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Preoperative plasma fatty acid metabolites
inform risk of prostate cancer progression
and may be used for personalized patient
stratification
Eugenio Zoni1, Martina Minoli1, Cédric Bovet2, Anne Wehrhan2, Salvatore Piscuoglio3,4,5, Charlotte K. Y. Ng4,6,
Peter C. Gray7, Martin Spahn8,9, George N. Thalmann1,10 and Marianna Kruithof-de Julio1,10*

Abstract

Background: Little is known about the relationship between the metabolite profile of plasma from pre-operative
prostate cancer (PCa) patients and the risk of PCa progression. In this study we investigated the association
between pre-operative plasma metabolites and risk of biochemical-, local- and metastatic-recurrence, with the aim
of improving patient stratification.

Methods: We conducted a case-control study within a cohort of PCa patients recruited between 1996 and 2015.
The age-matched primary cases (n = 33) were stratified in low risk, high risk without progression and high risk with
progression as defined by the National Comprehensive Cancer Network. These samples were compared to metastatic
(n = 9) and healthy controls (n = 10). The pre-operative plasma from primary cases and the plasma from metastatic
patients and controls were assessed with untargeted metabolomics by LC-MS. The association between risk of
progression and metabolite abundance was calculated using multivariate Cox proportional-hazard regression and the
relationship between metabolites and outcome was calculated using median cut-off normalized values of metabolite
abundance by Log-Rank test using the Kaplan Meier method.

Results: Medium-chain acylcarnitines (C6-C12) were positively associated with the risk of PSA progression (p = 0.036,
median cut-off) while long-chain acylcarnitines (C14-C16) were inversely associated with local (p = 0.034) and bone
progression (p = 0.0033). In primary cases, medium-chain acylcarnitines were positively associated with suberic acid,
which also correlated with the risk of PSA progression (p = 0.032, Log-Rank test). In the metastatic samples, this effect
was consistent for hexanoylcarnitine, L.octanoylcarnitine and decanoylcarnitine. Medium-chain acylcarnitines and suberic
acid displayed the same inverse association with tryptophan, while indoleacetic acid, a breakdown product of tryptophan
metabolism was strongly associated with PSA (p = 0.0081, Log-Rank test) and lymph node progression (p= 0.025, Log-
Rank test). These data were consistent with the increased expression of indoleamine 2,3 dioxygenase (IDO1) in metastatic
versus primary samples (p = 0.014). Finally, functional experiments revealed a synergistic effect of long chain fatty acids in
combination with dihydrotestosterone administration on the transcription of androgen responsive genes.

Conclusions: This study strengthens the emerging link between fatty acid metabolism and PCa progression and
suggests that measuring levels of medium- and long-chain acylcarnitines in pre-operative patient plasma may provide a
basis for improving patient stratification.
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Background
In men, prostate cancer (PCa) is the most common type
of cancer and the second leading cause of cancer-related
death [1]. The majority of PCa patients have an indolent
clinical course and can be managed with active surveil-
lance or local treatment. However, for patients with
aggressive metastatic disease that has failed hormonal
therapy, available treatments currently only extend life
by a few months [2]. To increase survival, it is crucial to
improve patient stratification at diagnosis, as this would
prevent overtreatment of indolent disease and place ap-
propriate focus on patients with aggressive and poten-
tially lethal tumors. Analysis of metabolites can highlight
deviations from a particular physiologic status and meta-
bolomics is already routinely employed in diagnostics to
identify a variety of pathological situations [3, 4]. Metab-
olites can be measured in bodily fluids such as urine and
plasma, which are readily accessible without the need for
invasive procedures [5]. The application of metabolo-
mics to PCa analysis has revealed that prostate tumors
have metabolic profiles that are distinct from those of
normal prostate tissues and other cancers [6–9]. PCa
cells often use fatty acid (FA) metabolism as major
source of energy production [10], while other cancer
typically use glycolysis to sustain proliferation (Warburg
Effect) [11, 12]. It has been proposed that de novo lipid
biogenesis and β-oxidation are among the most altered
pathways in PCa metabolism and PCa cells exhibit in-
creased uptake of FAs, such as palmitate [13], as well as
increased FA β-oxidation [14]. Additionally, PCa is fre-
quently accompanied by the metabolic syndrome which
presents altered blood lipid levels and obesity [15, 16].
Thyssle et al. [17] detected high levels of FAs in plasma
of PCa patients with metastasis compared to patients
without metastasis or with benign prostatic hyperplasia
(BPH). Giskeødegård et al. also measured higher levels
of plasma FAs (particularly acylcarnitines) in PCa pa-
tients compared to BPH controls [18]. Additionally, in a
multi-center study [19], comparison of pre-diagnostic
plasma from 1077 PCa cases and 1077 controls showed
that long-chain acylcarnitines (C14:1, C18:1 and C18:2)
were inversely associated with advanced PCa stages,
while short-chain acylcarnitine C3 was positively associ-
ated with aggressive and lethal disease. Recently, the
same authors confirmed these data in another cohort of
3057 matched case-control sets of pre-diagnostic plasma
[20]. Crowe et al. [21] similarly found an association
between palmitic acid and risk of low-grade PCa. These
studies suggest that there is an inverse association
between the precursors or early intermediates of FA β-
oxidation (i.e. long-chain acylcarnitines) and risk of
disease. Conversely, these findings suggest that shorter-
chain acylcarnitines are positively correlated with aggres-
sive disease.

In the present study we hypothesized that metabolic
profiling of pre-operative plasma collected from individ-
uals diagnosed with PCa will lead to the identification of
biomarkers associated to disease progression and stratifi-
cation. To test this hypothesis, we performed untargeted
metabolomics analysis of pre-operative plasma from
treatment naïve PCa patients who were classified as low
risk, high risk without progression or high risk with pro-
gression, according to the PCa stratification criteria of
the National Comprehensive Cancer Network (NCCN)
[22]. In parallel, we analyzed plasma from PCa meta-
static patients and healthy controls, in order to identify
metabolites that could be specific for disease status and
progression.

