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Abstract of a thesis submitted in partial fulfilment of the 

requirements for the Degree of Doctor of Philosophy in Computer Science  

 

Two reduction methods to simplify complex ODE mathematical models of 

biological networks and a case study: The G1/S checkpoint/DNA-damage signal 

transduction pathways 

 

 

by 

Mutaz Khazaaleh 

 

Model reduction is a hot topic in studies of biological systems. By reducing the complexity of detailed 

models through finding important elements, developing multi-level models and keeping the soul 

(biological meaning) of the model, model reduction can help answer many important questions raised 

about these systems.  

This thesis addressed several issues related to complex systems, complexity, biological systems 

complexity and the different reduction methods used to simplify biological models. It gives a brief 

review of  the biological background of the regulation of the cell cycle and proposes two reduction 

methods to simplify the corresponding complex ODE mathematical models. The first method is based 

on a hierarchical  representation and lumping approach, and the Second method uses a time windows 

for identifying active and inactive periods of a system and logical models. 

For the purpose of the current study, biological network model reduction is defined as any method 

designed to reproduce the original model through a set of smaller models that collectively produce the 

same behaviour as the original model. It does this, by reducing one or more dimensions of the 

biological network model’s  complexity (i.e., reducing the number of species,  number of reactions or 

model run time). 

In the  first reduction method,  based on hierarchical representation and a lumping approach, we used 

G1/S checkpoint pathway as a case study to present this reduction method. This consisted of two parts; 

the first part reorganised the biological network as a hierarchy (levels) based on the protein binding 

relations, and this allowed us to model the biological network with different levels of abstraction. The 
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second part applied different levels (level 1, 2, 3) of lumping the species together depending on the 

level of the  hierarchy. 

We propose and simulate the reduced models for  level-1, level-2 and level-3 of lumping for the  G1/S 

checkpoint pathway and evaluate  the biological plausibility of the proposed method by comparing the 

results with the original (ODE) model of Iwamoto et al. (2011). The results of the G1/S checkpoint 

pathway with or without DNA-damage for reduced models of level-1, level-2 and level-3 of lumping 

have agreed and are consistent with the original model results and with biological experiments 

Iwamoto et al. (2011). Therefore, the reduced model (level-1) can be used to evaluate the effects of 

DNA damage on G1 progression.  It is suggested that the proposed method is suitable to reduce 

complex biological networks. Moreover, the reduced model is more efficient to run and generate 

solutions than the original ODE  model. 

In second reduction method we used time windows and logical models. Time windows were used to 

identify regions of slow activity such as gene expression, fast activity such as protein signalling and no 

activity.  In general, most knowledge about regulatory and signalling networks is of a qualitative nature, 

which allows these networks to be represented by logical models, where the state of a molecule is 

either 0 (inactive) or 1 (active). These simpler models have many advantages, such as ; they do not 

require kinetic parameters and are able to capture the essential behaviour of a network; however, 

they are not able to reproduce detailed time courses for the concentration levels of molecules.  

Nowadays, however, experiments yield more and more quantitative data, so many quantitative 

models have been built and most of these models are very complex. An obvious question,  therefore, 

is how to reduce complex quantitative models so they can be used to explain and predict the outcome 

of these experiments. 

Here, we present a way of reducing complex quantitative models into logical (Boolean) models, where 

the use of time windows allows a reduction in time complexity and logical representation allows to do 

so without kinetic parameters in the model. The method is standardised and can readily be applied to 

complex quantitative models. Moreover, we discuss and generalise existing theoretical results on the 

relations between the Boolean and continuous models. As a case study, a continuous ODE model is 

reduced into a logical model describing the G1/S checkpoint with and without DNA damage. We 

discuss how this model can  explain and predict the G1/S checkpoint behaviour with DNA damage, 

including oscillations for some molecules and the cell fate. This shows the reduced model is still useful 

for obtaining  biological insights and is easier to run and  analyse. 

This new  method  greatly helps to simplify complex quantitative models into simpler models and can 

facilitate the interactions between the modelling and the experiments. Moreover, it helps researchers 
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and those who build models to focus on understanding and representing system behaviour rather than 

on determining the values for the kinetic parameters. 

While the analysis presented was in terms of biological networks, it should be noted that the specific 

example used was chosen to explain our two reduction methods. However, the two methods used 

could be more generally applied to the reduction of ODEs of biological systems and, even more 

generally, to most complex systems. Relaxing the struggle with the complexity of mathematical models 

is possible and the proposed reduction methods have the potential to make an impact across many 

fields of biomedical research. 

 

Keywords: Biological systems, biological networks, complexity, model reduction, hierarchy of protein 

complex formation (abstraction), Ordinary Differential Equations (ODEs), time windows, Boolean 

model, G1/S checkpoint, DNA damage. 
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Chapter 1 

Introduction 

Our world is full of complex systems and they are around us all the time. This prediction agrees with 

the famous words of Stephen Hawking, “I think the next century will be the century of complexity.” He 

said this on January 23, 2000 (San Jose Mercury News)in his ‘millennium’ interview. To better 

understand and control complex systems we need to develop and use new reduction methods. 

Reduction methods are used to minimise the level of complexity through different ways. First, to 

reduce a complex system to a simple mathematical model; and,  secondly, to reduce the mathematical 

model into an even simpler mathematical model that achieves the goal of finding a solution faster and 

more easily and at a lower cost. 

Romeo and Juliet is a play written  in 200 pages;  to know the details we need to read the whole book 

but if you need to know the main idea you can describe the story in just two lines. “Romeo and Juliet 

is a tragedy written by William Shakespeare. Romeo and Juliet is a play about star-crossed teenage 

lovers from two prominent families at war with one another.” Any story can be represented in different 

levels of detail to simplify it. The same idea can be applied to biological networks. We propose two 

reduction approaches to represent biological networks with different levels of detail (abstraction). The 

first approach is based on a hierarchical representation and lumping approach; and the second 

approach is through the use of time windows and logical models. 

In Section 1.1 of this chapter, general introduction, in Section 1.2, we provied an overview of the 

context of the thesis, in Section 1.3, we discuss the goals and objectives of this thesis; and, in Section 

1.4, we show the thesis structure. 

1.1 General Introduction 

Biological systems are very complex and consist a large number of components that interact with each 

other in the cell. Mathematical models are used to describe biological phenomena. All these models 

aim to understand the biology behind different diseases or effects of different cellular perturations or 

stresses. Most of the models that have been built to understand regulatory networks were ODE 

mathematical models and most of these models were complex and needed kinetic information for 

molecules and that was not easily gathered. Simplifying the complex ODE mathematical models can 

lead to better understanding and control of these systems. Mathematical modelling of biological 

research is necessary and useful. Researchers use it to analyse cellular networks or to invent strategies 

for controlling cellular dynamics which might be considered the cornerstone of development of 
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therapeutic medical applications. A mathematical model is basically a systematic analysis of a 

biological system that empowers quantitative predicting. Many scholars (such as: Endy & Brent, 2001; 

Hasty et al., 2001; Rao & Arkin, 2001; Kitano, 2002; Neves & Iyengar, 2002; Weston & Hood, 2004; You, 

2004; Alves et al., 2006; Kholodenko, 2006; Ideker et al., 2006) have studied the combination of 

computing power and developed numerical methods to conduct the analysis of complex cellular 

networks dynamics and model simulation. 

Mathematical models simulating biological systems that are used include: ordinary differential 

equations (ODEs), delay differential equations (DDEs), partial differential equations (PDEs), agent-

based models (ABMs), and stochastic differential equations (SDEs). Ordinary differential equations are 

the most common type of equations used for biological networks modeling. But, most of these models 

have high dimensional complexity (contain large numbers of species and reactions) and nonlinear 

behaviour. For this reason, many methods for model reduction are needed to simplify complex models. 

The behaviour of the reduced model should be like the behaviour of the original model. 

There are several techniques of model reduction in use with biochemical reaction network models to 

reduce their complexity. Quasi-steady state approximation (QSSA) is the most famous approach of 

model reduction used with biochemical kinetics (Bodenstein, 1913). This idea was later used to 

produce the classical Michaelis Menten formula (Michaelis and Menten, 1913). More development 

and improvement were achieved on this method to be the basic tool to analyse the behaviour of 

chemical reaction mechanisms and kinetics (Semenoff, 1939; Christiansen, 1953; Helfferich, 1989; 

Segel and Slemrod, 1989). Another approach to model reduction is the geometric singular perturbation 

method (GSPM). This is useful when the models have slow and fast variables. This approach works 

based on the assumption that when the model contains fast and slow variables, and the slow variables 

control the fast variables, so we can remove the fast variables from the model (Tikhonov, 1952; 

Fenichel, 1979; Jones, 1995).  

Another common approach of model reduction is quasi-equilibrium approximation (QEA) or the rapid 

equilibrium approximation (REA). The first appearance of this idea was in 1973 by Vasiliev and his 

colleagues (Vasiliev et al., 1973). Later, many studies provided further explanation and clarification of 

the approach as an approach for model reduction (Volpert and Khudyaev, 1985; Schnell and Maini, 

2002; Lee and Othmer, 2010; Noel et al., 2012). Another trend in the reduction is applied to chemical 

reaction models based on the concept of a limiting step. Many researchers studied and extended the 

idea of limiting step (see Johnston, 1966; Boyd, 1978; Murdoch, 1981). Recently, a general theory of 

static and dynamic limitations for linear multi-scale networks was developed by Gorban and other 

researchers (Gorban and Radulescu, 2008; Gorban et al., 2010). 
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The lumping technique was studied by Wei and Kuo (1969). Many researchers have developed and 

applied the lumping technique in many chemical reaction problems; see Genyuan (1984); Li and Rabitz 

(1989); Li and Rabitz (1990); Li and Rabitz (1991); Li et al. (1994); Dokoumetzidis and Aarons (2009). 

Another reduction method was proposed by Radulescu and his colleagues (2012). They suggested 

some essential ideas such as dominance and limitation, for greater understanding of dynamical and 

computational biological systems (Radulescu et al., 2012). The methods of averaging approximation 

and invariant manifolds proved their effectiveness in reducing the asymptotic dynamics of chemical 

reaction networks with clear time-scale separation. Many studies have provided further explanation 

on how to calculate invariant manifolds. According to Gorban and Karlin (2005), the slow mode 

dynamics are carried by invariant manifold that results from the relaxation of fast variables. For more 

information see Roussel and Fraser (1991); Gorban and Karlin (2003); Krauskopf et al. (2005).  

Several other methods have also been used for reducing chemical reactions networks. For instance, 

Noel and his colleagues (2012) reduced and hybridised networks of biochemical reactions using the 

Litvinov-Maslov correspondence principle. They applied this method on a cell cycle oscillator model. 

Lam and Goussis (1994) implemented a singular computational perturbation. Maas and Pope (1992; 

1994) used an intrinsic low dimensional manifold to exploit the interval between timescales of models' 

various processes and variables. Rao and other researchers proposed a Kron reduction of the weighted 

Laplacian matrix. The method is based on a variety of reversible and irreversible enzyme kinetic rate 

laws (Rao et al., 2014). Radulescu and his colleagues (2015) reduced the model based on tropical 

geometry and analysis that combines graphical approaches, semi-quantitative reasoning and symbolic 

manipulation. Further studies of model reduction with examples of application from systems biology 

can be found in Petzold and Zhu (1999); Gorban et al., (2004); Nagy and Turányi (2009); Gay et al. 

(2010); Anderson et al. (2011); Karadeniz et al. (2012); Kutumova et al. (2013); Ishizaki et al. (2014); 

Kooshkbaghi et al. (2014); West et al. (2015); and Sun and Medvedovic (2016). 

1.2 Overview 

This thesis addresses several subjects related to complex systems, complexity, biological systems 

complexity, and differnt reduction methods used to simplify biological models and proposes two 

reduction methods. All these aspects are described in this thesis. The subjects studied in this thesis can 

be summarised as follows: 

First, we review some issues and facts about complex systems, model reduction, complexity of 

biological networks, and then reduction methods that are used to reduce the mathematical models of 

biological systems. In this review we show that biological systems, in general, are complex and, so to 

better understand biological systems, scientists have used mathematical models, but the results from 
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these mathematical models for biological systems shows that these models are complex . To address 

this challenge, new model reduction techniques are required. In this chapter we look into the 

modelling process in general. We also discuss different methods for model reduction (based on the 

approach, advantages, disadvantages and examples). 

Secondly, any researcher from the computer science field who has little or no knowledge about 

biology, specifically, the cell and regulation of cell cycle, can build a good biological background from 

this thesis (Chapter 3), which gives a brief review of the biological background, including that of a cell: 

general review, cell cycle, regulation of cell cycle, (DNA damage and cancer) and the details of the G1/S 

checkpoint and models.  

Thirdly, we proposed a new method based on a hierarchical representation and lumping approach to 

reduce protein-protein interaction (PPI) networks. This new method can be appled to reduce complex 

systems. We used the G1/S checkpoint pathway integrated with DNA damage pathways as a case study 

to evaluate the efficiency of this method. 

Fourthly, we validated the reduced model output with the base model, firstly, by comparing model 

element behaviour and secondly, by comparing results and the Root Mean Squared Error (RMSE) and 

the Root Mean Squared Percentage Error (RMSPE) to be sure that the reduced model is accurate and 

applicable for answering a specific set of questions. Furthermore, we show from a computational view 

that the reduced model is more efficient in running the system and generating solutions than the 

Ordinary Differential Equations (ODEs) base model. From a biological view, we show the advantages 

of the new reduction method and how these advantages can help treat diseases, especially cancer.  

Fifthly, we offered another method to aid in model reduction and applied it to the behaviour of the 

G1/S checkpoint with and without DNA damage. In particular, we focused on simplifying the time 

dimension by dividing the G1/S checkpoint pathway into time windows (active time windows and 

steady or frozen time windows where there is no activity in the system). Then, the active time windows 

are represented by logical models to aid in model reduction. 

Finally, we provide conclusions and outcomes from this research and discuss directions for future 

work. The main conclusion is that easing the struggle with the complexity of mathematical models is 

possible through effective model reduction as proposed in this thesis. 

1.3 Goals and Objectives 

Our world is complex. Social, biological, economic, weather, communication and information systems 

all comprise a large number of interacting entities that give rise to complex behaviour. Complexity 

research is a novel research field devoted to dealing with issues such as understanding the roots of 
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complex phenomenology observable in our world, measuring complexity, modelling complex systems 

and model reduction methods.  

Over the last two decades, research in bioinformatics moved from the analysis of genomic sequence 

to the study and analysis of intracellular signalling networks (protein-protein interactions, transport, 

expression of proteins and RNA, etc.). This huge data explosion in biology increased the size and 

complexity of mathematical models of intracellular signalling networks. Furthermore, the uncertainty 

in model structure and, especially, model parameters has become a further complicating factor. To 

meet these two challenges of complexity and uncertainty, abstracting reduced or simple models from 

complex models is a central area of investigation within systems studies, including biology and 

medicine. 

As we mentioned previously, the real world contains a huge number of complex systems, one of these 

systems is biological networks. A common example of complex biological networks is the protein 

interaction networks in cells. Better understanding of protein interactions is useful for the treatment 

of diseases such as cancer. 

Several computational models have been proposed to help us understand protein interaction 

networks, but these models have the aforementioned limitations. An effective reduced network in 

contrast has fewer complexes, reactions, variables and parameters compared to full (original) 

networks, and yet the behaviour of a preselected set of significant elements in the reduced network 

resembles that of the original network. Moreover, the reduced network largely retains the structure 

and kinetics of the original model. 

Mathematical modelling of biological research is necessary and useful. Researchers use it to analyse 

cellular networks or to invent strategies for controlling cellular dynamics which might be considered 

the cornerstone of development of therapeutic medical applications. A mathematical model is, 

basically a systematic analysis of a biological system that empowers quantitative predicting. Many 

scholars (such as: Endy & Brent, 2001; Hasty et al., 2001; Rao & Arkin, 2001; Kitano, 2002; Neves & 

Iyengar, 2002; Weston & Hood, 2004; You, 2004; Alves et al., 2006; Kholodenko, 2006; Ideker et al., 

2006) have studied the combination of computing power and developed numerical methods to 

conduct the analysis of complex cellular networks dynamics and model simulation. 

Dynamical models of biochemical reaction networks are composed of a reaction graph (structure) and 

equations (dynamics). The reaction graph contains nodes representing the species and vertices 

representing the reactions where reaction vertices are labelled with kinetic parameters. Most 

dynamical models of biochemical reaction networks use Ordinary Differential Equations (ODEs). 
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Model reduction is a key concept for modelling a biological process at different levels of abstraction or 

for developing multi-scale models in systems biology. Most model reduction approaches work as 

follows:  identify critical parts (components or interactions) in the model, identify noncritical parts 

(components or interactions) in the model, describe critical parts with precision in the reduced model, 

while noncritical parts can be simplified. There exist several classical approaches for model reduction 

(Computational Singular Perturbation (CSP), Intrinsic Low Dimensional Manifold (ILDM), Lumping and 

Graphical Reduction Methods, Symmetry Reduction Methods and Tropical Analysis Reduction 

Methods). In recent years, many reduction methods have been investigated (Clarke, 1992; Maas & 

Pope, 1992; Lam & Goussis, 1994; Maas & Pope, 1994; Clarke et al., 1996; Gorban & Karlin, 2005; Feret 

et al., 2009; Gorban et al., 2010; Noel et al., 2011; Radulescu et al., 2012; Rao et al., 2013; Sonday et 

al., 2013; Rao et al., 2014; Radulescu et al., 2015). 

Simplifying dynamic models for large and complex biological networks by incorporating the proposed 

reduced techniques will help us building a comprehesive biological network and gaining a greater 

understanding of the emerging properties of cellular activities. There are many reduction methods but 

a fully formal method that exploited the hierarchical oreders for large volumes of biological network 

models are missing. Known reduction methods often face difficulties when applied to complex 

systems. These difficulties can be summarized as follows: 

1. The reduced mathematical model is still either too large or too complex to be useful. 

2. The reduced mathematical model still requires a parameter that depends on the original 

model. 

3. The simpler model cannot answer all the questions that the original model can. 

4. The reduced mathematical model cannot describe the complex behaviour.  

5. Some reduction methods have extra computional costs to find new parameter values to run 

the reduced model. 

6. The reduced model dose not have enough accurcy to be useful and realiable. 

7. Most reduction methods do not provide multi-level of abstraction (zoom in, zoom out).  

8. Most reduction methods have been applied on small networks containing two or three nodes 

with a limited number of interactions. 

All these indictate the need for developing reduction methods for mathematical models that are 

applicable to large networks of biochemical interactions. 

This research aims to provide an overview of complex systems, modelling and model reduction. The 

research touches on several topics of traditional and current research in complexity science. The 
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reader will learn concepts of complexity and deal with real examples as they will learn how to measure 

and characterise complex features in natural systems. These notions are increasingly in demand to 

approach complex problems in many different fields of study, including economics, biology, social 

science, chemistry and climatology. 

Further, this research will suggest new reduction approaches to achieve general and specific goals. The 

general goal is to suggest two reduction approaches that can be used to allow for better mathematical 

models of complex systems. The specific goal is to use the suggested reduction approaches to simplify 

mathematical models of biological networks and simulate a reduced model that makes it easier to 

achieve results and analyse the results and analyse all possible scenarios, while providing better 

understanding of biological networks that can help find better treatments for diseases, especially 

cancer. Furthermore, it allows the combination of separate and existing mathematical models into a 

comprehensive master model (for example, the cell cycle and apoptosis (cell death)). 

This thesis proposes two reduction methods. Firstly, a reduction method is proposed to produce a 

model of biological networks that simplifies cell signalling pathways into differint level of abstraction 

(zoom in, zoom out) and simulate it using the G1/S checkpoint pathway integrated with DNA damage 

as a case study. It then, validates the new reduction method by comparing several numerically 

simulated time course histories for the levels of individual biochemical species with the base model 

output. Furthermore, we validate the new reduction method by finding the Root Mean Squared Error 

(RMSE) and the Root Mean Squared Percentage Error (RMSPE) to be sure that the reduced model is 

useful for the intended purpose of the pathways and is applicable to answering a specific set of 

questions. Secondly, another reduction method is proposed to find a reduced model using time 

windows and a logical model approach and demonstrate its application to G1/S checkpoint pathway 

integrated with DNA damage pathways. Therefore, this thesis has the following objectives: 

1. To explore relevant aspects of two reduction methods and identify potential improvements in the 

design process and then propose new reduction methods through reviewing the theory. 

2. To build a good biological background to help researchers who do not have much knowledge of 

regulation of cell cycle. 

3. To develop a new reduction method to simplify biological signalling networks based on a hierarchical 

representation and lumping approach by simplifying the base model into different levels of abstraction 

(zoom in, zoom out). 

4. To apply the new reduction method to G1/S checkpoint pathway integrated with DNA damage 

pathways. 

5. To simulate the reduced model at different levels of abstraction. 
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6. To validate the reduced model with results from the base model and the available experimental 

evidence and data, to evaluate the reduction method. 

7. To propose a new (second) reduction method to simplify complex ODE mathematical models for 

biological signalling networks based on time windows and logical models. 

8. To present the proposed reduction methods as promising approaches for reducing all biological 

networks. 

In conclusion, behind each complex system there is a network that defines the interactions between 

its components. We will never understand complex systems unless we map and understand the 

networks behind them. Proposing simplified dynamic models for large and complex biological 

networks using new and reduced techniques could allow us to build comprehensive biological 

networks. This will help researchers to understand the emerging properties of cellular activities better. 

Hierarchical modelling is important when there is the need to zoom in and out of several levels of 

complexity. Critical elements identification is an important issue in systems biology. 

In our research we introduce two reduction approaches to reduce complex systems; especially 

complex protein interaction networks. The first approach allows critical elements identification and 

produces hierarchies of models, and the second approach allows us to get rid of the kinetic parameters 

in a system. The reduced models have less complexity, reactions, variables and parameters compared 

to the base model and, yet the behaviour of a pre-selected set of significant species in the reduced 

model resembles that of the base model. The reduced models have improved our understanding of 

the dynamics of the G1/S checkpoint pathway integrated with a DNA damage pathways network 

indicating that relaxing the struggle with the complexity of mathematical models is possible. 

1.4 Thesis Structure 

This thesis is set out in seven chapters, with this chapter (Chapter 1) providing an overview, the goals 

and objectives of this thesis, an overview of the thesis structure. Chapter 2 is the literature review: this 

gives a review of complex systems and biological reduction methods needed to drive this research. 

Chapter 3 reviews the biological background of cell cycle and provides an overview summary of the 

original model of Iwamoto (2011) for G1/S checkpoint pathway incorporating DNA damage pathways 

the base model used as the basis for the current research. Chapter 4 provides the first reduction 

method based on a hierarchical representation and lumping approach. Chapters 5 provides the results 

and a discussion on the first reduction method. Chapter 6 provides the second reduction method based 

on time windows and logical models, and also the results and a discussion on this method. Chapter 7 

gives concluding discussion about the scientific contributions and future work. 
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Chapter 2 

Literature Review 

“I think the next century will be the century of complexity” 

Stephen Hawking 

 

What Stephen Hawking said two decades ago is, indeed, a fact nowadays. To help with understanding 

complexity this study addresses complex systems and complexity, the complexity of biological 

networks, mathematical models of biological systems, reduction techniques, in general and biological 

systems reduction techniques in particular. 

