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Three-dimensional (3D) cell culture is often mentioned in the context of regenerative

medicine, for example, for the replacement of ischemic myocardium with

tissue-engineered muscle constructs. Additionally, 3D cell culture is used, although less

commonly, in basic research, toxicology, and drug development. These applications

have recently benefited from innovations in stem cell technologies allowing the

mass-production of hiPSC-derived cardiomyocytes or other cardiovascular cells, and

from new culturing methods including organ-on-chip and bioprinting technologies.

On the analysis side, improved sensors, computer-assisted image analysis, and data

collection techniques have lowered the bar for switching to 3D cell culture models.

Nevertheless, 3D cell culture is not as widespread or standardized as traditional cell

culture methods using monolayers of cells on flat surfaces. The many possibilities

of 3D cell culture, but also its limitations, drawbacks and methodological pitfalls, are

less well-known. This article reviews currently used cardiovascular 3D cell culture

production methods and analysis techniques for the investigation of cardiotoxicity, in

drug development and for disease modeling.

Keywords: 3D cell culture, induced pluripotent stem cells, cardiomyocyte, spheroid, engineered heart tissue,

scaffold, high content screening

THE NEED FOR MORE TISSUE-LIKE CELL CULTURE MODELS

Standard cell culture using adherent cells onmulti-well plastic plates, dishes and flasks is an effective
technique for expanding cell lines, bioproduction, and inspection of cells in defined conditions.
However, as soon as cultured cells are expected to respond to drugs, toxins or signaling modifiers
like in vivo, cell culture on flat surfaces, i.e., two-dimensional (2D) culture, turns out to be an
imperfect or downright misleading (1–4). Cells in an intact tissue are embedded in extracellular
matrix proteins (ECM) and are exposed to an abundance of biochemical, mechanical, electrical and
other types of stimuli that lead to appropriate responses and fine-tuned changes in gene expression.
In the heart, cells undergo cyclic deformation, show rapid calcium transients and electrical signals
or experience shear stress from blood flow (1). In order to retain organotypic functionality as much
as possible, a straightforward approach is to use fully differentiated cells directly isolated from
living tissue, as these are considered to be in a native state (2). Animal models, explanted hearts
and later freshly isolated primary cells have been used for the assessments of various parameters
of cardiac cell physiology and electrophysiology for more than a century, which has increased our
knowledge of the basic mechanisms of the heart tremendously (5–7). Large animal models such
as minipigs or goats are also still needed as they provide the essential anatomical structures to
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study surgical interventions and to observe in situ clinically
relevant pathophysiological changes of heart and vessels, such as
the response to pressure overload, myocarditis or atherosclerosis
and infarcts (3). However, animal models are relatively expensive,
need experienced personnel, long-term housing, strict quality
control, and there are ethical concerns (4). Also, there are
differences between the human heart and those of animals, and
these differences can become more pronounced and limiting
in pathological conditions (8). For these reasons, it would be
advantageous to have access to in vitro screening models of the
myocardium that allow the study of long-term effects of drugs,
environmental factors and gene mutations, preferentially on a
human genetic background.

