi process [123]. Two techniques were studied using the proposed
methodology: one that preserves the delay structure of a TDS and one that transforms
a TDS into a set of linear ODEs.

Wang et al. [124] used a Padé and a truncated Taylor series expansion to approx-
imate the exponential functions associated with time delays, and then the large-scale
LTI systems were reduced using the principle of moment matching. Scarciotti and As-
tolfi proposed a moment-matching-based reduced-order modelling method for neutral
linear and non-linear TDS [125]. The notion of moments was derived in terms of the
solution of the Sylvester equations for linear TDS and by employing the center mani-
fold theory for non-linear TDS. A family of ROMs with several free design parameters
was obtained. The free design parameters can be adjusted to obtain delay-free and
delay-bound models. It was mentioned that a delay-bound ROM is better at preserv-
ing the essence of the original system, but numerical results showed that the degree
of error in the frequency response of the two models was identical.

Spectral and Galerkin approximations were successfully used to obtain ODE
representations, characteristic roots, and stability charts for DDEs. However, its
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application to reduced-order modelling of DDEs has not been explored. Wahi and
Chatterjee [47] were the first to develop Galerkin approximations for DDEs, which
were later extended in [48, 62, 126]. In [47, 48, 62], the DDE was converted into
a partial differential equation (PDE) using a suitable transformation. The obtained
PDE was then transformed into a set of ODEs using spectral methods. With a user-
specified tolerance, a finite number of eigenvalues of the system of ODEs converge to
the rightmost characteristic roots of the DDE. An important observation from [47,
48, 62] was that as the number of approximation terms (N) increases, the number of
converged roots (Nc) also increases. N -dimensional approximated systems developed
in [47, 48, 62] also include the information of the unconverged roots that do not
accurately represent the dynamics of the DDE.

1.3 Motivation and outline of the thesis

Various methodologies to determine the stability of DDEs and apply the pole place-
ment technique are highlighted in Section 1.2. Some of the existing methods to study
the stability of DDEs that have gained traction over the years are cluster treatment of
characteristic roots (CTCR), QPmR, pseudo-spectral collocation, and Galerkin ap-
proximations. An important drawback of the CTCR method is that the stability
region is obtained using the nature of root-crossing and not the rightmost root. This
essentially limits the application of the CTCR method to the pole placement tech-
nique of DDEs. To use the QPmR algorithm, one must specify the region of the
complex plane in which the poles exist. This inherent need to specify the region many
not always result in obtaining the rightmost root. Also, the roots so obtained may
not be directly used to apply optimization-based pole placement technique. Some of
the methods that explicitly give us the rightmost root, which can then be directly
used to apply the pole placement technique are Galerkin approximations and pseudo-
spectral collocation. With the many pole placement techniques for DDEs that exist
in the literature, only the MoR is an analytical method. However, it also suffers from
drawbacks as mentioned in Section 1.2.3.

Galerkin approximations have been highly successful for studying the stability
characteristics of second-order DDEs [47–49, 62]. Galerkin approximations are applied
to TDS by first converting the governing DDE into a PDE, then converting the PDE
into a system of ODEs. Sadath and Vyasarayani [49] performed stability studies of
second-order DDEs using Galerkin approximations, converting the second-order DDE
into a second-order PDE and then into a system of second-order ODEs. Later, the
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system of second-order ODEs were rewritten as a system of first-order ODEs. It was
observed that using the second-order Galerkin method formulation, hereby referred
to as the “second-order Galerkin” method, some eigenvalues of the approximating
ODE system lie at the origin of the complex plane. These roots are not among the
characteristic roots of the original DDE and are hereby referred to as spurious roots.
Though the spurious roots do not affect the stability studies of the DDEs [49], they
do but have an undesirable effect for pole placement and reduced-order modelling
of DDEs. If the spurious roots happen to be the rightmost roots, then additional
computation needs to be performed to identify them, which adds to the complexity
of a pole-placement or reduced-order modelling algorithm.

In Chapter 2, to avoid spurious roots, a refined mathematical model to obtain
the rightmost roots of the DDEs using Galerkin approximations is developed. This
method can be directly applied to the pole placement and reduced-order modelling of
DDEs.

In [47–49, 62], the authors have handled the boundary conditions within the
Galerkin framework using the spectral-tau and Lagrange multiplier methods. The
Galerkin approximation method using a new pseudoinverse-based technique for em-
bedding the boundary conditions is developed in Chapter 3. Then, the pole-placement
technique is used to design closed-loop feedback gains that stabilize TDS. The results
are verified by a thorough comparison with those reported in the literature. Next,
experimental validation is performed using a rotary inverted pendulum system (see
Fig. 1.4(a)) with inherent sensing delays as well as additional time-delays that are
introduced deliberately.
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(a) (b)

Figure 1.4: (a) Rotary inverted pendulum apparatus and (b) 3D hovercraft ap-
paratus, both manufactured by Quanser Inc.

The strengths and limitations of the MoR approach for the pole placement of
second-order DDEs is explored in detail in Chapter 4. In this chapter, a framework
combining the strengths of the MoR approach with a Galerkin-approximation-method-
based optimization technique is developed for the pole placement of second-order TDS,
hereby referred to as the hybrid pole-placement technique. The optimization-based
technique is applied when the analytical approach fails to achieve the desired results
for second-order TDS. The results obtained were experimentally validated using a 3D
hovercraft appaatus (see Fig. 1.4(b)).

The finite-dimensional models obtained using Galerkin approximations include
the information of both the converged and unconverged roots of the DDE [47, 48,
62]. It was observed that the unconverged roots do not accurately represent the
dynamics of the DDEs and also add to the computation cost towards analyzing their
dynamics. For illustration, the roots (both converged and unconverged) obtained
using the Galerkin approximations for the spring-mass-damper system (see Fig. 1.1)
are shown in Fig. 1.5. In Fig. 1.5, roots represented by blue circles are the converged
roots and the rest of the spectrum obtained using the Galerkin approximations are
the unconverged roots.
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Figure 1.5: Converged and unconverged roots obtained using Galerkin approxi-
mations for the spring-mass-damper system.

Defining Nc as the number of converged roots obtained from the Galerkin ap-
proximations and using only their information, in Chapter 5, a further ROM (with
a user-specified dimension r (≤ Nc)) of the DDEs is obtained by applying the eigen-
value decomposition (EVD). The proposed approach is first validated using various
examples of different order from the literature. Then, ROMs are developed for a 3D
hovercraft apparatus (see Fig. 1.4(b)) and the results are experimentally validated.

Chapter 6 summarizes the contribution of this thesis. This chapter also discusses
the possible directions for future research.



Chapter 2

Spurious roots of DDEs using Galerkin
approximations

The dynamics of time-delayed systems are governed by DDEs, which are infinite
dimensional and can pose computational challenges. Several methods have been pro-
posed for studying the stability characteristics of DDEs. One such method employs
Galerkin approximations to convert DDEs into PDEs with boundary conditions; the
PDEs are then converted into systems of ODEs, whereupon standard ODE methods
can be applied. The Galerkin approximation method can be applied to a second-
order DDE in two ways: either by converting into a second-order PDE and then into
a system of second-order ODEs (the “second-order Galerkin” method), or by first
expressing as two first-order DDEs and converting into a system of first-order PDEs
and then into a first-order ODE system (the “first-order Galerkin” method). In this
chapter, we demonstrate that these subtly different formulation procedures lead to dif-
ferent roots of the characteristic polynomial. In particular, the second-order Galerkin
method produces spurious roots near the origin, which must then be identified through
substitution into the characteristic polynomial of the original DDE. However, spuri-
ous roots do not arise if the first-order Galerkin method is used, which can reduce
computation time and simplify stability analyses. These two formulation strategies
are described and numerical examples to highlight their important differences are
presented.

The remainder of this chapter is organized as follows. In Section 2.1, a brief
outline of the second-order and first-order Galerkin formulations is given. Numerical
examples are presented in Section 2.2 to demonstrate their differences, and the chapter
is summarized in Section 2.3.
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2.1 Mathematical modeling

Consider the following second-order DDE:

ẍ(t) + a1ẋ(t) + a2x(t) +
n∑
r=1

brẋ(t− τr) +
m∑
q=1

cqx(t− τn+q) = 0, (2.1)

where x(t) is the system state vector, ẋ(t) and ẍ(t) are its time derivatives, a ∈ R2,
b ∈ Rn, c ∈ Rm, delays τi ≥ 0 for i = 1, 2, . . . , n + m. Equation (2.1) is a DDE if
any τi > 0; otherwise, it is simply an ODE. History function, which describe the past
stated, are given as follows:

x(t) = α(t), (2.2a)

ẋ(t) = β(t), −τ̄ ≤ t ≤ 0, (2.2b)

where τ̄ = max(τ). The Galerkin approximation method [47, 48, 62] can be used to
convert the infinite-dimensional DDE (Eq. (2.1)) into a finite-dimensional system of
ODEs. The characteristic equation of the DDE is obtained by substituting x(t) =
x0e

λt into Eq. (2.1) and equating to zero:

D(λ) , λ2 + a1λ+ a2 +
n∑
r=1

brλe
−λτr +

m∑
q=1

cqe
−λτn+q = 0. (2.3)

In the following, second-order and first-order Galerkin formulations are outlined.

2.1.1 Second-order Galerkin method

In this formulation, the governing second-order DDE is first converted into a second-
order PDE; the PDE is then converted into a system of second-order ODEs which
are finally written in first-order form. A brief outline of the formulation is presented
(further detail can be found in Sadath and Vyasarayani [49]). First, the transformation
given by y(s, t) = x(t+ s) is applied. Differentiating this transformation with respect
to t and, separately, with respect to s reveals the following relation:

∂y(s, t)
∂t

= ∂y(s, t)
∂s

, −τ̄ ≤ s ≤ 0, t ≥ 0. (2.4)

Differentiating Eq. (2.4) with respect to t results in a second-order PDE:

∂2y(s, t)
∂t2

= ∂2y(s, t)
∂t∂s

, −τ̄ ≤ s ≤ 0, t ≥ 0. (2.5)
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Thus, the initial value problem (Eqs. (2.1) and (2.2)) is re-cast as an initial-boundary
value problem. Boundary conditions for Eq. (2.5) are obtained by substituting s = 0
and s = −τ̄ into y(s, t) = x(t+ s):

y(0, t) = x(t) ⇒ ∂y(s, t)
∂t

∣∣∣∣∣
s=0

= ẋ(t) ⇒ ∂2y(s, t)
∂t2

∣∣∣∣∣
s=0

= ẍ(t), (2.6a)

y(−τ̄ , t) = x(t− τ̄), (2.6b)

and the initial conditions are obtained from the history functions (Eq. (2.2)):

y(s, 0) = x(s)α(s), (2.7a)

ẏ(s, 0) = ẋ(s) = β(s), −τ̄ ≤ s ≤ 0. (2.7b)

Notice that, by construction, history functions α(t) and β(t) are now related
through differentiation: from Eq. (2.7), we have β(t) = α̇(t). This constraint was not
present in the original problem statement and, as it will be shown below, is not present
in the first-order Galerkin formulation. It is this artificial constraint that produces
the spurious roots.

Briefly, the formulation concludes as follows. A series solution is assumed and
the first N terms are retained:

y(s, t) =
∞∑
i=1

φi(s)ηi(t) ≈
N∑
i=1

φi(s)ηi(t) = φT(s)η(t), (2.8)

where φ(s) , [φ1(s), φ2(s), . . . , φN(s)]T and η(t) = [η1(t), η2(t), . . . , ηN(t)]T are the
vectors of basis functions and coordinates, respectively. We substitute the truncated
series solution into Eq. (2.5), pre-multiply by φ(s), and integrate over the domain
s ∈ [−τ̄ , 0] to obtain the following second-order ODEs:

Mη̈(t) = Cη̇(t), (2.9)

where M ,
∫ 0
−τ̄ φ(s)φT(s)ds, C ,

∫ 0
−τ̄ φ(s)φ′(s)ds, and φ′(s) denotes the derivative

of φ(s) with respect to s. The boundary conditions for the original DDE (Eq. 2.1)
are given as follows:

mη̈(t) = cη̇(t) + kη(t), (2.10)
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where m, c, and k are computed as follows:

m = φT(0), (2.11)

c = −a1φ
T(0)−

n∑
r=1

brφ
T(−τr), (2.12)

k = −a2φ
T(0)−

m∑
q=1

cqφ
T(−τn+q). (2.13)

The boundary conditions can be incorporated into Eq. 2.9 using the spectral-tau
method [62], ultimately resulting in a system of first-order ODEs:

ṙ(t) =
 0 I
M̃−1K̃ M̃−1C̃

 r(t) = Gsor(t), (2.14)

where r(t) ,
[
ηT(t), η̇T(t)

]T
∈ R2N is the state vector, and matrices M̃, C̃ and K̃ are

defined as follows:

M̃ =
M̄
m

 , C̃ =
C̄

c

 , K̃ =
0
k

 . (2.15)

The solution of Eq. (2.14) approximates that of the original DDE (Eq. (2.1)),
and the eigenvalues (λ̂i, i = 1, 2, . . . , 2N) of Gso converge to the characteristic roots
of Eq. (2.3) as N increases [47, 62]. Error Ei is defined as the absolute value of D(λ̂i),
obtained by substituting (λ̂i) into Eq. (2.3). In this chapter, root i is considered to
have converged if error Ei < 10−6.

2.1.2 First-order Galerkin method

In this formulation, the governing second-order DDE is first converted into a system
of first-order DDEs; we then obtain a system of first-order PDEs and, finally, arrive
at a system of first-order ODEs [74, 127]. We begin by defining state vector w(t) =
[w(t), ẇ(t)]T and rewriting Eq. (2.1) as follows:

ẇ(t) = Aw(t) +
n∑
r=1

Brẇ(t− τr) +
m∑
q=1

Qqw(t− τn+q), (2.16)

where, A, Br and Qq are given as follows:

A =
 0 1
−a2 −a1

 , Br =
0 0

0 −br

 , Qq =
 0 0
−cq 0

 . (2.17)
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We apply the transformation y(s, t) = w(t+s) and differentiate with respect to t and,
separately, with respect to s to obtain the following relation (analogous to Eq. (2.4)):

∂y(s, t)
∂t

= ∂y(s, t)
∂s

, −τ̄ ≤ s ≤ 0 t ≥ 0. (2.18)

The boundary conditions for this first-order PDE (Eq. (2.18)) are obtained by substi-
tuting s = 0 and s = −τ̄ into the transformation y(s, t) = w(t+ s):

y(0, t) = w(t) ⇒ ∂y(s, t)
∂t

∣∣∣∣∣
s=0

= ẇ(t), (2.19a)

y(−τ̄ , t) = w(t− τ̄). (2.19b)

Combining Eq. (2.19) with Eq. (2.16), we obtain the following:

∂y(s, t)
∂t

∣∣∣∣∣
s=0

= Ay(0, t) +
n∑
r=1

Bry(−τr, t) +
m∑
q=1

Qqy(−τn+q, t). (2.20)

Thus, we have converted the original first-order DDE (Eq. (2.1)) into an equivalent
system of first-order PDEs (Eq. (2.18)) with boundary conditions given by Eq. (2.20).