Section 2.1 offers an overview of complex systems and complexity; Section 2.2 discusses model 

reduction methods; Section 2.3 focuses on the complexity of biological networks; Section 2.4 gives a 

review of mathematical models for biological systems; Section 2.5 gives an overview of reduction 

methods for biological systems; and Section 2.6 provides a summary of the chapter. 

2.1 Complex Systems and Complexity 

Complexity features include uncertainty, ambiguity, inconsistency, multiple players or participants 

with different information, experience, influential factors and relationships, ill-posed definitions, and 

multiple dimensions. Problems, including some or all of these properties, are considered complex and 

dynamic. Real life problems (social, political, economic, biological and ecological problems) share some 

of these properties. 

To understand real life problems and make decisions we need to study and manage the computational 

systems of these problems. In other words, to identify knowledge about the complex and dynamic 

human-nature interactions, which are experimental, we need to integrate them into a comprehensive 

model that simulates system behaviour to aid decisions making. This study attempts to produce an 

approach to tackle complex real-life model problems and examine their efficacy/usefulness in 

addressing one such problem. 

Complex systems are difficult systems to model with a large number of nonlinear interacting 

components which, under selective pressure, demonstrate hierarchical self-organisation. They 

intersect with science (biology, medicine, physics, chemistry and engineering), the human brain 

system, the immune networks, financial markets, telecommunication systems,  distribution networks, 
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biological systems, neural networks, reaction-diffusion systems, ecological networks and sociological 

systems. 

Complex systems have been defined by several researchers from various displines. In biology Weng 

and his research team (1999) defined complex systems as systems that are difficult to understand and 

verify in design or function. In physics Gallagher and his colleagues (1999) referred to complex systems 

as having system properties that may not be fully explained by understanding its components. 

Likewise, Goldenfeld and Kadanoff (1999) said complex systems are highly structured and varied . Rind 

(1999) said that a complex system is a system that involves multiple interactions between many 

different components found in a domain. Mayes (2012) differentiated between a complex system and 

its mathematical model, saying that the first is “any system composed of a large number of 

components and interactions that is not traceable by analysis,” while the complex mathematical model 

is “a large system of coupled equations which are either too complex or too large to admit a sufficiently 

useful model or solution.” 

According to Bar-Yam (2000) the modern study of complex systems has three interrelated approaches: 

how interactions give rise to behaviour patterns; the space of possibilities; and the formation of 

complex systems via pattern formation and evolution. 

Difficulties in complexity are apparent, as Gorban and Yablonsky (2013) mentioned in measuring 

complexity, model reduction and invariant manifolds, traces, criteria, interpretation of experiments 

and modelling classes. Measuring complexity was tackled by Monshizadeh (2013), who said that it is 

measured by its dynamic order, that is, the number of state components in a state space 

representation of the system. 

Mathematical language is used in describing natural phenomena in physical sciences in terms of 

models based on equations. This allows for logical reasoning over the representation of physical 

entities involved in the phenomenon and accounts for the experimental observations. 

2.2 Model Reduction 

This section discusses system reduction methods, advantages, disadvantages and developments. 

Successful simple models rely on the important properties of  large dynamical systems. In pursuing the 

optimal level of complexity that captures the salient features of the phenomenon, the middle out 

modelling becomes the art of the modeller. Over time, trying to reduce model complexity leads to the 

development of  model reduction techniques. 

Zinovyev (2014) said the first step to fight against complexity is by dimension reduction. Reducing the 

number of variables makes data extraction easier. In the same respect Radulescu and his colleagues 
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(2015) mentioned that model reduction is a way to avoid computational difficulties by replacing large-

scale models with smaller scale models that are easier to analyse. And Mayes (2012) defined model 

reduction as a process of simplifying a mathematical system in order to obtain solutions. He classified 

reduction methods into three categories (as illustrated in Table 2.1): 

1. The white-box reduction method is a direct result of the philosophy of methodological 

reductionism. It assumes that adequate explanations about behaviour may be achieved by 

focusing on one or a few lower levels of analysis (e.g., focusing on genes as the primary cause 

of behaviour). this explains individual behaviour by interpreting the properties of parts, which 

are often studied in isolation (Wimsatt, 1980). In this approach, a system is reduced and 

modelled using a bottom-up approach; although this approach proves to be effective, it has 

faced two difficulties: the volume of the internal complexity and the appearance of emergent 

phenomena. Prigogine and Stengers (1997) evaluated this approach and said it is no longer 

valid for science. According to the authors, the problem of irreversibility, instability, and time 

may not be explained by the reductionist approach. This approach may be considered the best 

example of mathematical modelling for simple systems, but it fails to explain complex systems 

because it ignores the interactions between the parts in different levels of the organisation 

behaviour (Wimsatt, 1980). 

2. The grey-box reduction method is used with real systems to control the system better (it uses 

a combination of white-box reduction and black-box reduction methods).  

3. The black-box reduction method or the holism reduction philosophy is used with complex 

systems (only the system’s overall behaviour is of interest in this method and no attention is 

paid to the components or inner processes). The behaviour in the holistic approach of a 

complex system may not be fully understood on its own on the basis of a complete 

understanding of the constituent parts; it must be studied as a whole system. The holism 

approach was briefly described in Aristotle’s Metaphysics with the phrase “the whole is more 

than the sum of its parts.” Examples of nearly-holistic approaches include neural networks, 

proportional integral derivative (PID) control, fuzzy logic, knowledge based systems, and any 

other expert system that depends on human experience. The holistic approach is implemented 

by reducing these examples because their details are important. However,  for large  systems 

the approach is used in the field of biological science mainly because of their true emergent 

behaviours such as consciousness and life.  
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Table 2.1 Summary of the classes of reduction methods 

No Class Reduction 
Philosophies 

Approach Explanation by graph 

1 White-box 
reduction 
methods 

Methodological 
reductionism 

A system reduced 
to its smallest 
parts and 
modelled using a 
bottom-up 
approach  

 

2 Grey-box 
reduction 
methods 

Model-based 
methods 

Uses a 
combination of 
the white-box 
reduction method 
and the black-box 
reduction method 

 

3 Black-box 
reduction 
methods 

Holism Only the system’s 
overall behaviour 
is of interest, and 
the components 
and the inner 
processes are not 
of interest 

 

 

For example, large biochemical model dynamics may be reduced to produce a simpler model called a 

dominant sub system (Gorban & Radulescu, 2008; Radulescu et al., 2008; Gorban et al., 2010); this 

dominant sub system contains fewer parameters and is easier to analyse. The notion of dominancy, 

which is a natural mathematical framework to capture multiple asymptotic relations, uses change in 

scale to transform nonlinear systems into discontinuous piecewise linear systems. It is motivated by 

applications from mathematical physics and systems of polynomial equations, as in tropical geometry 

(Sturmfels, 2002). The linear system involves switching between several different systems (modes). 

Dominancy was used by Litvinov and Maslov (1996) to obtain simpler models from larger models that 

have multiple separated timescales and are assembled into hybrid models. The model reduction 

problems in a high order dynamics system can be summed up as finding a simpler lower order models 

for the system in a way that the reduced order model approximates relatively well the behaviour of 

the original model. Moreover, it is important to preserve certain desired properties of the original 
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model in the reduced order model (Monshizadeh, 2013). Choosing the dominant sub-system relies on 

comparing the time scales of the large model. The quasi-equilibrium (QE) and the quasi-steady state 

(QSS) approximations presented by Gorban et al. (2010) led to dominancy and generated reduced 

models. But time scales and dominant sub-systems may change during the dynamics and may go 

through sharp transitions into nonlinear systems. The existence of transitions refers to a well-adapted 

hybrid, discrete or continuous structure for the description of the dynamics of large nonlinear systems 

with multiple time scales (Crudu et al., 2009; Noel et al., 2010; Noel et al., 2011). 

Model order reduction techniques may be categorised into two groups: balanced truncation schemes 

and moment matching based methods. The former was introduced by Mullis and Roberts (1976) and 

the latter appeared in control system studies (Moore, 1981 and Pernebo & Silverman, 1982). The 

balanced scheme transforms the system into a balanced form, and then a reduced order model is 

obtained by truncation. According to Moore (1981), the most important technique is the Lyapunov 

balanced truncation, whose main idea is to transform the system into an equivalent system 

representation in which the states that are easy (difficult) to reach are also easy (difficult) to observe. 

Other balancing types include: stochastic and positive real balancing proposed by Desai and Pal (1984); 

bounded real balancing proposed by Opdenacker and Jonckheere (1988); and frequency weighted 

balancing proposed by Enns (1984); Lin and Chiu (1992); Zhou (1995) and Wang et al. (1999). 

The other category of model reduction is formed based on moment matching by the Krylov method 

and this led to the moment matching model reduction techniques (e.g. Sorensen, 1992; Feldman & 

Freund, 1995; Grimme, 1997; Jaimoukha & Kasenally, 1997). Many scholars base their research on this 

category, such as Feldman and Freund (1995), Grimme (1997) and Jaimoukha and Kasenally (1997). 

Developing methods for model reduction by switching systems dynamics are scarce, as far as the 

researcher of the current study knows, such as the studies of Gao et al. (2006); Shaker and Wisniewski 

(2011) and Birouche et al. (2012).  

Monshizadeh (2013) developed two model reduction approaches for networks and multi-agent 

systems reduction of the dynamic order of the individual agents and reduction of the size of the 

communication graph. The first approach adopted bounded real balancing to reduce certain network 

dynamics in a way that preserves stability or synchronisity with the original system. An priori model 

reduction error bound was established to compare the behaviour of the original network to the 

reduced order model; the interconnection structure of the network remains the same in this 

technique. The second approach focused on the interconnection structure and, in particular, the size 

of the underlying communication graph. The model reduction technique proposed was based on 

clustering the vertices (agents) of the underlying communication graph by means of suitable graph 

partitions. The inevitable challenge was to preserve the spatial structure of the network, which was 

accounted for in the proposed model reduction method, and the reduced size model realised as a 
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multi-agent system is defined on a new graph with a reduced number of vertices. An explicit formula 

for the H2-norm of the error system was obtained by comparing the input-output behaviours of the 

original model and the reduced size model, in the case of choosing the clusters using “almost equitable 

partitions” of the graph. However, the major drawback of balanced truncation reduction is the 

probable collapse of the spatial structure of the network by the direct application of classical model 

reduction tools. 

In the reduced size model, the main structure to be maintained is the network typology. Imura (2012) 

and Ishizaki et al. (2012) conducted studies on a clustering-based algorithm proposed as an 

asymptotically stable networks. 

When the reductionism approach proved to be inadequate and incomplete in dealing with complex 

systems, individual-based modelling emerged to bridge this gap (see Judson, 1994). Individual-based 

modelling is a strategy that focuses on modelling the individual and the interactions with other 

individuals. The individual’s behaviour may be represented by the rules and group behaviour or the 

social organisations are viewed as emerging from the interactions among individuals. Kauffman (1976) 

introduced an early explanation for using individual based models as surrogates to experimentally 

investigating complex biological systems. 

Finally, it is important to mention what Zinovyev (2014) said: “Wild complexity behaviour that may not 

be reduced to a relatively simple view or may not be self-averaged may only be observed and 

reproduced by engineering more or less complex models of their behaviour.” 

2.3 Complexity of Biological Networks 

The term "complex" refers to the difficulty in understanding or verifying a component in terms of its 

design or function, or both. The complexity of a certain system is defined or decided by the number of 

components, the connections between the components, the nonlinearity of mathematical equations, 

the nesting degree, data structure and type, significant behaviours and abstraction problems. Miller 

and Page (2009) linked complexity with self-organisation and emergence, while others correlated it 

with the dimensionality and size. Complex system emerged as a special field in the mathematical and 

physical sciences. To understand complex systems, simple interactions (e.g., signalling) are studied first 

and then new complex levels are added (Weng et al., 1999). Complex systems depend on the 

occurrence of events in time space, and then they modify themsleves accordingly.  

Many human diseases such as cancer, diabetes and neural disorders, occur due to erronoeus function 

or malfunction of signalling components. A single component malfunction does not often cause 

complexity, but multiple or total effects of malfunctioning can cause complexity. Understanding the 

function of individual components within the system helps in understanding anomalies in signalling 
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that cause pathophysiology; such understanding may also provide a clear molecular prospect of human 

interaction with the surroundings (Weng et al., 1999).      

In exploring complexity of biological systems, we face a challenge that arises from the systems' ability 

to respond to different types of signals. The determinants of a complex biological system include the 

dynamic assembly, translocation, degradation and chemical reactions channelling, all of which occur 

simultaneously. Biochemical reaction processes include feedback loops, which present nonlinear 

properties such as disorder, bifurcation and complex disturbance wave etc (McNeil & Walls, 1974; 

Nitzan et al., 1974; Matheson et al., 1975; Lee et al., 1993; Roesky et al., 1993). Barillot et al. (2012), 

Calzone et al. (2012) and Wagner (2013) connected biological systems complexity with its validity and 

evolution history. 

Österlund (2014) stated that biological systems should be studied systemically in order to understand 

the behaviour of cells. For example, the central nervous system and the ganglia of the peripheral 

nervous system comprise neurons that may connect to form neural networks. There are a huge 

number of neurons (100 billion) in our brain, and each neuron can have over 100 synapses coupled 

with other neurons; this huge number of the neurons and synapses causes complexity of the neural 

network and modelling becomes intractable (Koch & Laurent, 1999).  

Complex biological systems include many different processes, such as metabolism, cell growth and cell 

division, as in the case of cancer. The complexity of these processes emerges from the interactions 

components, such as genes, proteins and metabolites (Sauer et al., 2007). For instance, Barillot and his 

colleagues (2012) discussed this in "Computational Systems Biology of Cancer". Zinovyev (2014) said 

that in order to understand cancer, one must understand the disease mechanism by understanding 

cell cycle (the process by which individual cells divide into two cells), death, motility, and the survival 

immune and angiogenesis mechanisms, as well as DNA repair and replication.  For example, if the cell 

DNA changes, it may transfer to become a tumour cell; this infected cell grows faster than a normal 

one and the change occurs at the cell and tissue levels (Castiglione et al., 2014). Immunity is considered 

a complex system; it operates with complex self-regulatory networks, emergent attributes and 

nonlinear dynamics. Ideker and his colleagues (2001) said that the term "emergent" is applicable to 

biological systems as it explains the emergence of a complex structure from simple interactions of 

components. In the same way, Weng and his colleagues (1999) said that complexity arises from the 

connections between the components and the spatial correlations between them.  

Sengupta (2011) said that biological systems are complex, holistic, unbalanced and thermodynamically 

open, in addition to being emergent and self-organising; hence, the normal analysis tools may not be 

used to address this complexity. Biological systems evolved from emergent mechanisms that "interact 

with themselves and produce themselves from themselves" (Sengupta, 2011). 
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Stoll and his colleagues (2013) presented an example of the biological network complexity "EWS-FLI1 

effects on proliferation and apoptosis" as illustrated in Figure 2.1. 

 

Figure 2.1 Network of EWS-FLI1 effects on proliferation and apoptosis (Stoll et al., 2013) 

 

A second example has been provided by Kitano (2004); who illustrated the typically large scale of 

molecular systems as seen in the human Protein Interaction Network (PIN) in Figure 2.2. 

 

Figure 2.2 Large scale of the molecular system (Kitano, 2004) 
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A third example was provided by Takeshi Hase and his research team (2009) who illustrated human 

Protein Interaction Network (PIN)s topology and its statisticals properties. They found that a human 

PIN structure was based on the number of high-degree and middle-degree nodes. Figure 2.3 illustrates 

the example. 

 
Figure 2.3 Cloud topology in the human PIN (Hase et al., 2009) 

 

A complex network of protein interactions in the cell is the main characteristic of these interactions. 

Some idea of the complexity of protein interactions networks can be gained from Figure 2.4, which 

represents a map of some protein - protein interactions of the SCF ubiquitin ligase and other proteins 

(Alberts et al., 2010). 

These networks interactions may involve tens of thousands of multi-dimensional protein complexes 

and tens of millions of protein sequences derived from the nucleotide sequences of genes. To increase 

our understanding of cells, researchers have proposed new methods to simulate these biological 

networks. Specifically, computer-based bioinformatics tools are being combined with modern 

experimental technologies to allow thousands of proteins to be investigated in a single set of 

experiments. Proteomics studies focus on the large scale analysis of proteins (Alberts et al., 2010). 

Other manifestations of complexity in protein interactions include the fact that a typical protein in a 

human cell may interact with between five and 15 different molecules (Alberts et al., 2010). 



18 
 

To understand any function in cell cycle, we should draw the interactions in a diagram as a map (Kohn, 

1999). The most popular method used to represent protein – protein interactions is through a protein 

interaction map; this is a graphical representation method. 

Each protein is represented by an oval shape or box with arrows connecting the proteins that interact 

with each other. This aims to describe all the binding interactions between thousands of distinct 

proteins in a cell; this method is useful for small number of proteins, but when hundreds or thousands 

of proteins are represented on the same map, the network graph becomes  bewilderingly complicated 

(Alberts et al., 2010). Much more useful is to divide the map into small subsections with a few proteins 

of interest. This leads us to the principle of abstraction and multiple levels in the organisation of 

proteins.  

 

Figure 2.4 Map of some protein - protein interactions of the SCF ubiquitin ligase and other proteins  

(Alberts et al., 2010). 

 

Kohn (1999) presents several reasons for using molecular interaction maps. Firstly, it is often difficult 

to keep in mind all the known interactions. Secondly, the maps can suggest new interpretations or 

questions for experimentation. Thirdly, the act of preparing a molecular interaction map imposes a 
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discipline of logic and critique in the formulation of functional models. Finally, the diagram convention 

provides a shorthand for recording complicated findings or hypotheses. 

Figure 2.5 shows another example of the complexity of protein interaction networks. The p53-Mdm2 

subsystem related to DNA repair. The figure shows the remarkable richness of p53 interconnections 

and the diversity of functionally determinant p53 modifications. Eleven phosphorylation or acetylation 

sites (or groups of sites) for which functionality has been determined are shown. If all  these could 

occur independently, there would be 2000 possible modification states for the p53 monomers(Kohn, 

1999). Kohn (1999) suggested that the molecular components are grouped in putative subsystems 

according to mutual interactions or functional coherence. 

 

 

Figure 2.5 The p53-Mdm2 subsystem related to DNA repair (Kohn, 1999) 
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2.4 Mathematical Models of Biological Systems 

The main aim of biological research is to understand the principles of organisation and functioning of 

biological systems, diseases or cellular disorders and the stresses that influence biology. A greater 

understanding of biological systems behaviour can be gained through a comprehensive biological 

model describing the many mechanisms and pathways of the cell (e.g. a phenotype of an organism). 

The model concept in molecular biology is well-recognised. For certain biological systems complexity 

is obvious by the difficulty in predicting the outcomes of disorders. The microscopic structure in 

biological systems is hard to recognise, so noticing system behaviour signifies a functional complexity 

within molecular components and interactions. Hence, imaginary models connecting macro and 

microscopic behaviour continue to be found. Biological models may be formulated and analysed by 

mathematical approaches, which serve as an inspecting eye and allow for logical viewing of 

unobservable molecular mechanisms by their macroscopic signs assuming adherence to basic laws that 

govern molecular interactions. Mathematical models, combined with experimental data from gene 

expression, protein abundance, metabolite concentration, or other biological parameters, are used 

when working with the complex biological networks. 

Systems biology is a recently expanding research field and was led by scientists need to study the 

interactions of components (Yuan et al. 2008). Stelling (2004) said that model developments and 

experiments broadly enhanced our understanding of complex biological networks. These 

developments led to a large amount of data, including transcriptomics, proteomics and metabolomics. 

Biological systems functionality is not explained only by the common laws of biophysics and 

biochemistry, although they are fundamental for constructing biological models; molecular biology 

scientists are also confronted with the challenge of connecting basic laws of nature to biologically 

complex organisations. 

System properties on a genomic level of a system are captured and described by biological networks; 

the process is illustrated in the Figure 2.6. Defining the components of genes and gene products of the 

system is undertaken by the genome, and small molecules, such as metabolites or metal ions, are also 

considered components of the system. Models may be structured by the data obtained from genes 

functionality, product and pathway knowledge and literature. This procedure was called systems 

biology bottom-up approach by Palsson (2006); and transferring transcriptomics, proteomics and 

metabolomics data into biological knowledge or conclusions obtained from mathematical models was 

called a top-down approach.    
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Figure 2.6 Interaction between systems biology and mathematical modelling  

 

Mathematical modelling of biological research is necessary and useful. Researchers use it to analyse 

cellular networks or to invent strategies for controlling cellular dynamics which might be considered 

the cornerstone of development of therapeutic medical applications. A mathematical model is, 

basically a systematic analysis of a biological system that empowers quantitative predicting. Many 

scholars (such as: Endy & Brent, 2001; Hasty et al., 2001; Rao & Arkin, 2001; Kitano, 2002; Neves & 

Iyengar, 2002; Weston & Hood, 2004; You, 2004; Alves, 2006; Kholodenko, 2006; Ideker et al., 2006) 

have studied the combination of computing power and developed numerical methods to conduct the 

analysis of complex cellular networks dynamics and model simulation. Their studies explained the use 

of mathematical modelling to understand complex biological systems where prediction on its own was 

not sufficient. Although mathematical modelling proved beneficial for basic and applied biological 

modeling, many challenges were encountered by researchers in structuring and analyzing; when 

biological modelling was accompanied by assumptions on behalf of the modeller’s goals. Lack of 

detailed, quantitative biological information is a challenge faced by modeller’s. 
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The types of mathematical modelling are various and are widely used. In the next sections of this 

chapter, kinetic models that represent systems of coupled chemical reactions are discussed. Further, 

construction of mathematical models of complex cellular networks is illustrated, mathematical 

representations used to describe cellular networks are highlighted and common methods of analysing 

of modelling outcomes are discussed. 

A set of ordinary differential equations that describes the dynamics of metabolites in a reaction 

network comprise the kinetic models of biochemical reaction networks. Complex biological networks 

involve many enzyme-catalysed processes with non-linear kinetics and intricate stoichiometric and 

regulatory interactions between enzymes. As a result, their mathematical models include sets of 

coupled rational differential equations of high-dimension, and to analyse them maximum 

computational efforts are required. 

Previous experimental data, when compared with system simulation results, validate models. Model 

simulations give optimal flux distribution, which may be compared with the measured flux 

distributions or phenotypic data, such as growth rate, glucose uptake rate, product formation rate, 

etc. (Pramanik & Keasling, 1997; Price et al., 2004). Modelling is a process to improve the model until 

it reaches good agreement with experiments. 