Methods
Study design and setting
We conducted a case-control study within a cohort of
PCa patients who presented at the Department of
Urology, Inselspital Bern University Hospital in Bern,
Switzerland between 1996 and 2015. Primary PCa cases
were aged between 46 and 74 years, did not present any
apparent metastasis and received radical prostatectomy
immediately after blood collection. Fasting blood was
drawn early in the morning before surgery, processed
and separated into components [23]. Metastatic cases
were aged between 54 and 86 years at time of blood col-
lection and already presented metastasis. Healthy con-
trols were aged between 29 and 55 at blood collection.
For all participants, the plasma was collected in EDTA
tubes and stored at − 80 °C. All participants provided in-
formed consent for participation in this study.

Cases and controls
Primary cases were men who received a PCa diagnosis
following digital rectal examination, prostate specific
antigen (PSA) assessment and TNM staging evaluation
of prostate biopsies prior to blood collection. The pri-
mary cases (n = 33) were selected in order to identify at
least 10 age matched patients for each of the PCa strati-
fication levels defined according to the National Com-
prehensive Cancer Network (NCCN) [24, 25] and to
integrate these with clinical follow-up, namely low risk
(T1-T2a, Gleason score ≤ 6, PSA < 10 ng/mL), high risk
without progression (T ≥ 3a, Gleason score 8–10, PSA >
20 ng/mL, without local or bone progression within 5
years after radical prostatectomy) and high risk with pro-
gression (T ≥ 3a, Gleason score 8–10, PSA > 20 ng/mL
with local or distant progression at last follow-up within
5 years from radical prostatectomy). PSA progression
was defined as two consecutive rising PSA measure-
ments > 0.1 ng/mL. Local progression was confirmed by
imaging modality and/or biopsy. Lymph node progres-
sion was identified by imaging modalities (MRI, CT-scan
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or Choline/PSMA-PET CT). Bone progression was iden-
tified by skeletal scintigraphy. Of all the primary PCa pa-
tients (N = 33), only one (N = 1) received androgen
deprivation therapy (Casodex) prior to blood collection.
Metastatic cases were men (n = 9) diagnosed with PCa

and who presented evidence of metastatic spreading as
documented by skeletal scintigraphy. These are ad-
vanced patients, who already received either radiation
therapy and/or androgen deprivation treatments. The
blood collected from these individuals was not fasting.
Controls were healthy individuals (n = 10) with no evi-
dence of disease, who volunteered to participate in this
pilot study.

Untargeted metabolomics analysis
Plasma samples were extracted and analyzed by
reversed-phase chromatography coupled to high-reso-
lution mass spectrometry (HRMS) as previously de-
scribed [26]. Metabolic features measured by UHPLC-
HRMS were isolated with Progenesis QI (version 2.2,
Nonlinear Dynamics, Newcastle, UK) and analyzed as
previously described [26]. Potential structures and for-
mulas of the isolated metabolic features were searched
against the Human Metabolome Database (HMDB,
version 3.6) [27] with a mass accuracy of 8 ppm and
against an in-house database containing retention
times of a set of 378 compounds. Features identified
against the in-house database with a retention time
deviation < 0.4 min were accepted as potential identity.
The assigned features were manually reviewed for cor-
rect peak shape and identity assignment with MS/MS
data.

Statistical analysis
Hazard ratios (HRs) for the association between risk of
progression and normalized abundances by median cut-
off based on the distribution in primary cases were
calculated using multivariate Cox proportional-hazard
regression model using the Survival [28, 29] and Survmi-
ner [30] R package. Normalized abundances data were
used to estimate the associations and data were tested
for proportional-hazards (PH) assumption and by graph-
ical diagnostics based on the scaled Schoenfeld residuals
[31] prior to analysis. The corresponding HRs represent
the risk associated with a higher or lower (median cut-
off) abundance of the indicated metabolite. Kaplan
Meier curves to illustrate the progression of the stratified
risk groups in primary PCa cases were calculated using
the “survfit” function and the Log-Rank test using the
Survival R package [28, 29]. Kaplan Meier curves to
identify the association between selected metabolites and
patient outcome were calculated using median cut-off
normalized values of metabolites abundances with the
“survfit” function and differences estimated with the

Log-Rank test with the Survival R package [28, 29]. Cor-
relation among the metabolites were calculated using
the Pearson parametric correlation test (cut-off p < 0.05)
with the Hmisc R package [32]. Differential expression
analysis on publically available dataset was conducted
with ShinyGEO [33]. Visualization of genomic data was
generated with cBioPortal [34, 35]. For calculation of
Kaplan Meier curves, TCGA PRAD gene expression data
were retrieved from Firehose [36] with RTCGAToolbox
R package [37]. Data were downloaded as RSEM nor-
malized values and transformed to log2 in order to
achieve normal distribution, genes whose expression was
0 in more than 50% of the samples were removed from
analysis. If more than one follow-up was available data
were collapsed and the higher information (more recent)
maintained. Survival was estimated by calculation of op-
timal cut points using the Survminer R package [30] and
differences identified by Log-Rank test. Principal compo-
nent analysis (PCA) was conducted on the normalized
abundances of the m/z features measured in positive
and negative mode by applying log2 transformation and
data scaling with the FactoMineR R package [38]. Fea-
tures with abundances equal to 0 in more than 50% of
the sample were excluded from the analysis. Addition-
ally, abundances lower than 250 were removed to reduce
noise. Eigenvalues were used to determine the number
of principal components to be considered and to display
the variability of the data. Confidence interval corre-
sponding to 95% is represented in the ellipses on the
PCA plots. For all the data representation, graphical
plots were generated using the ggplot2 R package [39].
The analyses were done using RStudio version 1.1.463
[40] and R version 3.5.3 [41].