Because of the above-mentioned limitations of classic
models, three-dimensional (3D) culture systems have been
developed that attempt to restore in vivo conditions in some
sort of a multicellular micro-tissue (MT) with and without
additional, natural or synthetic biomaterials, also called scaffolds.
Historically, 3D cultures have first been used in a systematic
manner for drug testing in cancer biology, which is explained
in part by the fact that cellular aggregates with a hypoxic core
show many similarities with avascular solid tumors (9). It has
been repeatedly found, that only 3D technologies using co-
cultures are able to mimic key aspects of the phenotypical and
cellular heterogeneity as well as microenvironmental aspects of
tumor growth (10). In the cardiovascular field, current 3D cell
culture model systems that are in use for drug testing and
toxicology applications mostly fall into two main categories:
They contain A. a scaffold matrix, typically a hydrogel, which
is mixed with and populated by cells and forms a strip or
hourglass-shaped contracting MT between attachment sites, also
called an engineered heart tissue (EHT) (Figure 1) (5), or B.
smaller cellular aggregates (spheroids) forming by self-assembly
without scaffold proteins in hanging drops or in multi-well plates
with non-adhesive surfaces (Figure 2). An increasing number
of studies making use of cardiac scaffold-free spheroids for
drug testing and toxicology has been published in the last
couple of years (6, 7) and frequently, a mix or co-culture of
several cell types is used, such as rodent or human primary-
or human induced pluripotent stem cell-derived cardiomyocytes
(hiPSC-CMs), fibroblasts, stem cells, and endothelial cells (19–
23). Additionally, microfluidic systems, micro-patterns, and
microphysiological platforms, including various sensors, pumps
and perfusion, and other technologies have been developed
around the living components of such model systems (24).
Larger tissue formats like multilayered cell sheets, re-cellularized
hearts or large biomaterial patches usually are too expensive
and slow in the making for drug screening purposes and are
instead developed for regenerative medicine (25). Recently, the
term “organoid” is more often used in the literature. However,
this term should not be used for every 3D cell culture as it
implies, at least by the original definition, self-organization of
stem cells that leads to differentiated organotypic structures and
functionality (26). In the cardiovascular field, self-organization
in vitro has been observed in vascular networks (27), but for
cardiac muscle cells, it is mostly limited to self-assembly of
clusters by aggregation, alignment, concerted contractions and
some degree of cellular maturation, while the actual embryonic

development of a vascularized organ with chambers, working
pump function and conduction system currently is not feasible
to replicate in vitro.

THE CELLULAR COMPONENTS OF
CARDIAC 3D CULTURE AND DISEASE
MODELS

The availability of differentiated cells for research is a challenge
in the cardiac field as postnatal mammalian cardiomyocytes do
not proliferate, and primary human cells are not available in
significant quantities (28). The use of primary ventricular
cardiomyocytes from adult animals or patients is not
recommended for 3D culture as these rod-shaped cells do
not integrate well in spherical aggregates and many cells
become necrotic when kept floating for longer time (own
observation). Fortunately, the development of hiPSC-CMs has
helped to improve this issue and promoted research with human
cardiomyocytes and 3D models in the cardiovascular field, even
if the currently available hiPSC-CM are relatively immature
(28–30). Also, the cell population is not entirely uniform as
ventricular-type, nodal and atrial-like action potentials are
found when single cells are analyzed using electrophysiological
methods (29). Furthermore, there is heterogeneity in the
expression of cytoskeleton and sarcomeric proteins such
chamber-specific myosin light chains or troponins, and different
grades of structural organization of sarcomeric proteins has been
observed (30, 31). Another practical issue encountered with
current protocols is the inconstant efficacy of the differentiation
process and batch-to-batch variations that lead to baseline
variations when cells from the same patient are repeatedly
re-programmed (11, 32). The incomplete maturation of the
cells may reduce the predictive power of the model system,
considering that cardiovascular diseases predominantly occur
in the elderly human population, although this demerit is not
limited to hiPSC-CMs (33, 34). Several strategies, particularly
with 3D cultures, have been employed to enhance the maturation
of cultured hiPSC-CM such as novel iPSC reprogramming
methods, changing the energy sources in specialized media,
finding the ideal developmental time window for experiments,
and electric and mechanical training of EHTs (35–38).

With the technology of hiPSC-CMs arrived the option of
using patient-derived cell lines with disease-specific phenotypes
and known mutations on a human genetic background, and
with the full knowledge of the patient’s medical history. This
is an exciting prospect as it might enable new options in
personalized medicine and gene therapies in vitro (39, 40).
Similarly, hiPSC-CM technology has been used to model a
number of inherited heart diseases, among them are Duchenne
muscular dystrophy, Fabry disease, Danon disease, familial
hypertrophic cardiomyopathy and others (41). Many of these
hiPSC cell lines are publicly available in stem cell banks for
use in different model systems including 3D culture approaches
(42). The hypothesis that 3D culture models can provide tissue-
like features was supported by using hiPSC-CMs with a disease-
specific genotype in an EHT-model: The contractile deficit of