Construction of models of biological systems reactions passes through the steps of construction, 

validation and refinement, it is a repetition process as illustrated in Figure 2.7. The steps are then 

repeated until the model reaches an adequate equivalent level (Lee et al., 2007).  

 

Figure 2.7 Refining models of biological networks 

Mathematical models simulating biological systems that are used include: ordinary differential 

equations (ODEs), delay differential equations (DDEs), partial differential equations (PDEs), agent-

based models (ABMs), and stochastic differential equations (SDEs). Biological modelling examples are 
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provided in the discussion to help understand the dynamics of cell regulation; these models and 

examples are discussed briefly in the following sections:  

2.4.1 Ordinary Differential Equations (ODEs) 

Ordinary differential equations are the most common type of equations used for biological networks 

modeling. They have been applied in studying reaction kinetics and other physical phenomena. 

Mathematical analyses of ODE systems are suited to limited dimensional dynamical systems and they 

are relatively simple compared with the other types, and their computational simulation solutions are 

efficient (Kim et al., 2009). 

2.4.2 Delay Differential Equations(DDEs) 

Delay differential equations are unlimited dimensional dynamical systems and they need more 

computational and analytical complexity; however, their advantages are unique. DDE systems are 

simple, except for their time delays. DDE models explain the effects of these delays on the biological 

processes; their complexity is a little bit harder to simulate than the ODEs. The evaluation of DDEs has 

decreased to recording the history of all populations through the simulation. The slight increase in 

DDEs computational complexity expands the collection of the phenomena widely (Kim et al., 2009). 

2.4.3 Partial Differential Equations (PDEs) 

Partial differential equations are more complex compared with DDE and ODE. This type is implemented 

in age structured and spatio-temporal biological models. Age structured models explain individual cells 

or member’s advancement by a scheduled development process. Age structured models offer an 

internal modelling frame for organisms over time, because an organism's behaviours depends on the 

level of maturity and development. This type is considered the most powerful mathematical modelling 

approach, although it requires more computational processes than the other types mentioned (Kim 

et al., 2009). 

2.4.4 Agent-based Models (ABMs) 

This type addresses unique and discrete agents, such as individual cells and molecules. ABMs explain 

biological interactions probabilistic or stochastic uncertainty within large populations. An individual 

cell in a stochastic model changes the state or the location with a certain probability and accounts for 

its agent's movement in space. Computational complexity of ABM is typically huge. An individual 

simulation of this model can take a long time to process, up to several days. ABMs should be simulated 

several times to achieve the overall average behaviour of the systems (Kim et al., 2009). 
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2.4.5 Stochastic Differential Equations (SDEs) 

If models were arranged on a straight line, the stochastic differential equations model would be 

mediating them in terms of complexity. This model resembles ODEs in its formula, except that its 

values are random. It works on populations rather than individual agents. This model can explain noise, 

random walks and irregular events, it is used in finance, mathematics, chemistry and physics (Kim et 

al., 2009).   

After having discussed the models of ODEs, DDEs, PDEs, ABMs and SDEs the question of "which 

modeling approach is more appropriate?" arises. The answer to this question relies on the 

organisational interactions involved, among other issues. 

The most efficient modelling method of biological complexity is ODE; it does not require a large 

amount of computational work. This approach is suitable and effective when delayed feedback, spatial 

distributions of the cell or probabilistic events are not what the network rely on but, if networks rely 

on delayed feedback, then the DDE is a better choice.  

When cells and molecules were studied, the best approach would be PDE for the cells that do not 

efficiently blend or confine themselves over long durations; also, when gradual changes of behaviour 

occurs because of maturity or age, PDEs are the solution.  SDEs add stochasticity to differential 

equations and they are more complex computationally. 

ABMs usage has recently increased as, at present it offers the most complex framework of 

mathematical modeling. It combines all spatial and temporal dynamics elements, probabilistic events, 

and individual diversity within populations, but it requires focused computational algorithms, so it is 

considered impractical for statistical analyses. ABMs reproduce the complexity of biological systems 

and thus help reduce financial cost of the experiments due to silicon usage rather than experimenting 

with living organisms. By doing so, experimental studies are transferred from wet laboratories into 

computer laboratories, even though they do not replace other modelling types. This is because they 

fail to reduce biological systems complexity, while hybrid methods that combine ABMs and differential 

equations are efficient in capturing the biological network features without adding extra unnecessary 

details. 

Predicting the most suitable mathematical and computational paradigm is very difficult. To understand 

a biological system deeply, all the previous types should be consulted. But this is not reasonable; 

instead, once each type’s abilities and limitations are understood then the type that determines 

accurately the system’s essential dynamics without adding unnecessary complexity is selected. 
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2.5 Reduction Methods for Biological Systems 

Interest in complex models and datasets of biological systems has increased recently. The issue of 

simplifying them to control/manage their behaviour is important (Zinovyev, 2014). Complex spatial 

and temporal behaviour of molecular systems may be reproduced by a small dynamic model that 

includes tens of variables. If a comprehensive description is required for high productivity data, the 

dynamic model is rendered ineffective (Danos et al., 2007). 

In biochemical reaction networks researchers use ordinary differential equations (ODEs) models to 

describe the dynamic behaviour of the system. Most of these models have high dimensional 

complexity (contain large numbers of species and reactions) and nonlinear behaviour. For this reason, 

many methods for model reduction are needed to simplify complex models. The behaviour of the 

reduced model should be like the behaviour of the original model. 

In this section, many approaches of model reduction are addressed.  There are several techniques of 

model reduction in use with biochemical reaction network models to reduce their complexity.  

Quasi-steady state approximation (QSSA) is the most famous approach of model reduction used with 

biochemical kinetics. The pseudo steady state hypothesis (PSSH) is another name for this approach. In 

1913, Bodeustein proposed the main idea of the quasi-steady state approximation (Bodenstein, 1913). 

This idea was later used to produce the classical Michaelis Menten formula (Michaelis and Menten, 

1913). More development and improvement were achieved on this method to be the basic tool to 

analyse the behaviour of chemical reaction mechanisms and kinetics (Semenoff, 1939; Christiansen, 

1953; Helfferich, 1989). In 1983, Segel and Slemrod elaborated the quasi-steady state assumption 

method in the case of perturbation (Segel and Slemrod, 1989). The QSSA idea may be summarised as 

follows: if an intermediate species in the model has not changed considerably with time or the 

difference between the rates of production and consumption is small then; the model may be reduced. 

Another approach to model reduction is the geometric singular perturbation method (GSPM). This is 

useful when the models have slow and fast variables. This approach works based on the assumption 

that when the model contains fast and slow variables, and the slow variables control the fast variables, 

so we can remove the fast variables from the model (Tikhonov, 1952; Fenichel, 1979; Jones, 1995).  

Another common approach of model reduction is quasi-equilibrium approximation (QEA) or the rapid 

equilibrium approximation (REA). The first appearance of this idea was in 1973 by Vasiliev and his 

colleagues (Vasiliev et al., 1973). Later, many studies provided further explanation and clarification of 

the approach as an approach for model reduction (Volpert and Khudyaev, 1985; Lee and Othmer, 2010; 

Noel et al., 2012). 
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The quasi-equilibrium approximation approach has two formulations. The first is based on 

equilibration of fast reactions; while the second, is based on the conditional entropy maximum 

(thermodynamic approach). To know more see Schnell and Maini (2002). In the Schnell and Maini study 

the quasi-equilibrium approximation was applied to a kinetic model of a single enzyme substrate 

reaction. 

Another trend in the reduction is applied to chemical reaction models based on the concept of a 

limiting step. A limiting step is defined as “A rate-controlling (rate-determining or rate limiting) step in 

a reaction occurring by a composite reaction sequence is an elementary reaction, the rate constant for 

which exerts a strong effect stronger than that of any other rate constant on the overall rate” (Gorban 

& Radulescu, 2008). In a limiting step reduction approach, we focus more on a rate constant that 

effects the overall rate more significantly than all other rate constants. Many of researchers studied 

and extended the idea of limiting step (see Johnston, 1966; Boyd, 1978; Murdoch, 1981). Recently, a 

general theory of static and dynamic limitations for linear multi-scale networks was developed by 

Gorban and other researchers (Gorban and Radulescu, 2008; Gorban et al., 2010). 

In 1963, Kruskal defined the idea of “asymptotology" as “the art of handling applied mathematical 

systems in limiting cases” (Kruskal, 1963). This idea plays an important role in model reduction, and it 

produced the quasi-equilibrium asymptotic (QE) and the quasi-steady state asymptotic (QSS) 

approaches, the most common approaches for model reduction. They worked on the separation of 

small and large terms in the model whereby the small terms can be removed from the model in some 

cases. 

Asymptotology simplifies biological systems in several methods. According to Zinovyev (2014) 

asymptotic method simplifies model equations and makes them more traceable; determines a model’s 

parameters and their relation to the parameters of the complete model; breaks down model 

complexity into simple models and matches every biological observation with the possible asymptotic 

model dynamics; predicts the varying methods between different asymptotic behavioural modes and 

finally, decides whether a mathematical model is complex, or it is merely complication. 

Recently, based on static and dynamic limitation in multi-scale reaction networks, a new technique 

was proposed to reduce complex chemical networks. The complex network and the reduced network 

have the same behaviour (Gorban and Radulescu, 2008; Gorban et al., 2010). The reduced network or 

what is called the dominant system (DS) is defined as "a minimal dynamic system." Sometimes the DS 

is considered a sub-system of the original system but in other times it is not because it may include 

new reactions.  
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Radulescu and his colleagues (2008) proposed three techniques to reduce the NF–κB pathway model 

when they wrote about robust simplifications of multi-scale biochemical networks. In the first 

technique, they used a reduction algorithm based on a generalised method of a limiting step to simplify 

linear kinetic models. In the second technique, they used a reduction algorithm based on dominant 

solutions of quasi-stationarity equations (QSE) to simplify nonlinear kinetic models. In the last 

technique, they used a reduction algorithm based on combining the ideas of quasi-stationarity and 

averaging to simplify oscillating kinetic models. 

Castiglione and his colleagues (2014) stressed the importance of multi-scale modelling of biological 

systems to resolve the challenges of large amount of measurements required in modern biology. The 

importance of these manifests when developing comprehensive computational and mathematical 

models for a system with different spatial and time scales. For instance, they used multi-scale 

modelling on the immune system. 

In another study, Rao and other researchers proposed a Kron reduction of the weighted Laplacian 

matrix, which describes the graph structure of the complexes and network reactions. The method is 

based on a variety of reversible and irreversible enzyme kinetic rate laws. It uses a stepwise reduction 

in the number of complexes from the left- and right-hand sides of the reactions and maintains the 

behaviour of the original model. The method was applied to a yeast glycolysis model and a rat liver 

fatty acid beta-oxidation model. The difference between metabolite concentrations in the reduced 

and the full model was 8% and 7.5%, respectively, for the two cases. The number of species in the 

yeast model was reduced from 12 to 7, and the number of species in the rat-liver beta-oxidation model 

was reduced from 42 to 29 (Rao et al., 2014). 

Another reduction approach has been proposed and used to reduce the kinetic models of the nuclear 

factor kappa B network (NF–κB). In this approach, the algorithm uses the speed coefficients to 

eliminate fast variables. To know more about this approach, see West et al. (2015). Kooshkbaghi and 

his colleagues proposed a systematic technique for eliminating non-important species from the model 

based on the relative contribution of each elementary reaction to the total entropy production 

(Kooshkbaghi et al., 2014). Further studies of model reduction with examples of application from 

systems biology can be found in Petzold and Zhu (1999); Gay et al. (2010); Anderson et al. (2011); 

Karadeniz et al. (2012); and Ishizaki et al. (2014). 

Gorban and his colleagues (2004) produced two reduction methods. For slow manifolds, they 

produced invariant grids for computing approximations. To describe the network of monomolecular 

reactions they produced a reduction system of equations if the kinetic constants were well-separated. 

These two methods are correlated with quite abstract mathematics such as tropical algebras and 

model tropicalisation, or with dominant system notions in dynamical systems (Gorban et al., 2004). 
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Another reduction method was proposed by Radulescu and his colleagues (2012). They suggested 

some essential ideas such as dominance and limitation, for greater understanding of dynamical and 

computational biological systems (Radulescu et al., 2012). The methods of averaging approximation 

and invariant manifolds proved their effectiveness in reducing the asymptotic dynamics of chemical 

reaction networks with clear time-scale separation. Many studies have provided further explanation 

on how to calculate invariant manifolds. According to Gorban and Karlin (2005), the slow mode 

dynamics are carried by invariant manifold that results from the relaxation of fast variables. For more 

information see Roussel and Fraser (1991); Gorban and Karlin (2003); Krauskopf et al. (2005).  

Kutumova and his colleagues (2013) proposed a new method for model composition. It was based on 

reducing several models to the same level of complexity and then combining them together. They 

defined a model of minimal complexity as the simplest model that may be obtained from a complex 

model, by using a group of model reduction techniques that can approximate the experimental data. 

The method was tested on two models describing cell fate decisions between NF-kB mediated cell 

survival and apoptosis. The reduced model proved to lead to the same dynamical behaviour of 

observable measures and to the same predictions as the complex model. The newly composed model 

summarised several experimental datasets. These datasets calibrated the original models separately, 

but they had dynamical features that allowed formulating new verifiable predictions. 

Several other methods have also been used for reducing chemical reactions networks. For instance, 

Noel and his colleagues (2012) reduced and hybridised networks of biochemical reactions using the 

Litvinov-Maslov correspondence principle. They applied this method on a cell cycle oscillator model. 

Lam and Goussis (1994) implemented a singular computational perturbation. Maas and Pope (1992; 

1994) used an intrinsic low dimensional manifold to exploit the interval between timescales of models' 

various processes and variables.  

The lumping technique was studied by Wei and Kuo (1969). This technique works based on combining 

reagents into quasi-components for reducing the system size in monomolecular and pseudo 

monomolecular systems (Wei and Kuo, 1969). Many researchers have developed and applied the 

lumping technique in many chemical reaction problems; see Genyuan (1984); Li and Rabitz (1989); Li 

and Rabitz (1990); Li and Rabitz (1991); Li et al. (1994); Dokoumetzidis and Aarons (2009). 

Another reduction method was proposed by Nagy and Turányi (2009). They developed a new species 

reduction method called the simulation error minimisation connectivity method (SEMCM). The 

method works according to SEM-CM and the principal component analysis of matrix F with simulation 

error minimisation (SEM-PCAF). These processes present an efficient way to eliminate redundant 

species and reactions from large chemical reaction systems. 
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Another reduction model method for computational biology was presented by Radulescu and his 

colleagues (2015). This method was inspired by tropical geometry and analysis that combines graphical 

approaches, semi-quantitative reasoning and symbolic manipulation, but does not explain the 

combination method of one-scale approximations to obtain a multi-scale approximation that is valid 

for both fast and slow time scales.  

In a recent study, Sun and Medvedovic (2016) used the Rao-Blackwellised particle filters (RBPF) 

decomposition methods technique to reduce the dimensions of the dynamic model and improve 

estimation accuracy. Some familiar parameters and structure of the system were used as a priori 

knowledge and incorporated into a dynamic model. Consequently, the two researchers decomposed 

the whole dynamic model into sub-set network modules, and then applied different estimation 

approaches. They used experimental data of the JAK-STAT pathway and synthetic data generated from 

the repressilator model as a case study. 

Model reduction approaches presented in this chapter can be divided into four main categories as 

shown in Table 2.2.  
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Table 2.2 Categories of the reduction methods  

Method  Refers to How it works Suitable for Advantage Disadvantage 

Timescale 
exploitation 

Methods that 
use large 
differences in 
reaction rates 
that can occur 
within a 
biochemical 
system. 

Divides the system into 
fast and slow 
components. After an 
initial transient period, 
the fast portions settle 
for the remainder of 
the operation of the 
network. 

Singular 
perturbation, 
intrinsic low 
dimensional, 
singular 
computational 
perturbation, stiff 
and nonlinear 
systems. 

Maintains species 
biological meaning. 

May fail in 
justifying 
reduction due to 
short time-scale 
separation. 
Computationally 
expensive if slow/ 
fast partitioning is 
not known. 

Optimization 
and sensitivity 

analysis 

Methods that 
obtain the lowest 
possible 
dimensional 
model, where an 
error metric 
stays at an 
acceptable level  

Either it measures the 
sensitivity degree to 
perturbations and uses 
it to guide a reduction, 
or it employs an 
iterative optimisation 
procedure.  

Very high 
dimensional, stiff 
and nonlinear 
systems. 

Maintains species 
biological meaning, 
highly algorithmic 
and 
computationally 
efficient for small 
systems, common 
procedures 
implement well in 
software packages. 

Highly 
computationally 
expensive for 
large systems. 
May be 
impossible to 
achieve 
convincing 
sensitivity analysis  

Lumping 

Methods that 
constructs a 
reduced state-
variables system 
corresponding to 
sub-sets of 
original species 

By two approaches: 
proper lumping (each 
original species 
corresponds to one, at 
most, lumped state) 
and improper lumping 
(each original species 
corresponds to one or 
more lumped state) 

Very high 
dimensional, stiff 
and nonlinear 
systems. 

Common in 
reduction of 
chemical kinetic 
systems. 
Algorithmic 
approaches. 
Biological meaning 
is maintained. 

Computationally 
expensive for 
large systems. 
Better reduction 
is achieved by 
nonlinear and/or 
improper lumping 
techniques, but 
this may lead to 
loss of biological 
meaning.  

Singular value 
decomposition 

Singular value 
decomposition. 

Approximates the 
matrix via one of a 
lower rank. 

Balanced 
truncation that 
reduces the model 
and preserves the 
input-output 
relationship. 

Controls 
theoretical 
description.  

Fits systems 
pharmacology. 
Highly algorithmic. 
Potential 
automation in a 
straightforward 
manner.  

May be a priori 
error bound. 

Biological 
meaning is lost, 
only inputs and 
outputs preserve 
meaning. 
Standard 
approach exists 
for linear models 
– but 
generalisations 
for nonlinear 
systems exist. 
Highly 
computationally 
expensive for 
large systems. 

 

Table 2.3 shows some articles that explain and use different reduction methods.  
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Table 2.3 Reduction methods and title of some related articles 

Reduction Method Based on Title Author 

Numerical Methods Computational 
singular 
perturbation (CSP) 

The CSP method for simplifying 
kinetics. 

(Lam & Goussis, 1994) 

Intrinsic low 
dimensional 
manifold (ILDM)  

Simplifying chemical kinetics: 
intrinsic low-dimensional 
manifolds in composition space.  
Laminar flame calculations using 
simplified chemical kinetics 
based on intrinsic low-
dimensional manifolds. 
Invariant manifolds for physical 
and chemical kinetics. 
Asymptotology of chemical 
reaction networks. 

(Maas & Pope, 1992) 
 
 
(Maas & Pope, 1994) 
 
 
 
(Gorban & Karlin, 
2005) 
 
(Gorban et al., 2010) 

Formal Methods Lumping and 
graphical reduction 
methods 

General method for simplifying 
chemical networks while 
preserving overall 
stoichiometry in reduced 
mechanisms.  
Internal coarse-graining of 
molecular systems. 
Reduction of dynamical 
biochemical reaction networks 
in computational biology. 
A graph-theoretical approach 
for the analysis and model 
reduction of complex-balanced 
chemical reaction networks.  
A model reduction method for 
biochemical reaction networks. 

(Clarke, 1992) 
 
 
 
 
(Feret et al., 2009) 
 
(Radulescu et al., 2012) 
 
 
(Rao et al., 2013) 
 
 
 
 
 
(Rao et al., 2014) 

Symmetry Exploiting symmetry in 
temporal logic model checking. 
Noisy dynamic simulations in 
the presence of symmetry: data 
alignment and model reduction 

(Clarke et al., 1996) 
 
 
(Sonday et al., 2013) 

Tropical analysis Tropical geometries and 
dynamics of biochemical 
networks application to hybrid 
cell cycle models. 
Model reduction of biochemical 
reactions networks by tropical 
analysis methods. 

(Noel et al., 2011) 
 
 
 
(Radulescu et al., 2015) 

 

 

To find out which approach to model reduction is the most popular, we searched Google. Table 2.4 

shows the number of links to every reduction method. 
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Table 2.4 Number of links to the well-known reduction method. (From Google as of 15th May 2017) 

Reduction Method # of Links in Google 

“Quasi–steady state”  461,000 

“Pseudo–steady state” 108,000 

“Quasi–equilibrium” 255,000 

“Geometric singular perturbation” 13,500 

“Singular perturbation” 574,000 

“Invariant manifold” 61,400 

“Rate-limiting step” 712,000 

 

As shown in Figure 2.8, the “rate-limiting step” has the largest number of links and the “geometric 

singular perturbation” has the smallest number of links. 

 

 

Figure 2.8 Number of links to the well-known reduction methods on Google 

 

2.6 Summary of the Chapter 

As shown in Figure 2.9, there are three dimensions of complexity in biological network models: number 

of species, number of interactions and model run time. If we want to reduce biological network 

models, we need to reduce one or more dimensions of model complexity. We can reduce the number 

of species by removing noise from the model (the ineffective elements) or useing lumping. Another 
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trend was to reduce number of species by their similarity of behaviour. Moreover, reducing the 

number of species led to a reduction in the number of interactions by default.  

Some researchers reduced the number of interactions by paying attention to the issue of fast and slow 

interactions, as mentioned in Section 2.5. Also, if we want to reduce the model run time we should 

look at the model as a play and the species as actors on the stage. The play consists of several scenes. 

Often each scene contains a limited number of actors (under the lights) and not all of them. The same 

idea is applicable to the model, it divides the model run time into time slices or windows and then two 

options emerge: the first option; is to remove the time windows that are not active or have little 

activities (steady window), and keep the time windows where most of the activities are. The second 

option, finds a sub-model for every time window that contains only the active species that play an 

active role at that time. 

 

Figure 2.9 Dimensions of biological network model complexity  

 

Another trend in reduction is reducing the model mathematically, as mentioned in Section 2.5. It is 

more effective with linear systems; however, most biological systems are nonlinear. 

Another reduction can be obtained by converting the biological model from the ODE form to a Boolean 

form and use special software that converts the status of the species through time (active 1, inactive 

0) into a continuous curve by knowing the highest and lowest concentration a species can reach. 

Finally, we can combine more than one idea; for example, incorporating the idea of reducing the 

number of species by lumping using time windows or merging the idea of using time windows with the 
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idea of converting the model from an ODE to a Boolean form. All previous trends depend mainly on 

our deep understanding of biological systems and the dynamics in which they operate. 

For the purpose of the current study, the biological network model reduction is defined as any method 

designed to decomopose the original model into smaller models that produce the same behaviour as 

the original model, by reducing one or more dimensions of biological network model complexity 

(reduce the number of species, reduce the number of reactions or reduce the model run time). 

As seen in Section 2.5, there are many reduction methods but a fully formal method for systems with 

orders of magnitude larger volume of variables is missing. 

An overview of the reduction methods in Section 2.5 yielded the following conclusions: 

 The literature review demonstrated the existence of a wide range of reduction methods. 