Cell lines and culture conditions
The parental cell lines used in this study have been
authenticated using highly polymorphic short tandem
repeat (STR) loci. PC-3 M-Pro4 cells originate from
serial passage of PC-3 M cells in the prostate of athy-
mic mice [42] and were cultured in DMEM (Gib-
coBRL) with 4.5 g glucose/L, 10% FCII (Thermo Fisher
Scientific), 1% penicillin–streptomycin (PS, Life Tech-
nologies). C4–2 [43], C4–2B4 [44] and LNCaP [45]
cells were cultured in T-medium DMEM (Sigma-Al-
drich) with 20% F-12 K nutrient mixture Kaighn’s
modification (GibcoBRL), 10% FCS, 0.125 mg/mL bio-
tin, 1% insulin-transferrin-selenium (ITS), 6.825 ng/
mL T3, 12.5 mg/mL adenine, 1% PS. LNCaP cells were
derived from PCa lymph node metastasis [46], C4–2
cells was derived from LNCaP cells by passaging in
castrated mice [43] and C4–2B from a bone metastasis
of LNCaP tumor in nude mice [44]. All cells were cul-
tured at 37 °C and 5% CO2.
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Cell proliferation assay
To assess proliferation, cells were seeded at a density of
1500 cells per well and growth monitored for 48 h. AU
490 nm was measured 2 h after incubation with 20 μL of
3-(4,5 dimethylthiazol- 2-yl)- 5 -(3 -carboxymethoxyphe-
nyl)- 2 -(4 -sulfophenyl)- 2 Htetrazolium (MTS, Pro-
mega) at 37 °C according to manufacturer’s protocol.
Data were normalized for the number of cells seeded
and fold change estimated versus control condition (ve-
hicle treatment).

Quantitative real-time PCR (qPCR) analysis
Total RNA was extracted using Trizol (Invitrogen) and
cDNA synthesized according to manufacturer’s instruc-
tions (Promega) and as previously described [47]. Real-
time qPCR was performed with QuantStudio3 (Thermo
Fisher Scientific). HPRT was used for normalization and
relative expression is calculated with 2−ΔCt formula.
Primers sequences are indicated in Additional file 1:
Table S1.

Dihydrotestosterone (DHT) and palmitic acid (PA)
stimulation
DHT was diluted in ethanol (EtOH) and administered at
a final concentration of 10 nmol/L [48]. EtOH was used
as control. PA was prepared in albumin fatty acid free
(BSA-FFA) [49] (Sigma) and administered at a final con-
centration of 100 μM [50]. BSA-FFA was used as con-
trol. For both treatments, incubation time was 48 h [50].
Before the treatment, in order to wash out the andro-
gens, cells were starved for 48 h in medium containing

charcoal stripped serum (CSS). Experimental conditions
were replicated (n = 3, biological repeats) and measured
(n = 2, technical replicate for each sample).

Results
Characterization of cases and controls
Characteristics of all samples (42 cases and 10 controls)
and subgroups of PCa risk categories as classified in the
NCCN guidelines (v1.2018) [24] (11 low risk cases, 12
high risk without progression, 10 high risk with progres-
sion and 9 Metastatic) are shown in Table 1. All individ-
uals included in the study were Caucasian. The median
age of the patients at blood draw was 61.4 years for the
low risk group, 62.9 for the high risk without progres-
sion group, 63.6 for high risk with progression group
and 59.8 for the metastatic group, while the median age
of the healthy controls was 38.3 years at blood draw. The
PSA median level at blood draw was 5.8 ng/mL for low
risk patients, 9.32 ng/mL for high risk patients without
progression and 10.9 ng/mL for high risk patients with
progression. A median follow-up higher than 5 years
(after radical prostatectomy) is available for all the pri-
mary cases (7.59 years for the low risk, 7.14 for the high
risk without progression and 5.11 for high risk with pro-
gression). For the metastatic cases the median follow-up
is 3.23 years from blood draw. Among the primary cases,
high risk with progression had a significantly lower over-
all survival compared to low risk and high risk without
progression (Log-Rank p = 0.002) (Fig. 1a). Both high
risk patients without local and bone progression and
high risk patients with local and bone progression

Table 1 Characteristics of the cases and controls

Characteristics Cases Controls

Low Risk
N (%)

High Risk without Progression
N (%)

High Risk with progression
N (%)

Metastatic
N (%)

Healthy
N (%)

Number of subjects 11 (100) 12 (100) 10 (100) 9 (100) 10 (100)

Ethnicity

Caucasian 11 (100) 12 (100) 10 (100) 9 (100) 10 (100)

Median (IQR) Median (IQR) Median (IQR) Median (IQR) Median (IQR)

Age at blood draw (years) 61.4 (57.6–64.6) 62.9 (60.2–69.3) 63.6 (60.6–68.3) 59.8 (57–68) 38.3 (34–40.6)

PSA at blood draw (ng/mL) 5.8 (4.6–6.05) 9.32 (6.12–13.6) 10.9 (7.65–23.9) NAa NAb

Years between blood draw and event

PSA progression (or last follow-up) 7.59 (7.05–8.44) 5.88 (2.99–6.96) 0.28 (0.26–0.93) NAa NAb

local progression (or last follow-up) 7.59 (7.05–8.44) 6.98 (6.60–7.76) 4.04 (1.69–6.77) NAa NAb

lymphnode progression (or last
follow-up)

7.59 (7.05–8.44) 7.13 (6.88–7.87) 3.16 (2.62–4.14) NAa NAb

bone progression (or last follow-up) 7.59 (7.05–8.44) 7.14 (6.88–7.87) 4.42 (2.09–7.20) NAa NAb

Years in follow-up 7.59 (7.05–8.44) 7.14 (6.88–7.87) 5.11 (4.25–7.94) 3.23 (1.77–4.87) NAb

