MASSA DE RAÍZES DE FORRAGEIRAS SUBMETIDAS A DOSES DE FÓSFORO E NITROGÊNIO EM NEOSSOLO QUARTZARÊNICO ÓRTICO DA REGIÃO DE CAMPO GRANDE-MS

Emizael Menezes de Almeida¹, Denise Baptaglin Montagner², Alexandre Romeiro de Araujo², Manuel Claudio Motta Macedo², Daniel Paulo Ferreira³. Gelson dos Santos Difante¹. Claudnei Scariot⁴

- (1) Universidade Federal de Mato Grosso do Sul UFMS.
- (2) Empresa Brasileira de Pesquisa Agropecuária Embrapa Gado de Corte.
- (3) Universidade Federal de Mato Grosso UFMT.
- (4) Universidade Católica Dom Bosco UCDB.

ROOTS MASS OF FORAGE SUBMITTED TO PHOSPHORUS AND NITROGEN DOSES IN TYPIC QUARTZIPSAMMENTS SOIL ON CAMPO GRANDE-MS REGION

Introdução

O gênero *Brachiaria* tem fornecido importantes espécies forrageiras para as regiões tropicais. No mercado há várias espécies e cultivares do gênero, com o intuito de atenter diferentes sistemas de produção, com níveis tecnológicos distintos. No entanto, a proposição de estratégias de manejo da fertilidade do solo para garantir o fornecimento de nutrientes em quantidades e proporções equilibradas, aliada ao manejo do pastejo, promovendo melhorias no processo produtivo das pastagens, é uma necessidade premente (Costa et al., 2010).

Os estudos com sistema radicular de plantas forrageiras são importantes para a compreensão das inter-relações entre os solos, plantas e outros organismos vivos (Cecato et al., 2004). As raízes constituem um sistema bastante complexo, responsável pelo suprimento de água e de nutrientes (Teruel et al., 2000).

O desenvolvimento do sistema radicular das plantas está relacionado

com os teores de nutrientes no solo. Um sistema radicular bem desenvolvido garante boa formação e sustentação da parte aérea (Batista; Monteiro, 2006).

O fósforo e o nitrogênio são nutrientes indispensáveis no estabelecimento e manutenção da produção de gramíneas forrageiras (Rodrigues et al., 2012). O fósforo é crucial no metabolismo das plantas, participa da transferência de energia na célula, na respiração e na fotossíntese. É um componente estrutural dos ácidos nucléicos de genes e cromossomos, assim como de muitas coenzimas, fosfoproteínas e fosfolipídeos. O suprimento adequado de fósforo é essencial desde os estádios iniciais de crescimento da planta (Grant et al., 2001).

O nitrogênio exerce várias funções nas plantas e é constituinte de proteínas e enzimas, clorofila e ácidos nucléicos, além disso, desempenha papel fundamental na síntese de hormônios (Taiz; Zeiger, 2013). O nitrogênio estimula o crescimento das raízes, envolvendo os mecanismos de acúmulo de carboidratos (Garnett et al., 2009). Deste modo, objetivou-se com este estudo avaliar a massa seca de raízes de nove forrageiras (*Brachiaria sp*), submetidas a duas doses de fósforo (P) e de nitrogênio (N).

Materiais e Métodos

O experimento foi realizado em casa de vegetação na Embrapa Gado de Corte, em Campo Grande – MS, dentre as coordenadas 20° 45" de latitude sul e 54° 72" de latitude oeste, no período de maio a outubro de 2018, com duração de 165 dias.

O solo utilizado foi o Neossolo Quartzarênico órtico típico, coletado na bacia do córrego Guariroba, em Campo Grande-MS, na camada de 0-20 cm, sob pastagem extensiva e sem adubações de manutenção. As características químicas do solo antes do início do experimento foram: pH em CaCl₂: 4,34; Ca: 0,19 cmol_c dm⁻³; Mg: 0,12 cmol_c dm⁻³; Al: 0,40 cmol_c dm⁻³; H+Al: 3,20 cmol_c dm⁻³; K: 0,03 cmol_c dm⁻³; P: 4.96 mg dm⁻³; CTC: 3,54 cmol_c dm⁻³; V: 9,60 %; M.O: 1,29 %.

Antes da semeadura o solo recebeu a aplicação de 1.250 mg dm⁻³ de calcário; 25 mg dm⁻³ de potássio (K); 40 mg dm⁻³ de enxofre (S); 4,0 mg dm⁻³ de zinco (Zn); 4,0 mg dm⁻³ de cobre (Cu); 2,5 mg dm⁻³ de boro (B) e 0,25 mg dm⁻³ de molibdênio (Mo), utilizando como fontes calcário dolomítico, cloreto de potássio, enxofre elementas, sulfato de zinco, sulfato de cobre, borato de sódio e molibdato de amônio, respectivamente. Após receber a adubação, o solo foi incubado por 40 dias com umidade próxima à capacidade de campo para reação do calcário.