We arrive at a system of first-order ODEs by assuming a series solution and
retaining the first N terms:

yi(s, t) =
∞∑
j=1

φj(s)zij(t) =
N∑
j=1

φj(s)zij(t) = φT(s)zi(t), i = 1, 2, (2.21)

where φ(s) , [φ1(s), φ2(s), . . . , φN(s)]T and zi(t) , [zi1(t), zi2(t), ..., ziN(t)]T are
the vectors of basis functions and coordinates, respectively. We define Ψ(s) ∈ R2N×2

and β(t) ∈ R2N×1 as follows:

Ψ(s) =
φ(s) 0

0 φ(s)

 , β(t) =
z1(t)
z2(t)

 . (2.22)

Equation (2.21) can then be rewritten as y(s, t) = ΨT(s)β(t) and substituted into
Eq. (2.18) to arrive at the following:

ΨT(s)β̇(t) = Ψ′(s)Tβ(t), (2.23)
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Pre-multiplying Eq. (2.23) by Ψ(s) and integrating over the domain s ∈ [−τ̄ , 0] pro-
duces a system of first-order ODEs:

Pβ̇(t) = Rβ(t), (2.24)

Matrices P and R are square, block-diagonal matrices, and of dimension 2N :

P =
P(1) 0

0 P(2)

T

, R =
R(1) 0

0 R(2)

T

, (2.25)

where submatrices P(i) and R(i) are defined as follows:

P(i) ,
∫ 0

−τ̄
φi(s)φT

i (s)ds, R(i) ,
∫ 0

−τ̄
φi(s)φ′i(s)Tds, i = 1, 2. (2.26)

The matrix of boundary conditions is obtained by substituting the series solution
(Eq. (2.21)) into Eq. (2.20):

ΨT(0)β̇(t) =
[
AΨT(0) +

n∑
r=1

BrΨT(−τr) +
m∑
q=1

QqΨT(−τn+q)
]
β(t). (2.27)

Equations (2.24) and (2.27) can be combined as follows:

Uβ̇(t) = Vβ(t) (2.28a)

⇒ β̇(t) = U−1Vβ(t) , Gfoβ(t), (2.28b)

where U and V are square matrices of dimension 2N and are obtained by replacingN th

and 2N th rows of Eq. (2.24) with the first and second rows of Eq. (2.27), respectively.
The solution of Eq. (2.28) approximates that of the original DDE (Eq. (2.1)), and
the eigenvalues (λ̂i, i = 1, 2, . . . , 2N) of Gfo converge to the characteristic roots of
Eq. (2.3) as N increases [47, 62]. We define error Ei and the criterion for determining
convergence as described above.

In spectral methods, one must select an appropriate set of basis functions φ(s)
for obtaining the solution of the approximating ODE system. We use shifted Legendre
polynomials, as they have been shown to have good convergence properties [62]:

φ1(s) = 1 (2.29a)

φ2(s) = 1 + 2s
τ̄

(2.29b)

φk(s) = (2k − 3)φ2(s)φk−1(s)− (k − 2)φk−2(s)
k − 1 , k = 3, 4, . . . , N. (2.29c)
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With these basis functions, matrices M and C in the second-order formulation (Eq. (2.9))
and matrices P and R in the first-order formulation (Eq. (2.25)) can be expressed in
closed form, as reported previously [49]. For both second-order and first-order formu-
lations, considering N terms in the series solution (Eqs. (2.8) and (2.21)) results in
approximately N/2 converged eigenvalues.

2.2 Results and discussion

In this section, two examples are presented that compare the results obtained using
the second-order and first-order Galerkin formulations.

2.2.1 Example 1

Consider the following second-order DDE with delay τ = 1:

ẍ(t) + ẋ(t) + x(t) + x(t− τ) = 0. (2.30)

We use N = 50 terms in the series solution (i.e., Gso and Gfo are each of dimension
2N = 100). Figure 2.1 shows the rightmost eigenvalues of Gso (Eq. (2.14)) and
Gfo (Eq. (2.28)). In each case, we obtain 22 converged roots—that is, Gso and Gfo

each have 22 eigenvalues λ̂i. When substituted into the characteristic equation of the
original DDE (Eq. (2.3)), we obtain an error of Ei < 10−6. However, as shown in
Fig. 2.1(a), the second-order formulation produces spurious roots—in fact, there are
49 spurious roots very close to the origin. Note that, in this example, the spurious
roots happen to be the rightmost eigenvalues of Gso and could be misinterpreted as
the rightmost eigenvalues of the original DDE. Since the second-order formulation is
known to produce spurious roots, each root must therefore be substituted into the
characteristic equation (Eq. (2.3)) to ensure its authenticity. The absence of spurious
roots in the first-order formulation (see Fig. 2.1(b)) guarantees that the roots converge
starting with the rightmost characteristic root of the DDE, which avoids the additional
step of computing Ei [127] and makes this formulation particularly useful for solving
pole-placement problems [74].
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Figure 2.1: Characteristic roots of Eq. (2.30) obtained using the (a) second-order
and (b) first-order Galerkin formulations

2.2.2 Example 2

Consider the following second-order DDE with delays τ1 > 0 and τ2 > 0:

ẍ(t) + ẋ(t) + x(t) + ẋ(t− τ1) + x(t− τ2) = 0. (2.31)

We again use N = 50 terms in the series solution. Figure 2.2 shows the rightmost
eigenvalues of Gso and Gfo for τ1 = τ1 = 1. In this example, we obtain 23 converged
roots using each formulation. As shown in Fig. 2.2(a), the second-order formulation
again produces spurious roots: there are 49 spurious roots very close to the origin,
and these are once again the rightmost roots of Gso. These spurious roots lie at the
origin and hence do they do not affect the stability chart (Fig. 2.3). In fact, as shown
in Fig. 2.4(a) for τ1 = τ1 = 3, the spurious roots lie at the origin even if the closed-loop
system is unstable, but the same do not appear when using the first-order formulation
(see Fig. 2.4(b)). Nevertheless, as mentioned previously, it is generally favorable to
avoid spurious roots.
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Figure 2.2: Characteristic roots of Eq. (2.31) with τ1 = τ1 = 1 obtained using the
(a) second-order and (b) first-order Galerkin formulations.

Figure 2.3: Stability chart of Eq. (2.31) obtained using the first-order (black line)
and second-order (red region) Galerkin formulations.
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Figure 2.4: Characteristic roots of Eq. (2.31) with τ1 = τ1 = 3 obtained using the
(a) second-order and (b) first-order Galerkin formulations.

2.2.3 Source of spurious roots

We revisit Eq. (2.14):

ṙ(t) =
 0 I
M̃−1K̃ M̃−1C̃

 r(t) = Gsor(t), (2.32)

where matrices M̃, C̃ and K̃ are defined in Section 2.1.1. Close inspection of M̃−1K̃
reveals that its entries are as follows:

[
M̃−1K̃

]
ij


= 0, if 1 ≤ i ≤ N − 1 and 1 ≤ j ≤ N,

= 0, if i = N and j is even,

6= 0, if i = N and j is odd,

(2.33)

where i ∈ [1, N ] and j ∈ [1, N ] are the row and column indices, respectively. It
should be noted that, in matrix Gso, the entries in rows 1 to 2N − 1 and columns
1 to N are zeros. This means that Gso has N linearly dependent columns and the
system has N − 1 eigenvalues at zero. However, matrix Gfo has full rank (i.e., 2N
linearly independent columns) and, consequently, none of the system’s eigenvalues are
zero. These observations can be confirmed using Example 2. Considering N = 4 and
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τ1 = τ2 = 1, we compute matrices Gso and Gfo as follows:

Gso =



0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 0 2 0 2
0 0 0 0 0 0 6 0
0 0 0 0 0 0 0 10
−2 0 −2 0 −2 −2 −8 −12



(2.34a)

Gfo =



0 2 0 2 0 0 0 0
0 0 6 0 0 0 0 0
0 0 0 10 0 0 0 0
0 −2 −6 −12 1 1 1 1
0 0 0 0 0 2 0 2
0 0 0 0 0 0 6 0
0 0 0 0 0 0 0 10
−2 0 −2 0 −2 −2 −8 −12



(2.34b)

The eigenvalues of Gso that are zeros appear as N − 1 spurious roots at the origin, as
can be seen in Figs. 2.1(a), 2.2(a), and 2.4(a).

2.3 Chapter summary

In this chapter, two approaches for applying the Galerkin approximation method to
second-order DDEs are compared. The “second-order Galerkin” formulation involves
converting the DDE into a second-order PDE, then into a system of second-order
ODEs, and finally rewriting the ODEs in first-order form. The “first-order Galerkin”
formulation involves converting the second-order DDE into two first-order DDEs, then
into a system of first-order PDEs, and finally into a system of first-order ODEs. The
limitations of the second-order formulation have been demonstrated both analyti-
cally and numerically with two examples. In particular, the second-order formulation
imposes an artificial constraint between the two history functions, which ultimately
precipitates into spurious roots in the approximating ODE system. The spurious roots
lie at the origin and, thus, do not affect stability charts; however, in reduced-order
modeling and pole-placement problems, additional analysis must be performed to de-
termine whether a root is spurious. The spurious roots that arise in the second-order
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formulation can be avoided by using the first-order formulation. This issue has not
been reported previously, and one should be mindful of it when using this technique.
The rank-deficient matrix that arises in the second-order formulation can be avoided
by using the first-order formulation. As we demonstrate, the first-order formulation
produces the same stability chart but no spurious roots. A substantial benefit is that
the rightmost roots are true characteristic roots, which are the first to converge.



Chapter 3

Pole placement for TDS using Galerkin
approximations

Many dynamic systems of practical interest have inherent time delays and thus are
governed by DDEs. As explained in Chapter 1, DDEs are infinite dimensional and
TDS may be difficult to stabilize using traditional controller design strategies. The
Galerkin approximation method is applied using a new pseudoinverse-based tech-
nique for embedding the boundary conditions, which results in a simpler mathematical
derivation than has been presented previously. Then, the pole-placement technique
is used to design closed-loop feedback gains that stabilize TDS, and verify the results
through comparison to those reported in the literature. Finally, experimental vali-
dation is performed by applying the proposed method to stabilize a rotary inverted
pendulum system with inherent sensing delays as well as additional time delays that
are introduced deliberately. The proposed approach is easily implemented and per-
forms at least as well as existing methods.

This chapter is organized as follows. In Section 3.1, the optimization problem
and mathematical modeling are described. In Section 3.2, the proposed approach is
verified through comparison to results reported in the literature using existing meth-
ods. Then, the proposed approach is further validated in Section 3.3 by stabilizing
DDEs obtained from the literature [66, 69]. In Section 3.4, the proposed approach
is used to stabilize an experimental apparatus with inherent sensing delays as well
as additional time delays that are introduced deliberately. Finally, conclusions are
provided in Section 3.5.

29
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3.1 Pole placement for DDEs

A system’s closed-loop pole locations determine its stability characteristics as well
as the characteristics of its time response, such as its rise time and settling time.
The pole-placement technique can be used to adjust the closed-loop pole locations for
stabilizing both single-input single-output (SISO) and MIMO systems.

3.1.1 Problem definition

Consider the following system of DDEs, expressed here in state-space form:

ẋ(t) + Ax(t) +
m∑
q=1

Bquq(t− τq) = 0 (3.1a)

uq(t− τq) = KT
q x(t− τq), q = 1, 2, . . . ,m, (3.1b)

where x(t) , [x1(t), x2(t), . . . , xP (t)]T is the state vector, u(t) , [u1(t), u2(t), . . . , um(t)]T

is the control vector, A ∈ RP×P , Bq ∈ RP×1, Kq ∈ RP×1, and delays τq > 0. Given A,
Bq, and delays τq, the objective is to determine the feedback gains Kq that are nec-
essary to stabilize the system (i.e., to move all poles into the left half of the complex
plane). We optimize gains Kq by minimizing the following objective function:

J =
(
Re (λmax(Kq)) + α

)2
, (3.2)

where Re (λmax) is the real part of the rightmost eigenvalue, which is a function of
feedback gains Kq, and α > 0 is a parameter specifying the desired distance between
λmax and the imaginary axis. In this work, Eq. 3.2 is first solved with α = α0 where
α0 > 0 (i.e., all poles are placed in the left half of the complex plane). We then increase
α by δα and solve Eq. 3.2 again, repeating this process until the optimal objective
function value J > 0 (i.e., until Kq cannot be found to move λmax to the location
specified by α). We use α0 = δα = 1 in the examples below. This simple algorithm
was sufficient for our purposes; however, a more complex optimization problem could
be designed to include other considerations, such as hardware limitations (e.g., by
introducing constraints) or a desired time-delay stability margin.
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3.1.2 Mathematical modeling

In this section, we extend the work of Vyasarayani, Sadath, and colleagues [48, 49, 62]
and develop a new pseudoinverse-based Galerkin approximation method for finding
the characteristic roots of DDEs. We begin by considering the following system of
DDEs:

ẋ(t) + Ax(t) +
m∑
q=1

BqKT
q x(t− τq) = 0, (3.3)

where x(t), A, Bq, Kq, and τq are as defined above. The characteristic equation of
Eq. 3.3 is obtained by substituting x(t) = x0e

st, the determinant of which we equate
to zero:

det
(
sI + A +

m∑
q=1

BqKT
q e
−sτq

)
= 0. (3.4)

Equation 3.4 is a quasi-polynomial due to the presence of transcendental terms e−sτq

and, hence, has infinitely many roots. The roots of Eq. 3.4 can be computed by
formulating an abstract Cauchy problem, whereupon we obtain and solve a large
linear eigenvalue problem.