• Methods of model reduction have no "one size fits all." 

• Many of the methods are computerised, but it is the modeller’s responsibility to select the 

best method based on the research question. 

• The purpose of using a certain model determines its appropriateness, such as simulation time 

or speed. 

• Model reduction methods may produce significant reductions and still maintain accuracy. 

All these previous conclusions indictate the need for developing reduction methods for mathematical 

models that are applicable to large networks of biochemical interactions. 

This research proposes two reduction methods to simplify the corresponding complex ODE 

mathematical models. The first reduction method based on a hierarchical representation and lumping 

approach to reduce protein-protein interaction (PPI) networks provides possibility to zoom in and out 

several levels of complexity which is attractive for analysing biological networks. So, this makes it 

unique compared to the existing reduction methods. And the Second reduction method uses a time 

windows for identifying active and inactive periods of a system and Logical models to further simplify 

a model. This reduction method is the first method that combined Boolean models and time windows 

to reduce the complex biological models for promising outcomes. So, this make the second proposed 

reduction method unique compared to the existing ones. 

The proposed reduced techniques will help researchers to build a comprehensive biological network 

and gain a greater uderstanding of the emerging properties of cellular activities. 
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Chapter 3 

Biological Background 

The previous discussion focused on, but was not limited to, complex systems and the struggle with 

complexitiy using reduction techniqes. In this chapter we gives a brief review of the biological 

background especially the cell cycle, with more consideration and focus on the G1/S  checkpoint and 

DNA damage pathways as a complex system, to use as a case study to apply a new reduction approach, 

in Chapter 4. 

The biological background is organised as follows: Section 3.1 gives a brief review of a cell general 

review; Section 3.2 discusses the cell cycle, the regulation of the cell cycle, (DNA damage and cancer) 

and the G1/S checkpoint; Section 3.3 presents the details of the G1/S checkpoint and models. Section 

3.4 discusses the DNA damage signalling pathway and the cell cycle regulation (integrated between 

G1/S and G2/M) model of Iwamoto et al. (2011).   

3.1  The Cell: General Review 

The cell is the basic unit of life. It represents the smallest level of a living organism. All organisms are 

composed of one or more cells.  Humans are made up of many millions of cells. Cells exist in bacteria, 

animals and plants. Many of the basic structures are found inside all types of cells and the way these 

structures work are, fundamentally, very similar, so the cell is said to be the basic unit of life. 

It was in 1839 that cell theory was developed by Matthias Jakob and Theodor Schwann (Vasil, 2008). 

This word 'cell' means a small room and it comes from the Latin cellula. Robert Hooke published a book 

in 1665 coining this descriptive term for the smallest living biological structure (Gest, 2004). 

Since then, cells have been classified into two categories: eukaryotes and prokaryotes (Sagan, 1967) 

(Figure 3.1). Cells from eukaryotic organisms differ from prokaryotic organisms in a large number of 

characteristics (Table 3.1). Scientists categorise organisms based on shared characteristics into groups 

called taxa. “Prokaryotic” is a characteristic of organisms in two taxa: Domain Archaea and Domain 

Bacteria (Bouman, 2007). 

Eukaryotes are cells that contain chromosomes, such as humans, plants and animals. They have a 

nucleus that stores their genetic information. Prokaryotes are cellular organisms that do not have a 

real nucleus. The nucleus is the control centre of a cell. It contains the genetic material packed into 

chromosomes and is associated with other organelles that function in the production of amino acids 
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and proteins based on what the genetic material dictates. Human cells have 46 chromosomes (23 pairs) 

(Tjio & Puck, 1958; Nowell & Hungerford, 1960). 

Prokaryotes have some genetic material, but it is not the same as in eukaryotes. However, prokaryotes 

are still able to reproduce. Examples of these cells are bacteria and blue-green algae. 

 

Figure 3.1 Differences between prokaryotes and eukaryotes. Source: NCBI (National Centre for 
Biotechnology Information) www.ncbi.nlm.nih.gov 

 

The hereditary material in humans is deoxyribonucleic acid (DNA) (Calladine & Drew, 1997). DNA is the 

same in every cell of the human body and most DNA is located in the cell nucleus (where it is called 

nuclear DNA), but a small amount of DNA can also be found in the mitochondria (where it is called 

mitochondrial DNA or mtDNA). 

The information in DNA is stored as a code made up of four chemical bases: cytosine (C), adenine (A), 

thymine (T) and guanine (G). Human DNA consists of about three billion bases, and more than 99 

percent of these bases are the same in all people. These bases determine the information available for 

building and maintaining an organism as their sequence is like the way in which letters of the alphabet 

appear in a certain order to form words and sentences (Popovici, 2010). 

DNA bases pair up with each other, A with T and C with G, to form units called base pairs. Each base is 

also attached to a sugar molecule and a phosphate molecule. Together, a base, sugar, and phosphate 

is called a nucleotide (Figure 3.2). Nucleotides are arranged in two long strands that form a spiral called 

a double helix. The structure of the double helix is somewhat like a ladder, with the base pairs forming 

the ladder rungs and the sugar and phosphate molecules forming the vertical sidepieces of the ladder. 

An important property of DNA is that it can replicate, make copies of itself. Each strand of DNA in the 

double helix can serve as a pattern for duplicating the sequence of bases. This is a critical point when 

cells divide because each new cell needs to have an exact copy of the DNA present in the old cell. 
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Table 3.1 Summary features of prokaryotic and eukaryotic cells (Bouman, 2007) 

Comparison of archaea, bacteria and eukaryotic cells 

Eukaryotes Bacteria Archaea Characteristic 

Present in all Absent Absent in all Nucleus 

Present, include ER, 
Golgi bodies, 
lysosomes, 
mitochondria, and 
chloroplasts 

Present in a few Absent in all Free organelles bound 
with phospholipid 

membranes 

Present, surround 
some animal cells 

Present as organised 
capsule or 
unorganised slime 
layer 

Present Glycocalyx 

Some have complex 
undulating flagella 
and cilia composed 
of a "9+2" 
arrangement of 
microtubules; others 
move with amoeboid 
action using 
pseudopodia 

Present in some  Present 
in some  

Motility 

Present in some Some have flagella, 
each composed of 
basal body, hook, 
and filament; flagella 
rotate 

Some have flagella, 
each composed of 

basal body, hook, and 
filament; flagella 

rotate 

Flagella 

Present in some Absent in all Absent in all Cilia 

Absent in all Present in some Present in some Fimbriae or pili 

Absent in all Absent in all Present in some Hami 

Present in plants, 
algae, and fungi 

Present in most, 
composed of 
peptidoglycan 

Present in most, lack 
peptidoglycan 

Cell wall 

Present in all Present in all Present in all Cytoplasmic membrane 

Present in all Present in all Present in all Cytosol 

Present in some Present in most Present in most Inclusions 

Absent in all Present in some Absent in all Endospores 

Large (80S) in cytosol 
and on ER, smaller 
(70S) in 
mitochondria and 
chloroplasts 

Small (70S) Small (70S) Ribosomes 

Linear and more 
than one 
chromosome per cell 

Commonly single 
and circular 

Commonly single and 
circular 

Chromosomes 

 

The most important characteristic of a cell is that it can reproduce by dividing. If cells did not 

reproduce, no living thing would continue to live. Cell division is the process by which cells duplicate 

and replace themselves and this process is called the cell cycle. 
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Figure 3.2 DNA structure. Source: NIH (U.S. National Library of Medicine) http://www.nlm.nih.gov 

 

3.2  The Cell Cycle 

All organisms on this planet start their life from one single cell. Reproduction and growth are most 

important characteristics of cells, indeed of all living organisms. All cells propagate by dividing into two 

new cells, with each original cell giving rise to two daughter cells each time they divide. These newly 

formed daughter cells can themselves grow and divide, this is called cell cycle. 

The cell cycle is the way to produce two daughter cells by causing a cell to divide and duplicate 

(replication) (Behl & Ziegler, 2014). Eukaryotic cells, such as human cells, take approximately 24 hours 

to divide (Wille et al., 1984). 

There are three phases in which a cell goes through in cell division. These three phases are: inter-

phase, mitosis and cytokinesis (Alberts et al., 2010) (Figure 3.3).  



39 
 

 

 Figure 3.3 Cell cycle phases Source: DB Bioscience 

http:// www.bdbiosciences.com 

Inter-phase is the longest phase of the cell cycle. It is known as the resting phase, which is completely 

misleading, as it is during this time of normal metabolic activity that the cell performs all its normal 

functions, beginning with growth and development.  

The inter-phase is divided into three stages (Alberts et al., 2010):  

I. G1 Phase (Gap 1 phase): A period of normal metabolic activity – the number of cell organelles 

increases to normal levels and the volume of the cytoplasm also increases, eventually reaching a 

mature size. A cell can remain in this phase indefinitely. Its length can vary greatly depending on 

external conditions and extracellular signals from other cells. If extracellular conditions are 

unfavourable, for example, cells delay their progress through G1 and may even enter a specialised 

resting state known as G0 (G zero), in which they can remain for days, weeks or even years before 

resuming proliferation. If the cell undergoes division, the substrates required during S phase are also 

synthesised. 

II. S Phase: (S for DNA synthesis) The DNA and chromosomes replicate. The cell is now committed 

to division. 
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III. G2 Phase: Structures directly involved with mitosis are formed. The new DNA is checked for 

errors and the substances that will be needed during mitosis are synthesised.  

Mitosis only involves the division of the nucleus into two identical nuclei. It is divided into five stages 

(Alberts et al., 2010) see (Figure 3.4): 

I. Prophase: In this stage, the chromatin condenses into chromosomes by dehydrating and 

coiling. The nucleolus and nuclear envelope then disappear and the centriole (animal cells only) divides 

into two centrosomes, which move apart, creating the spindle. 

II. Prometaphase: The nuclear membrane breaks apart, and the spindle starts to interact with 

the chromosomes. 

III. Metaphase: The chromosomes are moved to the equator of the cell and the centromeres 

attach to the spindle fibres, so the sister chromatids line up in the centre of the cell. 

IV. Anaphase: The centromeres of each chromosome divide and are pulled apart by the 

contraction of the spindle fibres; thus, moving the chromosomes to opposite poles of the cell.   

V. Telophase: The chromosomes reach the poles. After that the spindle disappears and the 

chromosomes return to their functional chromatin state by rehydrating and uncoiling. A new nuclear 

envelope begins to form around the chromosomes at each end of the cell, each with its own nucleolus. 

Mitosis is followed by cytokinesis in which the cytoplasm is divided into two daughter cells, which are 

roughly equal in size (Alberts et al., 2010). 

 

 Figure 3.4 The Inter-phase stages (Alberts et al., 2010) 
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3.2.1 Regulation of the cell cycle 

The regulation of cell cycle is a hot topic for bioinformatics researchers although many details of the 

cycle are already known. The cell cycle control system was still a black box until the 1980s with the 

identification of the key proteins of the control system. This goes along with the realisation that they 

are distinct from proteins that perform the processes of DNA replication, chromosome segregation, 

and so on (Alberts et al., 2010). 

The regulation of the cell cycle, or what is called the cell cycle control system, has several points in the 

cell cycle, called checkpoints, at which the cycle can be arrested if previous events have not been 

completed. 

Cell cycle checkpoints are control mechanisms that ensure the fidelity of cell division in eukaryotic 

cells. These checkpoints verify whether the processes at each phase of the cell cycle have been 

accurately completed before it progresses into the next phase. 

Checkpoints are complex signal transduction pathways that serve as control points to regulate the 

order of events in the cell cycle and integrate cell cycle progression with DNA repair (Hartwell & 

Weinert, 1989). 

There are three checkpoints at which the cell cycle is regulated to ensure the cells are ready to proceed 

through the process of division (Saltman, 2005): the G1/S, G2/M and M checkpoints see Figure 3.5.  

During G1, cells check whether their environment favours proliferation and whether their genome is 

ready to be replicated (G1/S checkpoint).  

Before undergoing chromosome condensation and nuclear division, cells have to be sure that their 

DNA is fully replicated and undamaged (G2/M checkpoint). However, separation of sister chromatids 

during anaphase should take place only when all chromosomes are attached to the bipolar mitotic 

spindle via their kinetochores. The spindle checkpoint guarantees this dependence (M checkpoint) 

(Novak et al., 2002). 

The cell cycle is controlled by a collection of proteins interacting with each other, called cyclines and 

cycline dependent kinases. Checkpoints in the cell cycle are responsible for the supervision but the key 

protagonists in cell cycle control are the proteins, such as p53 and RB (Behl & Ziegler, 2014). Table 3.2 

contains a summary of the major cell cycle regulatory proteins. 

In each checkpoint, there is an important protein; in the G1/S and G2/M checkpoints, p53 plays an 

important role in triggering the control mechanisms. It can be activated by damaged DNA, such as like 

that caused by radiation or chemicals. When the concentration of p53 increases, that makes the 
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protein perform its function of binding to particular DNA sequences and activates the expression 

(transcription) of adjacent genes; these genes control cells to stay alive or die or, even inhibit cell 

division. 

The cell adjusts the concentration of its p53 protein by the rate at which it is degraded rather than that 

at which it is made. This process is called ubiquitin mediated proteolysis. It works by adding a small 

peptide (ubiquitin) to the p53 protein to degrade it. The most important factor in enzyme participation 

in labelling p53 with ubiquitin is the MDM2 protein (Momand et al., 2000). 

The process between p53 and MDM2 is called a feedback loop. The MDM2 protein binds to p53, which 

causes the degradation of p53. This lowers the concentration of p53 and reduces transcription of the 

MDM2 gene, closing the feedback loop and allowing p53 levels to rise again. 

Two classes (cyclin-dependent kinases (CDKs) and cyclins) determine a cell's progression through the 

cell cycle (Nigg, 1995). Cyclins form the regulatory subunits and CDKs the catalytic subunits of an 

 

 Figure 3.5 Cell cycle checkpoints (Alberts et al., 2013) 

 

activated heterodimer; cyclins have no catalytic activity and CDKs are inactive in the absence of a 

partner cyclin. When activated by a bound cyclin, CDKs perform a common biochemical reaction, called 

phosphorylation, which activates or inactivates target proteins to orchestrate a coordinated entry into 
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the next phase of the cell cycle. Different cyclin-CDK combinations determine the downstream proteins 

targeted. CDKs are constitutively expressed in cells whereas cyclins are synthesised at specific stages 

of the cell cycle in response to various molecular signals (Kumar et al., 2009). 

In Section 3.2.3 the G1/S checkpoint and pathway of interacting proteins will be discussed in detail. 

 

Table 3.2 Summary of the major cell cycle regulatory proteins (Alberts et al., 2010) 

General Name Functions and Comments 

Protein kinases and protein phosphatases that modify Cdks 

Cdk-activating kinase (CAK)  Phosphorylates an activating site in Cdks 

Wee1 kinase  Phosphorylates Inhibitory sites in Cdks, primarily involved in 
suppressing Cdk1 activity before mitosis 

Cdk25 phosphatase Removes inhibitory phosphates from Cdks; three family members 
(Cdc25A, B, C) in mammals; primarily involved in controlling Cdk1 
activation at the onset of mitosis 

Cdk inhibitor proteins (CKls) 

Sic1 (budding yeas) Suppresses Cdk1 activity in G1; phosphorylation by Cdk1 at the end 
of G1 triggers its destruction  

p27 (mammals( Suppresses G1/S-Cdk and S-Cdk activities in G1; helps cells withdraw 
from cell cycle when they terminally differentiate; phosphorylation 
by Cdk2 triggers its ubiquitylation by SCF   

p21 (mammals( Suppresses G1/S-Cdk and S-Cdk activities following DNA damage 

p16 (mammals( Suppresses G1-Cdk activity in G1; frequently inactivated in cancer 

Ubiquitin ligases and their activators 

APC/C Catalyses ubiquitylation of regulatory proteins involved primarily in 
exit from mitosis, including securin and S- and M-cyclins; regulated 
by association with activating subunits 

Cdc20 APC/C- activating subunit in all cells; triggers initial activation of 
APC/C at metaphase-to-anaphase transition; stimulated by M-Cdk 
activity 

Cdh1 APC/C- activating subunit that maintains APC/C activity after 
anaphase and throughout G1; inhibited by Cdk activity 

SCF Catalyses ubiquitylation of regulatory involved in G1 control, 
including some CKls (Sic1 in budding yeast, p27 in mammals); 
phosphorylation of target protein usually required for this activity 
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3.2.2 DNA Damage and Cancer 

Mistakes in the DNA transferred from the mother cell to the daughter cells can cause cancer (Behl & 

Ziegler, 2014). If the DNA is damaged by radiation or chemicals, then the progression through G1 and 

G2 is delayed by braking mechanisms at the corresponding checkpoints. Delays at these checkpoints 

provide time for the damaged DNA to be repaired, after which the cell cycle brakes are released and 

cell cycle progression resumes (Alberts et al., 2010). 

The two main proteins that control cell cycle are p53 and the retinoblastoma (Rb); therefore, p53 and 

Rb are key tumour suppressor proteins (Behl & Ziegler, 2014). 

p53 is involved in several pivotal signaling pathways, its specificity being governed by its interaction 

with other cellular proteins. Most importantly, p53 acts as a transcription factor inducing the 

expression of genes that mediate the arrest of growth, DNA repair and apoptosis (cell death) as shown 

in Figure 3.6. The G1 checkpoint is accomplished by p53 trans-activating the CKI (cyclin-dependent 

kinase inhibitor), protein p21 that blocks G1/S-CDK complexes (Tokino & Nakamura, 2000; Vogelstein 

et al., 2000; Vousden & Lu, 2002). Moreover, it has been shown that p53 takes direct part in the repair 

of double strand breaks by controlling the fidelity of the recombination processes and, thus exhibits 

functions counteracting carcinogenesis beyond cell cycle checkpoint control (Bertrand et al., 2004; 

Gatz & Wiesmüller, 2006). 

 

Figure 3.6 p53: simplified mode of action  
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3.2.3 G1/S checkpoint 

Cell cycle progression is controlled not only by extracellular mitogens but also by other extracellular 

and intracellular mechanisms. The most important influence is DNA damage, which can occur as a 

result of exposure to certain chemicals, radiation or spontaneous chemical reactions during DNA 

replication. It is important that the cell repairs damaged DNA before attempting to duplicate or 

segregate it. The regulators of the cell cycle can readily detect DNA damage and arrest the cycle at 

either of the two checkpoints, G1/S and G2/M. 

The main purpose of G1/S is to ensure the fidelity of the genome for the initiation of DNA replication. 

The transcription factor, E2F plays a main role in the completion of the G1/S transition and initiation 

of DNA replication through promoting the activation of CycE and CycA. The E2F protein is produced 

when the phosphorylation of the retinoblastoma protein (Rb) releases E2F, as shown in Figure 3.7 

(Lundberg & Weinberg, 1998; Obaya & Sedivy, 2002; Sherr & Roberts, 2004; Satyanarayana & Kaldis, 

2009). 

3.2.3.1 G1/S Checkpoint without DNA Damage 

 

In normal cell proliferation, when the cell cycle is in the early stages of the G1 phase, CycD synthesis is 

triggered through proliferation signal triggers. The essential function of CycD is to bind with CDK4/6 to 

initiate the phosphorylation of Rb to produce the hypophosphorylated form of Rb-PP/E2F; the complex 

protein CycD/CDK4/6, also plays a role in keeping CycE/CDK2 in an active form through two processes: 

first, by competing with CycE/CDK2 for binding with free p27 (a CDK inhibitor) to form the complex, 

p27/CycD/CDK4/6; and secondly by sequestering p27 from p27/CycE/CDK2 (Obaya & Sedivy, 2002; 

Sherr & Roberts, 2004; Satyanarayana & Kaldis, 2009).  

CycE/CDK2 activation is the main reason for further hyperphosphorylation of Rb-pp/E2F resulting in 

the dissociation of Rb-PPPP from E2F; thus, releasing E2F. CDK2 and CDK4/6 release E2F through 

hypophosphorylating Rb. The increased concentration of E2F promotes the synthesis of CycE in the 

mid to late G1 phase, which facilitates the binding between CycE and CDK2 to form more of CycE/CDK2. 

This results in further freeing of E2F; thus, establishing a positive feedback loop between E2F and CycE; 

The increased concentrations of E2F and CycE move the cell from the G1/S checkpoint to the S phase 

(Satyanarayana & Kaldis, 2009).  

The lowering of the CycD concentration occurs in mid G1 phase, which enhances the release of p27 

bound to CycD/CDK4/6. The free p27 gets bound to the new complexes, CycE/CDK2, CycA/CDK2. p27 

can inhibit the activity of CycE/CDK2 or CycA/CDK2, but the large amount of activated CycE/CDK2 can 

cause p27 degradation by phosphorylating it when p27 binds to CycE/CDK2. E2F enhances CycA 
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expression at the G1/S transition with a high concentration of CycA in the S phase (Obaya & Sedivy, 

2002; Coqueret, 2003; Satyanarayana & Kaldis, 2009).  

 

 Figure 3.7 The Transcription factor E2F (Alberts et al., 2010) 

 

3.2.3.2 G1/S Checkpoint with DNA Damage 
 

The highest threat to genome integrity is DNA damage. If DNA damage has occurred, then p53 is 

released from its inhibitor, Mdm2 promoting the activation of p53 as a transcription factor to regulate 

the transcription of a large number genes required for different purposes, including damage recovery 

or cell death process (see Figure 3.8) (Li & Ho, 1998; Lahav et al., 2004; Ciliberto et al., 2005; Harris & 

Levine, 2005; Geva-Zatorsky et al., 2006).   

There are some proteins that can prevent cell cycle progression in G1. DNA damage leads p53 

activation that induces p21 (Yu et al., 1999). The role of p21 is to inhibit the activity of CDK to affect 

the cell cycle arrest through inhibition of the phosphorylation of Rb that keeps E2F inactive (Campisi & 

Fabrizio, 2007).  

The loss of CycE/CDK2 inhibits the release of E2F and, consequently, the synthesis of CycE and CycA, 

which are essential steps in the progression to the S phase (Dulic et al., 1994). This stops the cell cycle 

progressing and activates the cell cycle repair pathway in order to provide enough time for cells to 

repair their DNA damage. With the removal of DNA damage, the negative feedback loop of p53 and 

Mdm2 is fully restored and p53 returns to a low level. The decrease in p53 reduces the level of p21, 

which releases complexes CycE/CDK2 and CycA/CDK2 and makes the cell cycle return to its normal 

condition (Ling et al., 2013). 
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The p16-Rb pathway usually occurs, secondary to the engagement of the p53 and p21 pathways in the 

senescence induced cell growth arrest (Stein et al. 1999; Jacobs & de Lange, 2004; Campisi & Fabrizio, 

2007).  

 

Figure 3.8 The G1/S checkpoint pathway involving the DNA damage signal transduction pathway 

(Ling et al., 2013) 

 

3.3 G1/S checkpoint Modelling 

Many computational approaches and models have been proposed to study biological networks. These 

have examined molecular pathways and complex interactions at many levels of biological information: 

proteins, protein function, pathways and protein interaction networks to understand how they work 

together. For this, continuous, discrete, hybrid, and stochastic methods have been proposed. The most 

common approach to accurately modeling the temporal dynamics of networks is ordinary differential 

equations (ODE).  