Prostate cancer patient classification is determined according to NCCN guidelines version 1.2018; IQR, interquartile range (25th to 75th percentile)
a The metastatic patients have not received radical prostatectomy and already present with advanced metastatic and progressive prostate cancer at time of
blood draw
b The controls are healthy and do not present prostate cancer
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Fig. 1 Characterization of disease progression in PCa cases. a Overall survival calculated by the Kaplan Meier method for high-risk with
progression (HR + P, blue solid line), high-risk without progression (HR-P, red dotted line) and low-risk (LR, black dashed line) PCa cases. P-value
estimated with Log-Rank test. b PSA progression free survival calculated by the Kaplan Meier ethod for HR + P, HR-P and LR PCa cases. P-value
estimated with Log-Rank test. c Local progression free survival calculated by the Kaplan Meier method for HR + P, HR-P and LR PCa cases. P-value
estimated by the Log-Rank test. d Lymph node progression-free survival calculated by the Kaplan Meier method for HR + P, HR-P and LR PCa
cases. P-value estimated by the Log-Rank test. e Bone progression-free survival calculated by the Kaplan Meier method for HR + P, HR-P and LR
PCa cases. P-value estimated with the Log-Rank test. For statistical details see Methods section
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Fig. 2 (See legend on next page.)
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experienced PSA progression (following radical prosta-
tectomy) at a median of 5.88 years and 0.28 years, re-
spectively, compared to low risk (no biochemical relapse,
log-rank p < 0.0001) (Fig. 1b). High risk patients with
progression displayed local recurrence at a median of
4.04 years after radical prostatectomy while high risk pa-
tients without progression had local recurrence at 6.98
years compared to low risk cases where no progression
was observed (log-rank p = 0.0051) (Fig. 1c). Lymph

node progression and bone progression were the two
main events discriminating the high and low risk groups.
Lymph node progression occurred at a median of 3.16
years in the high risk with progression cases while for
high risk without progression group the median was es-
sentially comparable to low risk cases (7.14 versus 7.59
years, respectively, after radical prostatectomy) (Log-
Rank p < 0.0001) (Fig. 1d). Bone progression was de-
tected in high risk with progression cases at a median of

(See figure on previous page.)
Fig. 2 Sample classification by principal component analysis and overview of metabolomics profiling. a Principal component analysis (PCA) of all
the m/z features measured in positive and negative ionization mode. The variation retained by PC1 (16.3%) is represented of the X axis and the
variation retained by the PC2 (9.3%) is represented on the Y axes. Ellipses represent the 95% confidence interval for each group. b Heatmap
generated with scale and centered normalized m/z abundances measured in positive and negative ionization mode. Euclideian distance between
groups and Minkowski distance between metabolites was used and clustering was calculated with the Ward (Ward.D2) method for minimum
variance between m/z values. c Principal component analysis (PCA) of the annotated m/z features in positive and negative ionization mode. The
variation retained by PC1 (16.7%) is represented of the X axis and the variation retained by the PC2 (13.5%) is represented on the Y axis. Ellipses
represent the 95% confidence interval for each group. d Heat map generated with scale and centered normalized m/z abundances of the
annotated metabolites. Same methods used for Fig. 2b were applied. For statistical details see Methods section

Table 2 Geometric mean (95% confidence interval) normalized abundances of acylcarnitines in Cases and Controls

Cases Controls

Aylcarnitines (normalized
abundance)

Low Risk High Risk without
Progression

High Risk with
progression

Metastatic Healthy

L.Carnitine (C0) 22,341 (17389–28,703) 24,578 (20774–29,078) 22,514 (17877–28,355) 23,767 (21161–26,695) 25,038 (19910–31,487)

Total Carnitines 87,554 (71512–107,194) 95,564 (80237–113,817) 88,145 (78007–99,600) 106,009 (77213–145,545) 77,690 (65760–91,784)

Total Carnitines (norm.) 2.81 (1.89–4.18) 2.80 (2.04–3.84) 2.80 (1.89–4.14) 3.36 (2.26–5.00) 2.07 (1.68–2.55)

Short Chain Acylcarnitines
(C2-C5 norm.)

1.24 (0.84–1.83) 1.12 (0.82–1.52) 1.19 (0.82–1.72) 1.65 (1.08–2.51) 0.93 (0.76–1.13)

Medium Chain Acylcarnitines
(C6-C12 norm.)

0.87 (0.55–1.39) 1.00 (0.65–1.54) 0.93 (0.55–1.57) 0.93 (0.52–1.64) 0.52 (0.34–0.80)

Long Chain Acylcarnitines
(C14-C16 norm.)

0.70 (0.48–1.03) 0.67 (0.53–0.84) 0.65 (0.45–0.95) 0.71 (0.55–0.93) 0.56 (0.45–0.69)

Acylcarnitine (C2 norm.) 0.83 (0.55–1.25) 0.75 (0.52–1.06) 0.79 (0.50–1.23) 0.95 (0.66–1.37) 0.59 (0.48–0.72)

Propionylcarnitine
(C3 norm.)

0.09 (0.06–0.14) 0.07 (0.05–0.10) 0.09 (0.07–0.12) 0.10 (0.07–0.14) 0.09 (0.06–0.13)

Butyrylcarnitine (C4 norm.) 0.11 (0.06–0.18) 0.10 (0.07–0.13) 0.12 (0.09–0.15) 0.14 (0.09–0.23) 0.11 (0.06–0.18)

Methylmalonylcarnitine
(C4 Methyl norm.)

0.004 (0.003–0.005) 0.003 (0.002–0.004) 0.004 (0.003–0.006) 0.005 (0.003–0.008) 0.003 (0.002–0.004)

Isovalerylcarnitine
(C5 norm.)

0.12 (0.08–0.18) 0.11 (0.08–0.14) 0.12 (0.09–0.15) 0.18 (0.06–0.52) 0.09 (0.07–0.13)

Hexanoylcarnitine
(C6 norm.)

0.03 (0.02–0.05) 0.03 (0.02–0.05) 0.04 (0.02–0.06) 0.04 (0.02–0.07) 0.02 (0.01–0.03)

L.Octanoylcarnitine
(C8 norm.)

0.17 (0.12–0.26) 0.22 (0.14–0.34) a 0.20 (0.12–0.32) 0.20 (0.11–0.37) 0.11 (0.07–0.17)

Decanoylcarnitine
(C10 norm.)

0.41 (0.26–0.66) 0.50 (0.32–0.78) a 0.45 (0.26–0.77) 0.44 (0.25–0.80) 0.25 (0.15–0.40)

Dodecanoylcarnitine
(C12 norm.)

0.23 (0.13–0.39) 0.23 (0.15–0.35) a 0.23 (0.13–0.40) 0.22 (0.12–0.37) a 0.13 (0.09–0.19)

Tetradecanoylcarnitine
(C14 norm.)