O delineamento experimental foi inteiramente casualizado em esquema fatorial 9 x 2 x 2, sendo nove forrageiras (*Brachiaria sp*) (Decumbens, BRS Tupi, Humidícola, Ruziziensis, Marandu, BRS Piatã, Xaraés, BRS Paiaguás e BRS Ipyporã), duas doses de P, alta (52,32 mg dm⁻³) e baixa (4,36 mg dm⁻³) e duas doses de N, alta (450 mg dm⁻³) e baixa (150 mg dm⁻³), com três repetições. Cada unidade experimental foi constituída por um vaso, contendo 3,0 dm³ de solo.

A semeadura foi realizada no dia 10 de maio de 2018, sendo utilizadas 50 sementes de cada forrageira por vaso. No 14° dia após o plantio foi realizado o desbaste seletivo deixando seis plantas por vaso. A irrigação foi feita sempre que necessário.

Na fase incial (fase de estabelecimento) foram realizados dois cortes. O primeiro corte foi realizado aos 50 dias após a semeadura, e o segundo, 28 dias após o primeiro corte. O intervalo médio entre os cortes 3°, 4° e 5° foi 29 dias. A altura de corte estabelecida para as plantas forrageiras foi de 15 cm do solo, para os cortes de 1° a 4°. O quinto e último corte de avaliação foi realizado rente ao solo.

Na fase de implantação, as adubações de N e K foram iguais para todos os tratamentos. Após o segundo corte de avaliação (fase de manutenção), além das diferentes doses de P já estabelecidas no início do experimento, houve variações na dose de N, mantendo-se os níveis de K em cobertura iguais para todos os tratamentos. Como fonte de nitrogênio empregou-se a ureia e o cloreto de potássio como fonte de K.

Para determinação da massa seca das raízes. Imediatamente após o quinto corte da parte aérea, as raízes foram separadas e lavadas em água corrente, utilizando-se de um conjunto de peneiras com malha de 2,00 e 1,00 mm. Em seguida, as raízes foram colocadas para secar em estufa com circulação forçada de ar a 55 °C por 72 horas ou até peso constante.

Para análise estatística utilizou-se um modelo matemático contendo os efeitos fixos de forrageiras, de doses de P, de doses de N e as interações entre eles. Para todas as análises foi usado o procedimento GLM disponível no SAS (Statistical Analysis System, version 9.4). Os resultados obtidos foram submetidos à análise de variância (ANOVA), e as médias foram comparadas pelo teste de Tukey a um nível de significância de 5%.

Resultados e Discussão

A interação entre as forrageiras e doses de P e de N não foi significativa para massa seca de raízes (P>0.05). A interação forrageiras x doses de P foi significativa para a massa seca das raízes (P<0.05). Na dose de 4,36 mg dm⁻³ de P as forrageiras Humidícola e Ruziziensis apresentaram os maiores valores de massa seca de raízes e as forrageiras BRS Tupi, Decumbens e BRS Piatã, os menores. Para a dose de 52,32 mg dm⁻³ de P os maiores valores de massa seca de raízes foram observados nas forrageiras Ruzizensis, BRS Paiaguás e BRS Piatã, e os menores, nas forrageiras Xaraés e BRS Tupi. A dose de 52,32 mg dm⁻³ de P incrementou os valores de massa de raízes quando comprada com a dose de 4,36 mg dm⁻³ (Tabela 1).

Tabela 1. Média da massa seca das raízes (g vaso⁻¹) de forrageiras (*Brachiaria sp*) submetidas a duas doses de P.

Forrageiras	Doses de fósforo (mg dm ⁻³)		Valor p
	4,36	52,32	valui p
Xaraés	16,30 ^{BCDb}	34,87 ^{Ea}	0,001
BRS Tupi	11,30 ^{Db}	41,18 ^{DEa}	<0,001
Decumbens	11,78 ^{CDb}	49,29 ^{CDEa}	<0,001

BRS Ipyporã	20,36 ^{ABCDb}	50,27 ^{CDEa}	<0,001
Humidícola	32,08 ^{ABb}	54,81 ^{CDa}	<0,001
Marandu	17,63 ^{BCDb}	56,74 ^{BCDa}	<0,001
BRS Piatã	13,12 ^{CDb}	61,00 ^{BCa}	<0,001
BRS Paiaguás	28,93 ^{ABCb}	73,96 ^{ABa}	<0,001
Ruziziensis	35,96 ^{Ab}	88,72 ^{Aa}	<0,001
EPM	3,83	1	

Médias seguidas de letras iguais maiúsculas nas colunas, e minúsculas nas linhas não diferem entre si pelo teste de Tukey, a 5%. EPM: erro padrão da média. Valor – p: probabilidade efeito significativo.