The following is a review of the models used to simulate the G1/S checkpoint. 

There are several types of models that have been developed to represent the G1/S checkpoint that 

involve protein to protein interactions. These types are mathematical, Boolean, petri net and hybrid 

models (see Table 3.3).  

The first mathematical model was proposed by Hatzimanikatis and his colleagues in 1995. This model 

not only simulates the qualitative consequences on cell cycle regulation of over expression of cyclin E, 

E2F, and of RB deregulation in agreement with experiment, but it also suggests strategies for the 

rational manipulation of the cell cycle based on bifurcation analysis (Hatzimanikatis et al., 1995). 
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In 1997, Obeyesekere and his colleagues developed a mathematical model for the regulation of the G1 

phase of Rb+/+ and Rb—/—mouse embryonic fibroblasts and an osteosarcoma cell line. This model 

focused on the regulation of progression through the GI phase of the mammalian cell cycle that 

involved cdk4/cyclin D, cdk2/cyclin E, E2F and RB (Obeyesekere et al., 1997).  

Many mathematical models have been proposed from 1997 until now (Kohn, 1998; Aguda & Tang, 

1999; M. N. Obeyesekere et al., 1999; V Hatzimanikatis et al., 1999; Qu et al., 2003; Tashima et al., 

2003, 2004; Novak & Tyson, 2004; Iwamoto et al., 2006, 2008; Haberichter et al., 2007; Tashima et al., 

2008; Ling et al., 2010; Iwamoto et al., 2011; Zhao et al., 2012). 

 

Table 3.3 Articles related to G1/S checkpoint modelling 

No Article Title Model Type Year 

1 
A mathematical model for the G1/S transition of the mammalian cell 
cycle ODEs 1995 

2 

A mathematical model of the regulation of the G1 phase of Rb+/+ 
and Rb—/—mouse embryonic fibroblasts and an osteosarcoma cell 
line  

ODEs  

1997 

3 
Functional capabilities of molecular network components controlling 
the mammalian G1/S cell cycle phase transition 

ODEs  
1998 

4 The kinetic origins of the restriction point in the mammalian cell cycle  ODEs 1999 

5 
A model of cell cycle behaviour dominated by kinetics of a pathway 
stimulated by growth factors  

ODEs  
1999 

6 
A mathematical description of regulation of the G1-S transition of the 
mammalian cell cycle  

ODEs 
1999 

7 
Regulation of the mammalian cell cycle: a model of the G1-to-S 
transition 

ODEs 
2003 

8 Kinetics behaviour of G1-to-S cell cycle phase transition model  ODEs  2003 

9 
Simulation for detailed mathematical model of G1-to-S cell cycle 
phase transition  

ODEs 
2004 

10 A model for restriction point control of the mammalian cell cycle  ODEs   2004 

11 
Mathematical modelling of G1/S phase in the cell cycle with involving 
the p53/Mdm2 network  

ODEs  
2006 

12 
A systems biology dynamical model of mammalian G1 cell cycle 
progression  

Coupled 
Differential 
Equations 
(CDEs)  2007 

13 
Mathematical modeling and sensitivity analysis of G1/S phase in the 
cell cycle including the DNA-damage signal transduction pathway  

ODEs 
2008 

14 
Prediction of key factor controlling G1/S phase in the mammalian cell 
cycle using system analysis 

ODEs 
2008 

15 
Robustness of G1/S checkpoint pathways in cell cycle regulation 
based on probability of DNA-damaged cells passing as healthy cells  

ODEs 
2010 

16 
Mathematical modeling of cell cycle regulation in response to DNA 
damage: exploring mechanisms of cell-fate determination  

ODEs 
2011 
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17 

Computational modeling of signaling pathways mediating cell cycle 
checkpoint control and apoptotic responses to ionizing radiation-
induced DNA damage 

ODEs 

2012 

18 
Dynamical analysis of a generic Boolean model for the control of the 
mammalian cell cycle  Logical 2006 

19 A Computational model of mammalian cell cycle using Petri nets  Petri Net 2002 

20 Modeling the cell cycle: From deterministic models to hybrid systems  Hybrid 2011 

21 A hybrid model of mammalian cell cycle regulation  Hybrid 2011 

22 Hybrid models of the cell cycle molecular machinery  Hybrid 2012 

23 Hybrid Petri nets for modeling the eukaryotic cell cycle  
Hybrid Petri 
Nets 2013 

24 
Petri net modelling of oscillatory processes in the activation of cell 
cycle proteins Petri Net 2013 

25 Petri net based modelling and simulation of p16-Cdk4/6-Rb pathway Petri Net 2013 

26 
Novel recurrent neural network for modelling biological networks: 
Oscillatory p53 interaction dynamics 

Recurrent 
Neural Network 2013 

 

Most models are based on ODEs; however, the critical limitations of ODE models are the difficulties in 

kinetic parameter estimation and numerical solutions to a large number of equations, making them 

more suited to smaller systems. 

In the study by Adrien Faure and his colleagues (2006), they suggested a Boolean model for the control 

of the mammalian cell cycle. Fauré et al. (2006) used a logical model to understand the behaviour of 

complex biological regulatory networks. The critical limitation of Boolean models is that they can fail 

show complex behaviours, such as oscillations.  

Considering the amount of information available from biological research, hybrid and petri net models 

have been proposed to understand the interactions governing biological networks. In 2002, a 

computational model of the mammalian cell cycle using petri nets was published by Kotani, Yoshioka 

and Konagaya (Kotani et al., 2002). The limitation of petri net modelling is that it can only obtain 

qualitative analyses of system behaviours with time being implicit in the firing of the transitions (Ling 

et al., 2013b). 

However, since 2002, new hybrid and petri net models have been published (Alfieri et al., 2011; 

Singhania et al., 2011; Noel et al., 2012; Cetin et al., 2013; Herajy et al., 2013; Sugii et al., 2013). These 

types of models are still new and have not yet been fully explored.  

Ling et al. (2013) introduced a novel recurrent artificial neural network (RNN) model capable of 

handling a large number of molecular interactions and quantifying the temporal dynamics and 

emergent systems properties. The models were just applied to the p53-Mdm2 oscillation system, a 

crucial component of the DNA damage response pathways activated by a damage signal (Ling et al., 

2013b). This model converts an ODE system into a powerful recurrent network with attractive features.  
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In the model above, Ling et al. (2013b) modelled the power of recurrent neural networks (RNN) to 

accurately mimic and parameterise biological networks through the attractive features of continuous 

processing in neurons with forward and feedback loops and incremental weight updates. The novel 

recurrent neural network (RNN) model (Ling et al., 2013b) was applied to a small system with three 

proteins, but its potential for larger systems was revealed in the extension of their model to represent 

G1/S pathway through modularisation with RNN (Samarasinghe and Ling, 2017).     

As mentioned earlier, all previous models have limitations (those relevant to G1/S are shown in Table 

3.4 as G1/S is the focus of this thesis but these apply to other aspects of cell cycle as well). For this 

reason, a new modelling approaches and new reduction methods are needed, in particular, to reduce 

the mathematical models based on ordinary differential equation (ODE).  These modelling approaches 

and new reduction methods are used to overcome the limitations of the ODE models and other models 

and to produce simple and still efficient dynamic models. These models can, therefore, handle a large 

number of molecular interactions, easily estimate parameters from data, quantify temporal dynamics 

and emergent systems properties, achieve abstraction in the representations of proteins through 

different levels of organisation of protein complexes and be adaptive. 

 

   Table 3.4 Limitations of G1/S checkpoint models  

Model Type Limitations 

Mathematical Ordinary Differential 
Equations (ODE) Model 

Difficulty in kinetic parameter estimation and numerical 
solution of a large number of equations. 

Logical Models Cannot show the complex behaviours, such as 
oscillations. 

Hybrid Petri Nets Model This type of models is still new and has not yet been fully 
explored. 

Novel Recurrent Neural Network (RNN) 
Model (Ling et al., 2013b) only applied to a small system with three proteins. 
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3.4 The DNA Damage Signalling Pathway and Whole Cell Cycle Regulation 

(Integrated Between G1/S and G2/M) Model Iwamoto et al. (2011) 

Understanding protein interactions in this study involves understanding system dynamics in the G1/S 

regulation of signal transduction. This involves protein-protein interactions, with the focus on complex 

proteins and the movement from level to level in protein-protein interactions presentation 

(abstraction), which is the first step in simulating the G1/S checkpoint process. 

Deriving a formal abstraction for the system (G1/S checkpoint) is the crucial step in developing this 

research. It includes the definition of all system elements: components of the system and the form of 

molecular interactions in the network, as described in the section on the G1/S checkpoint (Section 

3.2.3). 

To explain how to produce the structure of the network based on the chemical reactions of the G1/S 

checkpoint, we take Iwamoto et al. (2011) proposed model for the G1/S checkpoint system as an 

example. Iwamoto et al. (2011) presented a novel model of the DNA damage signalling pathway and 

whole cell cycle regulation (integrated between G1/S and G2/M) and explored the effect of p53 

oscillation on cell fate selection. The PhD research described in this thesis uses a base model for G1/S 

transitions and DNA damage signalling pathway extracted from Iwamoto et al. (2011) model as a case 

study. For this reason we discuss the Iwamoto et al. (2011) model in detail. 

Iwamoto et al. (2011) presented a novel model for the DNA damage signaling pathway and whole cell 

cycle regulation (integrated between G1/S and G2/M) and explored the effect of p53 oscillation on cell 

fate decisions. 

The Iwamoto et al. (2011) model, as shown in Figure 3.9, shows the reaction scheme of the proposed 

model that integrated the G1/S model, the G2/M model, and the DNA damage signaling pathway. The 

model consists of 54 dependent variables and 137 kinetic parameters (see Appendix A). Both the initial 

conditions and kinetic parameters in the Iwamoto et al. (2011) model were estimated based on values 

described in previous works (Lev Bar-Or et al., 2000; Tashima et al., 2006; Iwamoto et al., 2008). 
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Figure 3.9 Diagram of key regulators in the Iwamoto et al. model (2011)  

The scenario explaining the Iwamoto et al. (2011) model of the DNA damage signalling pathway and 

whole cell cycle regulation follows as: 

In G1/S and S/G2 transitions the E2F (transcription factor) plays a central role in DNA replication and 

is repressed by the binding of Rb (retinoblastoma protein) in G1. In the normal cell, CycD is synthesised, 

and G1 progression is initiated. The activated binary complex CycD/Cdk4 is formed when CycD binds 

to Cdk4. The CycD/Cdk4 complex phosphorylates Rb bound to E2F, which becomes the 

hypophosphorylated form (Rb-PP). Furthermore, the hyperphosphorylated form (Rb-PPP) occurrs 

when the Rb-PP phosphorylated by both CycE/Cdk2 and CycA/Cdk2. Rb-PPP disassociates from Rb-

PP/E2F and E2F is activated. The transcriptional activation of CycE, CycA, Cdc25A are activated by E2F, 

and this is required for DNA replication (Helin, 1998). CycE binds to separate inactive Cdk2 molecules 

to form an inactivate complex, iCycE/Cdk2 and CycA binds to separate inactive Cdk2 molecules to form 

an inactivate complex, iCycA/Cdk2. Activated binary complexes aCycE/Cdk2 and aCycA/Cdk2 form 

after Cdc25A dephosphorylates and activates iCycE/Cdk2 and iCycA/Cdk2. The further dissociation of 

Rb-PPP and E2F and concomitant the activation of E2F is the result of phosphorylation of Rb-PP by 

both aCycE/Cdk2 and aCycA/Cdk2. The positive feedback loop between two types of Cyc/Cdk 

complexes and Rb/E2F complexes plays an essential role in the G1 progression.  Initiating DNA 

replication and driving the progression to the S phase happens after sufficient expressions of both E2F 

and aCycE/Cdk2 (Matsumura et al., 2003; Woo and Poon, 2003). After completing DNA replication 

during the S phase, aCycA/Cdk2 promotes the degradation of E2F that reduces the synthesis of CycE 

and the formation of aCycE/Cdk2, which causes the progression to the G2 phase (Xu et al., 1994). 
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Regulating G1/S progression is dependent on three Cdk inhibitors (CKIs), p16, p21, and p27. p16 

inhibits the activation of CycD/Cdk4, and both p21 and p27 repress aCycE/Cdk2 and aCycA/Cdk2 (Parry 

et al., 1995; LaBaer et al., 1997),  as shown in Figure 3.10.  

 

Figure 3.10 G1/S and S/G2 transitions (Iwamoto et al., 2011) 

In G2/M and M/G1 transitions shown in Figure 3.11, the transcriptional activation of CycB is induced 

through the active transcription factor NF-Y that is activated by aCycA/Cdk2 from the late S phase to 

the G2 phase (Chae et al., 2004). CycB binds to Cdk1 and forms an inactivated complex, iCycB/Cdk1. 

Although the iCycB/Cdk1 is dephosphorylated by Cdc25C to become the activated complex 

aCycB/Cdk1, aCycB/Cdk1 is continuously phosphorylated and inactivated by Wee1. The aCycB/Cdk1 

complex has a nuclear export signal, unlike CycD/Cdk4, CycE/Cdk2, and CycA/Cdk2; therefore, it 

localises to the cytoplasm in G2 phase (aCycB/Cdk1cyto) (Takizawa and Morgan, 2000). Then it drives 
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the progression to the M phase where chromosome condensation is caused by aCycA/Cdk2 (Furuno 

et al., 1999; Gong et al., 2007). In M phase, aCycB/Cdk1cyto transport to the nucleus (aCycB/Cdk1nuc) 

mediated by CycB, followed by chromosome condensation and nuclear breakdown (Li et al., 1997; 

Kong et al., 2000). After that, APC/Ccdc20 is formed when the anaphase promoting complex/cyclosome 

(APC/C) binds to Cdc20, followed by the activation of aCycB/Cdk1nuc, and forms activated APC/Ccdc20.  

The degradation of securin, CycA, and CycB promoted by activate APC/Ccdc20 induces several reactions 

to exit from M (Castro et al., 2005). The degradation of CycA inactivates aCycA/Cdk2 and the 

degradation of CycB inactivates aCycB/Cdk1nuc that activates APC/Ccdh1. Activated APC/Ccdh1 promotes 

degradation of CycA and that inactivates aCycA/Cdk2, degradation of CycB taht inactivates 

aCycB/Cdk1nuc, and the degradation of Cdc20 that inactivates APC/Ccdc20. APC/Ccdc20 and APC/Ccdh1 both 

induce the exit from the M phase by a sufficient decline in aCycB/Cdk1nuc, which marks the completion 

of cell cycle progression (Xu and Chang, 2007). 

The kinase activity of both aCycA/Cdk2 and aCycB/Cdk1 is inhibited by binding to p21 when the DNA 

damage occurs that blockes the activation of APC/Ccdc20 (LaBaer et al., 1997), as shown in Figures 3.10 

(B) and 3.10 (A). 

 

Figure 3.11 G2/M and M/G1 transitions and the DNA damage signalling pathway 

 (Iwamoto et al., 2011) 
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In the DNA damage signalling pathway, when DNA is damaged, both ATM and ATR (ATM/ATR) are 

activated by DNA damage signal transduction (Figure 3.11 (B)). The activated ATM/ATR phosphorylates 

and activates both p53 and Chk1. Transcriptional activation of Mdm2, p21, and 14-3-3σ happens 

through activated p53.  There is a negative feedback loop between p53 and Mdm2 so the activated 

form of Mdm2 promotes degradation of p53. That negativity feedback produces oscillatory dynamic 

behaviours for both p53 and Mdm2 (Lev Bar-Or et al., 2000; Batchelor et al., 2008).  

The activities of aCycE/Cdk2, aCycA/Cdk2 and CycB/Cdk1 are inhibited by the binding of p21, which 

induces G1 arrest and G2 arrest, respectively. Cdc25C is exported to the cytoplasm after being 

phosphorylated by Chk1 by 14-3-3σ that inhibits the activation of CycB/Cdk1, and G2 arrest is induced 

as shown in Figure 3.11 (B). 

In the Iwamoto et al. model (2011) every 189 timesteps correspond to an hour in real time and 24.82 

hours is the time required for one cell cycle, which approximately equal to about 24 hours, the time 

required for one cell cycle in normal mammalian cells. They employed the XPPAUT software 

(Ermentrout, 2002) to simulate the model and they used a single independent variable “DNA damage 

signal (DDS)” to represent DNA damage. First, they ran the model without DNA damage (DDS = 0) to 

calculate the time course of several cell cycle regulators, total CycE (tCycE), total CycA (tCycA), total 

CycB (tCycB), aCycE/Cdk2, p27, and APC/Ccdc20. The results shown in Figure 3.12 were in good 

agreement with experimentally observed data. 

 

Figure 3.12 Time courses of several cell cycle regulators from a simulation run using the Iwamoto 
model 2011 without DNA damage (Iwamoto et al., 2011) 
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Secondly, they ran the model with four levels of DNA damage DDS = 0.002 (low-damage), DDS = 0.004 

(medium-damage), DDS = 0.008 (high-damage), and DDS = 0.016 (excess-damage). The results (Figure 

3.13) have shown good agreement with experimentally observed data. 

 

Figure 3.13 Time courses of several cell cycle regulators from a simulation run using the Iwamoto 
model 2011 with different levels of DNA damage: (a) low-damage where, DDS = 0.002 

(b) medium-damage where, DDS = 0.004 (c) high-damage where, DDS = 0.008             
and (d) excess-damage where, DDS = 0.016 (Iwamoto et al., 2011) 
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In this chapter we have given a brief review of biological background, especially the cell cycle, with 

greater consideration and focuse on the G1/S  checkpoint pathway and DNA damage pathways as a 

complex systems. The biological background have given through four sections: Section 3.1 given a brief 

review of a cell general review; Section 3.2 discussed the cell cycle, the regulation of the cell cycle, 

(DNA damage and cancer) and the G1/S checkpoint; Section 3.3 presented the details of the G1/S 

checkpoint and models. Section 3.4 discussed the DNA damage signalling pathway and the cell cycle 

regulation (integrated between G1/S and G2/M) model of Iwamoto et al. (2011). 

In the next chapter we extract the base model for our research from the Iwamoto 2011 model and we 

validate the base model to be sure it is useful and, we discuss a new reduction approach and we apply 

this approch to the base model to prove the efficiency for this reduction approach. 
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Chapter 4 

Model Reduction Method Based on a Hierarchy Representation and 

Lumping  

The previous discussions have focused on a brief review of the biological background. In this chapter 

the base model was extracted from the Iwamoto model 2011 then, we propose a method to simplify 

biological networks based on hierarchical representation and lumping. We use the base model that 

present in Section 4.1 (G1/S  checkpoint pathway and DNA damage pathways model) as  a complex 

system as a case study to apply our new reduction approach. 

This chapter is organised as follows: Section 4.1 presents the base model; Section 4.2 presents the 

methodolgy; Section 4.3 presents the application of the model reduction method. 

4.1 DNA Damage Signalling Pathway Integrated with the G1/S Checkpoint      
Pathway as the Base Model 

After we had looked back at previous reports (Lev Bar-Or et al., 2000; Tashima et al., 2004; Tashima et 

al., 2006; Iwamoto et al., 2008) and read in the Iwamoto et al. (2011) paper about the DNA damage 

signalling pathway and whole cell cycle regulation, we extracted a base model from Iwamoto et al. 

(2011) a novel model that presented the DNA damage signalling pathway integrated with G1/S 

checkpoint pathway as shown in Figure 4.1. 

The model consisted of 35 dependent variables and 92 kinetic parameters (see Appendix B). Both initial 

conditions and kinetic parameters in the our model were estimated based on values described in 

previous reports (Lev Bar-Or et al., 2000; Tashima et al., 2006; Iwamoto et al., 2008; Iwamoto et al., 

2011). 
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Figure 4.1 G1/S transitions and DNA damage signalling pathway 

In our model, in the normal cell, G1/S CycD is synthesised and G1 progression is initiated. The activated 

binary complex CycD/Cdk4, forms when CycD binds to Cdk4. The CycD/Cdk4 complex phosphorylates 

Rb bound to E2F, which generates the hypophosphorylated form, Rb-PP. Furthermore, the 

hyperphosphorylated form (Rb-PPP) is generated when Rb-PP is phosphorylated by both CycE/Cdk2 

and CycA/Cdk2. Rb-PPP disassociates from Rb-PP/E2F and E2F is activated. The transcription of CycE, 

CycA, Cdc25A is activated by E2F, and this is required for DNA replication. CycE binds to inactive Cdk2 

molecules to form the inactive complex, CycE/Cdk2, and CycA binds to inactive Cdk2 molecules to form 

the inactive complex, CycA/Cdk2 (Iwamoto et al., 2011; Alberts et al., 2015). Activated binary 

complexes, CycE/Cdk2-p and CycA/Cdk2-p, form after Cdc25A dephosphorylates and activates the 

corresponding inactive complexes. The further dissociation of Rb-PPP and E2F and the concomitant 

activation of E2F is the result of phosphorylation of Rb-PP by both CycE/Cdk2-p and CycA/Cdk2-p. The 

positive feedback loop between the two types of Cyc/Cdk complexes and the Rb/E2F complex plays an 

essential role in G1 progression.  Initiating DNA replication and driving the progression to the S phase 
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happen by sufficient expression of both E2F and CycE/Cdk2-p. After completing DNA replication during 

S phase, CycA/Cdk2-p promotes the degradation of E2F that reduces the synthesis of CycE and the 

formation of CycE/Cdk2-p, which causes progression to the G2 phase. Regulation of G1/S progression 

depends on three Cdk inhibitors (CKIs), p16, p21, and p27. p16 inhibits the activation of CycD/Cdk4, 

and both p21 and p27 repress CycE/Cdk2-p and CycA/Cdk2-p (Iwamoto et al., 2011; Alberts et al., 

2015),  as shown in Figure 4.1.  

 When  DNA  is damaged,  various  protein  kinases  are recruited  to  the  site  of  the damage and 

initiate  a  signalling  pathway  that  causes cell-cycle  arrest.  The  first  kinase  at  the damage  site  is  

ATM/ATR, depending  on  the  type  of  damage. Additional  protein  kinases,  called  Chk1 and  Chk2,  

are  then  recruited  and activated,  resulting  in  the phosphorylation  of  the  gene  regulatory protein,  

p53.  Mdm2 normally binds to p53 and promotes its ubiquitylation and destruction in proteasomes. 

Phosphorylation  of p53  blocks  its  binding to Mdm2;  as  a  result,  p53  accumulates  to high  levels  

and  stimulates the transcription of  the  gene  that  encodes  for the  CKI  protein, p21.  p21  binds  and 

inactivates G1/S-Cdk  and  S-Cdk  complexes,  arresting the  cell  in  G1 (Iwamoto et al., 2011; Alberts 

et al., 2015).  