We begin by converting the system of DDEs (Eq. 3.3) into a system of PDEs with
time-dependent boundary conditions. We introduce the following transformation:

y(s, t) = x(t+ s), (3.5)

where y is a function of s ∈ [−τ, 0] and t, with τ , max(τ1, τ2, . . . , τm). An abstract
Cauchy problem is obtained by differentiating Eq. 3.5 with respect to s and t:

∂y(s, t)
∂t

= ∂x(t+ s)
∂(t+ s)

∂(t+ s)
∂t

⇒ ∂y(s, t)
∂t

= ∂x(t+ s)
∂(t+ s) , (3.6a)

∂y(s, t)
∂s

= ∂x(t+ s)
∂(t+ s)

∂(t+ s)
∂s

⇒ ∂y(s, t)
∂s

= ∂x(t+ s)
∂(t+ s) . (3.6b)

Upon equating Eqs. 3.6a and 3.6b, we obtain the following PDE:

∂y(s, t)
∂t

= ∂y(s, t)
∂s

, s ∈ [−τ, 0]. (3.7)

The boundary conditions for Eq. 3.7 are computed by substituting s = 0 and s = −τ
into Eq. 3.5:

y(0, t) = x(t) ⇒ ∂y(s, t)
∂t

∣∣∣∣∣
s=0

= ẋ(t), (3.8a)

y(−τ, t) = x(t− τ). (3.8b)
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and then combining these relations with Eq. 3.3:

∂y(s, t)
∂t

∣∣∣
s=0

+ Ay(0, t) +
m∑
q=1

BqKT
q y(−τq, t) = 0. (3.9)

We now assume a series solution for the PDE (Eq. 3.7):

yi(s, t) =
∞∑
j=1

φij(s)ηij(t), i = 1, 2, . . . , P, (3.10)

where φij(s) are the basis functions, ηij(t) are the time-dependent coordinates, i rep-
resents the index into the state vector x(t), and j represents the corresponding term
in each basis function. Because it is impossible to consider the entire infinite series,
we truncate the series at N terms:

yi(s, t) ≈ φT
i (s)ηi(t), i = 1, 2, . . . , P, (3.11)

where φi(s) , [φi1(s), φi2(s), . . . , φiN(s)]T and ηi(t) = [ηi1(t), ηi2(t), . . . , ηiN(t)]T. We
define matrix Ψ(s) ∈ RNP×P and vector β(t) ∈ RNP×1 as follows:

Ψ(s) =


φ1(s) 0 · · · 0

0 φ2(s) · · · 0
... ... . . . ...
0 0 · · · φP (s)

 , (3.12a)

β(t) = [ηT
1 (t),ηT

2 (t), . . . ,ηT
P (t)]T, (3.12b)

whereupon we can express Eq. 3.11 in vector form:

y(s, t) = [φT
1 (s)η1(t),φT

2 (s)η2(t), . . . ,φT
P (s)ηP (t)]T, (3.13)

= ΨT(s)β(t). (3.14)

Next, we substitute the series solution (Eq. 3.14) into the original PDE (Eq. 3.7):

ΨT(s)β̇(t) = Ψ′(s)Tβ(t), (3.15)

where Ψ′(s) denotes the derivative of Ψ(s) with respect to s. Pre-multiplying Eq. 3.15
by Ψ(s) and integrating over the domain s ∈ [−τ, 0], we obtain the following:

(∫ 0

−τ
Ψ(s)ΨT(s)ds

)
β̇(t) =

(∫ 0

−τ
Ψ(s)Ψ′(s)Tds

)
β(t). (3.16)
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Equation 3.16 can be rewritten as

Cβ̇(t) = Dβ(t), (3.17)

where C and D are square, block-diagonal matrices of dimension NP :

C =


C(1) 0 · · · 0
0 C(2) · · · 0
... ... . . . ...
0 0 · · · C(P )



T

, D =


D(1) 0 · · · 0
0 D(2) · · · 0
... ... . . . ...
0 0 · · · D(P )



T

. (3.18)

Submatrices C(i) and D(i) are defined as follows:

C(i) ,
∫ 0

−τ
φi(s)φT

i (s)ds, D(i) ,
∫ 0

−τ
φi(s)φ′i(s)Tds. (3.19)

Boundary conditions can be derived by substituting Eq. 3.14 into Eq. 3.9:

ΨT(0)β̇(t) =
[
−AΨT(0)−

m∑
q=1

BqKT
q ΨT(−τq)

]
β(t). (3.20)

Equations 3.17 and 3.20 can be combined as follows:

Mβ̇(t) = Kβ(t). (3.21)

Matrices M and K are of dimension (NP + P )×NP and are given by

M ,

C
c̄

 , K ,

D
d̄

 , (3.22)

where c̄ and d̄ are matrices of size P ×NP containing the boundary conditions:

c̄ , ΨT(0), (3.23a)

d̄ ,
[
−AΨT(0)−

m∑
q=1

BqKT
q ΨT(−τq)

]
. (3.23b)

Equation 3.21 is an over-determined system of NP + P equations in NP unknowns;
the least-squares solution can be computed as follows:

β̇(t) = (M+K)β(t), (3.24)



34 Chapter 3 Pole placement for TDS using Galerkin approximations

where M+ is the Moore–Penrose inverse of M. Finally, we define G , M+K and
write Eq. 3.24 as follows:

β̇(t) = Gβ(t). (3.25)

Equation 3.25 is a system of ODEs that approximates the original system of
DDEs (Eq. 3.3). Consequently, the eigenvalues of G converge to the characteris-
tic roots of Eq. 3.3 as the number of terms in the Galerkin approximation (N) in-
creases [62]. Convergence can be monitored by substituting the computed eigenvalues
of G into Eq. 3.4 (the characteristic equation of Eq. 3.3) and calculating the absolute
error (E). In this work, we consider eigenvalues to have converged when E < 10−4.
Also note that we use shifted Legendre polynomials as the basis functions:

φ1(s) = 1 (3.26a)

φ2(s) = 1 + 2s
τ

(3.26b)

φk(s) = (2k − 3)φ2(s)φk−1(s)− (k − 2)φk−2(s)
k − 1 , k = 3, 4, . . . , N. (3.26c)

Shifted Legendre polynomials have shown good convergence properties [62] and facil-
itate expressing the entries of matrices C(p) and D(p), as defined in Eq. 3.19, in closed
form:

C(p)
ij =


τ

2i− 1 , if i = j

0, otherwise
, D(p)

ij =
2, if i < j and i+ j is odd

0, otherwise
, (3.27)

where i = 1, 2, . . . , N ; j = 1, 2, . . . , N ; and τ = max(τ1, τ2, . . . , τm).

3.2 Verification of pseudoinverse method

In this section, we verify the pseudoinverse-based Galerkin approximation method by
applying the procedure described in Section 3.1.2 to two test problems. We compare
our results to those obtained using the QPmR algorithm [91] and the pseudospectral
differencing (PSD) method [53, 128].
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3.2.1 First-order DDE with two delays

Consider the following first-order DDE with delays τ and τ + b:

ẋ(t) = ax(t) + x(t− τ)− x(t− τ − b)
b

. (3.28)

The characteristic equation is obtained by substituting x(t) = est:

s− a− 1
b
e−sτ + 1

b
e−s(τ+b) = 0. (3.29)

To test the robustness of the proposed approach, we find the rightmost roots of
Eq. 3.29 using parameters τ = 1 and a = b = 10r for r = −1,−2, . . . ,−6. As
shown in Figs. 3.1 and 3.2, the roots obtained using the pseudoinverse-based Galerkin
approach compare favorably with those obtained using the existing QPmR [91] and
PSD [53, 128] methods.

(a) (b) (c)
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Figure 3.1: Characteristic roots of Eq. 3.28 using the QPmR algorithm, the PSD
method, and the proposed pseudoinverse-based Galerkin approximation method:

(a) a = b = 10−1, (b) a = b = 10−3, and (c) a = b = 10−6.

As expected from inspection of Eq. 3.29, the rightmost root approaches zero
as r decreases. The three methods have very similar precision; for example, when
a = b = 10−6, the errors are EGalerkin = 1.000124 × 10−6, EPSD = 1.000008 × 10−6,
and EQPmR = 0.999891 × 10−6. However, note in Fig. 3.1c that the QPmR method
identified only one root when a = b = 10−6. Another disadvantage of the QPmR
method is the requirement to specify the region of the complex plane into which the
poles should be placed.

Based on the results of Figs. 3.1a, 3.1a and 3.1c the pseudospectral differencing
method appears to perform well. The proposed pseudoinverse-based Galerkin approx-
imation method was further compared with the PSD method using a Monte Carlo
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simulation. We computed the roots of Eq. 3.29 using N = 25k for k = 1, 2, . . . , 5,
where N is the size of the linear eigenvalue problem being solved. In the Galerkin
method, N corresponds to the number of terms in the series solution (Eq. 3.11); in
the PSD method, N is the number of collocation points. We selected parameters uni-
formly from the ranges a ∈ [1, 10], b ∈ [1, 5], and τ ∈ [0.1, 5.1], repeating 10, 000 times
for each value of N . On average, more roots converged using the proposed Galerkin
method than the PSD method, as shown in Table 3.1.

10-6 10-4 10-2 100

10-6

10-4

10-2

100

Figure 3.2: Errors obtained upon substituting into the characteristic equation
(Eq. 3.29) the rightmost eigenvalue computed using the QPmR algorithm, the PSD
method, and the proposed pseudoinverse-based Galerkin approximation method.

Table 3.1: Number of converged roots of Eq. 3.29, averaged over 10,000 trials.

N Galerkin method PSD method
25 8.0 6.0
50 21.5 15.4
75 34.4 25.8

100 48.5 36.3
125 63.2 48.0

3.2.2 Second-order DDE with three delays

Consider the following second-order DDE with delays τ1, τ2, and τ1 + τ2:

ẍ(t)+a1ẋ(t)+a2x(t)+a3ẋ(t−τ1)+a4x(t−τ1)+ a5ẋ(t−τ2)+a6ẋ(t−τ1−τ2) = 0, (3.30)
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where a1 = 7.1, a2 = 21.1425, a3 = 6, a4 = 14.8, a5 = 2, and a6 = 8. As demon-
strated by the stability chart shown in Fig. 3.3, the results obtained using the pro-
posed Galerkin method are in agreement with those obtained using the spectral tau
method [49, 62].

Figure 3.3: Stability diagram for the second-order DDE given by Eq. 3.30 obtained
using the spectral tau method (red region) and the proposed pseudoinverse-based

Galerkin approximation method (blue lines).

3.3 Results and discussion

In this section, we apply the methods described in Section 3.1 to two example prob-
lems taken from the literature [66, 69]. We obtain the characteristic roots of DDEs
using the pseudoinverse-based Galerkin approximation method and improve closed-
loop stability using the proposed optimization strategy.

3.3.1 Example from Niu et al.

Consider the following first-order system [69]:

ẋ(t) = ax(t) + adx(t− τ) + u(t) (3.31a)

u(t) = kx(t), (3.31b)
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where a = τ = 1 and ad = −1. We use N = 100 terms in the series solution
(Eq. 3.11), thereby converting Eq. 3.31 into a system of ODEs of the form given by
Eq. 3.25, where G ∈ R100×100. We select an initial guess of k = 0.8, which results
in the rightmost eigenvalues shown in Fig. 3.4. Note that the rightmost eigenvalue
has a positive real component (Re (λmax) = 1.5976). Thus, the system is unstable for
k = 0.8.
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Figure 3.4: Rightmost characteristic roots of Eq. 3.31 using initial feedback gain
k = 0.8.
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Figure 3.5: Rightmost characteristic roots of Eq. 3.31 with delay τ = 1 (a) and
the variation of the five rightmost roots with respect to delay τ (b) using optimal

feedback gain k∗ = −3.5978.
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To stabilize this system, we set α = 1 in the objective function (Eq. 3.2) and
solve the minimization problem using the Nelder–Mead algorithm in MATLAB via
the fminsearch function. The optimal gain was found to be k∗ = −3.5978, resulting
in the rightmost eigenvalues shown in Fig. 3.5(a).

Note that the rightmost eigenvalue has a real component of −1, indicating that
stability has been achieved. As shown in Fig. 3.5(b), the system will remain stable for
delays substantially greater than τ = 1 when using feedback gain k∗. Note that the
optimal objective function value of J∗ = 0 is obtained when α = 1 in the objective
function (Eq. 3.2), indicating that α could be increased to achieve an even larger
stability margin.

3.3.2 Example from Michiels et al.

We now consider the following third-order system [66]:

ẋ(t) = Ax(t) + Bu(t− τ) (3.32a)

u(t) = KTx(t), (3.32b)

where delay τ = 5, and A and B are defined as follows:

A =


−0.08 −0.03 0.2

0.2 −0.04 −0.005
−0.06 0.2 −0.07

 , B =


−0.1
−0.2
0.1

 . (3.33)

We again use N = 100 terms in the series solution (Eq. 3.11), now obtaining a
system of ODEs (Eq. 3.25) in which G ∈ R300×300. We use as an initial guess the
gains reported in Michiels et al. [66]: K = [0.719, 1.04, 1.29]T. As shown in Fig. 3.6,
the rightmost eigenvalues have a positive real component when the delay is τ = 5
(Re (λmax) = 0.0232) and the system is stable only for delays τ < 3.9466.

The system can be stabilized using the same procedure as before. We set α = 1 in
the objective function (Eq. 3.2) and minimize using the Nelder–Mead algorithm. The
optimal gains were found to be K∗ = [0.5473, 0.8681, 0.5998]T; as shown in Fig. 3.7(a),
the rightmost eigenvalue was moved to Re (λmax) = −0.0931. Once again, the right-
most eigenvalue has a negative real component and, thus, the closed-loop system
is stable. As shown in Fig. 3.7(b), the system will remain stable for delays up to
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Figure 3.6: Rightmost characteristic roots of Eq. 3.32 with delay τ = 5 (a) and
the variation of the rightmost roots with respect to delay τ (b) using initial feedback

gains K = [0.719, 1.04, 1.29]T.
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Figure 3.7: Rightmost characteristic roots of Eq. 3.32 with delay τ = 5 (a) and the
variation of the rightmost roots with respect to delay τ (b) using optimal feedback

gains K∗ = [0.5473, 0.8681, 0.5998]T.

τ = 8.7739 using optimal feedback gains K∗. In contrast to the example of Sec-
tion 3.3.1, the optimal objective function value is greater than zero (J∗ = 0.8223) in
this case, indicating that the stability margin cannot be increased by increasing α.
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3.4 Experimental validation

In this section, we validate the proposed Galerkin method using the rotary inverted
pendulum apparatus (QUBE-Servo Rotary Servo Experiment, Quanser Inc., Markham,
Ontario, Canada) shown in Fig. 3.8. The apparatus consists of a free-swinging rigid
pendulum mounted to the end of a servo-driven rotary arm. The position of the arm
is given by θ as it rotates about the vertical axis; the position of the pendulum is
γ = 0° when hanging at rest and γ = 180° when inverted.

  

! 