Frontiers in Cardiovascular Medicine | www.frontiersin.org 2 June 2019 | Volume 6 | Article 87

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Zuppinger Applications of Cardiac 3D Culture

FIGURE 1 | Overview of different types of EHTs. Reprinted with permission from Weinberger et al. (11). (A) Plane EHT on Velcro-covered rods (5), (B) fabrication of

ring-shaped EHTs (12), (C) fibrin-based mini-EHT on polydimethylsiloxane (PDMS) racks (13), (D) cardiac micro tissues (CMT) on fluorescent pillars (14), (E)

cardiobundles on a PDMS frame (15), (F) micro heart muscle (16), (G) cardiac biowires (17), (H) cardiac patch (18).

FIGURE 2 | Overview of different spheroid production methods. (A) Hanging drops (InSphero, GravityPlus), (B) U-shaped multi-well plate with non-adhesive coating

(Greiner bio-one, Cellstar), (C) view inside a U-shaped well at day 2 of culture, (D) Spheroid made in hanging drop for 3 days was transferred to a non-adhesive

multi-well plate for further culture (InSphero, GravityTrap), (E) Silicone micro-mold (3D Petri-dish, microtissues.com) for making an agarose cast for 81 spheroids, (F)

Cardiac spheroids reside inside the 3D petri-dish agarose cast submerged in medium 4 days after seeding of the cell solution, (G) Small cardiac spheroids forming 3

days after seeding in a micro-patterned multi-well plate with 12 × 750 microwells (Kugelmeiers, Sphericalplate 5D). All photos by the author.

hiPSC-CMs with a truncation in the sarcomeric protein titin

was not visible in 2D cultured cardiomyocytes but became

obvious in EHTs working against the elastic resistance of PDMS
or silicone pillars (39). Regarding disease models, applications

in the field of cardio-oncology have motivated our lab to

explore different cardiomyocyte model systems from primary
adult rat cardiomyocytes to monolayers and cardiac spheroids
made of hiPSC-CM and to study cancer therapy-associated
changes of contractility and calcium handling (40, 43–45). Other
cardiomyopathies that have been modeled in 3D cultures include
cardiac fibrosis (46), hypertrophy (47), Chagas disease (48),

atrial fibrillation (49), cardiotoxic cancer therapies, and other
toxins (19, 20, 22, 44, 50).

PRODUCTION METHODS

A number of different types of 3D culture models and production
methods have been developed in the cardiovascular field
(Table 1). The most basic form of 3D culture is the multicellular
aggregate as it occurs by self-assembly of floating cells on low-
attachment surfaces (also called liquid-overlay method). Such a
suspension culture can be made in inexpensive ways, for example
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by using a sterile dish with a thin film of agarose. Spontaneous
formation of this type of multicellular aggregate has already
been observed at the time of early cardiomyocyte isolations from
fetal or newborn animals (57). Many suppliers of cell culture
products make variants of U-shaped bottom multi-well plates
with special coating for ultra-low attachment that leads to self-
assembly of spheroids (Figures 2B,C), or special formats for the
mass-production of small aggregates (Figure 2G). Similarly, soft
silicone molds can be used to make agarose-casts with many
small wells for the production of microtissues (Figures 2E,F).
The hanging drop technique has allowed producing uniform
microtissues in a reliable way (44, 55), and sophisticated systems
have been developed with hanging drops as part of microfluidic
systems including perfusion and sensors (56). Overall, an
advantage of the spheroid as 3D cell culture is the option of
using semi-automatic methods to produce spheroids by using a
pipetting robot for filling multi-well plates, exchanging medium,
drug treatments, and finally analyzing the samples in high-
content readers. Advantages and disadvantages of the spheroid
culture vs. the EHT-models are listed in Table 2. The EHTmodel
was conceived in the 90ies for the purpose of tissue engineering
(5). Soon it was also used for drug testing and disease models
with the option to measure contractile force, either directly or
by the deflection of silicone poles, as well as calcium transients
and electrical signals (13, 32, 61). Variants of the EHT model
were developed that have in common the casting of a hydrogel,
usually containing fibrin/thrombin and/or collagen and Matrigel
components, with the addition of either primary newborn rodent
cardiomyocytes or stem-cell derived cells as single and co-
cultures and different geometries and analysis options (Figure 1).
Elastic silicone posts deflect with the contractions and allow
the tissue to contract auxotonically and perform contractile
work, the physiological form of cardiac contraction (11). Smaller
formats were developed for the purpose of drug treatment
and optimization of maturation protocols (38, 41), while larger
formats are suitable for regenerative therapies (11).