A dose de 52,32 mg dm⁻³ de P proporcionou incremento de 172,5%, em média, na massa de raízes em relação a dose de 4,36 mg dm⁻³ de P (Tabela 1). Estes resultados confirmam os encontrados por Mesquita et al. (2004) que verificaram aumento na produção de matéria seca das raízes de capim-marandu em função da adubação fosfatada em três tipos de solo, Latossolo Vermelho-Amarelo, Latossolo Vermelho distroférrico e Neossolo Quartzarênico. Em concordância, Camacho et al. (2015) observaram incrementos na produção da massa seca de raízes com a aplicação de P nas cultivares Piatã e Xaraés.

A interação forrageiras x doses de N foi significativa para a massa seca das raízes (P<0.05). Na dose de 150 mg dm⁻³ de N a forrageira Ruziziensis apresentou o maior valor de massa seca de raízes e as forrageiras BRS Tupi e Decumbens, os menores. Para a dose de 450 mg dm⁻³ de P os maiores valores de massa seca de raízes foram observados nas forrageiras BRS Paiaguás e Ruziziensis, e o menor a forrageira Xaraés. As forrageiras BRS Paiaguás e Ruziziensis apresentaram aumento na massa seca de raízes na dose de 450 mg dm⁻³ de N, em relação a dose de 150 mg dm⁻³ de N (Tabela 2).

Tabela 2. Média da massa seca das raízes (g vaso⁻¹) de forrageiras (*Brachiaria sp*) submetidas a duas doses de N.

Forrageiras	Doses de nitrogênio (mg dm ⁻³)		Valor p
	150	450	vaioi p

Xaraés	29,01 ^{ABCa}	22,16 ^{Da}	0,207
BRS Tupi	21,20 ^{Ca}	31,29 ^{CDa}	0,065
Decumbens	26,23 ^{BCa}	34,83 ^{CDa}	0,115
BRS Ipyporã	32,97 ^{ABCa}	37,66 ^{CDa}	0,387
Humidícola	36,19 ^{ABCa}	38,19 ^{CDa}	0,069
Marandu	34,00 ^{ABCa}	40,11 ^{Ca}	0,712
BRS Piatã	38,47 ^{ABa}	48,42 ^{BCa}	0,261
BRS Paiaguás	42,61 ^{ABb}	60,28 ^{Ba}	0,001
Ruziziensis	45,36 ^{Ab}	79,33 ^{Aa}	<0,001
EPM	3	,81	

Médias seguidas de letras iguais maiúsculas nas colunas, e minúsculas nas linhas não diferem entre si pelo teste de Tukey, a 5%. EPM: erro padrão da média. Valor – p: probabilidade efeito significativo.

A massa seca das raízes, para as forrageiras BRS Paiaguás e Ruziziensis, na dose de 450 mg dm⁻³ de N, foi em média 58,9% maior que na dose de 150 mg dm⁻³ de N (Tabela 2). Tal comportamento sugere que o desenvolvimento do sistema radicular dessas plantas é mais responsivo a adubação nitrogenada em relação às demais forrageiras.

A interação doses de P x doses de N foi significativa para a massa seca das raízes (P<0.05). Independente da dose de nitrogênio aplicada 150 ou 450 mg dm⁻³ a elevação de 4,36 para 52,32 mg dm⁻³ de P incrementa a massa seca de raízes. Na dose de 4,36 mg dm⁻³ a aplicação de 150 ou 450 mg dm⁻³ não aumentou a massa seca de raízes. Para da dose de 52,32 mg dm⁻³ o maior valores de massa seca de raízes foram observados juntamente com a dose de 450 mg dm⁻³ de N (Tabela 3).

Tabela 3. Média da massa seca das raízes (g vaso⁻¹) de forrageiras (*Brachiaria sp*) submetidas a duas doses de P e N.

Doses de fósforo (mg dm ⁻³)	Doses de nitrogênio (mg dm ⁻³)		Valor p
boses de losiolo (ilig dili)	150	450	valui p
4,36	18,75 ^{Ba}	22,91 ^{Ba}	0,106

52,32	49,26 ^{Ab}	64,26 ^{Aa}	<0,001
Valor p	<0,001	<0,001	
EPM	1,80		

Médias seguidas de letras iguais maiúsculas nas colunas, e minúsculas nas linhas não diferem entre si pelo teste de Tukey, a 5%. EPM: erro padrão da média. Valor – p: probabilidade efeito significativo.