Figure 3.8: Rotary inverted pendulum apparatus, shown here with θ ≈ 0° and
γ ≈ 180°.
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The linearized equations of motion for the rotary inverted pendulum system are
as follows:

(Jr +mp`
2
r)θ̈(t)−

1
2mp`p`rγ̈(t) = T (t)−Brθ̇(t) (3.34a)(

Jp + 1
4mp`

2
p

)
γ̈(t)− 1

2mp`p`rθ̈(t)−
1
2mp`pgγ(t) = −Bpγ̇(t), (3.34b)

where `p, mp, and Jp are the pendulum’s length, mass, and moment of inertia with
respect to its pivot; `r is the length of the rotary arm; Jr is the equivalent moment of
inertia acting on the servo shaft; Bp and Br represent the viscous damping about the
pendulum’s pivot and the servo shaft, respectively; g is the gravitational acceleration;
and T (t) is the torque applied to the rotary arm by the servo. The torque T (t) can
be computed as follows:

T (t) = km
Rm

(
Vm(t)− k2

m

Rm

θ̇(t)
)
, (3.35)

where km is the DC motor back-emf constant, Rm is the electrical resistance of the
DC motor armature, and Vm(t) is the control input (voltage). The numerical values
of these parameters are provided by Quanser [2] and are listed in Table 3.2. The
linearized equations of motion for the rotary inverted pendulum system (Eq. 3.34)
can be expressed in state-space form:

ẋ(t) = Ax(t) + Bu(t) (3.36a)

u(t) = −KTx(t), (3.36b)

Table 3.2: Parameter values for the rotary inverted pendulum apparatus [2].

Parameter Value Units
`p 0.129 m
`r 0.085 m
mp 0.024 kg
Jp 3.32820× 10−5 kg m2

Jr 5.71979× 10−5 kg m2

Bp 0 N m s/rad
Br 0 N m s/rad
Rm 8.4 Ω
km 0.042 V s/rad
g 9.81 m/s2



Chapter 3 Pole placement for TDS using Galerkin approximations 43

where x ,
[
θ(t), γ(t), θ̇(t), γ̇(t)

]T
, u(t) , V (t), and A and B are given as follows:

A =


0 0 1 0
0 0 0 1
0 149.2751 −0.0104 0
0 261.6091 −0.0103 0

 , B =



0
0

49.7275
49.1493


. (3.37)

The controller samples at a rate of 500 Hz; thus, the system has an inherent
delay of 2 ms. We begin by controlling the rotary inverted pendulum system without
introducing any additional delays. We use feedback gains K = [−2, 30,−2, 2.5]T,
which are provided by Quanser for the balance control exercise [129]. The steady-
state response of the physical system is shown in Fig. 3.9. The system is stable about
its vertical equilibrium (γ = 180°) and recovers from an external disturbance.
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Figure 3.9: Stable response of the inverted pendulum (γ) and rotary arm (θ)
with inherent delay of 2 ms and feedback gains K = [−2, 30,−2, 2.5]T. An external

disturbance is applied between 13 and 23 seconds.

We now introduce an additional sensing delay τ , resulting in the following state-
space representation of the rotary inverted pendulum system:

ẋ(t) = Ax(t) + Bu(t− τ), (3.38)

where A and B are given by Eq. 3.37. We first assess the stability of the system
using the proposed pseudoinverse-based Galerkin method, then verify our predictions
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experimentally. The real component of the rightmost roots of the system are shown
in Fig. 3.10 as functions of delay τ , using the same feedback gains K as above.
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Figure 3.10: Variation of the rightmost roots of Eq. 3.38 with respect to delay τ
using feedback gains K = [−2, 30,−2, 2.5]T. The critical delay is τ = 9.76 ms.

The critical delay is the delay at which the system will become unstable; as
shown, the simulations indicate a critical delay of τ = 9.76 ms. As shown in Fig. 3.11,
the four rightmost characteristic roots of Eq. 3.38 lie in the left half of the complex
plane when τ = 5 ms, indicating that the system is stable; when τ = 10 ms, two roots
are in the right half of the complex plane and the system is unstable.
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Figure 3.11: Rightmost characteristic roots of Eq. 3.38 with delay (a) τ = 5 ms
and (b) τ = 10 ms, using feedback gains K = [−2, 30,−2, 2.5]T.
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We validate experimentally by deliberately introducing additional delay into the
feedback controller, in increments of 0.5 ms. The physical system remained stable
when delays of up to 7.5 ms were introduced (Fig. 3.12(a)) and was unstable with an
additional delay of 8 ms (Fig. 3.12(b)).
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Figure 3.12: System response of the inverted pendulum (γ) and rotary arm (θ)
using feedback gains K∗ = [−2, 30,−2, 2.5]T, with total delay of (a) τ = 2 + 7.5 =

9.5 ms–stable response and (b) τ = 2 + 8 = 10 ms–unstable response.

Thus, when added to the inherent delay of 2 ms, the physical system exhibited
a critical delay of between 9.5 and 10 ms, which is in agreement with the predicted
critical delay of τ = 9.76 ms.

We now stabilize Eq. 3.38 with delay τ = 10 ms using the pseudoinverse-based
Galerkin method and the procedure described in Section 3.1. We set α = α0 = 1 in
the objective function (Eq. 3.2) and solve the minimization problem using the Nelder–
Mead algorithm in MATLAB via the fminsearch function. We repeat the optimiza-
tion procedure, increasing α by δα = 1 each iteration, until the real component of
the rightmost pole is unable to reach −α. In this case, the algorithm terminates at
α = 6, where the objective function value is J∗ = 0.000222, the optimal feedback
gains are K∗ = [−2.3443, 31.3406,−1.1797, 2.7717]T, and the rightmost pole location
is Re(λmax) = −5.9851. As shown in Fig. 3.13, the physical system is stable when
a delay of 10 ms is introduced deliberately (producing a total delay of τ = 12 ms)
and recovers from an external disturbance. As shown, the system is robust to exter-
nal disturbances even without controlling the frequency of oscillations induced by the
optimal feedback gains.
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Figure 3.13: Stable response of the inverted pendulum (γ) and rotary arm (θ)
with total delay of τ = 2 + 10 = 12 ms and optimal feedback gains K∗ =
[−2.3443, 31.3406,−1.1797, 2.7717]T. An external disturbance is applied between

12 and 27 seconds.

The pseudoinverse-based Galerkin method predicts a critical delay of τ = 17.7 ms
when using the optimal feedback gains K∗ computed above (Fig. 3.14).
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Figure 3.14: Variation of the rightmost roots of Eq. 3.38 with respect to delay
τ using optimal feedback gains K∗ = [−2.3443, 31.3406,−1.1797, 2.7717]T. The

critical delay is τ = 17.7 ms.
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We again validate this result experimentally by deliberately introducing addi-
tional delay into the feedback controller, in increments of 0.5 ms. The physical system
remained stable when delays of up to 15 ms were introduced (Fig. 3.15(a)) and was
unstable when this delay was increased to 15.5 ms (Fig. 3.15(b)).
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Figure 3.15: System response of the inverted pendulum (γ) and rotary arm (θ)
using optimal feedback gains K∗ = [−2.3443, 31.3406,−1.1797, 2.7717]T, with total
delay of (a) τ = 2 + 15 = 17 ms–stable response and (b) τ = 2 + 15.5 = 17.5 ms–

unstable response.

Thus, when added to the inherent delay of 2 ms, the physical system exhibited a
critical delay of between 17 and 17.5 ms, which is within 1–4% of the predicted critical
delay of τ = 17.7 ms. The pseudoinverse-based Galerkin method provided a simple
and reliable means of predicting and optimizing the stability of the rotary inverted
pendulum system.

3.5 Chapter summary

In this chapter, the pole placement problem for TDS with constant delays is explored.
A Galerkin approximation method using a new pseudoinverse-based strategy for em-
bedding the boundary conditions was developed, and the results were verified through
comparison to those obtained using the QPmR algorithm, the PSD method, and the
spectral tau method. The proposed Galerkin method results in a simpler mathemat-
ical derivation than was presented previously in the works of Vyasarayani, Sadath,
and colleagues [48, 49, 62]. The proposed method was validated experimentally by
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stabilizing a rotary inverted pendulum system with inherent and deliberate state feed-
back delays. A simple optimization strategy was employed to increase the time-delay
stability margin.



Chapter 4

Hybrid method-of-receptances and
optimization-based technique for pole
placement in TDS

Consider the following second-order system with feedback control:

Mẍ(t) + Cẋ(t) + Kx(t) = bu(t− τ) (4.1a)

u(t− τ) = fTẋ(t− τ) + gTx(t− τ), (4.1b)

where x is the state vector; M, C, and K are the mass, damping, and stiffness
matrices; u is the control effort, which is mapped onto the states by b; f and g
contain the control gains; and τ is a time delay.

As demonstrated in the previous chapter, pole placement is a classical problem
in the control theory domain. The objective is to design a controller that places
the closed-loop poles at specific locations, thereby resulting in the desired system
behaviour. In this chapter, the pole-placement problem for systems governed by
second-order DDEs is considered. Time delays in Eq. (4.1) turn a finite-dimensional
system of ODEs into an infinite-dimensional system due to the transcendental nature
of the characteristic equation. This infinite dimensionality makes the pole-placement
problem challenging for TDS [5–7]. Because tuning an infinite number of parameters
is impossible, our objective is to tune finitely many parameters to control an infinite-
dimensional system.

In this chapter, a pole-placement technique for TDS that combines the strengths
of the method of receptances and an optimization-based strategy is presented. The
method of receptances is simple and efficient, but may fail for certain systems and time
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delays. On the other hand, the optimization-based strategy guarantees the location
of the rightmost pole but is more computationally demanding. Other established
methods to design controllers for TDS include the Smith predictor, the modified
Smith predictor, and finite spectrum assignment [130]; however, the performance of
these methods depends on the accuracy of an internal model. For example, these
techniques will stabilize an otherwise unstable TDS only if the internal model is
predicted accurately and if the effects of initial conditions and disturbances are known.
These techniques are also sensitive to inaccuracies in the implementation of the control
law, and require computing integrals of past control inputs which, when approximated
using numerical quadrature, can affect system stability. By contrast, an internal
model is not required in our proposed hybrid method, so it does not suffer from these
limitations. Finally, it should be noted that the Smith predictor, the modified Smith
predictor, and finite spectrum assignment are sensitive to small perturbations in time
delay around an assumed operating point; as it will be shown, the proposed approach
exhibits robustness to perturbations in time delay.

In this chapter, an optimization-based strategy is proposed to address the limita-
tions of the method of receptances. The pole-placement method of Michiels et al. [66]
also employs optimization; however, the proposed approach in this chapter differs in
two substantial respects. First, Michiels et al. obtain the characteristic roots using
subspace iteration [131] whereas Galerkin approximations are in this chapter. Second,
Michiels et al. use a gradient descent algorithm for pole placement, which may fail to
find the globally optimal solution; particle swarm optimization (PSO) is proposed to
avoid converging to a local optimum.

The remainder of this chapter is organized as follows. Section 4.1 briefly describes
the method of receptances for completeness. In Section 4.2, a detailed mathematical
derivation of the Galerkin approximations to find the characteristic roots of quadratic
TDS with a single delay is provided. The optimization problem is defined in Sec-
tion 4.3. In Section 4.4, the proposed method is applied to stabilize examples given
by Ram et al. [75]. Finally, experimental validation using a 3D hovercraft apparatus
is presented in Section 4.5.
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4.1 Method of Receptances

In this section, the MoR is briefly described for completeness. Consider the following
system, which is obtained upon substituting x(t) = x0e

rt into Eq. (4.1):

(
r2M + rC + K

)
x0e

rt =
(
rbfT + bgT

)
x0e

r(t−τ). (4.2)

Equation (4.2) can be rewritten as follows:

[
r2M + r(C− bfTe−rτ ) + (K− bgTe−rτ )

]
x0 = 0. (4.3)

The receptance matrices associated with the open-loop system (Ho(r)) and closed-
loop system (Hc(r)) are the following:

Ho(r) =
[
r2M + rC + K

]−1
(4.4a)

Hc(r) =
[
r2M + r(C− bfTe−rτ ) + (K− bgTe−rτ )

]−1
(4.4b)

Matrix Hc(r) can be computed using the Sherman–Morrison formula [132]:

Hc(r) = Ho(r) + Ho(r)b(g + rf)THo(r)e−rτ
1− (g + rf)THo(r)be−rτ

. (4.5)

Note that the values of r that render Hc(r) unbounded are the eigenvalues of the
closed-loop system. Thus, the characteristic equation of Eq. (4.5) is the following:

(g + rf)THo(r)b = erτ , (4.6)

where the control vectors f and g can be computed given the system matrices (M,
C, and K), the vector that maps the control effort onto the states (b), the delay (τ),
and eigenvalues rk, k = 1, 2, . . . , 2n:


r1rT

1 rT
1

r2rT
2 rT

2
... ...

r2nrT
2n rT

2n


f

g

 =



er1τ

er2τ

...
er2nτ


(4.7)

where rk , Ho(rk)b. Thus, the control vectors f and g can be obtained simply by
solving a linear system of 2n equations (Eq. (4.7)) for 2n unknowns.

As stated in Chapter 1, the MoR approach is computationally straightforward
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but can suffer from spillover—that is, the poles placed at the specified locations may
not be the dominant poles. A separate analysis must be performed to compute the
characteristic roots and, thus, to determine whether the resulting closed-loop system
is stable. The roots of the TDS are computed explicitly using Galerkin approxima-
tions with the spectral-tau method (described below). In situations where spillover
is detected in the solution provided by the MoR approach, a new optimization-based
pole-placement strategy is proposed. The proposed optimization strategy makes use
of the information about the characteristic roots that is provided by the Galerkin
approximations.

A TDS has a transcendental characteristic equation. Several methods have been
proposed in the literature to compute the characteristic roots of a TDS, including the
Lambert W function [5], Galerkin approximations [48, 49], semi-discretization [51],
pseudospectral collocation [53], continuous-time approximation [57], and homotopy
continuation [45]. In this work, Galerkin approximations are used to compute the
characteristic roots. First, the equation governing the dynamics of the TDS (which is
a DDE) is first converted into a PDE with boundary conditions. The PDE is then ap-
proximated by a system of ODEs, the eigenvalues of which are the approximate roots
of the characteristic equation of the TDS. The efficacy of Galerkin approximations in
studying the stability of DDEs has been demonstrated previously [49, 62, 133, 134].
These studies have also shown that the eigenvalues of the approximate ODE system
converge to the eigenvalues of the original DDE system starting from the rightmost
root.