Vascular in vitro models have improved in recent years with
the advent of microfluidic systems and the hope is, that these
systems may partially replace animal experimentation that has
been common in this field of research (62). Current vascular
in vitro models apply different molding techniques, bioprinting,
and combinations of these technologies for producing micro
vessels on organ-on-chip platforms (51–53, 59). The challenge
of oxygen supply in larger artificial tissues has been a matter
of active research in tissue engineering for some time (24, 63).
However, establishing a perfused vascular network in vitro
turned out more difficult than initially anticipated since these
processes are inherently multi-factorial and require a fine-tuned
expression and post-translational processing of growth factors,
a complex spatial localization of angiogenic signals in the ECM,
and the collaboration of multiple cell types (organ-specific
endothelial cells, pericytes, vascular smoothmuscle cells) (64, 65).
Instead of relying on cellular self-organization for establishing
vascular networks, recent studies rather use pre-formed channels
or bioprinting approaches to reach this goal (60). Additional
concepts have been published that are making use of combined
techniques, such as cell layers with pre-formed vascular trees

obtained from animals, bioprinted and microcontact models as
components of micro-physiological platforms and larger tissues
for surgical applications (51, 66, 67).

ANALYSIS METHODS

For endpoint analysis, classic lab methods like tissue fixation,
paraffin embedding, histology, cryosectioning, immunolabeling,
and cell viability/cytotoxicity assays are feasible with most types
of 3D cultures where the cells are accessible. Protein chemistry,
RNA isolation and histology usually require pooling of groups
of smaller cellular aggregates (own observations). A number of
cell viability/toxicology assays are commercially available that
can be performed with either live MT or lysed material (67).
Cell physiology methods for the investigation of cardiac features
in living tissues such as contractions, force, calcium cycling or
electric signals require specialized instrumentation depending
on the sensitivity of the sensors and the desired temporal
and spatial resolution (68). Although methods exist to directly
measure contractile force in single cardiac cells and small muscle
strips, these methods require a skilled workforce in order to
provide good reproducibility and have a slow throughput (69).
Instead, a variety of optical methods have been developed to
measure length changes of the whole cells or sarcomers during
the contractile cycle of mammalian cardiomyocytes (70–72).
These video-based systems are either commercially available as
complete bundles of hardware and software (IonOptix, Sony,
EHT technologies), or as open access software for image analysis
that can be used with existing microscopes and cameras (73, 74).
Such a video-based analysis can be realized in inexpensive ways
using modified consumer cameras (so-called action cameras
with high frame rates up to 240 frames per second) and open
source software (68). Optical measurement using white light
has the advantage of being label-free and non-invasive, so the
measurement can be repeated many times, even while the
cell culture is in the incubator if a camera is placed inside
an atmosphere- and temperature-controlled environment (68).
Besides classic electrophysiology methods using patching and
impaling with sharp microelectrode pipettes, multi-electrode
arrays, and impedance spectroscopy have been used to measure
electrical signals and contractile activity in cardiac 3D models
(75–78). Calcium-binding fluorescent dyes and voltage-sensitive
dyes have been used in 2D- and 3D-cultures as this method
allows to measure a greater number of samples in relatively short
time, and for some applications high-content readers can be
used for this purpose (Hamamatsu Photonics,Molecular Devices,
PerkinElmer) (50, 79). Although these optical methods provide
good results for live 3D cultures as a whole tissue, obtaining
data at (sub-)cellular level from inside these MT is challenging
without relying on time-consuming histology methods. High
optical resolution comes at the price of limited penetration depth
and technical issues such as the permeability for fluorescent
dyes and antibodies, the working distance of lenses and the
geometry of sample holders limit these whole-mount microscopy
applications. Recently, several approaches to “clearing” MTs (i.e.,
homogenizing the refractive index of the fixed tissue so that
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TABLE 1 | Overview of cardiovascular 3D cell culture technologies.