0.13 (0.08–0.211) 0.12 (0.09–0.17) 0.12 (0.07–0.19) 0.13 (0.09–0.20) 0.09 (0.07–0.11)

L.Palmitoylcarnitine
(C16 norm.)

0.56 (0.44–0.74) 0.53 (0.43–0.67) 0.53 (0.37–0.75) 0.57 (0.44–0.74) 0.46 (0.37–0.57)

Acylcarnitines abundance is normalized by data mean intensities and by C0 (L.Carnitine) abundance (norm.). a OPLS-DA models selected based on
multivariate statistical analysis (Controls vs Specific Cases)
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5.11 years after radical prostatectomy compared to 7.14
and 7.59 years for high risk without progression and low
risk, respectively (Log-Rank p = 0.00027) (Fig. 1e).

Metabolomics analysis
Principal component analysis of all the m/z features
measured in positive and negative ionization mode was
able to distinguish primary versus metastatic cases and

healthy controls (Fig. 2a and Additional file 2: Figure
S1A). However, a heatmap of all the m/z features dem-
onstrated that hierarchical clustering could not differen-
tiate between the primary subgroups (low risk versus
high risk without progression versus high risk with pro-
gression) (Fig. 2b).
Principal component analysis of the annotated metab-

olites was able to distinguish healthy controls versus

Fig. 3 Hazard ratio (95% confidence interval) and Kaplan Meier curves for the association of acylcarnitines with PSA progression. a Hazard ratios
and 95% confidence interval (CI) for the association of the complete panel of acylcarnitines with the risk of PSA progression. Groups (lower and
higher risk) were separate by median cut-off (suffix “_med”) of the normalized abundances for each molecule. C4 = butyrylcarnitine, C4_M =
methylmalonylcarnitine. b PSA progression-free survival calculated by the Kaplan Meier method for acetylcarnitine (C2). Groups are defined by
median-cut off of normalized abundances (vs L-carnitine) of high acetylcarnitine (C2 High, blue solid line) vs low acetylcarnitne (C2 Low, red
dotted line). P-value was estimated with Log-Rank test. c PSA progression free survival calculated by the Kaplan Meier method for
isovalerylcarnitine (C5). Groups are defined by median-cut off of normalized abundances (versus L-carnitine) of High isovalerylcarnitine (C5 High,
red dot line) versus low isovelrylcarnitne (C5 Low, blue solid line). P-value was estimated with Log-Rank test. d PSA progression-free survival
calculated by the Kaplan Meier method for hexanoylcarnitine (C6). Groups are defined by median-cut off of normalized abundances (vs L-
carnitine) of high hexanoylcarnitine (C6 High, blue solid line) versus low hexanoylcarnitne (C6 Low, red dotted line). P-value was estimated with
Log-Rank test. For statistical details see Methods section
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patients, but not between the primary risk subgroups
(Fig. 2c, Additional file 2: Figure S1B and Fig. 2d).

Characterization of acylcarnitines distribution and
prognostic associations
A complete panel of acylcarnitines (from C2 to C16) was
detected in patients and controls (Table 2, values nor-
malized against L-carnitine (C0) levels). We analyzed the
impact of acylcarnitines on disease associated risks by
multivariate Cox regression models, for all the primary
patients, given that the median age of the individuals in
these groups was highly comparable. Medium- chain
acylcarnitines (C6-C12) were positively associated with
risk of PSA progression (p = 0.036, median cut-off)
(Additional file 3: Figure S2A) and long-chain acylcarni-
tines were inversely associated with local and bone pro-
gression risk (p = 0.034 and p = 0.033 respectively,
median cut-off) (Additional file 3: Figure S2B and S2D).
No association with lymph node progression risk was

detected by short-, medium-, or long-chain acylcarni-
tines (using pooled values for class of molecules, namely
C2-C5 (short-chain), C6-C12 (medium-chain), C14-C16
(long-chain), normalized against C0, median cut-off)
(Additional file 3: Figure S2C). When we investigated
the contribution of the single molecules, we found an in-
verse association between acetylcarnitine (C2) and risk
of PSA progression (p = 0.016, global Log-Rank p = 0.05
with multivariate Cox regression analysis for the panel
of acylcarnitine associated with risk of PSA progression
tested for proportional hazard assumption, median cut-
off) (Fig. 3a). Isovalerylcarnitine (C5) and hexanoylcarni-
tine (C6) were inversely and positively respectively asso-
ciated with risk of PSA progression (p = 0.035 and p =
0.01, respectively, normalized against C0, median cut-
off) (Fig. 3a). However, calculation of Kaplan-Meier
curves for PSA progression (using Log-Rank test), did
not display a significant difference for C2 and C5 (High
versus Low, median cut-off), while higher C6 was

Fig. 4 Hazard ratio (95% confidence interval) and Kaplan Meier curves for the association of acylcarnitines with lymph node progression. a Hazard
ratios and 95% confidence interval (CI) for the association of the complete panel of acylcarnitines with the risk of lymph node progression.
Groups (lower and higher risk) were separate by median cut-off (suffix “_med”) of the normalized abundances for each molecule. C4 =
butyrylcarnitine, C4_M =methylmalonylcarnitine. b Lymph node progression-free survival calculated by the Kaplan Meier method for L-carnitine
(C0). Groups are defined by median-cut off of normalized abundances of high L-carnitine (C0 High, red dotted line) versus low L-carnitne (C0
Low, blue solid line). P-value was estimated with Log-Rank test. c Lymph node progression free survival calculated by the Kaplan Meier method
for isovalerylcarnitine (C5). Groups are defined by median-cut off of normalized abundances (versus L-carnitine) of high isovalerylcarnitine (C5
High, red dotted line) vs low isovelrylcarnitne (C5 Low, blue solid line). P-value was estimated with Log-Rank test. For statistical details see
Methods section
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significantly associated with PSA progression (Log-Rank
p = 0.014) (Fig. 3b, c and d).
While no association with bone progression was estab-

lished, we found an inverse association between L-
carnitine (C0) and isovalerylcarnitine (C5) and risk of
lymph node progression (p = 0.006 and p = 0.027,
respectively, median cut-off, Log-Rank p = 0.04 with
multivariate Cox regression analysis) (Fig. 4a). Calcula-
tion of Kaplan-Meier curves for lymph node progression
displayed a significant difference for C0 (High versus
Low, median cut-off, log-rank p = 0.044), but not for C5.
(Fig. 4b and c). We did not find a significant association
between the classes of acylcarnitines and the risk of bone
progression.
As depicted in Fig. 5a we found a strongly and positive

correlation between C2 and medium- (C6-C12) and
long-chain (C14-C16) acylcarnitines in primary cases
(cut-off p < 0.05), compared to control cases (Fig. 5b).
We also detected a strong and positive correlation
between the classes of medium- and long-chain acylcar-
nitines in primary and control cases, compared to meta-
static cases (Fig. 5d).