The boundary conditions in previous work using Galerkin approximations have
been handled using the spectral-tau and Lagrange multiplier methods [49, 62, 133,
134]. In this chapter, the spectral-tau method for embedding the boundary conditions
is used because, with this method, the formulation can be generalized such that only
the boundary conditions differ for different problems. Several options also exist for
selecting the basis functions. In this chapter, shifted Legendre polynomials are used
as the basis functions because of their superior convergence properties compared to
other basis functions, such as mixed Fourier and Chebyshev polynomials [62].

4.2 Mathematical modelling

In this section, the mathematical model for finding the characteristic roots of a DDE
using Galerkin approximations is presented. We consider systems of DDEs of the form
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given in Eq. (4.1) higher-order systems have also been considered in the literature [74].
We begin by expressing Eq. (4.1) in first-order form:

˙̄x(t) + Āx̄(t) + b̄u(t− τ) = 0 (4.8a)

u(t− τ) = k̄Tx̄(t− τ) (4.8b)

where x̄(t) , [ẋT(t),xT(t)]T ∈ RP×1 is the state vector, u is the control effort, and
τ > 0 is the time delay. Matrix Ā ∈ RP×P and vectors b̄ ∈ RP×1 and k̄ ∈ RP×1 are
given as follows:

Ā ,

M−1C M−1K
−I 0

 , b̄ ,

−M−1b
0

 , k̄ ,

f
g

 , (4.9)

where I is the identity matrix. The characteristic equation of Eq. (4.8) can be obtained
by substituting x̄(t) = x̄0e

st and equating the determinant to zero:

det(sI + Ā + b̄k̄Te−sτ ) = 0. (4.10)

Equation (4.10) is a quasi-polynomial due to the transcendental terms e−sτ and there-
fore has infinitely many roots. These roots can be computed by formulating an ab-
stract Cauchy problem, ultimately resulting in a large linear eigenvalue problem.

We first convert the system of DDEs (Eq. (4.8)) into a system of PDEs with
time-dependent boundary conditions. We perform the following transformation:

y(s, t) = x̄(t+ s), (4.11)

where y is a function of s ∈ [−τ, 0] and t. We obtain an abstract Cauchy problem by
differentiating Eq. (4.11) with respect to s and t:

∂y(s, t)
∂t

= ∂x̄(t+ s)
∂(t+ s)

∂(t+ s)
∂t

= ∂x̄(t+ s)
∂(t+ s) , (4.12a)

∂y(s, t)
∂s

= ∂x̄(t+ s)
∂(t+ s)

∂(t+ s)
∂s

= ∂x̄(t+ s)
∂(t+ s) . (4.12b)

Equating Eqs. (4.12a) and (4.12b) results in the following PDE:

∂y(s, t)
∂t

= ∂y(s, t)
∂s

, s ∈ [−τ, 0]. (4.13)
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The boundary conditions for Eq. (4.13) can be computed from Eq. (4.11) upon sub-
stituting s = 0 and s = −τ :

y(0, t) = x̄(t), (4.14a)

y(−τ, t) = x̄(t− τ). (4.14b)

Differentiating Eq. (4.14a) with respect to t provides the following relationship be-
tween y(s, t) and the state derivatives ˙̄x(t):

∂y(s, t)
∂t

∣∣∣∣∣
s=0

= ˙̄x(t). (4.15)

Finally, we combine Eq. (4.14) with Eq. (4.8):

∂y(s, t)
∂t

∣∣∣∣∣
s=0

+ Āy(0, t) + b̄k̄Ty(−τ, t) = 0. (4.16)

We now approximate the solution of the PDE given in Eq. (4.13) with the fol-
lowing series:

yi(s, t) =
∞∑
j=1

φij(s)ηij(t), i = 1, 2, . . . , P, (4.17)

where φij(s) are the basis functions, ηij(t) are the coordinates (which are time de-
pendent), i is the index into the state vector x̄(t), and j is the corresponding term in
each basis function. In this work, we use shifted Lagrange polynomials as the basis
functions:

φ1(s) = 1 (4.18a)

φ2(s) = 1 + 2s
τ

(4.18b)

φk(s) = (2k − 3)φ2(s)φk−1(s)− (k − 2)φk−2(s)
k − 1 , k = 3, 4, . . . , N. (4.18c)

Shifted Lagrange polynomials are selected for their superior convergence properties,
as shown in previous studies (e.g., [62]). We truncate the infinite series (Eq. (4.17))
at N terms:

yi(s, t) ≈ φT
i (s)ηi(t), i = 1, 2, . . . , P, (4.19)



Chapter 4 Hybrid method-of-receptances and optimization-based technique for pole
placement in TDS 55

where φi(s) , [φi1(s), φi2(s), . . . , φiN(s)]T and ηi(t) , [ηi1(t), ηi2(t), . . . , ηiN(t)]T. For
simplicity of notation, we define the following:

Φ(s) ,


φ1(s) 0 · · · 0

0 φ2(s) · · · 0
... ... . . . ...
0 0 · · · φP (s)

 ∈ RNP×P (4.20a)

β(t) , [ηT
1 (t),ηT

2 (t), . . . ,ηT
P (t)]T ∈ RNP×1, (4.20b)

and express Eq. (4.19) in vector form:

y(s, t) = [φT
1 (s)η1(t),φT

2 (s)η2(t), . . . ,φT
P (s)ηP (t)]T (4.21)

= ΦT(s)β(t). (4.22)

We now obtain a system of ODEs by substituting the series solution (Eq. (4.21)) into
the PDE (Eq. (4.13)), pre-multiplying the result by Φ(s), and integrating over the
domain s ∈ [−τ, 0]:

Gβ̈(t) = Hβ̇(t), (4.23)

where G and H are square, block-diagonal matrices of dimension NP :

G ,


G(1) 0 · · · 0

0 G(2) · · · 0
... ... . . . ...
0 0 · · · G(P )



T

, H ,


H(1) 0 · · · 0

0 H(2) · · · 0
... ... . . . ...
0 0 · · · H(P )



T

. (4.24)

Submatrices G(i) and H(i) are defined as follows:

G(i) ,
∫ 0

−τ
φi(s)φT

i (s)ds, H(i) ,
∫ 0

−τ
φi(s)φ′i(s)Tds, (4.25)

where φ′i(s) denotes the derivative of φi(s) with respect to s. Note that the use of
shifted Lagrange polynomials as basis functions allows us to express submatrices G(i)

and H(i) in closed form [62].

The boundary conditions that transform the initial value problem into an initial–
boundary value problem are obtained by substituting Eq. (4.11) into Eq. (4.8), where
y(s, t) is given by Eq. (4.21):

ΦT(0)β̇(t) +
[
ĀΦT(0) + b̄k̄TΦT(−τ)

]
β(t) = 0. (4.26)
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We embed the boundary conditions (Eq. (4.26)) into the ODE system (Eq. (4.23))
using the spectral-tau method:

G̃β̈(t) = H̃β̇(t) + K̃β(t), (4.27)

where G̃, H̃, and K̃ are the matrices obtained upon replacing every iN -th row of
Eq. (4.23) with the i-th row of Eq. (4.26) for i = 1, 2, . . . , P . Finally, we define state
vector ζ(t) ,

[
β̇(t)T,β(t)T

]T
and rewrite Eq. (4.27) as follows:

ζ̇(t) = Zζ(t), (4.28)

where the eigenvalues of Z can be used to study the stability of the system.

Equation (4.28) is a system of ODEs whose response approximates that of the
original system of DDEs (Eq. (4.8)). As N (the number of terms retained in the series
solution, Eq. (4.19)) increases, the eigenvalues of Z converge to the characteristic roots
of Eq. (4.8) [62]. We define the absolute error ε as the value of the characteristic
equation (Eq. (4.10)) upon substitution of the eigenvalues of Z. In this work, we
define the convergence criterion to be ε < 10−4 and, thus, obtain the spectrum of the
original DDE system (Eq. (4.8)) from the ODE system (Eq. (4.28)).

4.3 Problem definition

Consider the second-order system given by Eq. (4.1). Given M, C, K, and τ , we
wish to determine the feedback gains f and g that place all roots in the left half of
the complex plane and create a specified spectral gap between the rightmost root and
the imaginary axis. We find the gains f and g by minimizing the following objective
function:

J =
(
Re{λmax(f ,g)}+ α

)2
, (4.29)

where Re{λmax} is the real part of the rightmost eigenvalue, which is a function of
feedback gains f and g, and α > 0 is the desired spectral gap. If a solution (f∗,g∗)
is obtained where J(f∗,g∗) = 0, then the rightmost root is placed at the desired
location—that is, Re{λmax} = −α. However, if J(f∗,g∗) > 0, then the rightmost root
is not placed at the desired location (i.e., the spectral gap is less than α), but the
precise location of the rightmost root is still obtained and, thus, the stability of the
system can be determined. In practice, it may be necessary to accompany the objective
function (Eq. (4.29)) with constraints on the feedback gains f and g. In Section 4.5, we
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solve a constrained optimization problem whose constraints ensure the gains are within
a physically realizable range. In this work, the objective function given by Eq. (4.29)
is minimized using the PSO technique. PSO is a widely used swarm-intelligence-based
algorithm due to its simplicity, flexibility, and ease of implementation [135].

4.4 Results and discussion

In this section, we demonstrate the strengths and limitations of the MoR approach,
and we employ Galerkin approximations to obtain the characteristic roots correspond-
ing to the solutions obtained using MoR. When the MoR approach does not achieve
the desired spectral gap, we use the proposed optimization-based technique to improve
the solution.

4.4.1 Example 1

Consider the system obtained upon substituting the following matrices into Eq. (4.1)
(from [75]):

M =
1 0

0 1

 , C =
 0.1 −0.1
−0.1 0.1

 , K =
 2 −1
−1 1

 . (4.30)

We use MoR to place the eigenvalues of this system at two location sets: S1 ,

[−1,−1±i,−2] (from [75]) and S2 , [−0.5,−1±i,−2]. It was observed that, for some
delays τ ∈ [0.001, 1.5], the system becomes unstable when the desired location of the
rightmost roots is S1. Using location set S2, spillover of the dominant roots still occurs
but the system remains stable for the entire range of τ . Galerkin approximations are
used to obtain the characteristic roots for this system, where feedback gains f and
g are obtained using MoR. Figure 4.1 illustrates the locations of the three rightmost
roots as delay τ varies, using target pole locations S1 and S2. As shown, spillover is
evident in both cases—that is, for some values of delay τ , the real part of the rightmost
root is not in the desired location. Specifically, for location set S1 (Fig. 4.1(a)), there
is always a pole at −1 as desired but, for some delays τ , there is also a pole to the
right of −1; in the case of location set S2 (Fig. 4.1(b)), there is a pole at −0.5 as
desired but there is also a pole to the right of −0.5 for some values of delay τ . It is
important to note that, in some situations, spillover of the dominant roots will result
in an unstable closed-loop system.
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Figure 4.1: Locations of the four roots of Eq. (4.1) as delay τ varies, using MoR
with location sets (a) S1 and (b) S2. Matrices M, C, and K are given by Eq. (4.30).

We now solve the pole-placement problem for the same system using the proposed
optimization-based strategy. Figure 4.2 illustrates the location of the rightmost root
as delay τ varies, using α = 1 and α = 0.5 in the objective function (Eq. (4.29)). These
values of α correspond to the spectral gaps described by location sets S1 and S2. When
α = 0.5 (Fig. 4.2(b)), Re{λmax} ≈ −0.5 for all delays τ—a substantial improvement
over the performance of the MoR approach. An improvement is also observed when
α = 1 (Fig. 4.2(a)): although spillover still occurs over a similar range of τ , the
deviation from the desired pole location is reduced significantly. Similar results are
observed when using different optimization parameters, such as the relative tolerance
and the number of generations. Because Galerkin approximations are used in the
proposed optimization-based strategy, the stability of the system can be evaluated in
cases of spillover without requiring any additional analysis.
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Figure 4.2: Location of the rightmost root of Eq. (4.1) as delay τ varies, using
the proposed optimization-based strategy with (a) α = 1 and (b) α = 0.5. Matrices
M, C, and K are given by Eq. (4.30). The rightmost roots from Fig. 4.1 are shown

for comparison (dashed lines).

4.4.2 Example 2

We now consider a second-order example given in Ram et al. [75], where M = 1,
C = 0.01, K = 5, and b = 1 in Eq. (4.1):

ẍ(t) + 0.01ẋ(t) + 5x(t) = fẋ(t− τ) + gx(t− τ), (4.31)

where delay τ > 0. We again compare the performance of the MoR approach with
that of the optimization-based strategy, using a location set of S , [−0.5,−47] for
the former and α = 0.5 for the latter. Figure 4.3 illustrates the locations of the two
rightmost roots of Eq. (4.31) as delay τ varies, with feedback gains f and g determined
using the MoR approach and the optimization-based strategy. We observe spillover
using the MoR approach (Fig. 4.3(a)) when τ ∈ [0.093, 0.210] and τ > 0.838, resulting
in instability for delays exceeding 1.134 seconds. By contrast, there is no spillover of
the rightmost root for any value of τ and the system is never unstable when the
optimization-based strategy is used (Fig. 4.3(b)).
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Figure 4.3: Locations of the rightmost roots of Eq. (4.31) as delay τ varies: (a)
the two rightmost roots obtained using the MoR approach, and (b) the rightmost
root obtained using the proposed optimization-based strategy with α = 0.5. The
rightmost root from panel (a) is displayed in panel (b) for comparison (dashed line).

4.5 Experimental validation

We validated the proposed approach experimentally using a 3D hovercraft apparatus
(Quanser Inc., Markham, Ontario, Canada), as shown in Fig. 4.4. The hovercraft is
a decoupled system—that is, its motion about the yaw, pitch, and roll axes is decou-
pled. Our experiments comprised motion about only the yaw axis, which nevertheless
required coordination of all four motors. The experimental apparatus has an inherent
time delay of 2 ms, which is well below the critical delays encountered in this study.
The equation governing the motion of this system about the yaw axis is given as
follows [1]:

θ̈y = −0.1304(f θ̇y(t− τ) + gθy(t− τ)), (4.32)

where θy is the yaw angle. As shown in Fig. 4.5(a), the feedback gains f and g

computed using the MoR approach result in an unstable system for delays exceeding
τ = 131 ms. The optimization-based strategy (with α = 6) increased the amount of
delay that can be tolerated to τ = 194 ms (Fig. 4.5(b)).
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Figure 4.4: 3D hovercraft apparatus used for experimental validation.
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Figure 4.5: Locations of the rightmost roots of Eq. (4.32) as delay τ varies: (a)
the two rightmost roots obtained using the MoR approach, and (b) the rightmost
root obtained using the proposed optimization-based strategy with α = 6. The
rightmost root from panel (a) is displayed in panel (b) for comparison (dashed

line).