Type Specific bio-functional properties Companies References

Molded natural or synthetic hydrogels populated by

cells, attached to elastic micro-poles or a frame

Microtissues showing linearly aligned cardiomyocytes

and improved tissue and cellular maturation after

training, force measurements are feasible

EHT-technologies,

novoheart

(5, 12, 13, 15, 17, 38)

Enclosed cells and hydrogels (in molds, tubing, or

microfluidic channels), with perfusion

For microvascular models, self-organizing cells, may

include shear-stress and stretch, measurement of barrier

function

Mimetas, AlveoliX, TissUse (51–54)

Self-assembling multicellular aggregates on low

attachment plates, hanging drops or micropatterned

surfaces

Small aggregates and spheroids showing spontaneous

beating activity, can be mass-produced, treated and

analyzed by semi-automatic systems

InSphero,

microtissues.com, Corning,

Kugelmeiers, Stemcell,

Greiner, Nunclon, Cytoo

(6, 44, 55–57)

Magnetic levitation, bioprinting of larger structures,

layering of sheets

Large tissues consisting of different cell types and

biomaterials, making entire organs as the ultimate goal

n3D Biosciences,

RegenHU, CellInk, Biolife4D

(58–60)

Literature references and companies represent a non-exhaustive list and the author apologizes for any omissions.

TABLE 2 | Comparison of advantages and disadvantages of scaffold-based models and cardiac spheroids.

Advantage Features of cardiac spheroids Disadvantage

Uses only a small number of potentially costly cells per

data point

Small size of multicellular aggregates Methods like protein chemistry and RNA extraction

need pooling of spheroids

No interference of scaffold proteins with the

development of the microtissue or the outcome

of assays

Made without additional scaffold proteins Some ECM factors could improve survival and

self-organization of the tissue

Spheroid is quickly formed and ready for drug

treatment and analysis

Assembles spontaneously by gravity or on

non-adhesive surface

Little control over the distribution of cell types or overall

shape, may result in multiple spheroids

Manipulation by pipetting and sedimentation,

no touching

Spheroids are floating in culture Spheroids may get lost or stuck on surfaces in

pipetting steps

Mimics thicker tissues (and tumors) Larger spheroids develop zones of o2, PH, metabolites Reduced viability, variable results, limited diffusion

Motion activity and calcium cycling correlates with cell

viability and drug treatment

Show long-term spontaneous contractions No direct force measurement, non-linear cell alignment

Miniaturized multi-well formats and compatible with

plate readers

Spheroids can be cultured in single wells -

Advantage Features of scaffold-based models (EHT) Disadvantage

Shape can be tailored for applications (screening,

maturation, regen. Medicine)

Shape is determined by the scaffold/hydrogel mold Uses large number of cells per tissue

Hydrogel can be adapted for organotypic functions and

pathologies (vascularization, stiffness)

Made with scaffold biomaterial and ECM proteins Limited diffusion, risk of breaking, unequal distribution

of cells, potential interference with assays

Sensors can be integrated in microphysiological devices Tissues attached to support structures Manual steps necessary, small number of tissues of

the same batch of cells

Mech. And electrical training, physiological function in

disease models, force assessment

Linear alignment of muscle cells -

Technology development toward tissue engineering

applications

Training protocols show improved maturation of

hiPSC-CM

-

it becomes transparent) have been published, and commercial
solutions have become available, especially for the use with
spheroids and fluorescence high-content confocal imaging (80).