We edit the equations to make the model suitable to represent the DNA damage signalling pathway 

integrated only with G1/S checkpoint pathway; the changes are shown in Table 4.1. 

Table 4.1 Changes in the model equations 

No Equation Term removed  Reason 

1 dY3/td 

CycA 

K9Y41 

Y41= aB-Myb 

(1.a) The initial value of aB-Myb equals zero and its 
form from activates iB-Myb which the initial value 
equals zero, iB-Myb synthesis induces by E2F which 
the initial value equals zero (Iwamoto et al., 2011). So, 
the effect of this term is closed to zero through the 
G1/S. 

K75Y32 

Y32= NF-Y 

(1.b) The initial value of NF-Y equals zero and it 
activated at the late S phase to G2 phase by 
aCycA/Cdk2 (Chae et al., 2004). 

K126Y49 

Y49= aAPC/Ccdc20 

(1.c) aAPC/Ccdc20 it’s form at the anaphase and 
activates by aCycB/Cdk1nuc after forming from 
complex/cyclosome (APC/C) binds to Cdc20 to form 
APC/Ccdc20 (Castro et al., 2005)  

K127Y51 

Y51= aAPC/Ccdh1 

(1.d) aAPC/Ccdh1 activates when the degradation of 
CycA and CycB inactivates aCycA/Cdk2 and 
aCycB/Cdk1nuc at the late M phase (Xu and Chang, 
2007). 
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2 dY5/dt 

CDK2 

K14Y10(Y49 + Y51) 

Y49= aAPC/Ccdc20 

Y51= aAPC/Ccdh1 

(2.a) for reason (1.c) and (1.d) 

K15Y9(Y49 + Y51) 

Y49= aAPC/Ccdc20 

Y51= aAPC/Ccdh1 

(2.b) for reason (1.c) and (1.d) 

3 dY9/dt 

iCycA/CDK2 

K15(Y49 + Y51) 

Y49= aAPC/Ccdc20 

Y51= aAPC/Ccdh1 

(3.a) for reason (1.c) and (1.d) 

4 dY10/dt 

aCycA/CDK
2 

K14Y10(Y49 + Y51) 

Y49= aAPC/Ccdc20 

Y51= aAPC/Ccdh1 

(4.a) for reason (1.c) and (1.d) 

5 dY15/dt 

p21 

K104Y39 

Y39= p21/CycB/Cdk1 

(5.a) p21/CycB/Cdk1 forms at late S phase when p21 
bind to aCycB/Cdk1 (Takizawa and Morgan, 2000). 

K103Y53 

Y53= aCycB/Cdk1nuc 

(5.b) aCycB/Cdk1nuc forms in M phase (Li et al., 1997; 
Kong et al., 2000) 

 

After the base model for our research is ready we calculated the timesteps required for G1/S, which 

were approximately equal to 12.32 hours (Ohtsubo et al., 1995) in real time, where every 189 

timesteps corresponds to an hour and that means we need approximately 2330 time steps to simulate 

G1/S. 

To evaluate the base model we simulated it with and without DNA damage, and we compared the base 

model results with the Iwamoto model 2011 to be sure the base model was useful for a particular 

purpose and was applicable to answering a specific set of questions. We used Microsoft Excel 

spreadsheets with Visual Basic for Applications (VBA) to simulate the base model and from the 

simulation we analysed the results.  

VBA is Microsoft’s macro language for applications built on top of the windows operating system. VBA 

is based on the visual basic (VB) language. VBA is a fully featured language that has all the aspects of a 

modern computer language. Modelling with VBA provides maximum effectiveness in the simulation of 

biological systems. Excel VBA provides many helpful features, such as: spreadsheets for data input and 

output, VBA development environment, dataset analysis tools (graphs and tables, etc.) and statistical 

functions for summaraising data and results (Botchkarev, 2015; Rossetti, 2015). 
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First, we ran the base model without DNA damage (DDS = 0) to calculate the time course of several 

cell cycle regulators. The results shown in Figure 4.2 are in good agreement with the original model 

results (Figure 3.12) that accordingly Iwamoto et al. (2011) followed experimentally observed data. 

 

Figure 4.2 Time courses of some chemical species in the G1/S phase without DNA damage from a 
simulation run using the base model 

Secondly, we ran the base model with four levels of DNA damage DDS = 0.002 (low-damage), DDS = 

0.004 (medium-damage), DDS = 0.008 (high-damage), and DDS = 0.016 (excess-damage). The results 

were in good agreement with the original model that was alrady in agreement with experimentally 

observed data. 

If no DNA damage has occurred, the p21 and p53 are stay in stead and low level, as shown in Figures 

4.3 and 4.4. DNA damage leads to p53 activation that induces p21 (Yu et al., 1999). The role of p21 is 

to inhibit the activity of CDK to effect cell cycle arrest through inhibition of phosphorylation of Rb to 

keep E2F inactive (Campisi & Fabrizio, 2007). 

With the removal of DNA-damage, the negative feedback loop of p53 and Mdm2 is fully restored and 

p53 returns to a low level. The decrease in p53 reduces the level of p21, which releases the complexes 

of CycE/CDK2 and CycA/CDK2 (Ling et al., 2013) as shown in Figures 4.3 and 4.4 when DDS=0.004. 
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Figure 4.3 Time courses of p21 in the G1/S phase with and without DNA damage from a simulation 
run using the base model 

 

For the high DNA-damage in DDS=0.008, the time courses of p21 and p53 in the G1/S phase are shown 

in Figures 4.3 and 4.4. The activated p53 showed oscillation, which was in agreement with 

experimental observations by Lev Bar-Or et al. (2000), Lahav et al. (2004) and Geva-Zatorsky et al. 

(2006). When DNA was damaged, the DNA-damage signal sequentially activates p53 and Mdm2. The 

activated p53 also can promote the synthesis of p21, which plays the role of CDK inhibitor. Since p21 

binds to both CycE/CDK2-P and CycA/CDK2-P to inhibits the phosphorylation of Rb, the activation of 

E2F is delayed here as well. 

 

Figure 4.4 Time courses of p53 in the G1/S phase with and without DNA damage from a simulation 
run using the base model 
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4.2 The Methodology 

Reducing the model of a biological network to a simpler one using a reduction method in this research 

involves the following tasks: (i) Understanding the protein interactions involved in the biological 

network; (ii) Representing the biological network as a hierarchial representation; (iii) Determining the 

key elements in the biological network and finding the acceptable key element numbers that can be 

lumped (AKEL); and (iv) Introducing different levels of lump formation. This task is divided into two 

sub-tasks: first, determining the lumps at each level; and secondly, rewriting the equations.  

4.2.1 Understand the Protein Interactions Involved in the Biological Network 

Understanding protein interactions in this study involves understanding the systems dynamics in the 

biological network regulation of signal transduction; this involves protein-protein interactions with a 

focus on complex proteins and the movements from level to level in the presentation of protein-

protein interactions. 

Deriving a formal abstraction of the system is the crucial first step in a model reduction process. It 

includes definition of all aspects of the system: components of the system and the form of molecular 

interactions in the network. 

In a general form; suppose a system consists of n chemical species with concentrations Y1, Y2, ..., Yn 

participating in the reactions. The rate of change of concentration of all participating chemical species 

can be written as: 

dYi

dt
=  𝑓𝑖(𝑌1, 𝑌2,… , 𝑌𝑛) → 𝑌𝑖(𝑡 + ∆𝑡) = 𝑌𝑖(𝑡) + ∫ 𝑓𝑖(𝑌1, 𝑌2,… , 𝑌𝑛)𝑑𝑡                   (4.1)

∆𝑡

 

 

When dt becomes very small (from Taylor series expansion) disregarding higher order terms, the new 

state of the system after a small time increment, Δt, can be rewritten as: 

 

𝑌𝑖(𝑡 + ∆𝑡) = 𝑌𝑖(𝑡) +   𝑓𝑖(𝑌1, 𝑌2,… , 𝑌𝑛)∆𝑡                        (4.2) 

 

 where Yi is the node output, fi is the activation function of node i, fi describes how Yi values change 

with time as a function of its current state and inputs, and can be described by nonlinear equations. 
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4.2.2 Representing the Biological Network as a Hierarchical Representation 

The second step is to convert the biological network from a flat to a hierarchical representation to 

allow different levels of lumping (many levels of abstraction) zoom in and zoom out. Drawing the 

interactions in the biological network as a heirarchical map helps us visually decide which elements 

can be lumped together and to figure out directly which equations combine together efficiently. 

The nature of the system its hierarchical structure. This means that the lower level entities form the 

components of the higher level entities of and there is a part-whole relationship between the lower 

and higher levels of the system. As a result, from this hierarchy, there is a reduction that can be done 

between each higher and lower levels with different levels of reduction. 

The most important characteristic of a biological network is that it contains complex proteins. A 

complex protein is the result of a protein binding to another protein or molecules of another 

substance. Individual proteins can participate in the formation of a variety of different protein 

complexes. Different complexes perform different functions, and the same complex can perform very 

different functions that depend on a variety of factors. 

In any biological network; there are many forms of protein complexes that are divided into different 

levels. The division process depends on the number of molecules within each kind and the binding 

relations between these proteins to create complex proteins in the upper level of a biological network. 

This division method can be applied to represent all biological protein networks. The general rule to 

calculate the level number of proteins L(Yi) is as in Eq. (4.3). 

 

𝐿(𝑌𝑖) = 𝑅(𝑌𝑖) − 1                     (4.3) 

 

where R(Yi) the rank of protein complex formation as in Eq. (4.4). 

 

𝑅(𝑌𝑖) = # 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑖𝑛𝑔𝑙𝑒 𝑝𝑟𝑜𝑡𝑖𝑒𝑛 𝑖𝑛 𝑌𝑖 𝑠𝑝𝑒𝑐𝑖𝑒                       (4.4) 

 

In level 0 we put all single proteins. Level 1 contains double complex proteins, which represents two 

single proteins binding together. Level 2 contains triple complex proteins, which represents three 

single proteins binding together. Level 3 contains quadruple complex proteins, which represents four 

single proteins binding together and so on. 

 

The steps to convert a flat biological network into a hierarchical biological network are as follows: 

1. Determine the rank of protein complex formation R(Yi) as in Eq. 4.4, such as single R(Yi) =1, 

double R(Yi) =2 ... etc. 
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2. Find the protein complex formation level L(Yi) in the map, as in Eq. 4.3, based on the rank of 

protein complex formation R(Yi). 

3. Draw the species into levels. 

4. Add the interactions between species. 

 

4.2.3 Determine the Key Elements in the Biological Network and Find the Acceptable Key 

Elements Number that Can be Lumped (AKEL) 

Any biological network has key elements that, mark the start of the process, the completion of a 

process progression, specific imbalances or the occurrence of a particular disease. For this reason, 

these key elements need to be kept out of the lumping process as much as possible to maintain the 

biological meaning of the model; the reduced model thus produced is useful for a particular purpose 

and is applicable to answering a specific set of questions. 

This reduction method enables keeping key elements out of the lumping process or to lump key 

elements with other elements, but the percentage of the key elements lumped must not exceed 10% 

of key elements in the system. We suggested 10% in this reduction method to be sure the reduced 

model still contains 90% of the key elements. 

 

To find the acceptable number of key elements that can be lumped (AKEL) is as in Eq. (4.5). 

 

 

𝐴𝐾𝐸𝐿 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑘𝑒𝑦 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 ∗
1

10
                                     (4.5)       

 

 

4.2.4 Introduce Different Levels of Lump Formation 

This task is divided into two sub-tasks: first, determine the lumps at each level; and, secondly, rewrite 

the equations.  

4.2.4.1 Determine the Lumps at Each Level 

In this step, we must apply a graph partition process. The graph partition process is defined as 

partitioning a Graph, G into smaller components with specific properties. 

Consider a Graph G = (V, E), where V denotes the set of n vertices and E the set of edges. Partition V 

into k parts (sub-sets), F1, F2, ..., Fk, such that the parts are disjointed.  
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We need to convert the graph into a matrix. For a given Graph G; and its adjacency matrix; A as shown 

in Figure 4.5 A and B, the rows of the matrix represent the childrens and the columns represent the 

parents. 

An entry Aij implies an edge between nodes Yi and Yj, where each entry of Aij, represents the degree of 

parent Yj node to Yi node. To find Aij is as Eq. (4.6). 

 

𝐴𝑖𝑗 = {
𝐿(𝑌𝑗) − 𝐿(𝑌𝑖)                     , iff 𝑌𝑗 node is the parent of 𝑌𝑖 node              (4.6)  
0                                             ,   otherwise                                                                     

 

  

Two more arrays are needed: Array L needs to contain the level number of all nodes in the protein 

complex formation map graph. Another array, S needs to contain the status of all nodes in the protein 

complex formation map graph, where Si find as Eq. (4.7) as shown in Figure 4.5a and b. 

 

𝑆𝑖 = {

−1                    , 𝑓𝑜𝑟 𝑗𝑜𝑖𝑛𝑡 𝑛𝑜𝑑𝑒 𝑜𝑟 𝑘𝑒𝑦 𝑟𝑒𝑔𝑢𝑎𝑙𝑡𝑜𝑟 𝑛𝑜𝑑𝑒                                      
1                   , 𝑓𝑜𝑟 𝑎 𝑘𝑒𝑦 𝑛𝑜𝑑𝑒                                                                      (4.7) 
  0                    , 𝑓𝑜𝑟 𝑜𝑡ℎ𝑒𝑟 𝑛𝑜𝑑𝑒𝑠                                                                                

 

 

 

 
Figure 4.5 (a) Multiple levels of protein complex formation map Graph G; (b) Adjacency matrix A 

for Graph G, L vector for node level and S vector for node status 
 

 

In the lumping process, it is important that there is no overlap in scope between different lumps. This 

overlap could result in duplicated representations or missing interactions regarding responsibility and 

activity. Such an overlap could also cause confusion about the biological network reduction. For this 

reason, we must take care of joint proteins and key regulator proteins. A protein is called a joint protein 

if it has a two parents or more, as shown in Figure 4.6 a and, b where, protein Y2 is a joint protein.  
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Figure 4.6 Examples of joint proteins in a protein complex formation map graph 
 

Furthermore, in the cell cycle, the progress of the cycle is regulated by a family of protein kinases called 

cyclin-dependent kinases (Cdks) Cdk1, Cdk2, Cdk4 … etc., which function to turn specific proteins on 

and off at appropriate times in the cell cycle. For this reason, these are called key regulator proteins. 

Joint proteins and the key regulator proteins are kept out of the lumping process to maintain the 

biological meaning of the model. 

 

The algorithm to partition multiple levels of the protein complex formation map into k parts (sub-sets) 

to determine the lumps at each level is as follows: 
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4.2.4.2 Rewrite the Equations 

The lumping process reflects the differential equations for the model (optimise). The optimisation 

process considers the initial conditions (concentration of all lumps at t=0), the kinetic parameters and 

the mass balance equations of the ODE mathematical model. Many steps are needed to optimise the 

ordinary differential equations (ODEs) to be suitable for the reduced model after lumping. 

 

1. Find the concentration for each lump at t=0; as follows: 

 

𝐹𝑗 =∑𝑌𝑖          𝑤ℎ𝑒𝑟𝑒   𝑌𝑖 ∈ 𝐹𝑗, 𝑡 = 0                        (4.8)

𝑛

𝑖=0

 

 

 

2. Find the partial concentration for every species included in the lump at t=0; as follows: 

 

𝑌𝑖𝑃 =
𝑌𝑖

𝐹𝑗
             𝑤ℎ𝑒𝑟𝑒  𝑌𝑖 ∈ 𝐹𝑗, 𝑡 = 0                         (4.9)  

 

3. Write the equation for the rate change of concentration of each lump (merge (U) the 
equations of the species included in the lump); as follows: 
 

 

𝑑𝐹𝑖

𝑑𝑡
=∪

𝑑𝑌𝑖

𝑑𝑡
             𝑤ℎ𝑒𝑟𝑒   𝑌𝑖 ∈ 𝐹𝑗                           (4.10)  

 

 

4. Simplify the equation by handling each term as in the following cases: 

i. A kinetic parameter term that is not related to any species; keeps its value the same with 

a new name. 

For example: K1 in the original model becomes B1. 

ii. A kinetic parameter term that relates to one species but is not included in any lump; keeps 

its value the same with a new name. 

For example: K1Y5 in the original model becomes B1Y5. 

iii. A kinetic parameter term Kn that is related to one species Yi included in a lump; changes 

its value into a new value with a new name Bn, calculated as follows: 

 

𝐵𝑛 = 𝐾𝑛 ∗ 𝑌𝑖𝑃                𝑤ℎ𝑒𝑟𝑒 𝑌𝑖 ∈ 𝐹𝑗           (4.11) 
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Then rewrite the term with the new kinetic parameter related to the lump. 

For example: K1Y5, where Y5 ∈ F1,  become B1F1, where B1=K1*Y5P. 

iv. A kinetic parameter term that is related to two species not included in any lum;, keeps the 

same value in a new name. 

For example: K1Y1Y5 becomes B1Y1Y5. 

v. A kinetic parameter term that is related to two species one of which is included in a lump; 

changes into a new value with a new name, calculated as follows: 

 

𝐵𝑛 = 𝐾𝑛 ∗ 𝑌𝑖𝑃         𝑤ℎ𝑒𝑟𝑒 𝑌𝑖 ∈ 𝐹𝑗           (4.12) 

 

Then rewrite the term with the new kinetic parameter related to the lump. 

For example: K1Y5Y3, where Y5 ∈ F1 become B1F1Y3, where B1=K1*Y5P. 

vi. A kinetic parameter term that is related to two species when both are included in a one 

lump; changes into a new value with a new name, calculated as follows: 

 

𝐵𝑛 = 𝐾𝑛 ∗ 𝑌𝑖𝑃 ∗ 𝑌𝑚𝑃            𝑤ℎ𝑒𝑟𝑒 𝑌𝑖, 𝑌𝑚 ∈ 𝐹𝑗           (4.13) 

 

Then rewrite the term with the new kinetic parameter related to the lump. 

For example: K1Y5Y3, where Y5,Y3 ∈ F1 become B1F1, where B1=K1*Y5P*Y3P. 

vii. A kinetic parameter term that is related to two species. Each species included in a different 

lump; changes into a new value with a new name, calculated as follows: 

 

𝐵𝑛 = 𝐾𝑛 ∗ 𝑌𝑖𝑃 ∗ 𝑌𝑚𝑃           𝑤ℎ𝑒𝑟𝑒 𝑌𝑖 ∈ 𝐹𝑗, 𝑌𝑚 ∈ 𝐹𝑠        (4.14) 

 

Then rewrite the term with the new kinetic parameter related to the lump. 

For example: K1Y5Y3, where Y5 ∈F1, Y3 ∈ F2 become B1F1F2, where B1=K1*Y5P*Y3P. 

Note: In the next level of lumping every lump is mainpulated as a species. 

 

5. Replace the new formula of the term with the old one wherever it is found in the equations. 

6. Simplify the lump equations by deleting or replaceing the opposite terms (positive and 

negative) as in the following cases: 

a. The term contains a kinetic parameter related to the lump only. Delete the opposite 

terms (positive and negative). 

For example: B3F1 – B3F1   delete the two terms. 

b. The term contains a kinetic parameter related to the lump and a species. Replace the 
opposite terms (positive and negative) with one term, as follows: 
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𝐵𝑛 ∗ 𝑌𝑖 ∗ 𝐹𝑗 −   𝐵𝑛 ∗ 𝑌𝑖 ∗ 𝐹𝑗     𝑟𝑒𝑝𝑙𝑎𝑐𝑒 𝑤𝑖𝑡ℎ    𝐵𝑛 ∗ 𝑑𝑌𝑖 ∗ 𝐹𝑗               (4.15) 

where dYi=Yi(t) – Yi(t-1) , t as timestep 

 

For example: B3Y5F1 – B3Y5F1   Replace with B3dY5F1. 

 

 Note: we use eight decimal digits for parameter values for greater accuracy. 

 

4.3 Model Reduction Method 

In the previous section, we described the steps to simplify biological networks in general. In this 

section, we apply the method to clarify the steps involved. We use the base model that was presented 

in Section 4.1 (G1/S  checkpoint pathway and DNA damage pathways model) as  a complex systems to 

case study to apply our new reduction approach. 

 

4.3.1 Understand the Protein Interactions Involved in the Base Model 

Understanding protein interactions involves understanding system dynamics in the G1/S checkpoint 

pathway and the DNA damage pathway base model. It involves protein-protein interactions where the 

focus on complex proteins is considered the first step in the model reduction process. 

The system and the form of molecular interactions in the network are described in the section on the 

base model (Section 4.1). 

The base model, as shown in Figure 4.7, shows the reaction scheme of the proposed model, which 

integrated the G1/S model and the DNA damage-signalling pathway. The model consists of 35 

dependent variables and 92 kinetic parameters (see Appendix B). 
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Figure 4.7 G1/S transitions and DNA damage signalling pathway base model 

 

As shown in Figure 4.7, the interactions number 88 between the G1/S elements. These interactions 

have 11 associations, 10 disassociations, 8 phosphorylation, 6 de-phosphorylation, 11 syntheses, 13 

degradations, 24 activations and 5 inhibitions. These statistics of interaction types in the base model 

are shown in Figure 4.8. 
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Figure 4.8 Statistics of interaction types on the base model 

 

Table 4.2 shows the biochemical meaning of the kinetic parameters in the interactions map and the 

effect on the species in the base model. In general, approximately 27% of the interactions are 

independent interactions for proteins (synthesis and degradation), 40% of the interactions depend on 

binding and unbinding relations (association, disassociation, phosphorylation and de-

phosphorylation), and 33% of the interactions do not depend on binding and unbinding relations 

(activation and inhibition).  

Table 4.2 The biochemical meaning of kinetic parameters in an interactions map and the effect on 

the species of the base model 

No. Arrow Meaning Effect 

1  Synthesis  Increase 

2  Degradation Decrease 

4  Association Decrease/Increase 

5  Dissociation rate  Decrease/Increase 

6  Phosphorylation rate  Decrease/Increase 

7  De-phosphorylation rate  Decrease/Increase 

8  Activation Increase 

9  Inhibition Decrease 
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For greater understanding of the dynamics of the G1/S checkpoint pathway and DNA damage 

pathways base model, we look at the system from another angle (consider the flow and feedback). 

Proteins concentrations change over time through the interactions (inflow, outflow). The flows are 

synthesis, degradation, association, disassociation, phosphorylation and de-phosphorylation, 

activation (synthesis by) and inhibition (degradation by); as shown in Figure 4.9. However, a protein 

concentration is the present memory of the history of changing flows within the system. 

 

 

Figure 4.9 Protein concentration flow diagram 

 
In protein networks, the interactions are designed to raise or lower protein concentrations or to keep 

them within acceptable ranges. As shown in Figure 4.7, G1/S transitions and DNA damage signalling 

pathway base model is a collection of proteins along with the mechanisms for regulating the levels of 

the protein concentrations by manipulating flows (a collection of ‘feedback processes’); this means the 

system runs itself by feedback processes. Feedback processes are fundamental to all life and human 

systems. 