Suberic acid and indoleacetic acid are associated with
PSA progression
When the analysis was extended to all the annotated
metabolites, we found a positive and significant correl-
ation in primary patients between medium- and long-
chain acylcarnitines (namely C6, C12 and C14) and
suberic acid, an unsaturated dicarboxylic acid that is fre-
quently elevated in patients with fatty acid oxidation dis-
orders [51] (Fig. 5c). This association was stronger in the
metastatic cases, for hexanoylcarnitine (C6), L-
octanoylcarnitine (C8) and decanoylcarnitine (C10) (all
belonging to the medium-chain acylcarnitines class)
(Additional file 4: Figure S3). In the metastatic cases we
also detected a remarkable strong and significant inverse
correlation between medium-chain acylcarnitines and
tryptophan detected in positive and negative ionization
mode (this effect was consistent also in primary cases).
When we calculated the Kaplan-Meier curves (Log-Rank
test by median cut-off), we found that high levels of
suberic acid were significantly associated with PSA
progression (p = 0.032, Log-Rank test) (Fig. 6a). Fur-
thermore, high levels of indoleacetic acid, a break-
down product of tryptophan metabolism directly
downstream indoleacetaldehyde, were significantly

associated with PSA and lymph node progression
(p = 0.0081 and p = 0.025, respectively, Log-Rank test)
(Fig. 6b and c). Notably, indoleacetaldehyde is me-
tabolized to indoleacetic acid by aldehyde dehydro-
genase 7 family member A1 (ALDH7A1), which is
associated with aggressive PCa [52, 53]. All these
assigned features were manually reviewed for correct
peak shape and identity assignment with MS/MS
data (Additional file 5: Table S2).

Indoleamine 2,3-dioxygenase (IDO1) and medium-chain
acyl-CoA dehydrogenase (ACADM) are elevated in
metastatic prostate cancer
Indoleamine 2,3-dioxygenase (IDO1) was recently shown
to enhance carnitine palmitoyltransferase I (CPT1) activity
and fatty acid oxidation by degrading L-tryptophan [54].
This prompted us to search for a possible association be-
tween IDO1 and the medium-chain acylcarnitines pattern
that we detected in primary and metastatic cases. To do
this, we investigated the expression of IDO1 and medium-
chain Acyl-CoA Dehydrogenase (ACADM) in primary
and metastatic PCa by analyzing gene expression profiles
from datasets containing androgen-ablation resistant PCa
metastatic samples [55] and normal and tumor adjacent
tissues [55, 56]. We found a significant increase of IDO1
in metastasis VS primary PCa (p = 0.014) (Fig. 6d and
Additional file 6: Figure S4A) and a similar upregulation
was detected in tumor and tumor adjacent tissues com-
pared to normal tissue (Fig. 6e, f and Additional file 6:
Figure S4B). While ACADM was similarly higher in pri-
mary PCa tissue compared to metastasis tissue (p =
0.001) (Fig. 6g and Additional file 6: Figure S4C), there
was no difference in ACADM expression in tumor tis-
sue compared to tumor adjacent tissues (Fig. 6h, i and
Additional file 6: Figure S4D). When we looked at the
distribution of IDO1 and ACADM genomic alteration
in a panel of PCa studies, we found a substantial distri-
bution of deletions and amplifications of IDO1 while
ACADM also appeared to be mutated in a considerable
fraction of the samples (Additional file 7: Figure S5A
and S5B). However, higher transcriptional levels of
IDO1 were not associated with disease progression (in
TCGA PRAD) [36] and while higher ACADM expres-
sion displayed a trend toward disease progression, this
was not significant (p = 0.065, Log-Rank test with maxi-
mized cut-off groups) (Additional file 7: Figure S5C and
S5D).

(See figure on previous page.)
Fig. 5 Correlation matrix for all metabolites identified in PCa cases and controls. Correlations are shown for the different acylcarnitines in primary
PCa cases (a) and controls (b). c Insert with plot A displays the correlation among the acylcarnitines and all the annotated metabolites in primary
cases. d Correlation among acylcarnitines in metastatic cases. The sizes of the circles are dependent on the Pearson correlation coefficient. Blue
circles correspond to positive correlations and red circles correspond to negative correlations. Correlations that do not reach significance (p > 0.05) are
indicated by an empty square box. For statistical details see methods section
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Fatty acid stimulation enhances proliferation and
transcription of AR responsive genes
Finally, we investigated the effect of fatty acid treatment
on proliferation in C4–2B4 and PC-3M-Pro4 cells, and
regulation of androgen receptor (AR) responsive genes in
AR positive LNCaP and its derivative C4–2 cells. Treat-
ment of C4–2B4 and PC-3M-Pro4 cells with palmitic acid
(PA) (range between 50 and 200 μM) resulted in increased
proliferation (Fig. 7a, b, c, d and Fig. 7e, f, g and h, respect-
ively). Administration of PA alone in C4–2 cells was not
able to induce expression of AR-responsive genes (Fig. 7i,
j, k and l). However, administration of PA in combination
with DHT, resulted in an additive effect tha was significant
for KLK3 and TMPRSS2 (Fig. 7j and l). These results were
confirmed in LNCaP cells (Fig. 7m, n, o, and p) where the
additive effect was consistent for KLK3 (Fig. 7n) but not
for TMPRSS2 (Fig. 7p).