To validate these results, we deliberately introduced a delay into the experimental
system and computed feedback gains using the proposed optimization-based strategy
for four values of τ : 131 ms, 140 ms, 150 ms, and 160 ms Table 4.1. The system
response for a delay of τ = 131 ms is shown in Fig. 4.6(a). A square waveform input
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of magnitude ±5° was provided as the reference trajectory. Clearly, the feedback
gains obtained using the optimization-based strategy resulted in a stable system;
gains obtained using the MoR approach result in instability. Figures 4.6(b), 4.7(a)
and 4.7(b) illustrate the system response for the same reference signal when the delay
is increased beyond 131 ms. As shown, the system response remains stable in all cases.
The motor voltages for four values of delay τ : 131 ms, 140 ms, 150 ms, and 160 ms
(corresponding to the yaw angle shown in Figs. 4.6(a), 4.6(b), 4.7(a) and 4.7(b)) are
shown in Figs. 4.8, 4.9, 4.10 and 4.11.
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Figure 4.6: Yaw angle (θy(t)) of 3D hovercraft apparatus with feedback gains
obtained using the proposed optimization-based strategy and delays of (a) 131 ms

and (b) 140 ms. The reference signal is also shown (dashed line).

Table 4.1: Feedback gains obtained using the proposed optimization-based strat-
egy for the 3D hovercraft apparatus.

Feedback gains
Delay τ (ms) f g

131 44.2624 111.8034
140 43.2896 111.8034
150 42.2095 111.8034
160 41.1300 111.8034
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Figure 4.7: Yaw angle (θy(t)) of 3D hovercraft apparatus with feedback gains
obtained using the proposed optimization-based strategy and delays of (a) 150 ms

and (b) 160 ms. The reference signal is also shown (dashed line).
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Figure 4.8: Voltage of (a) motors A and C, and (b) motors B and D in the 3D
hovercraft apparatus with feedback gains obtained using the proposed optimization-

based strategy and a delay of 131 ms.
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Figure 4.9: Voltage of (a) motors A and C, and (b) motors B and D in the 3D
hovercraft apparatus with feedback gains obtained using the proposed optimization-

based strategy and a delay of 140 ms.
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Figure 4.10: Voltage of (a) motors A and C, and (b) motors B and D in the 3D
hovercraft apparatus with feedback gains obtained using the proposed optimization-

based strategy and a delay of 150 ms.
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Figure 4.11: Voltage of (a) motors A and C, and (b) motors B and D in the 3D
hovercraft apparatus with feedback gains obtained using the proposed optimization-

based strategy and a delay of 160 ms.

4.6 Chapter summary

In this chapter, a hybrid method-of-receptances and optimization-based technique has
been proposed to solve the pole-placement problem in TDS. Using examples from the
literature, it has been demonstrated that the MoR approach can place the dominant
root to the right of the specified location, resulting in a deficient spectral gap and
potentially an unstable closed-loop system. An optimization-based strategy is pro-
posed to complement the MoR approach by providing improved feedback gains for
those delays where the MoR solution is unacceptable. The efficacy of this strategy
was demonstrated using examples from the literature. Experimental validation was
performed using a 3D hovercraft apparatus with a deliberately introduced delay. We
demonstrated that the optimization-based strategy was able to stabilize the hover-
craft for delays exceeding those that can be accommodated by the MoR approach.
Thus, the proposed hybrid method-of-receptances and optimization-based technique
expands the range of TDS to which pole placement can be applied.





Chapter 5

Reduced-order modelling of TDS using
Galerkin approximations and eigenvalue
decomposition

In this chapter, an r-dimensional ROM for infinite-dimensional DDEs is developed.
The eigenvalues of the ROM match the r rightmost characteristic roots of the DDE
with a user-specified tolerance of ε. Initially, the DDE is approximated by an N -
dimensional set of ODEs using Galerkin approximations. However, only Nc (< N)
eigenvalues of this N -dimensional model match (with a tolerance of ε) the rightmost
characteristic roots of the DDEs. By performing numerical simulations, an empirical
relationship for Nc is obtained as a function of N and ε for a scalar DDE with multiple
delays. Using EVD, an r (= Nc)-dimensional model is constructed. First, an appro-
priate r is chosen, and then the minimum value of N at which at least r roots converge
is selected. For each of the test cases considered, the time and frequency responses of
the original DDE obtained using direct numerical simulations are compared with the
corresponding r- and N -dimensional systems. By judiciously selecting r, solutions of
the ROM and DDE match closely. Next, an r-dimensional model is developed for
an experimental 3D hovercraft in the presence of delay. The time responses of the
r-dimensional model compared favorably with the experimental results.

This chapter is organized as follows. Section 5.1 gives a detailed account of
developing the ROMs using Galerkin approximations and the EVD method. In Sec-
tion 5.2, first an empirical relationship between Nc, N and ε for a first-order DDE with
multiple delays is obtained, and then ROMs are developed for first-order two-delay
and a third-order single-delay test cases from the literature [66]. The test cases were
subjected to different inputs, and time and frequency responses were obtained which

67
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were compared with those of the original TDS. Experimental validation of the pro-
posed approach is then demonstrated in Section 5.3 using a 3D hovercraft. Section 5.4
summarizes the work.

5.1 Mathematical modelling

For brevity, in this section, the development of the proposed method is shown for only
a first-order single-delay system. The proposed method can be applied to higher-order
DDEs with multiple delays. Consider the following first-order single-delay system:

ẋ(t) = ax(t) + bu(t), (5.1a)

u(t) = k[r(t)− x(t− τ)], (5.1b)

where a and b are coefficients, u(t) is the control signal, k is the feedback gain, r(t)
is the reference input, α(t) is the initial function and delay τ > 0. The characteristic
equation of Eq. (5.1) is obtained as follows:

s− a+ bke−sτ = 0. (5.2)

Equation (5.2) is a quasi-polynomial due to the presence of the transcendental
term e−sτ and therefore has infinitely many roots. We begin by converting the DDE
(Eq. (5.1)) into a PDE with time-dependent boundary conditions. Following [47], we
introduce the following transformation:

y(s, t) = x(t+ s), (5.3)

where y is a function of s ∈ [−τ, 0] and t. From the methodology described by
Vyasarayani et al. [48, 62], the initial value problem (Eq. (5.1)) can be transformed
into an initial-boundary value problem as follows:

∂y(s, t)
∂t

= ∂y(s, t)
∂s

, s ∈ [−τ, 0], (5.4a)

∂y(s, t)
∂t

∣∣∣∣
s=0

= ay(0, t)− bky(−τ, t) + bkr(t). (5.4b)
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Now, assume a series solution for the above PDE:

y(s, t) =
∞∑
i=1

φi(s)ηi(t), (5.5)

where, φi(s) are the basis functions and ηi(t) are the time-dependent coordinates.
For practical and computing purposes, the infinite series is truncated at N terms and
Eq. (5.5) can be rewritten as:

y(s, t) ≈
N∑
i=1

φi(s)ηi(t) = φT (s)η(t), (5.6)

where φ(s) , [φ1(s), φ2(s), · · · , φN(s)]T and η(t) , [η1(t), η2(t), · · · , ηN(t)]T .

Substituting Eq. (5.6) in Eq. (5.4a), we get

φT (s)η̇(t) = φ′(s)Tη(t). (5.7)

Here, φ′(s) denotes the derivative of φ(s) with respect to s. Premultiplying
Eq. (5.7) by φ(s) and integrating over the domain s ∈ [−τ, 0], we obtain the following:

∫ 0

−τ
φ(s)φ(s)Tdsη̇(t) =

∫ 0

−τ
φ(s)φ′(s)Tdsη(t). (5.8)

Equation (5.8) can be rewritten as:

Cη̇(t) = Dη(t), (5.9)

where C and D are of dimension N ×N and are given as follows:

C ,
∫ 0

−τ
φ(s)φ(s)Tds, D ,

∫ 0

−τ
φ(s)φ′(s)Tds. (5.10)

Boundary conditions are derived by substituting Eq. (5.6) in Eq. (5.4b) and is
given as follows:

φT (0)η̇(t) = (aφT (0)− bkφT (−τ))η(t) + bkr(t). (5.11)

The boundary conditions can be incorporated into Eq. (5.9) using various tech-
niques such as spectral least-squares [48], spectral-tau [47, 62, 136] or by embedding
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them directly into the PDE [137]. In the current work, the boundary conditions given
by Eq. (5.11) are incorporated into Eq. (5.9) using the spectral-tau method [62] and
the system of equations can be written as follows:

Mη̇(t) = Kη(t) + Ur(t), (5.12)

where M, K and U are given as follows:

M =
 C̃
φT (0)

 , K =
 D̃
−bkφT (−τ),

 , U =
Z

1

 . (5.13)

The dimensions of matrices M, K and U are N×N , N×N and N×1 respectively.
Here, the dimensions of C̃ and D̃ are (N − 1) × N and these matrices are obtained
by deleting the last row of C and D respectively. Z , 0 with dimension (N − 1)× 1.
Equation (5.12) is a deterministic system of N equations with N unknowns in η(t).

Equation (5.12) can be written as follows:

η̇(t) = Lη(t) + Jr(t), (5.14)

where L = M−1K and J = M−1U and the spectrum of L is defined as:

S = {λi | det.(λI− L) = 0, Re(λ1) > ... > Re(λN)}. (5.15)

In this work, shifted Legendre polynomials are used as basis functions:

φ1(s) = 1, φ2(s) = 1 + 2s
τ
, (5.16a)

φk(s) = (2k − 3)φ2(s)φk−1(s)− (k − 2)φk−2(s)
k − 1 , k ≥ 3. (5.16b)

Shifted Legendre polynomials have shown better convergence properties [62] and
facilitate expressing the entries of matrices C and D, as defined in Eq. (5.10), in closed
form as follows:

Cij =


τ

2i−1 , if i = j

0, otherwise
, (5.17a)

Dij =

2, if i ≤ j and i+ j is odd

0, otherwise
, (5.17b)
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where i = 1, 2, ..., N and j = 1, 2, ..., N . Initial conditions η(0) for Eq. (5.14) can be
obtained as follows:

η(0) = C−1
∫ 0

−τ
φ(s)α(s)ds. (5.18)

By solving Eq. (5.14), the approximate solution of the DDE given by Eq. (5.1)
can be obtained from Eq. (5.6) as follows:

x(t) ≈ x̂(t) = y(0, t) = φT (0)η(t). (5.19)

The system of ODEs given by Eq. (5.14) is the N th-order Galerkin-approximated
system for the original TDS given by Eq. (5.1), hereby referred to as the full-order
Galerkin (FOG) system, and the time response obtained is represented by x̂(t). By
considering r(t) = 0, the eigenvalues of L converge to the characteristic roots of
Eq. (5.2). By increasing the approximating terms, N , of the FOG system, the number
of converged eigenvalues Nc of L increases [62]. With a set error criterion, i.e., by
defining the absolute error to be ε, those eigenvalues of L that result in ε < 10−4 when
substituted in Eq. (5.2) are considered to be converged.

To ease the complexity of computation, a further lower-dimensional model is
built using only the converged eigenvalues of L by applying the EVD method. L
can be diagonalized as L = PDP−1, with D being a diagonal matrix containing
the eigenvalues and P containing the corresponding eigenvectors of L, respectively.
Equation (5.14) can now be rewritten as:

η̇(t) = PDP−1η(t) + Jr(t). (5.20)

Pre-multiplying Eq. (5.20) with P−1 and by defining ζ(t) = P−1η(t) and E =
P−1J, we get:

ζ̇(t) = Dζ(t) + Er(t). (5.21)

Equation (5.21) is a diagonal system that consists of both converged and uncon-
verged eigenvalues of L. Now, we disregard the unconverged eigenvalues and consider
only the r (= Nc) converged eigenvalues of L, which results in an rth-order system as
follows:

ζ̇r(t) = Drζr(t) + Err(t), (5.22)

where Dr = diag.[λ1, λ2, ..., λr], Pr = [p1 p2 ... pr] and pi are the eigenvectors
corresponding to the converged eigenvalues λi. Er is the input vector constructed from
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E considering only the columns of E corresponding to the r converged eigenvalues of D
and is given as Er = [e1 e2 ... er]T . Initial conditions for Eq. (5.22) can be specified as
ζr(0) = [ζ1(0), ζ2(0), ..., ζr(0)]T . An interesting observation is that the FOG system
given by Eq. (5.14) can be approximately reconstructed using Eq. (5.22) by using
the inverse transformation η̄(t) = Prζr(t) and η̄(t) is the reconstructed FOG system.
At the same time, the reconstructed reduced-order solution of the TDS described by
Eq. (5.1) is obtained by:

x̄(t) = φT (0)η̄(t). (5.23)

We refer to the rth-order reduced system as the Galerkin eigenvalue decomposed
(GEVD) system and the time response obtained is represented by x̄(t). Taking the
Laplace transform of Eq. (5.14) and assuming the initial conditions to be zero, we get:

η(s) = [sI− L]−1JR(s). (5.24)

Using the relation X̂(s) = φT (0)η(s) (Eq. (5.19)), in the Laplace domain, we
obtain:

Ŷ (s) = X̂(s)
R(s) = Φ(0)T [sI− L]−1J. (5.25)

Equation (5.25) is the N th-order Galerkin-approximated LTI transfer function for
the original TDS given by Eq. (5.1) and hereby referred to as the full-order transfer
function (FOTF), and the frequency response obtained is represented by Ŷ (s). Taking
the Laplace transform of Eq. (5.22) and assuming the initial conditions to be zero, we
get:

ζr(s) = [sI−Dr]−1ErR(s). (5.26)

Premultiplying Eq. (5.26) with Pr and using the inverse transformation, Prζr(s) =
η̄(s), in the Laplace domain, we get:

η̄(s) = Pr[sI−Dr]−1ErR(s). (5.27)

Premultiplying Eq. (5.27) with Φ(0)T and using the reconstruction relation,
X̄(s) = φT (0)η̄(s) (Eq. (5.23)), in the Laplace domain, we get:

Ȳ (s) = X̄(s)
R(s) = Φ(0)TPr[sI−Dr]−1Er. (5.28)
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We thus obtain an rth-order LTI transfer function, which we refer to as the
Galerkin eigenvalue decomposed transfer function (GETF), and the frequency re-
sponse obtained is represented by Ȳ (s). The poles of the transfer function given by
Eq. (5.28) match the r (= Nc) rightmost poles of the TDS with a tolerance of ε.
However, not all N poles of the transfer function given by Eq. (5.25) converge to the
poles of the TDS. It is only the Nc (< N) poles of the transfer function given by
Eq. (5.25) that converge to the poles of the TDS within a tolerance of ε.