Feedback loops can cause protein concentrations to maintain their levels within a range, or grow, or 

decline. This means the flows into or out of protein are adjusted due to changes in the concentration 

of the protein itself. Whatever is monitoring the protein concentration level begins a corrective 

process, adjusting the rates of inflow or outflow (or both), thus changing the protein concentration 

level. Understanding these feedback processes helps explains the mechanisms of regulation of the 

G1/S checkpoint and answers these questions: How are biological networks designed to avoid some of 

the traps/problems that systems with cell interactions have?  How do they avoid some extremes and 

stay within satisfactory bounds without destroying themselves? 

As shown in Figure 4.10, a common kind of feedback loop stabilises protein concentration levels, as 

for example, the relations between Chk1 and Chk1-P. The concentration levels of Chk1 and Chk1-P may 
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not remain completely fixed but do stay within an acceptable range through phosphorylation and de-

phosphorylation interactions. This is known as a balancing feedback. 

 

 

Figure 4.10 Balancing feedback loop between Chk1 and Chk1-P 

 
The relation between Cdc25A and Cdc25A-P is another example of balancing feedback loop in the G1/S 

checkpoint pathway and DNA damage pathways base model, as shown in Figure 4.11. 

 

 

Figure 4.11 Balancing feedback loop between Cdc25A and Cdc25A-P  
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The second kind of feedback loop is an unbalancing feedback loop that is found wherever a protein 

concentration can reduce or increase. As shown in Figure 4.12, the feedback includes five proteins (Rb, 

Rb-PPP, E2F, Rb-PP/E2F and Rb/E2F). 

 

 

Figure 4.12 Unbalancing feedback  

 

In real systems, feedback loops rarely come in a simple form. Often, they come in multi-level (complex 

form) and are extended, as shown in Figure 4.13. In this feedback, five proteins are included in the 

feedback regulation mechanism while, as shown in Figure 4.14, the feedback is extended to include 

seven proteins in feedback regulation mechanism. This proves two points: first, in understanding all 

feedbacks in the system it is very important to understand the regulation mechanism in the system 

and how the system works; secondly, our need to represent the system as a hierarchical 

representation because the biological system is a multi-level system (hierarchical by nature).     
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Figure 4.13 Unbalancing feedback with five species 

 

Figure 4.14 Unbalancing feedback with seven species 



79 
 

 

Figure 4.15 Feedback to regulate the concentration of CycD, CycD/Cdk4, p27/CycD/Cdk4 and 
p21/CycD/Cdk4 

 

In another example from the base model as shown in Figure 4.15, the feedback to regulate the 

concentration of CycD, CycD/Cdk4, p27/CycD/Cdk4 and p21/CycD/Cdk4 includes seven proteins (CycD, 

Cdk4, p21, p27, CycD/Cdk4, p27/CycD/Cdk4 and p21/ CycD/Cdk4). 

 

4.3.2 Representing the Biological Network as a Hierarchical Representation 

As mentioned in Section 4.2.2, four steps are needed to convert a flat biological network into a 

hierarchical biological network. Table 4.2 shows the rank R(Yi) and the level L(Yi) for all proteins 

included in the base model. The table is output of step one and two and calculate rank R(Yi) and the 

level L(Yi) by eq. 4.4 and eq. 4.3 respectively. 

Table 4.3 The rank R(Yi) and the level L(Yi) for all proteins included in the base model 

No. Spice Protein Name R(Yi) L(Yi) 

1 Y1 CycD 1 0 

2 Y2 CycE 1 0 

3 Y3 CycA 1 0 

4 Y4 Cdk4 1 0 
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5 Y5 Cdk2 1 0 

6 Y6 CycD/Cdk4 2 1 

7 Y7 CycE/Cdk2 2 1 

8 Y8 CycE/Cdk2-P 3 2 

9 Y9 CycA/Cdk2 2 1 

10 Y10 CycA/Cdk2-P 3 2 

11 Y11 p27 1 0 

12 Y12 p27/CycD/Cdk4 3 2 

13 Y13 p27/CycE/Cdk2-P 4 3 

14 Y14 p27/CycA/Cdk2-P 4 3 

15 Y15 p21  1 0 

16 Y16 p21/CycD/Cdk4 3 2 

17 Y17 p21/CycE/Cdk2-P 4 3 

18 Y18 p21/CycA/Cdk2-P 4 3 

19 Y19 p16 1 0 

20 Y20 Rb/E2F 2 1 

21 Y21 Rb-PP/E2F 3 2 

22 Y22 E2F 1 0 

23 Y23 Rb-PPP 2 1 

24 Y24 Rb 1 0 

25 Y25 p53 1 0 

26 Y26 Mdm2 1 0 

27 Y27 ATM/ATR 1 0 

28 Y28 Cdc25A 1 0 

29 Y29 Cdc25A-P 2 1 

30 Y30 Chk1 1 0 

31 Y31 Chk1-P 2 1 

32 Y32 NF-Y 1 0 

33 Y33 B-Myb 1 0 

34 Y34 B-Myb-P 2 1 
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In Step 3 we draw species into levels and add interactions between species in Step 4, as shown in 

Figure 4.16. 

 

Figure 4.16 Hierarchical interactions map for the base model 
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4.3.3 Determine the Key Elements in the Biological Network and Find the Number of 

Acceptable Key Elements that Can be Lumped (AKEL) 

In this task, we want to determine the key elements in the base model and calculate the number of 

key elements that can be lumped. Based on Sections 3.3 and 3.4, the base model contains nine key 

elements (CycD/Cdk4, CycE/Cdk2-P, CycA/Cdk2-P, p27/CycD/Cdk4, p27/CycE/Cdk2-P, p21/CycE/Cdk2-

P, p21, E2F and p53), where each marks a specific point/event or can be used to answer a specific set 

of questions. These key elements need to be kept out of the lumping process, if possible, to maintain 

the biological meaning of the model and to be sure that the reduced model is useful. Table 4.4 shows 

the key elements in the G1/S model and the DNA damage-signalling pathway and their functions. 

Table 4.4 Functions of key elements in the base model 

No. Spice Protein Name Functions 

1 Y6 CycD/Cdk4 There are two functions of CycD/CDK4 complex:  

1. To initiate the phosphorylation of Rb bound to E2F to obtain the 

hypophosphorylated form (Rb-PP/E2F). 

2. To keep CycE/CDK2 in active form by  

   (i) Binding with free p27 to form the complex  

p27/CycD/CDK4.  

(ii) Isolating p27 from p27/CycE/CDK2. 

2 Y8 CycE/Cdk2-P The activated form of CycE/CDK2-P results in further 

hypophosphorylation of Rb-PP/E2F to promote dissociation of Rb-

PPP and E2F and release E2F. 

3 Y10 CycA/Cdk2-P CycA/CDK2-P drives a negative feedback loop to inhibit the 

activity of E2F by phosphorylating E2F for its degradation. 

4 Y12 p27/CycD/Cdk4 Break cell cycle 

5 Y13 p27/CycE/Cdk2-P Break cell cycle 

6 Y15 p21  Plays a role when DNA damage happens, p21 binds to CycE/Cdk2-

P and CycA/Cdk2-P, repressing their activity, which induces G1 

arrest. 

7 Y17 p21/CycE/Cdk2-P Break cell cycle 

8 Y22 E2F The increase in level of free E2F promotes the synthesis of CycE, 

which facilitates the association between CycE and Cdk2 to form 

more of the complex CycE/Cdk2. This results in increases in E2F 

activity and establishes a positive feedback loop between E2F and 

CycE. 

9 Y25 p53 Plays a role when DNA damage happens, which activates p53 that 

induces transcriptional activation of Mdm2 and p21. 
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The base model contains two joint proteins (p27 and p21) and two key regulator proteins (Cdk2 and 

Cdk4), as shown in Figure 4.17. The key elements are identified by the thick black border and the joint 

elements/key regulator elements with a thick red border. Note: p21 is a key element and in the same 

time it is a joint element in the base model. 

 

Figure 4.17 Key elements, joint proteins and key regulator proteins in a hierarchical interactions 
map for the base model  

To find the acceptable number of key elements that can be lumped (AKEL) we used Eq. (4.5). 

where: 

AKEL = 9 * 1/10 
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AKEL = 0.9 ≈ 1 

Depending on the value of the variable AKEL, we can lump only one key element, and not more, so 

that the percentage of key elements lumped is not more than 10%. 

 

4.3.4 Introduce Different Levels of Lump Formation 

In this section, we apply two sub-tasks to introduce different levels of lump formation. 

4.3.4.1 Determine the Lumps at Each Level 

 

To determine the lumps at each level we converted the graph of hierarchical interactions map to three 

matrixes: 

a) Adjacency matrix A, as shown in Figure 4.18. 

b) Vector L, as shown in Figure 4.19. 

c) Vector S, as shown in Figure 4.20. 
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 Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 Y10 Y11 Y12 Y13 Y14 Y15 Y16 Y17 Y18 Y19 Y20 Y21 Y22 Y23 Y24 Y25 Y26 Y27 Y28 Y29 Y30 Y31 Y32 Y33 Y34 

Y1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Y2 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Y3 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Y4 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Y5 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Y6 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Y7 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Y8 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Y9 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Y10 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Y11 0 0 0 0 0 0 0 0 0 0 0 2 3 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Y12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Y13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Y14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Y15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 3 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Y16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Y17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Y18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Y19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Y20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

Y21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Y22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Y23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

Y24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Y25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Y26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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Y27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Y28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

Y29 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Y30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 

Y31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Y32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Y33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

Y34 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 

Figure 4.18 Adjacency matrix A for the base model graph G 
 

Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 Y10 Y11 Y12 Y13 Y14 Y15 Y16 Y17 Y18 Y19 Y20 Y21 Y22 Y23 Y24 Y25 Y26 Y27 Y28 Y29 Y30 Y31 Y32 Y33 Y34 

0 0 0 0 0 1 1 2 1 2 0 2 3 3 0 2 3 3 0 1 2 0 1 0 0 0 0 0 1 0 1 0 0 1 

 
Figure 4.19 Vector L for node level for the base model graph 

 

 

Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 Y10 Y11 Y12 Y13 Y14 Y15 Y16 Y17 Y18 Y19 Y20 Y21 Y22 Y23 Y24 Y25 Y26 Y27 Y28 Y29 Y30 Y31 Y32 Y33 Y34 

0 0 0 -1 -1 1 0 1 0 1 -1 1 1 0 1 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 

 

Figure 4.20 Vector S for node status for the base model graph 
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After applying the algorithm to determine the lumps at each level we had the following: 
 

i. Level-1 lumping: 
 
As shown in Figure 4.21, there are seven rectangles, each representing a concept, which is a lump 

where: 

- F1 lump contains Y1 (CycD) and Y6 (CycD/Cdk4). CycD/Cdk4 is key element. Depending on the 

value of the variable AKEL, we can lump only one key element. 

- F2 lump contains Y2 (CycE) and Y7 (CycE/Cdk2). 

- F3 lump contains Y3 (CycA) and Y9 (CycA/Cdk2). 

- F4 lump contains Y23 (Rb-PPP) and Y24 (Rb).  

- F5 lump contains Y28 (Cdc25A) and Y29 (Cdc25A-P).  

- F6 lump contains Y30 (Chk1) and Y31 (Chk1-P). 

- F7 lump contains Y33 (B-Myb) and Y34 (B-Myb-P). 

The number of concepts in the network Level-1 equals 28 (7 lumps and 21 nodes). 

 

 
 

Figure 4.21 Network level-1 lumping 
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ii. Level-2 lumping: 
 
As shown in Figure 4.22, there are seven rectangles, each representing a concept, which is a lump, 

where: 

- F8 lump contains F1 lump and Y16 (p21/CycD/Cdk4).  

- F2 lump contains Y2 (CycE) and Y7 (CycE/Cdk2). 

- F3 lump contains Y3 (CycA) and Y9 (CycA/Cdk2). 

- F9 lump contains F4 lumpand Y21 (Rb-PP/E2F).  

- F5 lump contains Y28 (Cdc25A) and Y29 (Cdc25A-P).  

- F6 lump contains Y30 (Chk1) and Y31 (Chk1-P). 

- F7 lump contains Y33 (B-Myb) and Y34 (B-Myb-P). 

The number of concepts at network Level-2 equals 26 (7 lumps and 19 nodes). 

 
 

 
Figure 4.22 Network level-2 lumping 
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iii. Level-3 lumping: 
 
As shown in Figure 4.23, there are seven rectangles, each representing a concept, which is a lump, 

where: 

- F8 lump contains F1 lump and Y16 (p21/CycD/Cdk4).  

- F2 lump contains Y2 (CycE) and Y7 (CycE/Cdk2). 

- F10 lump contains F3 lump, Y14 (p27/CycA/Cdk2-P) and Y18 (p21/CycA/Cdk2-P). 

- F9 lump contains F4 lump and Y21 (Rb-PP/E2F).  

- F5 lump contains Y28 (Cdc25A) and Y29 (Cdc25A-P).  

- F6 lump contains Y30 (Chk1) and Y31 (Chk1-P). 

- F7 lump contains Y33 (B-Myb) and Y34 (B-Myb-P). 

The number of concepts in the network Level-3 equals 24 (7 lumps and 17 nodes). 

 

 
 

Figure 4.23 Network level-3 lumping 
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4.3.4.2 Rewrite the Equations  
 

After applying the steps in Section 4.2.4.2 to optimise the ordinary differential equations (ODEs) to be 

suitable for the reduced model after lumping level-1, the attributes of the reduced system is 

determined. 

Finding the concentration for each lump at t=0 is the first step in performing the rewrite of the 

equations by using Eq. 4.8, as shown in Table 4.5: 

Table 4.5 The concentration for each lump at t=0, reduced model level-1 

Group node Value Initial value 

F1 = Y1 + Y6 7.53E+00 

F2 = Y2 + Y7 2.00E-03 

F3 = Y3 + Y9 4.40E-04 

F4 = Y23 + Y24 6.00E-02 

F5 = Y28 +Y29       1.10E-03 

F6 = Y30 + Y31                            1.00E+00 

F7 = Y33 + Y34                            0 

   

 

In the second step we found the partial concentration for every species included in the lump at t=0 

from Eq. 4.9, as shown in Table 4.6: 

 

Table 4.6 Partial concentration of every species included in the lump at t=0, reduced model level-1 
 

Chemical 

species 
Initial value 

Chemical 

species 
Initial value 

Chemical 

species 
Initial value 

Y1p 3.98E-03 Y9p 9.09E-01 Y30p 9.90E-01 

Y6p 9.96E-01 Y23p 1.67E-01 Y31p 1.00E-02 

Y2p 5.00E-01 Y24p 8.33E-01 Y33p 0.00E+00 

Y7p 5.00E-01 Y28p 9.09E-01 Y34p 0.00E+00 

Y3p 9.09E-02 Y29p 9.09E-02   

 
 
In third, fourth, fifth and sixth steps we show the steps to lump F1 in details and the same way process 

applies to the rest of the lumps. 

The equation that calculates the rate change of concentration of F1 from Eq. 4.10 is as follows: 

 

dF1/dt = dY1/dt ∪ dY6/dt 
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After replacing dY1/dt and dY6/dt, it becomes: 

 

dF1/dt= k1+ k4Y6− (k2 + k3Y4)Y1+ k3Y1Y4 + k19Y16 + k21Y12 − (k4 + k13 + k18Y15 + k20Y11 + k44Y19)Y6 

 

The equation after handling each term becomes: 
 

dF1/dt= B1 + B4F1 − (B2 + B3Y4)F1+B3F1Y4 + B19Y16 + B21Y12 − (B4 + B13 + B18Y15 + B20Y11 + 

B44Y19)F1 

 

Rewriting the equation by expanding the bracketed terms: 
 

dF1/dt = B1 + B4F1 − B2F1−B3Y4F1+B3F1Y4 + B19Y16 + B21Y12 − B4F1 − B13F1 − B18Y15F1 − B20Y11F1 − 

B44Y19F1 

 

After simplifying the lump equations by deleting or replacing the opposite terms (positive and 

negative): 

 

dF1/dt= B1+ (B3dY4)F1 + B19Y16 + B21Y12 − (B2 + B13 + B18Y15 + B20Y11 + B44Y19)F1 

 

For further simplification, we replace   B2 and  B13 by one term  B2, where B2 = B2 + B13. 

 

dF1/dt= B1+ (B3dY4)F1 + B19Y16 + B21Y12 − (B2 + B18Y15 + B20Y11 + B44Y19)F1 

 

For initial conditions, lumps, partial elements, kinetic parameters and mass balance equations of ODE 

mathematical model of the DNA damage-signalling pathway and G1/S checkpoint in the reduced 

model level-1 see Appendix C. 

For initial conditions, lumps, partial elements, kinetic parameters and mass balance equations of ODE 

mathematical model of the DNA damage-signalling pathway and G1/S checkpoint in the reduced 

model level-2 see Appendix D. 

For initial conditions, lumps, partial elements, kinetic parameters and mass balance equations of ODE 

mathematical model of the DNA damage-signalling pathway and G1/S checkpoint in the reduced 

model level-3 see Appendix E. 

This chapter included three sections. In Section 4.1, the base model was extracted from the Iwamoto 

model 2011. Then, in Section 4.2, we proposed a method to simplify biological networks based on 

hierarchical representation and lumping. In Section 4.3, we used the base model that presented in 

Section 4.1 (G1/S checkpoint pathway and DNA damage pathways model) as a complex system as a 

case study to apply our new reduction approach to clarify the steps involved.  
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Chapter 5 

Results and Discussion 

 
In this chapter, we validated the reduced model with the base model: firstly, by comparing the 

behaviour of the model elements, and secondly by comparing model results, and finding the root mean 

squared error (RMSE) and the root mean squared percentage error (RMSPE), to be sure that the 

reduced model was useful for a particular purpose and applicable to answer a specific set of questions. 

In this research, we used Microsoft Excel spreadsheets with Visual Basic for Applications (VBA) to 

simulate the base model, the reduced model (level-1), the reduced model (level-2) and the reduced 

model (level-3). 

 

 

5.1 Element Behaviour 
 

 
In biology, every biological entity in a model must have a biological description, which should be taken 

into consideration when comparing models. In other words, the meaning of the components of the 

model (substances, reactions, cell compartments, etc.) must be considered (Courtot et al., 2011). 

 

In this section, we compare the behaviour of the elements in the base model and the reduced models 

(level-1), (level-2) and (level-3) in terms of the biological meaning of each element. 

 

5.1.1 Comparison of the Reduced Model (level-1) with the Base Model 

 

5.1.1.1 Reduced Model (level-1) Simulation without DNA Damage  
 

Figure 5.1 illustrates the behaviour of F1’ lump (CycD + CycD/Cdk4) obtained from the reduced model 

(level-1) (F1’) superimposed on the original ODE solutions (F1). The results indicated that the reduced 

model (level-1) outcomes agreed with the ODE original solutions in representing the behaviour of F1 

(CycD + CycD/Cdk4). This behavior is produced as follows in the early G1 phase the growth factors 

(GFs) propagate the proliferation signal that triggers synthesis of CycD, increasing its concentration. 

The CycD produced binds to CDK4 to form the complex, CycD/CDK4, keeping it in an activated state. 

The CycD/CDK4 complex binds with free p27 to form the complex, p27/CycD/CDK4 (Obaya and Sedivy, 

2002).  These processes reduce the concentration of F1 (CycD + CycD/Cdk4) as in Figure 5.1 and, at the 

same time, increase the concentration of p27/CycD/Cdk4.  
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Figure 5.1 Comparison between the concentration history for F1(CycD + CycD/Cdk4) in 
the base model and F1’ lump in the reduced model (level-1) 

 
 
In the mid to late G1 phase the increase in the level of free E2F promotes the synthesis of CycE, which 

facilitates the association between CycE and CDK2 to form more of the complex, CycE/CDK2. This 

results in increased E2F activity and establishes a positive feedback loop between E2F and CycE further 

increasing CycE and CycE/Cdk2. This explains the behaviour of F2 (CycE + CycE/Cdk2) shown in Figure 

5.2 indicating that F2 concentration increase from the mid G1 phase to reach a high level at the end of 

G1. This peak time of F2 was considered a boundary between the G1 and S phases. A perfect 

agreement between the two solutions is seen in Figure 5.2. 

 

 
 

Figure 5.2 Comparison between the concentration history for F2(CycE + CycE/Cdk2) in 
the base model and F2’ lump in the reduced model (level-1) 
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Figure 5.3 illustrates the behaviour of CycE/Cdk2-P obtained from the reduced model (level-1) (Y8’) 

superimposed on the original ODE solution (Y8). The results indicate that the outcome of new model 

agreed with the original solutions in representing the behaviour of CycE/Cdk2-P. 

 

 

Figure 5.3 Comparison between the concentration history for Y8(CycE/Cdk2-P) in the 
base model and Y8’(CycE/Cdk2-P) in the reduced model (level-1) 

 
 
As shown in Figure 5.4, the F3 lump (CycA + CycA/Cdk2) concentration stay at a low level in G1 and 

then rises beyond G1/S and into S phase.  This concurs the logic that E2F subsequently promotes CycA 

expression at the G1/S transition with a significant increase in the S phase. In the S phase, the 

synthesized CycA binds to CDK2 to form the complex, CycA/CDK2. A close agreement between the two 

solutions is seen in Figure 5.4. 

 

 

Figure 5.4 Comparison between the concentration history for F3(CycA + CycA/Cdk2) in 
the base model and F3’ lump in the reduced model (level-1) 
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Figure 5.5 illustrates the behaviour of CycA/Cdk2-P obtained from the reduced model (level-1) 

superimposed on the original ODE solution (Y10). The results indicated that the outcome of the 

reduced model (level-1) agreed with the original solution in representing the behaviour of CycA/Cdk2-

P. 

 

 

Figure 5.5 Comparison between the concentration history for Y10(CycA/Cdk2-P) in the 
base model and Y10’(CycA/Cdk2-P) in the reduced model level-1 

 
 
As shown in Figure 5.6, the concentration of p27 is sustained at a high level in the early G1 phase 

(Donjerkovic and Scott, 2000). The CycD/CDK4 complex binds with free p27 to form the complex, 

p27/CycD/CDK4.  This process causes a reduction in the concentration of p27 in the first quarter in G1. 

A significant degradation of p27 occurs at the end of G1, because the large amount of activated 

CycE/CDK2 can initiate p27 degradation by phosphorylating it at threonine when p27 was bound to 

CycE/CDK2 (Coqueret, 2003). A very close agreement between the two solutions is seen in Figure 5.6. 

 
 

 

Figure 5.6 Comparison between the concentration history for Y11(p27) in the base 
model and Y11’(p27) in the reduced model (level-1) 
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As stated above, in early G1, CycD/CDK4 complex binds with free p27 to form the complex, 

p27/CycD/CDK4 that causes increase in p27/CycD/CDK4 concentration in the first quarter of G1. As 

shown in Figure 5.7 the results indicate that the outcome of the reduced model level-1 highly agrees 

with the original solution in representing the behaviour of p27/CycD/CDK4. 