A massa seca de raízes, para todas as forrageiras na dose de 52,32 mg dm⁻³ de P e 450 mg dm⁻³ de N, foi em média 30,45% maior que nas doses de 53,32 e 150 mg dm⁻³ de P e N, respectivamente (Tabela 3). Santos et al. (2001) verificaram aumento na produção de massa seca das raízes com a aplicação de P, principalmente quando ocorre em conjunto com aplicação de N em cobertura. Esses autores observaram que a máxima produção de massa seca de raízes foi de 37,12 g/vaso com uma dose estimada de 122,8 mg dm⁻³ de P para o capim-marandu.

Conclusões

A maior dose de P aplicada incrementou a massa seca de raízes em todas as forrageiras avaliadas. O aumento na dose de N incrementou a massa seca de raízes nas forrageiras BRS Piatã, BRS Paiaguás e Ruziziensis.

Agradecimentos

À Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Código de Financiamento 001, Universidade Federal do Mato Grosso do Sul e Embrapa Gado de Corte pelo apoio financeiro. Ao Conselho Nacional de Desenvolvimento Científico e Tecnológico pela bolsa PQ 2 do segundo e sexto autor.

Referências

BATISTA, K.; MONTEIRO, F. A. Sistema radicular do capim-Marandu, considerando as combinações de doses de nitrogênio e de enxofre. **Revista Brasileira de Ciência do Solo**, v.30, n.5, 2006.

- CAMACHO, M. A.; SILVEIRA, L. P. O.; SILVEIRA, M. V. Eficiência de genótipos de *Brachiaria brizantha* Stapf. (Syn: *Urochloa brizantha*) na produção de biomassa sob aplicação de fósforo. **Arq. Bras. Med. Vet. Zootec.**, v.67, n.4, p.1133-1140, 2015.
- CECATO, U.; JOBIM, C.C.; REGO, F.C.A. et al. Sistema radicular componente esquecido das pastagens. In: SIMPÓSIO SOBRE MANEJO ESTRATÉGICO DA PASTAGEM, 2., 2004, Viçosa, MG. **Anais...** Viçosa, MG: Universidade Federal de Viçosa, 2004. p.159-207.
- COSTA, K. A. P.; OLIVEIRA, I. P.; SEVERIANO, E. C.; SAMPAIO, F. M. T.; CARRIJO, M. S.; RODRIGUES, C. R. EXTRAÇÃO DE NUTRIENTES PELA FITOMASSA DE CULTIVARES DE *Brachiaria brizantha* SOB DOSES DE NITROGÊNIO. **Ciência Animal Brasileira**, v.11, n.2, p.307-314, 2010.
- GARNETT, T.; CONN, V.; KAISER, B. N. Root based approaches to improving nitrogen use efficiency in plants. **Plant, Cell and Environment**, v.32, p.1272-1283, 2009.
- GRANT, C. A.; FLATEN, D.N.; TOMASIEWICZ, D.J.; SHEPPARD, S.C. A importância do fósforo no desenvolvimento inicial da planta. 2001. 16p (Informações Agronômicas, 95).
- MESQUITA; E.E.; PINTO, J.C.; FURTINI NETO, A.E.; SANTOS, T.P.A. dos; TAVARES, V. B. Teores críticos de fósforo em três solos para o estabelecimento de capim-Mombaça, capim-Marandu e capim-Andropogon em vasos. **Revista Brasileira de Zootecnia**, v.33, n.2, p.290-301, 2004.
- RODRIGUES, R. C.; LIMA, D. O. S.; CABRAL, L. S.; PLESE, L. P. M.; SCARAMUZZA, W. L. M. P.; UTSONOMYA, T. C. A.; SIQUEIRA, J. C.; JESUS, A. P. R. Produção e morfofisiológica do capim Brachiaria brizantha cv. Xaraés sob doses de nitrogênio e fósforo. **Revista Brasileira de Agropecuária Sustentável**, v.2, n.1, p.124-131, 2012.
- SANTOS, T.P.A. DOS; PINTO, J.C.; SIQUEIRA, J.O.; MORAIS, A.R. de; CURI, N.; EVANGELISTA, A.R. Resposta a fósforo, micorriza e nitrogênio de Braquiarão e amendoim forrageiro consorciados. **Ciência e Agrotecnologia**, v.25, n.5, p.1206-1215, 2001.
- TAIZ, L.; ZEIGER, E. Fisiologia vegetal. 5 ed. Porto Alegre: Artmed. 2013. 918 p.
- TERUEL, D. A.; DOURADO NETO, D.; HOPMANS, J. W.; REICHARDT, K. Modelagem matemática como metodologia de análise do crescimento e arquitetura de sistemas radiculares. **Scientia Agricola**, v.57, n.4, p.683-691, 2000.