For the examples dealt with in this chapter, it was observed that the time taken
for MATLAB to compute the eigenvalues and eigenvectors of L took less than 1 second.
Now, as the dimension of L increases, the computational time required to calculate the
eigenvalues and eigenvectors also increases. For systems of large dimension (N > 103),
depending on the desired order of the ROM, only the r rightmost eigenvalues Dr

and eigenvectors Pr of L must be computed. Therefore, one need not solve the
full eigenvalue problem for L; instead, one can use an implicitly restarted Arnoldi
algorithm [138] and compute only the reduced eigenspectrum. For large systems, this
will help in quickly developing and analyzing the ROMs. Alternatively, one can use
the proper orthogonal decomposition or dynamic mode decomposition to obtain the
approximate reduced basis Pr for the problem [139].

5.2 Numerical results

In this section, we first arrive at an empirical relationship between Nc, N and ε for
a first-order DDE with multiple delays. Then, we compare the characteristic roots,
time and frequency responses of the ROMs with those of the DDE.

5.2.1 Empirical Relationship between Nc, N and ε

To obtain a relationship between Nc, N and ε, the following scalar DDE with multiple
delays is considered:

ẋ(t) = ax(t) +
m∑
q=1

bqx(t− τq). (5.29)
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Table 5.1: Average Nc from Monte Carlo simulations of Eq. (5.29)

HHH
HHH

HH
N

ε 10−6 10−5 10−4 10−3

25 6 7 7 8
50 19 20 21 22
75 32 33 35 36
100 46 47 49 51
125 60 61 63 65
150 74 76 78 80

For various test cases, using the procedure described in Section 5.1, the charac-
teristic roots are obtained for the DDE given by Eq. (5.29). Average Nc is obtained
by performing 10,000 Monte Carlo simulations with parameters taken from uniform
distributions for Eq. (5.29) with m = 25 (delays), a ∈ [−10, 10], bq ∈ [−10, 50] and
τq ∈ [0.1, 10.1]. By varying N and ε in the intervals [25, 150] and [10−6, 10−3] re-
spectively, the empirical relationship for Nc is obtained. Table 5.1 shows average Nc

(rounded to nearest integer) for each value of N and ε. Figures 5.1(a) and 5.1(b) show
the variation of Nc with respect to ε and N respectively. It can clearly be seen from
Fig. 5.1 that for a fixed N , Nc increases as ε increases and for a fixed ε, Nc increases
as N increases.

(a) Variation of Nc with ε (b) Variation of Nc with N

10-6 10-5 10-4 10-3
0

20

40

60

80

0 50 100 150
0

20

40

60

80

Figure 5.1: Variation of Nc with ε and N of Eq. (5.29).
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From the above data, an empirical relationship is obtained for Nc given N and
ε, and is given as follows:

Nc = (lN −m)εn, (5.30)

where l = 0.6004, m = 3.1293 and n = 0.0017ε(−0.231).

5.2.2 Numerical Examples

Example 1: Consider the following first-order two-delay system:

ẋ+ ax(t) + b1x(t− τ1) + b2x(t− τ2) = f(t), τ > 0, (5.31)

where a = 1, b1 = b2 = 1, τ1 = 1 and τ2 = 2.
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Figure 5.2: Roots of Eq. (5.31) using QPmR and spectral-tau methods.

As described earlier, depending on the required order r of the ROM, the minimum
required N is computed. For the system described by Eq. (5.31) and for r = 6, we
found that N must be at least 20. With N = 20 in the series solution (Eq. (5.6)),
Eq. (5.31) is converted into a system of ODEs of the form given by Eq. (5.14), where
L ∈ R20×20. Figure 5.2 shows the characteristic roots of Eq. (5.31) obtained using the
QPmR method [91], eigenvalues of the 20th-order FOG system given by Eq. (5.14), and
the 6th-order GEVD system given by Eq. (5.22). It is to be noted that in Fig. 5.2, only
10 rightmost roots of the TDS obtained using QPmR and 10 rightmost eigenvalues of
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the FOG system are shown. For some of the roots, though, it appears from Fig. 5.2
that the roots obtained using QPmR are close to the eigenvalues of the FOG system
but only the 6 rightmost roots converged with a tolerance of ε < 10−4. Due to the
inherent property of the spectral methods, the convergence starts from the rightmost
root and it can clearly be seen from Fig. 5.2 that for N = 20, Nc = 6 roots converged.

Next, the time response for the TDS given by Eq. (5.31) using 20th-order FOG
system (Eq. (5.14)) and 6th-order GEVD system (Eq. (5.22)) models are obtained. The
time response for the TDS is obtained using direct numerical simulation performed
using the dde23 MATLAB solver. The GEVD system is constructed from the r (= 6)
converged rightmost eigenvalues of the FOG system. Figure 5.3(a) shows the system
responses obtained for Eq. (5.31) and the 6th-order GEVD system. It can clearly be
seen in Fig. 5.3(a) that, for a forcing function of the form f(t) = sin(t), the time
responses of the TDS and the 6th-order GEVD system are identical.

(a) System response (b) Error plot
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Figure 5.3: Time response and error plot of Eq. (5.31) for f(t) = sin(t).

For a particular state, errors are defined as ξ1(t) = x(t) − x̄(t) and ξ2(t) =
x(t) − x̂(t). The error plot for Eq. (5.31) is shown in Fig. 5.3(b). The maximum of
|ξ1(t)| and |ξ2(t)| are on the order of 10−2 and 10−3, respectively. It can be inferred
that the 20th-order FOG system and 6th-order GEVD system effectively capture the
stability as well as the time response characteristics of the original infinite-dimensional
DDE system given by Eq. (5.31).

Next, we compare the frequency responses of the ROMs with the TDS given by
Eq. (5.31). The 6th-order GETF of the TDS can be obtained using Eq. (5.28) as
follows:

Ȳ (s) = n(s)
d(s) , (5.32)
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where n(s) = 0.6821s5 + 5.487s4 + 52.87s3 + 203.7s2 + 603.2s + 625.6 and d(s) =
1.335s6 + 4.729s5 + 97.43s4 + 175.2s3 + 1258s2 + 454.8s+ 2101.

(a) Frequency response (b) Error plot
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Figure 5.4: Frequency response and error plot of Eq. (5.31).

Figure 5.4(a) shows the frequency response of the TDS and 6th-order GETF.
For a particular transfer function, the errors in the frequency responses are defined
as ξf1 = Y (s) − Ȳ (s) and ξf2 = Y (s) − Ŷ (s). The error plot is shown in Fig. 5.4(b).
It can be seen that the 6th-order GETF reveals an approximation error smaller than
−30 dB for all frequencies, whereas the 20th-order FOTF reveals an approximation
error smaller than −50 dB for all frequencies.

(a) Frequency response (b) Error plot
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Figure 5.5: Frequency response and error plot of Eq. (5.31) for different degrees
of GETF.
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The denominator of Eq. (5.32) can be arranged as follows:

d(s) = (s2+0.1417s+2.0055)×(s2+1.6866s+14.8857)×(s2+1.7140s+52.7174) (5.33)

Due to the quadratic factors with complex roots, the frequency response of
Ȳ (s) will have three resonant peaks each near the natural/corner frequency (ωn)
of the terms in Eq. (5.33). The natural/corner frequencies can be obtained from the
quadratic factors as ωn1 = 1.4161 rad/s, ωn2 = 3.8581 rad/s and ωn3 = 7.2606 rad/s.
Due to the desired property of dominant eigenvalue convergence of the proposed
methodology, the ROM GETF captures the dominant eigenvalues and the natural
frequencies of the TDS. It can be seen from Fig. 5.4 that the resonant peaks of the
6th-order GETF are in close agreement with those of the TDS. Moreover, the sharp-
ness of the peaks governed by the damping ratio ζ are also in close agreement with the
response of the TDS. Another important observation that can be made from Fig. 5.4
is that the frequency response of the GETF closely matches that of the TDS up to
the largest natural frequency contained in the GETF. We denote the largest natural
frequency at which the divergence occurs as the critical frequency (fc). Next, the
effect of r on fc is studied. For this, r is increased and the corresponding N is ob-
tained for different values of r. The various values of r considered are 22, 34 and 50.
Figure 5.5(a) shows the frequency response of GETF and TDS for different orders
(r) of GETF. It can clearly be seen that increasing the order (r) of GETF increases
fc (Fig. 5.5(a)) and subsequently decreases the ξf1 (Fig. 5.5(b)). In other words, if
we include more natural frequencies of the TDS in modelling the GETF, a larger
frequency operating range of the GETF can be obtained. Therefore, if the operating
frequency of the GETF is within fc, the obtained GETF can be used; otherwise, the
order of the GETF can be increased to contain higher natural frequencies of the TDS.
The choice of the order of the GETF system is therefore a parameter to be decided
depending upon the user specifications.

Modelling a system usually involves a tradeoff between accuracy and complexity.
A higher-order model might reveal less error but subsequently increases the complexity
of the model leading to a higher implementation cost. However, a lower-order model
is attractive for controller design [140].

Example 2: Consider the following third-order system [66]:

ẋ = Ax + Bu, (5.34a)

u = KT [r(t)− x(t− τ)], τ > 0, (5.34b)
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where τ = 3 and matrices A, B and K are defined as follows:

A =


−0.08 −0.03 0.2

0.2 −0.04 −0.005
−0.06 0.2 −0.07

 , B =


−0.1
−0.2
0.1

 , K =


0.7190
1.0400
1.2900

 . (5.35)

With the above defined A, B, K, τ and considering r = 8, the minimum cor-
responding N obtained is 18. Performing the mathematical process as described in
Section 5.1, for N = 18, we get L ∈ R54×54. Characteristic roots of Eq. (5.34) ob-
tained using QPmR, eigenvalues of the 54th-order FOG system and 8th-order GEVD
system are shown in Fig. 5.6. Note that, in Fig. 5.6, only the 12 rightmost roots of
the TDS obtained using QPmR and the 14 rightmost eigenvalues of the FOG system
are shown. For some of the roots, though, it appears from Fig. 5.6 that the roots
obtained using QPmR are close to the eigenvalues of the FOG system, but only the
8 rightmost roots converged with a tolerance of ε < 10−4.
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Figure 5.6: Roots of Eq. (5.34) using QPmR and spectral-tau methods.

To validate the proposed methodology, Eq. (5.34) is subjected to two different
types of sinusoidal inputs of the form r(t) = [f(t), 0, 0]T . First is a pure sinusoidal in-
put with f(t) = 10 sin(t); second is a combination of multi-frequency sinusoidal wave-
form with non-commensurate frequencies, i.e, f(t) = 7 sin(0.1266t) + 10 sin(2.3041t).
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Figure 5.7 shows the response of the system represented by Eq. (5.34) for a sinu-
soidal input of the form r(t) = [f(t), 0, 0]T with f(t) = 10 sin(t). Figures 5.7[(a) – (c)]
show the response of x1, x2 and x3 respectively. For f(t) = 10 sin(t), a close agreement
in the time responses of the TDS (Eq. (5.34)) obtained by direct numerical simulation
and the 8th-order GEVD system (Eq. (5.22)) and can be observed in Fig. 5.7. For
f(t) = 10 sin(t), Figs. 5.7[(d) – (f)] show the error in the response of x1, x2 and x3

respectively obtained using the 54th-order FOG and 8th-order GEVD systems.

Figures 5.7[(d) – (f)] are the error plots for the system responses obtained for
the TDS given by Eq. (5.34), 54th-order FOG and 8th-order GEVD systems. For
all the state responses, the order of the maximum of |ξ1(t)| and |ξ2(t)| are 10−2 and
10−3, respectively. It can be interpreted from Figs. 5.7[(a) – (f)] that the stability
(characteristic roots) as well as the time response characteristics of the original infinite-
dimensional TDS (Eq. (5.34)) are effectively captured by the 54th-order FOG and the
8th-order GEVD systems (constructed from r eigenvalues).

Now, f(t) = 7 sin(0.1266t) + 10 sin(2.3041t) is considered. From Figs. 5.8[(a) –
(c)], it can be inferred that the time response of the TDS (Eq. (5.34)) obtained by
direct numerical simulation and the 8th-order GEVD system (Eq. (5.22)) for f(t) =
7 sin(0.1266t) + 10 sin(2.3041t) are once again in close agreement. The error plots
with f(t) = 7 sin(0.1266t) + 10 sin(2.3041t) obtained for Eq. (5.34) are presented in
Figs. 5.8[(d) – (f)]. The order of the maximum of |ξ1(t)| and |ξ2(t)| are 10−1 and 10−2,
respectively, for all state responses.
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Figure 5.7: System responses and error plots of Eq. (5.34) with r(t) =
[10 sin(t), 0, 0]T .
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Figure 5.8: System responses and error plots of Eq. (5.34) for r(t) =
[7 sin(0.1266t) + 10 sin(2.3041t), 0, 0]T .
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(f) Ȳ1→3

10-2 10-1 100 101 102
-250

-200

-150

-100

-50

0

Figure 5.9: Frequency response and error plots of GETFs given in Eqs. (5.36a
– 5.36c).
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Figure 5.10: Frequency response plots and the associated error plots for different
degrees of GETFs.

Next, the frequency responses of the ROMs are compared with that of the TDS
given by Eq. (5.34). The transfer functions of each output channel with respect to
a single input f(t) are obtained. The notations Y (s)i→o, Ŷ (s)i→o and Ȳ (s)i→o are
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the transfer functions from input f(t) to output channel o. The GETFs are given as
follows:

Ȳ (s)1→1 = n(s)1→1

d(s) , (5.36a)

Ȳ (s)1→2 = n(s)1→2

d(s) , (5.36b)

Ȳ (s)1→3 = n(s)1→3

d(s) . (5.36c)

where

n(s)1→1 = 0.0628s7 + 0.507s6 + 3.011s5 + 9.349s4 + 17.56s3 + 13.54s2 − 1.03s+ 1.134,

n(s)1→2 = 0.13059s7 + 1.087s6 + 6.616s5 + 21.55s4 + 43.63s3 + 41.62s2 + 8.143s+ 0.1451,

n(s)1→3 = −0.06238s7 − 0.4983s6 − 2.947s5 − 8.993s4 − 16.29s3 − 10.64s2 + 4.841s+ 1.028,

d(s) = 1.59s8 + 8.122s7 + 60.35s6 + 143.4s5 + 345.5s4 + 240.5s3 + 60.45s2 + 14.86s+ 1.695.