Discussion
In this study, we have provided evidence that preoperative
plasma fatty acid metabolites can inform risk of prostate
cancer progression. Specifically, we find that medium-
chain acylcarnitines are positively associated with the risk
of PSA progression and long-chain acylcarnitines are in-
versely associated with progression of PCa locally and to
the bone. Additionally, in primary and metastatic cases,
medium-chain acylcarnitines were positively associated
with suberic acid, which also correlated with the risk of
PSA progression. Two multi-center studies conducted by
Schmidt et al. [19, 20] have also identified a correlation
between acylcarnitines and PCa disease by measuring pre-
diagnostic plasma metabolites and searching for those that
appeared to be associated with a certain PCa grade or
stage. In these studies, men with higher plasma concentra-
tions of long-chain acylcarnitines (C18:1 and C18:2) had
lower risk of advanced stage prostate cancer at diagnosis,
while propionylcarntine (C3) and methionine metabolism
appeared to be positively associate with aggressive disease
and PCa death [19].
The main difference between these studies and our

study is that Schmidt et al. [19, 20] employed pre-
diagnostic plasma to identify molecules associated with
risk of developing PCa, while we analyzed pre-operative-
plasma, with the goal of linking specific metabolite pro-
file with disease progression and risk stratification

groups as defined by the NCCN guidelines. We found
that reduced incidence of lymph node and bone progres-
sion correlated with higher levels of long-chain acylcar-
nitines. Despite looking at a different end points,
employing a reduced sample size and starting from dif-
ferent samples, it is remarkable that our data are aligned
with the results of Schmidt et al. [19, 20] and seem to
suggest that better patient outcome is associated with
elevated levels of long-chain acylcarnitines in both pre-
diagnostic and pre-operative plasma.
Our extended analysis of all annotated metabolites indi-

cates that the perturbation of the acylcarnitine metabolism
in primary and metastatic cases is consistent with that of
other related metabolites. For example, we detected a
strong and significant positive correlation between
medium-chain acylcarnitines and suberic acid, which is
present in the urine of patients with fatty acid oxidation
disorders and was elevated in individuals with perturba-
tions in ACADM [51]. The fact that medium-chain acyl-
carnitines and suberic acid were both elevated in the same
samples in this study, might reflect the metabolic state of
more aggressive prostate cancers. In addition to their cor-
relation, it is remarkable that medium-chain acylcarnitines
and suberic acid both display the same inverse association
with tryptophan. In a study conducted on serum from 64
PCa cases and 50 healthy controls, Zang et al. shown that
tryptophan is a specific discriminatory metabolite of PCa
[57]. It has been shown that cancer increases the con-
sumption of tryptophan to evade immune control [58]
and this has been linked to IDO1 activity. Degradation of
L-tryptophan by IDO1 promotes CPT1 activity, thereby
enhancing fatty acid metabolism [54]. In PCa, PTEN-
deficient tumors have been associated with an immuno-
suppressive microenvironment mediated by increased
expression of IDO1 [59].
The patterns of metabolites that we observed in primary

versus metastatic samples and the transcriptional analysis
of tumor tissue versus normal tissue, are consistent with
the elevated levels of IDO1 that we found in metastatic
compared with primary cases and that we found in
androgen-ablation resistant PCa metastatic samples [55].
Increased levels of IDO1 in patient with metastatic disease
compared with patients with primary tumors would lead
to a strong reduction in L-tryptohpan and a correspond-
ing increase in fatty acid metabolism products (C2 and

(See figure on previous page.)
Fig. 6 Association between annotated metabolites and disease progression and analysis of gene expression data. PSA progression-free survival
calculated by the Kaplan Meier method for (a) suberic acid and (b) indoleacetic acid and lymph node progression-free survival for indoleacetic
acid is represented in (c). Groups are defined by median-cut off of normalized abundances (low abundance, blue solid line) vs high abundance
(red dotted line). P-value was estimated with log-rank test. IDO1 expression data of primary and androgen ablation resistant metastasis are shown
from GSE6752 (d) and GSE6919 (e-f). ACADM expression data in the same set of samples are displayed in (g-h-i). Fold change (FC) is calculated
versus the normal or primary tumor samples and p-value (P) for significance between two groups estimated by t-test. For statistical details see
Methods section
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Fig. 7 In vitro functional characterization of DHT and palmitate (PA) stimulation on AR positive and negative PCa cells. a Proliferation assessed in
C4–2B by MTS assay upon PA (range 50–400 μM) or vehicle (control) stimulation for 48 h. b-d Representative bright field images of cultured cells
under indicated experimental conditions. e Proliferation assessed in PC-3 M-Pro4 by MTS assay upon PA (range 50–400 μM) or vehicle (control)
stimulation for 48 h. f-h Representative bright field images of cultured cells upon experimental conditions. i-l Relative expression or AR responsive
genes upon dihydrotestosterone (DHT) or control (EtOH) stimulation, and palmitate (PA) or vehicle (BSA fatty acid free-FFA) or
combination (PA + DHT) in AR positive C4–2 and (M-P) LNCaP cells. P-value indicated in the plots is relative to ANOVA. Multiple
comparison significance between experimental condition is indicated by * (** p < 0.01, *** p < 0.001). Details related to quantification and
normalization are included in the Methods section
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medium-chain acylcarnitines), as we observed in our co-
hort. However, the precise association with ACADM ac-
tivity should be further investigated, since its increased
levels in metastatic versus primary cases might t also sug-
gest a decrease in the products of the enzymatic reactions
(i.e. medium-chain acylcarnitines), rather than an accumu-
lation, as documented here.
Levels of other products of tryptophan metabolism

support the link between tryptophan and medium-chain
acylcarnitines. In a metastatic setting, a reduction of L-
tryptophan levels due to high IDO1 expression, would
lead to reduced levels of indoleacetaldehyde, which is a
substrate of ALDH7A1. Further experimentation should
be conducted to elucidate whether the augmented levels
of ALDH7A1, already reported to be a marker of ad-
vanced PCa [52, 53], can be supported by these meta-
bolic alterations and eventually represent an adaptation
mechanism resulting in higher levels of indoleacetic acid,
thus supporting its correlation with PSA and lymph
node progression.
In addition to correlating fatty acid metabolism with