When it comes to choosing a 3D culture model system, the
requirements of the project dictate crucial analysis methods.
For a study of mechanical features of a muscle-construct, a
hydrogel-based EHT model system might be chosen, where
the cells experience mechanical load and have the ability to
align longitudinally. Contractile force can then be measured

either directly or using video methods by measuring the
deflection of attached micro-posts or pillars of known strength
(39, 40, 49, 50). Otherwise, if mainly the spontaneous or
electrically paced beating pattern and viability of cardiac
tissues is of interest in a larger number of samples, cardiac
spheroids may be the model of choice. Cardiac functionality of
these spheroids can be analyzed A) using label-free methods
either by computational video analysis or electrical impedance
spectroscopy methods, or B) using calcium- or voltage-sensitive
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dyes in multi-well plate readers, or by using more advanced
microscope equipment for multiparametric assessment (19, 44,
56, 68, 81–84). A comparison of features and comparative
advantages or disadvantages of these scaffold-containing or
scaffold-free models is shown in Table 2. Finally, it could be
summarized that spheroid models are easier to integrate in
existing drug developmental pipelines and to upscale the number
of tests in the same batch, while the ETHmodels provide a better
physiological representation of the myocardium and thereby
enable the analysis of advanced disease models.

WHY IS 3D CELL CULTURE NOT USED
MORE OFTEN?

Although many tools and reagents for making and analyzing
3D cell culture models are commercially available, and the
number of publications in all fields of life science is increasing
(85), the technology is infrequently used, outside of regenerative
medicine, in academic research labs or industry several decades
after the publication of the first studies (86). Reasons for this
situation include that standard 2D culture is well established,
with ample literature available, and previous studies to compare
results (87). Furthermore, 2D culture has gained uncritical
acceptance in the past, is less expensive, is more standardized,
and is often easier and less time-consuming to analyze and
to handle in the lab. When considering practical aspects
of working with 3D culture, seemingly trivial tasks such as
regular checking for culture health and growth are more
difficult with most 3D models, because even smaller tissues
usually are opaque and single cells not discernable unless
stained (Figures 2C,D). Additionally, manual handling of the
microtissues and culture medium can be challenging when
the MTs are free floating, fragile or access to the tissue(s) is
obstructed by surrounding containers and technical equipment.
Some systems facilitate the handling of spheroids by trapping
them in conical wells, in perfused chambers inside organ-on-
chip designs or by incorporation of magnetic nanoparticles
(88, 89) (Table 1). Fortunately, there are more technologies
and products coming to the market that are targeted at 3D
cell culture applications such as different formats of spheroid
and EHT production systems, microfluidic technology and
suitable ready-to-use equipment, reagents for the clarification of
thicker tissues and adapted microscopes and software for live
imaging. Finally, and despite the above-mentioned technological
advancements, the research community has to agree to a set
of standards and read-outs to use in efficacy and toxicity
screening (90). Replacement of animal research by in vitro

technologies using human cells is another substantial incentive
for 3D cell culture, and already had a significant impact, for
example, on how cosmetics are tested in vitro as the use of
animals is banned for this purpose in Europe (4, 67). Still, it
can be debated if existing 3D models already provide sufficient
evidence for superior predictions of the clinical outcome of a new
drug, and if these models show enough physiological relevance
compared to animal or human tissue, or still lack complexity,
for example regarding the role of the vasculature or the immune
system (12, 90).

CONCLUSIONS AND OUTLOOK

Each in vitro model has advantages and disadvantages for
using it with certain assays, regarding organotypic features and
production methods. Therefore, it needs to be decided upfront,
which parameters and organotypic features are essential to be
included in the study and if going 3D is making sense in
the context of a particular project. Apparently, if the project
deals with features of single cells isolated from its myocardial
environment, then 2D cultured cardiomyocytes offer the option
to use classic electrophysiology, high-resolution microscopy, and
other methods. Instead 3D culture mimics features of larger
tissues or entire organs and is the method of choice for co-culture
models. 3D cardiac cell culture technologies hold great potential
for applications in tissue engineering, drug development, cardio-
toxicology and disease modeling. But a considerable effort is still
needed to assure the accuracy, relevance, and reproducibility of
thesemodels and to improve automation and readout techniques.
Instead of pushing many different systems to the market, careful
analysis of core concepts may be instrumental for establishing 3D
cell culture as a widespread and validated tool in life science.
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