Figures 5.9[(a) – (c)] show the frequency response of the TDS given by Eq. (5.34)
and the 8th-order GETFs obtained in Eqs. 5.36a – 5.36c. The error plots associated
with the frequency responses in Figs. 5.9[(a) – (c)] are given in Figs. 5.9[(d) – (f)]. It
can be seen that the 54th-order FOTF and the 8th-order GETF reveal an approxima-
tion error of less than −72 dB and −43 dB, respectively, for all frequencies.

As mentioned in Section 5.1, to increase r, N should be increased. Based on the
user requirements, r can be chosen and the corresponding N can be obtained. By
increasing r, the order of the GETF is increased and the frequency response for the
same is shown in Figs. 5.10[(a) – (c)] along with that of the TDS. By increasing r, it
can be seen in Figs. 5.10[(a) – (c)] that more natural frequencies of the system can
be included in the GETF depending upon the requirement. Figures 5.10[(d) – (f)]
shows the corresponding error plot. From Figs. 5.10[(a) – (c)], it can be inferred that,
to increase the operating frequency range of the GETF, r should be increased and,
correspondingly, N should be increased. Therefore, it can be said that the proposed
methodology of ROM satisfactorily captures the time as well as frequency domain
characteristics of the TDS.
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5.3 Experimental validation

The time responses obtained using the proposed GEVD-based ROM methodology are
experimentally validated using a 3D hovercraft, manufactured by Quanser Inc.

Example: 3D hovercraft:

The experimental setup of the 3D hovercraft is shown in Fig. 5.11. The setup
consists of a quadrotor mounted on a 3-degree-of-freedom pivot joint. The pivot joint
allows the hovercraft to rotate freely about the yaw, pitch and roll axes. The 3D
hovercraft is a fully actuated system, which means that the angular movements about
the yaw, pitch and roll axes can be controlled with the voltage input being given to
the motors. The resolution of the encoder is 0.0439°, and the setup can be directly
connected to a computer with the USB interface.

Figure 5.11: 3D hovercraft apparatus, manufactured by Quanser Inc. [1].

The state-space model of the 3D hovercraft with a delay in the system is given
by Eq. (5.38):

ẋ(t) = Ax(t) + Bu(t), (5.38a)

u(t) = KT [r(t)− x(t− τ)], τ > 0, (5.38b)
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where x , [θy, θp, θr, θ̇y, θ̇p, θ̇r]T , u(t) = V (t), θy,θp and θr are the yaw, pitch and roll
angular positions respectively. The A, B and K matrices are given as follows:

A =



0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


, B =



0 0 0 0
0 0 0 0
0 0 0 0
−b1 −b1 b1 b1

b2 −b2 0 0
0 0 b2 −b2


, K =



−k1 −k1 k1 k1

k2 −k2 0 0
0 0 k2 −k2

−k3 −k3 k3 k3

k4 −k4 0 0
0 0 k4 −k4


,

(5.39)
where b1 = 0.0326, b2 = 0.4235, k1 = 111.8034, k2 = 132.2876, k3 = 41.4128 and
k4 = 36.2268. Considering r = 12, we require N = 15.

For any delay (τ), with the given A, B, K and considering N = 15 in the series
solution (Eq. (5.6)), Eq. (5.38) is converted into a system of ODEs of the form given by
Eq. (5.14), where L ∈ R90×90. Figure 5.12 shows the eigenvalues of Eq. (5.38) obtained
using QPmR [91], eigenvalues of the 90th-order FOG system given by Eq. (5.14) and
the 12th-order GEVD system given by Eq. (5.22) for τ = 20 ms and τ = 25 ms,
respectively. For both τ = 20 ms and τ = 25 ms, the number of rightmost roots of
the TDS obtained using QPmR and the rightmost eigenvalues of the FOG system
shown in Figs. 5.12(a) and 5.12(b) are 17 and 15, respectively. For some of the roots,
though, it appears from Fig. 5.12 that the roots obtained using QPmR are close to
the eigenvalues of the FOG system, but in fact, only 6 rightmost roots converged
with a tolerance of ε < 10−4. For both τ = 20 ms and τ = 25 ms, for r = 12, the
corresponding N = 15.

(a) τ = 20 ms (b) τ = 25 ms
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Figure 5.12: Roots of Eq. (5.38) using QPmR and spectral methods.
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Experiments were performed for different kinds of reference trajectories, r(t),
with τ = 20 ms and τ = 25 ms. The reference signal is considered as r(t) =
[f(t), f(t), f(t), 0, 0, 0]T , where the first was a sinusoidal input of the form
f(t) = 0.2 sin(2t), second was of the form f(t) = 0.2 sin(2t) + 0.1 sin(πt), third was a
square wave input of the form f(t) = 0.2(sgn(sin(0.25t))) and fourth was of the form
f(t) = 0.2(sgn(sin(0.25t))) + 0.1(sgn(sin(1/πt))).

First the experiments were performed with f(t) = 0.2 sin(2t) and with τ = 20 ms.
Figures 5.13[(a) – (c)] show θy(t), θp(t) and θr(t) obtained using the 12th order GEVD
system and experimentally. It can be observed that for a sinusoidal input of the form
f(t) = 0.2 sin(2t), the predicted trajectories of θy(t), θp(t) and θr(t) using the 12th

order GEVD system match closely with that of the experimentally obtained θy(t),
θp(t) and θr(t). Next, for the same delay i.e., τ = 20 ms, experiments were performed
with a combination of sinusoidal waveforms with non-commensurate frequencies of the
form f(t) = 0.2 sin(2t) + 0.1 sin(πt). Figures 5.14[(a) – (c)] show θy(t), θp(t) and θr(t)
obtained using the 12th order GEVD system and experimentally. It can be observed
that for a combination of sinusoidal waveforms with non-commensurate frequencies of
the form f(t) = 0.2 sin(2t) + 0.1 sin(πt), the predicted trajectories of θy(t), θp(t) and
θr(t) using the 12th order GEVD system match closely with that of the experimentally
obtained θy(t), θp(t) and θr(t).

Next, delay in the system is increased to τ = 25 ms. With τ = 25 ms, two sets of
experiments were performed with first a sinusoidal input of the form f(t) = 0.2 sin(2t)
and then a combination of sinusoidal waveforms with non-commensurate frequencies
of the form f(t) = 0.2 sin(2t) + 0.1 sin(πt). Figures 5.13[(d) – (f)] show the 12th order
GEVD system predicted and the experimentally obtained trajectories for θy(t), θp(t)
and θr(t) for f(t) = 0.2 sin(2t) for τ = 25 ms. Figures 5.14[(d) – (f)] show the 12th

order GEVD system predicted and the experimentally obtained trajectories for θy(t),
θp(t) and θr(t) for f(t) = 0.2 sin(2t) + 0.1 sin(πt) for τ = 25 ms.

To validate the proposed reduced order model for different kinds of inputs, two
different square waveforms were considered for both the delays i.e., τ = 20 ms
and τ = 25 ms. Figures 5.15[(a) – (c)] show θy(t), θp(t) and θr(t) obtained us-
ing the 12th order GEVD system and experimentally for the square waveform of
the form f(t) = 0.2(sgn(sin(0.25t))) for a delay of τ = 20 ms. It can clearly be
seen from Figures 5.15[(a) – (c)] that the predicted trajectories of θy(t), θp(t) and
θr(t) using the 12th order GEVD system match closely with that of the experi-
mentally obtained θy(t), θp(t) and θr(t). Figures 5.16[(a) – (c)] show θy(t), θp(t)
and θr(t) obtained using the 12th order GEVD system and experimentally for a
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combination of square waveforms with noncommensurate frequencies of the form
f(t) = 0.2(sgn(sin(0.25t))) + 0.1(sgn(sin(1/πt))) with τ = 20 ms. It can once again
be seen that the trajectories of θy(t), θp(t) and θr(t) predicted using the 12th order
GEVD system are in close agreeemtn with the same obtained experimentally.

Now, the delay is increased to τ = 25 ms. With τ = 25 ms, two sets of ex-
periments were performed with first a square waveform input of the form f(t) =
0.2(sgn(sin(0.25t))) and then a combination of square waveforms with noncommen-
surate frequencies of the form f(t) = 0.2(sgn(sin(0.25t))) + 0.1(sgn(sin(1/πt))). Fig-
ures 5.16[(d) – (f)] show the 12th order GEVD system predicted and the experimen-
tally obtained trajectories for θy(t), θp(t) and θr(t) for f(t) = 0.2(sgn(sin(0.25t)))
for τ = 25 ms. Figures 5.16[(d) – (f)] show the 12th order GEVD system pre-
dicted and the experimentally obtained trajectories for θy(t), θp(t) and θr(t) for
f(t) = 0.2(sgn(sin(0.25t))) + 0.1(sgn(sin(1/πt))) for τ = 25 ms.

One of the most important observations that can be inferred from Figs. 5.13
– 5.16 is that, even as the delay in the system is increased, the approximated system
(i.e., the 12th-order GEVD system) appears to capture the trajectories of θy(t), θp(t)
and θr(t) and the dynamics of the original system closely. Also, it should be noted
that the 12th-order GEVD system predicts very closely the trajectories of θy(t), θp(t)
and θr(t) even for single and multi-frequency sinusoidal as well as square waveform
inputs to the original system.
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Figure 5.13: Trajectories for f(t) = 0.2 sin(2t) and [(a),(b),(c)]: τ = 20ms, and
[(d),(e),(f)]: τ = 25ms.
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Figure 5.14: Trajectories for f(t) = 0.2 sin(2t) + 0.1 sin(πt) and [(a),(b),(c)]:
τ = 20ms, and [(d),(e),(f)]: τ = 25ms.
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Figure 5.15: Trajectories for f(t) = 0.2(sgn(sin(0.25t))) and [(a),(b),(c)]: τ =
20ms, and [(d),(e),(f)]: τ = 25ms.
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Figure 5.16: Trajectories for f(t) = 0.2(sgn(sin(0.25t)))+0.1(sgn(sin(1/πt))) and
[(a),(b),(c)]: τ = 20ms, and [(d),(e),(f)]: τ = 25ms.



94
Chapter 5 Reduced-order modelling of TDS using Galerkin approximations and

eigenvalue decomposition

5.4 Chapter summary

In this chapter, we developed a method to obtain the ROMs for TDS using Galerkin
approximations and EVD. An empirical relationship for Nc as a function of N and ε is
obtained for a first-order DDE with 25 delays. The FOG as well as the GEVD systems
capture the behavior of the TDS very well. Time and frequency responses obtained
using the proposed reduced-order modelling technique are in very close agreement with
the original TDS models considered in this work. The effectiveness of the proposed
reduced-order modelling technique was demonstrated by performing experiments on
a 3D–hovercraft. The results obtained using the proposed reduced-order modelling
technique were in close agreement with the results obtained experimentally. With
the proposed reduced-order modelling approach, a lower-dimensional model can be
developed that satisfactorily retains the characteristics of the original TDS.



Chapter 6

Conclusions and future work

Pole placement and reduced-order modelling of TDS using the Galerkin approxima-
tions has been investigated in this thesis. Based on the results presented in Chapters
2–5, the following important conclusions are made:

• Spectral methods, such as the Galerkin approximation, have superior conver-
gence properties and are hence favourable for obtaining the spectrum of DDEs.

• The “second-order Galerkin” formulation produces spurious roots at the origin
that are not the characteristic roots of the DDE. These spurious roots do not
influence stability studies but nevertheless add to the computation time and
complexity of the pole placement and reduced-order modelling of TDS.

• A refined mathematical model called the “first-order Galerkin” formulation
avoids spurious roots, thus eliminating the need for additional computation to
determine the location of the rightmost root.

• A simpler mathematical derivation, called the pseudoinverse-based Galerkin ap-
proximation method, for obtaining the spectrum of DDEs was developed. It
was observed that, on average, more roots converge using the proposed Galerkin
method than the pseudospectral differencing method.

• A Galerkin approximation-based optimization framework was proposed for the
pole placement of DDEs with constant/discrete delays, which was then success-
fully validated using numerical examples from the literature.

• A rotary inverted pendulum system with inherent and deliberate state feedback
delays was used to experimentally validate the proposed Galerkin approximation-
based optimization framework for the pole placement of TDS.

95
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• Using a simple optimization strategy for the pole placement of DDEs, the time-
delay stability margin is increased.

• The optimization-based pole-placement technique gives the precise information
about the rightmost root of the DDE; however, the rightmost root is not always
placed at the desired location.

• A hybrid pole-placement technique was developed by combining the strengths of
the method of receptances (MoR) approach with an optimization-based strategy
to address the limitations of the MoR.

• The proposed hybrid MoR and optimization-based technique expands the range
of TDS to which pole-placement technique can be applied.

• The proposed hybrid pole-placement technique was experimentally validated
using a 3D hovercraft apparatus with a deliberately introduced delay.

• The spectrum of DDEs obtained using Galerkin approximations contain the
information of both the converged and unconverged roots.

• A new method to obtain reduced-order models for TDS using Galerkin approxi-
mations and EVD was developed that eliminates the information of unconverged
roots obtained using the Galerkin approximations.

• The effectiveness of the proposed reduced-order modelling technique was demon-
strated by comparing the results of the reduced-order model with experiments
on a 3D hovercraft apparatus.

6.1 Open problems and future work

This thesis has touched upon some of the challenges associated with the pole place-
ment and reduced-order modelling of TDS. Based on these studies, a few open prob-
lems that are yet to be addressed are the following:

• Investigating the stability of linear DDEs using Floquet theory and, in particu-
lar, the presence of spurious Floquet multipliers.

• Reducing the computation time to obtain stability charts using numerical tech-
niques, such as Galerkin approximations, by combining them with analytical
tools.
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• Experimental validation of Galerkin approximations for TDS with periodic co-
efficients and/or delays.

• Extension of the proposed pole-placement technique to incorporate systems with
the time-periodic coefficients and/or delays.

• Constrained optimization problem for pole placement that handles limits on
controller gains, balances the increase in the stability margin with minimizing
the control effort, and/or limits actuator energy usage.

• Extension of the proposed pole-placement technique to obtain time-varying feed-
back gain parameters.

• Extension of the method of receptances to handle higher-order systems, time-
varying delays, and constraints imposed by system parameters, actuator satu-
ration, and limits on feedback gains.

• Study the effects of time-varying delays, and constraints imposed by system
parameters, actuator saturation, and limits on feedback gains on the system
stability by incorporating them into the optimization-based technique.

• Investigation of the effects of delays in the output equations.

• Extension of the proposed optimization strategy to include the frequency com-
ponent of the spectrum of the DDEs for control.

• Further the experimental validation of the various control strategies for the
systems governed by DDEs.
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