risk or PCa progression, we have also shown that fatty
acids impact PCa cell behavior. We find that PA and
DHT have an additive effect on the expression of AR re-
sponsive genes in LNCaP and C4–2 cells, which nor-
mally grow in medium without DHT supplementation
and are therefore capable of proliferating under castra-
tion conditions. These data are in line with recent find-
ings that interference in fatty acid metabolism via
inhibition of de novo lipogenesis targets androgen recep-
tor signaling in castration-resistant prostate cancer [60].
Additionally, they reinforce previous data that PCa cell
lines have fatty acid and fatty acid β-oxidation altered
[61]. Moreover, these observations are supported by the
increase in proliferation that we observed upon PA
stimulation of PC-3M-Pro4 cells, which lack AR expres-
sion and are by definition a castration resistant model.
While our observations are supported by recent evidence
that suppressing fatty acid uptake has therapeutic effects
in preclinical models of PCa [62], additional experimen-
tation should be conducted to elucidate whether in-
creased fatty acid levels affect AR signaling to promote
an aggressive phenotype.
While the number of patients allocated in each of the

classification groups (low risk, high risk without progres-
sion and high risk with progression) is quite small, the
total number of PCa cases (n = 33) is in line with other
studies conducted in single centers [17, 18, 57, 63, 64]
and, importantly, includes age-matched primary cases.
Our results are primarily associated with disease pro-
gression rather than disease status and the fact that our
control group displayed a significantly lower age at
blood draw compared to PCa cases (primary and meta-
static), does not impact with the association that we

conduct within the group of primary cases. Furthermore,
it should be noted that this is a pilot study, and our find-
ings are confirmatory of previously published work, as
elaborated in this discussion. The principal discrimina-
tive factor between the groups of our primary cases was
the progression to lymph node or bone metastasis. How-
ever, even with this extreme end point, we were not able
to identify metabolites specific for a particular risk
group. Tissue samples from the PCa cases included in
this study cohort are currently being retrieved to further
validate the metabolic association with stratified risk
groups.

Conclusions
In conclusion, our pilot study confirms and extends pre-
vious findings that fatty acid metabolism is associated
with advanced PCa and risk of disease progression and
our results suggest that evaluation of acylcarnitines pro-
file might contribute to improve patient stratification.
Our findings further demonstrate that analysis of metab-
olites in plasma is a valid method for generating novel
hypothesis worth to be validated in an independent co-
hort and to identify patients who are at risk of disease
progression. Finally, our data suggest that this metabolo-
mics strategy could be employed to assist patient stratifi-
cation at diagnosis.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12885-019-6418-2.

Additional file 1: Table S1. List of sequences for primers used for RT-
qPCR.

Additional file 2: Figure S1. Classification of controls and cases by
principal component analysis A) Principal component analysis (PCA) of all
the m/z features measured in positive and negative ionization mode
allocated for controls and cases. The variation retained by PC1 (16.3%) is
represented of the X axis and the variation retained by the PC2 (9.3%) is
represented on the Y axis. Ellipses represent the 95% confidence interval
for each group. B) Principal component analysis (PCA) of the annotated m/z
features in positive and negative ionization mode allocated for controls and
cases. The variation retained by PC1 (16.7%) is represented of the X axis and
the variation retained by the PC2 (13.5%) is represented on the Y axis.
Ellipses represent the 95% confidence interval for each group.

Additional file 3: Figure S2. Hazard ratio and 95% confidence interval
by median for the association of short-, medium- and long-chain aylcarni-
tines with disease progression. A) Hazard ratios and 95% confidence
interval (CI) for the association of short-, (Short_med), medium (Med-
ium_med) and long-chain Acetylcarnitines (Long_med) with the risk of
PSA progression, (B) local progression, (C) lymph node progression and
(D) bone progression. Groups (lower and higher risk) were separate by
median cut-off (_med suffix) of the normalized abundances for each class
of the molecules.

Additional file 4: Figure S3. Correlation matrix for all the identified
metabolites in metastatic cases. Insert represents the correlation among
acylcarnitines and all the annotated metabolites in metastatic cases. The
sizes of the circles are dependent on the Pearson correlation coefficient.
Blue circles correspond to positive correlations and red circles correspond
to negative correlations. Insignificant correlation (p > 0.05) are indicated
by an empty square box.
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Additional file 5: Table S2. List of LC-MS characteristics (adduct, reten-
tion time error, mass error, isotope similarity and best-matched fragment)
of annotated ions of interest measured in serum by non-targeted Q-TOF
analysis in ESI+ and ESI- mode.

Additional file 6: Figure S4. Illustration of IDO1 and ACADM expression
in primary and metastatic samples and tumor and tumor-adjacent tissues.
IDO1 expression data of primary and tissue specific androgen ablation re-
sistant metastasis from GSE6752 (A) and tumor versus tumor adjacent tis-
sues from GSE6919 (B). ACADM expression data in the same set of
samples are displayed in (C-D). Fold change (FC) is calculated versus the
normal or primary tumor samples and p-value (P) for significance be-
tween two groups estimated by t-test or ANOVA between more groups.

Additional file 7: Figure S5. Illustration of IDO1 and ACADM genomic
alterations and correlation with tumor progression in TCGA PRAD data.
A-B) Outlook of IDO1 and ACADM genomic alterations in publically
available prostate cancer related TCGA datasets. Alteration frequencies
related to mutation (green), fusion (purple), amplification (red) and deep
deletion (blue) are represented on the Y axis. Data retrieved from
cBioPortal. C-D) Kaplan Meier curves for tumor progression-free survival
from TCGA PRAD data retrieved from Firehose. Survival was estimated by
calculation of optimal cut points and significance estimated by log-rank
test. Blue solid line corresponds to high expression group, red dotted line
corresponds to low expression group. See Methods section for statistic details.
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