 

 
 

Figure 5.7 Comparison between the concentration history for Y12(p27/CycD/CDK4) in 
the base model and Y12’(p27/CycD/CDK4) in the reduced model (level-1) 

 
 
The degradation of CycD occurs mid G1 phase and p16 inhibits the activation of CycD/Cdk4, which 

promotes the release of p27 bound to the complex CycD/CDK4. The free p27 is redistributed to new 

complexes, such as CycE/CDK2-P and CycA/CDK2-P, to form p27/CycE/CDK2-P and p27/CycA/CDK2-P, 

as shown in Figure 5.8 and 5.9. There was good agreement between the outcomes of the reduced 

model (level-1) and those of the base model. 

 

 

 

Figure 5.8 Comparison between the concentration history for Y13(p27/CycE/Cdk2-P) in the base 
model and Y13’(p27/CycE/Cdk2-P) in the reduced model (level-1) 
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Figure 5.9 Comparison between the concentration history for Y14(p27/CycA/Cdk2-P) in the base 
model and Y14’(p27/CycA/Cdk2-P) in the reduced model (level-1) 

 
 

p21 is up regulated when DNA damage occurs which inhibits the positive feedback loop between the 

Rb/E2F complex and both types of Cyc/Cdk complex (CycA/Cdk2-P and CycB/Cdk1-P) (Iwamoto et al., 

2011). If no DNA damage occurs, a small amount of p21 is produced at the beginning of G1 phase, as 

shown in Figure 5.10. The p21 concentration stays at a low level during G1 phase. The quantity 

produced of p21 is bind with CycD/Cdk4 to form the complex protein p21/CycD/Cdk4, at beginning of 

the G1 phase. The concentration of p21/CycD/Cdk4 then starts to decrease because the disassociation 

rate (5.00e-03) is greater than the association rate (5.00e-04) of p21 with CycD/CDK4 as shown in 

Figure 5.11. There was a good agreement between the base model outcome and the reduced model 

(level-1) outcome for both p21 and p21/CycD/Cdk4 as shown in the two figures. 

 

 

Figure 5.10 Comparison between the concentration history for Y15(p21) in the base 
model and Y15’(p21) in the reduced model (level-1) 
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Figure 5.11 Comparison between the concentration history for Y16(p21/CycD/CDK4) in 
the base model and Y16’(p21/CycD/CDK4) in the reduced model (level-1) 

 
 

p21/CycE/Cdk2-P and p21/CycA/Cdk2-P are shown in Figures 5.12 and 5.13, respectively. Without DNA 

damage, the concentrations all these species were maintained at a low level, and the inhibitory effect 

of p21 on these complexes can still be seen. The two figures indicate that the reduced model (level-1) 

outcomes agree with the base model solution in representing the behaviour of both p21/CycE/Cdk2-P 

and p21/CycA/Cdk2-P. 

 
 

 

Figure 5.12 Comparison between the concentration history for Y17(p21/CycE/Cdk2-P) in 
the base model and Y17’(p21/CycE/Cdk2-P) in the reduced model (level-1) 
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Figure 5.13 Comparison between the concentration history for Y18(p21/CycA/Cdk2-P) in the base 
model and Y18’(p21/CycA/Cdk2-P) in the reduced model (level-1) 

 
 

p16 is considered to be one of three Cdk inhibitors that regulates G1/S progression (p16, p21, and 

p27). Both p21 and p27 represses CycE/Cdk2-P and CycA/Cdk2-P, while p16 inhibits the activation of 

CycD/Cdk4 (Parry et al., 1995; LaBaer et al., 1997). There was an inverse relationship between the level 

of increasing p16 and the concentration level of Rb, where the p16 level continues to rise steadily until 

Rb reaches its highest level late in the G1 phase. At this time, the amount of p16 increase becomes 

very small. As shown in Figure 5.14, there was a perfect match between the reduced model (level-1) 

outcome and the base model outcome. 

 
 

 

Figure 5.14 Comparison between the concentration history for Y19(p16) in the base model and 
Y19’(p16) in the reduced model (level-1) 
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In the early G1 phase the CycD/CDK4 complex initiate the phosphorylation of Rb bound to E2F to obtain 

the hypophosphorylated form (Rb-PP/E2F). This causes a decrease in the concentration of Rb/E2F and 

an increase in the concentration of Rb-PP/E2F, as shown in Figures 5.15 and 5.16, respectively. The 

results indicate that the reduced model (level-1) outcomes agree with the original solution in 

representing the behaviour of Rb/E2F and Rb-PP/E2F. 

 

 

 
 

Figure 5.15 Comparison between the concentration history for Y20(Rb/E2F) in the base 
model and Y20’(Rb/E2F) in the reduced model (level-1) 

 

 

Figure 5.16 Comparison between the concentration history for Y21(Rb-PP/E2F) in the base model 
and Y21’(Rb-PP/E2F) in the reduced model level-1 
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In the mid to late G1 phase, the activated form of CycE/CDK2-P results in further hypophosphorylation 

of Rb-pp/E2F and, promotes the dissociation of E2F and Rb-PPP that releases E2F leading to increased 

E2F as shown in Figure 5.17 and increased Rb related compounds (lump F4 (Rb-PPP + Rb) shown in 

Figure 5.18. The increase in level of free E2F promotes synthesis of CycE, which facilitates the 

association between CycE and CDK2 to form more of the complex CycE/CDK2. This results in increase 

E2F activity and establishes a positive feedback loop between E2F and CycE. The outcomes of the 

reduced model (level-1) agree with the outcome of the base model. 

 

 
 

Figure 5.17 Comparison between the concentration history for Y22(E2F) in the base model and 
Y22’(E2F) in the reduced model (level-1) 

 
 
 

 
 

Figure 5.18 Comparison between the concentration history for F4(Rb-PPP + Rb) in the base model 
and F4’ lump in the reduced model (level-1) 
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The behaviour of p21, p53, Mdm2 and ATM/ATR are shown in Figures 5.10, 5.19, 5.20 and 5.21, 

respectively. Without DNA damage, the concentrations of all these species were maintained at a low 

level and the results indicate that the outcome of the reduced model (level-1) agree with the original 

solution in representing the behaviour of these species. 

 

 
 

Figure 5.19 Comparison between the concentration history for Y25(p53) in the base model and 
Y25’(p53) in the reduced model (level-1) 

 
 

 
 

Figure 5.20 Comparison between the concentration history for Y26(Mdm2) in the base model and 
Y26’(Mdm2) in the reduced model (level-1) 

 
 

 
Figure 5.21 Comparison between the concentration history for Y27(ATM/ATR) in the base model 

and Y27’(ATM/ATR) in the reduced model (level-1) 
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Cdc25A is activated by E2F (Helin, 1998). Cdc25A dephosphorylates and activates CycE/Cdk2 and 

CycA/Cdk2 into the form CycE/Cdk2-P and CycA/Cdk2-P, respectively. The relations between Cdc25A 

and Cdc25A-P is the balancing feedback that stabilizes the concentration levels of the proteins. As 

shown in Figure 5.22 the outcome of the reduced model (level-1) agree with the base model outcome. 

 

 
Figure 5.22 Comparison between the concentration history for F5(Cdc25A + Cdc25A-P) in the base 

model and F5’ lump in the reduced model (level-1) 
 

As shown in Figure 5.23, the concentration level of Chk1 and Chk1-P may not remain completely fixed, 

but it does stay within an acceptable range through phosphorylation and de-phosphorylation 

interactions (balancing feedback). The Chk1 protein is mainly restricted to the S and G2 phases (Lukas 

et al., 2001). The Chk1 becomes active when ATM/ATR is activated by DNA damage signal transduction 

at G1/S. Specifically, activated ATM phosphorylates and activates Chk1 (Gatei et al., 2003; Sørensen et 

al., 2003, Bartek and Lukas, 2003). Chk1-P promotes the transformation of Cdc25C-P to Cdc25CPs216-

P, where Cdc25CPs216-P inhibits CycB/Cdk1-P, and G2 arrest is induced (Bartek and Lukas, 2003; 

Iwamoto et al., 2011). As shown in Figure 5.23, the outcome of the reduced model (level-1) agree with 

the outcome of the base model outcomes. 

 

 
 

Figure 5.23 Comparison between the concentration history for F6(Chk1 + Chk1-P) in the base 
model and F6’ lump in the reduced model (level-1) 
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As shown in Figure 5.24, the NF-Y concentration stays at a low level in G1 and becomes high in the late 

S phase. The following series of interactions explain why the concentration of NF-Y in phase S is high. 

NF-Y, B-Myb-P and E2F promote CycA expression at the G1/S transition with a significant increase in 

the S phase. In the S phase, the synthesized CycA also binds to CDK2 to form the complex, CycA/CDK2. 

From the late S phase to the G2 phase, Cdc25A dephosphorylates and activates CycA/Cdk2, which then 

forms CycA/Cdk2-P. CycA/Cdk2-P activates the transcription factor NF-Y, which induces the 

transcriptional activation of CycB (Chae et al., 2004). A perfect agreement between the base and the 

reduced model (level-1) is seen in the Figure 5.24. 

 

 
 

Figure 5.24 Comparison between the concentration history for Y32(NF-Y) in the base model and  
Y32’(NF-Y) in the reduced model (level-1) 

 
 
Late in the G1 phase, the increase in level of free E2F promotes the synthesis of B-Myb. CycA/Cdk2-P 

promotes the phosphorylation of B-Myb to form B-Myb-P resulting in increased concentration of F7(B-

Myb + B-Myb -P) in the late G1 phase as shown in Figure 5.25. The figure indicates that the outcome 

of the reduced model (level-1) agree with the outcome of the base model outcomes in representing 

the behaviour of these species. 

 
Figure 5.25 Comparison between the concentration history for F7(B-Myb + B-Myb-P) in the base 

model and F7’ lump in the reduced model (level-1) 
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Intermediate specie (Im) is shown in Figure 5.26 without DNA damage, and the concentration of this 

species is maintained at a low level. As seen in Figure 5.26, there is a perfect agreement between the 

two solutions. 

 

 
Figure 5.26 Comparison between the concentration history for Im in the base model and Im’ in the 

reduced model (level-1) 
 
 
 

5.1.1.2 Reduced Model (level-1) Simulation with DNA Damage  
 
The reduced model (level-1) was run with four different levels of DNA damage (low damage = 0.002, 

medium damage = 0.004, high damage = 0.008, and excess damage = 0.016) to see how the reduced 

model (level-1) responded to DNA damage and produced cell cycle arrest. In the following results and 

discussion, we focused on the species that played a critical role in cell cycle arrest; that is, p53, p21, 

F2(CycE + CycE/Cdk2) and CycE/Cdk2-P. 

When DNA is damaged, the DNA damage signal (DDS) activates p53. p53 promote the synthesis of p21 

to act as a CDK inhibitor through binding to both CycE/CDK2-P and CycA/CDK2-P and delaying the 

activation of E2F by inhibiting the phosphorylation of Rb. 

As shown in Figures 5.27 and 5.28, with low damage (DDS = 0.002) and medium damage (DDS = 0.004), 

the concentrations of both p53 and p21 increase, which mean G1 arrest. Also, when the reduced model 

(level-1) was run with high damage (DDS = 0.008) or excess damage (DDS = 0.016), p53 and p21 showed 

oscillations. This oscillation behaviour affected cell fate decision and the cell initiates apoptosis; this 

was in a good agreement with the experimental data (Lev Bar-Or et al., 2000; Lahav et al., 2004; Geva-

Zatorsky et al., 2006) and the base model (Iwamoto et al., 2011). 
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Figure 5.27 Time course of p21 resulting from the reduced model (level-1) run with different levels 
of DNA damage 

 

 

Figure 5.28 Time course of p53 resulting from the reduced model (level-1) run with different levels 
of DNA damage 

 

The time courses of F2 (CycE + CycE/Cdk2) lump and CycE/Cdk2-P are shown in Figures 5.29 and 5.30, 

respectively. The G1/S transition was delayed for low damage or medium damage relative to the same 

without DNA damage, which means that it achieves G1 arrest. Also, in simulation runs with high 

damage or excess damage, the time to G1 arrest is short because the cell initiates apoptosis. 
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Figure 5.29 Time course of F2(CycE + CycE/Cdk2) lump resulting from the reduced model (level-1) 
runs with different levels of DNA damage 

 
 
 

 

Figure 5.30 Time course of CycE/Cdk2-P resulting from the reduced model (level-1) runs with 
different levels of DNA damage 

 

The results produced in this section indicate that the reduced model (level-1) simulation results of the 

G1/S checkpoint pathway with or without DNA-damage are similar to and consistent with the base 

model results (Iwamoto et al., 2011) and biological experiments. Therefore, the reduced model (level-

1) can be used to evaluate the effects of DNA damage on G1 progression. To see all time courses of 

the elements of the reduced model (level-1) with and without DNA damage see Appendix F. 
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5.1.2 Comparison of the Reduced Model (level-2) with the Base Model 

 
5.1.2.1 Reduced Model (level-2) Simulation without DNA Damage  
 

As mentioned in Section 4.3.4.1 the reduced model (level-2) contains 26 concepts (seven lumps and 

19 nodes), where F8 lump contains F1 lump and Y16 (p21/CycD/Cdk4), F2 lump contains Y2 (CycE) and 

Y7 (CycE/Cdk2), F3 lump contains Y3 (CycA) and Y9 (CycA/Cdk2), F9 lump contains F4 lump and Y21 

(Rb-PP/E2F), F5 lump contains Y28 (Cdc25A) and Y29 (Cdc25A-P), F6 lump contains Y30 (Chk1) and Y31 

(Chk1-P) and F7 lump contains Y33 (B-Myb) and Y34 (B-Myb-P).  

In this section, we focus only on the time course of the new lumps and some elements. To see all time 

courses of the elements of the reduced model (level-2) with and without DNA damage see Appendix 

G. 

 
Figure 5.31 illustrates the behaviour of the F8’ lump (CycD, CycD/Cdk4 and p21/CycD/Cdk4) obtained 

from the reduced model (level-2) and F8 (CycD, CycD/Cdk4 and p21/CycD/Cdk4) obtained from the 

base model. From this figure, we note that there was no difference between the behaviour of F8 and 

the behaviour of F1 (Figure 5.1). The reason is that the highest concentration of the newly added 

species (p21/CycD/Cdk4) in the lump is no more than 0.0015 in the absence of DNA damage, as shown 

in Figure 5.11. This concentration was considered very small and negligible compared to the 

concentration of CycD and CycD/Cdk4. Figure 5.31 indicates that the outcome of the reduced model 

(level-2) agree with the outcome of the base model in representing the behaviour of these species. 

 

 

 
Figure 5.31 Comparison between the concentration history for F8(CycD + CycD/Cdk4 + 

p21/CycD/Cdk4) in the base model and F8’ lump in the reduced model (level-2) 
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The other lump in the reduced model (level-1) that was changed F4, where Rb-PP/E2F was added to it 

and it became the F9 lump in the reduced model (level-2). Figure 5.32 illustrates the behaviour of the 

F9’ lump (Rb-PPP + Rb + Rb-PP/E2F) obtained from the reduced model (level-2) and F9 (Rb-PPP + Rb + 

Rb-PP/E2F) obtained from the base model. From Figure 5.32, we note that there is a difference 

between the behaviour of F9 and the behaviour of F4 (Figure 5.18); where the concentration of the F9 

lump increases at the beginning of G1 due to the high concentration of the Rb-PP/E2F element at the 

beginning of G1. The concentration of the F9 lump then remained relatively constant for the duration 

of G1/S. The Figure 5.32 indicates that the outcome of the reduced model (level-2) agree with the 

outcome of the base model in representing the behaviour of the F9 lump. 

 

 
 

Figure 5.32 Comparison between the concentration history for F9(Rb-PPP + Rb + Rb-PP/E2F) in the 
base model and F9’ lump in the reduced model (level-2) 

 

 
The rest of the lumps did not receive any change at this level of the reduction. The following are some 

of concentration histories for the key species in G1/S obtained from the reduced model (level-2).  

 

 

Figure 5.33 Comparison between the concentration history for F2(CycE + CycE/Cdk2) in the base 
model and F2’ lump in the reduced model (level-2) 
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Figure 5.34 Comparison between the concentration history for Y8(CycE/Cdk2-P) in the base model 
and Y8’(CycE/Cdk2-P) in the reduced model (level-2) 

 
 

 

 

 
Figure 5.35 Comparison between the concentration history for Y22(E2F) in the base model and 

Y22’(E2F) in the reduced model (level-2) 
 

 

 
 

Figure 5.36 Comparison between the concentration history for Y25(p53) in the base model and 
Y25’(p53) in the reduced model (level-2) 
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Figures 5.33, 5.34, 5.35 and 5.36 show the concentration histories for the F2 lumps, CycE/Cdk2-P, E2F 

and p53, respectively. These figures indicate that the outcomes of the reduced model (level-2) agree 

with the outcomes of the base model in representing the behaviour of these species. 

 

 

5.1.2.2 Reduced Model (level-2) Simulation with DNA Damage  
 

As the reduced model (level-1) and the reduced model (level-2) runs with four different levels of DNA 

damage (low damage, medium damage, high damage and excess damage) to see how the reduced 

model (level-2) responded to DNA damage. Also, in Section 5.1.1.2, we focus on the species that played 

a critical role in cell cycle arrest, such as p53, p21, F2(CycE + CycE/Cdk2) and CycE/Cdk2-P. 

As shown in Figures 5.37 and 5.38 with low damage and medium damage, the concentrations of both 

p53 and p21 increased, which resulted in the arrest G1. When high damage or excess damage occurred, 

p53 and p21 showed oscillations, which also meant cell apoptosis. 

 

 

Figure 5.37 Time course of p21 resulting from the reduced model (level-2) runs with different levels 
of DNA damage 
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Figure 5.38 Time course of p53 resulting from the reduced model (level-2) runs with different levels 
of DNA damage 

 

Figure 5.39 shows the time course of F2(CycE + CycE/Cdk2) and Figure 5.40 shows the time course of 

CycE/Cdk2-P. The G1/S boundary (the peak of F2) was delayed (G1 arrest) when there was low damage 

or medium damage relative to the G1/S boundary without DNA damage. With high damage or excess 

damage, the duration of the G1 arrest was shortened because the cell initiated apoptosis. 

 

Figure 5.39 Time course of F2(CycE + CycE/Cdk2) lump resulting from the reduced model (level-2) 
runs with different levels of DNA damage 
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Figure 5.40 Time course of CycE/Cdk2-P resulting from the reduced model (level-2) runs with 
different levels of DNA damage 

 

 

5.1.3 Comparison of the Reduced Model (level-3) with the Base Model 

 
5.1.3.1 Reduced Model (level-3) Simulation without DNA Damage  
 

As mentioned in Section 4.3.4.1, the reduced model (level-3) contained 24 concepts (seven lumps and 

17 nodes) where F8 lump contained F1 lump and Y16 (p21/CycD/Cdk4), F2 lump contained Y2 (CycE) 

and Y7 (CycE/Cdk2), F10 lump contained F3 lump, Y14 (p27/CycA/Cdk2-P) and Y18 (p21/CycA/Cdk2-P), 

F9 lump contained F4 lump and Y21 (Rb-PP/E2F), F5 lump contained Y28 (Cdc25A) and Y29 (Cdc25A-

P), F6 lump contained Y30 (Chk1) and Y31 (Chk1-P) and the F7 lump contained Y33 (B-Myb) and Y34 

(B-Myb-P). Comparing to the reduced model (level-2) there is one new lump F10, and six lumps are 

existing and borrowed from the reduced model (level-2). 

In this section, we focus only on the time course of the new lumps and some key elements. To see time 

courses for all the elements of the reduced model (level-3) with and without DNA damage see 

Appendix H. 

One lump in the reduced model (level-2) that was changed F3(CycA and CycA/Cdk2) where 

p27/CycA/Cdk2-P and p21/CycA/Cdk2-P had been added to it and it became the F10 lump in the 

reduced model (level-3). Figure 5.41 illustrates the behaviour of the F10’ lump obtained from the 

reduced model (level-3) and F10 obtained from the base model. From this figure, we note that there 
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is no difference between the behaviour of F10 and F3 see Figure 5.4. The reason is that the highest 

concentrations of the newly added species p27/CycA/Cdk2-P and p21/CycA/Cdk2-P in the lump was 

no more than 0.0015 and 0.0004, respectively, in the absence of DNA damage, as shown in Figures 5.9 

and 5.13. These concentrations were considered to be very small and negligible compared to the 

concentration of CycA and CycA/Cdk2. Figure 5.41 indicates that the outcome of the reduced model 

(level-3) agreed with the outcome of the base model in representing the behaviour of these species. 

 

 

Figure 5.41 Comparison between the concentration history for F10(CycA + CycA/Cdk2 + 
p27/CycA/Cdk2-P + p21/CycA/Cdk2-P) in the base model and F10’ lump in the reduced 

model (level-3) 

 

The rest of the lumps did not receive any change at this level of reduction. The following are some of 

the concentration histories for the key species in G1/S from the reduced model (level-3).  

 

As shown in Figure 5.42 a positive feedback loop between E2F and CycE is established in the mid G1 

phase. This explains the behaviour of F2 (CycE and CycE/Cdk2) which; reaches a high concentration 

level at the end of G1. This peak time of F2 was considered to be the boundary between the G1 and S 

phases. 

 

Figure 5.42 Comparison between the concentration history for F2(CycE + CycE/Cdk2) in the base 
model and F2’ lump in the reduced model (level-3) 
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Figure 5.43 Comparison between the concentration history for Y8(CycE/Cdk2-P) in the base model 
and Y8’(CycE/Cdk2-P) in the reduced model (level-3) 

 

In the mid to late G1 phase the activated form of CycE/CDK2-P results in further hypophosphorylation 

of Rb-pp/E2F, promoting the dissociation of E2F from Rb-PPP wich releases E2F. The increase in the 

level of free E2F promotes the synthesis of CycE which facilitates the association between CycE and 

CDK2 to form more of complex CycE/CDK2. This results in increased E2F activity as a result of the 

establishment of a positive feedback loop between E2F and CycE. This explains the behaviour of E2F 

shown in Figure 5.44. 

 
 

 

 
Figure 5.44 Comparison between the concentration history for Y22(E2F) in the base model and 

Y22’(E2F) in the reduced model (level-3) 
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If there was no DNA damage, a small amount of p21 was produced at the beginning of G1 phase as 

shown in Figure 5.45. The p21 concentration stayed in a low level in G1 phase. 

 

 
 

Figure 5.45 Comparison between the concentration history for Y15(p21) in the base model and 
Y15’(p21) in the reduced model (level-3) 

 
Figures 5.42, 5.43, 5.44 and 5.45 show the concentration histories for F2 lump, CycE/Cdk2-P, E2F and 

p21, respectively. These figures indicate that the outcome of the reduced model (level-3) agreed with 

the outcome of the base model in representing the behaviour of these species. 

 
 

5.1.3.2 Reduced Model (level-3) Simulation with DNA Damage  
 

The reduced model (level-3) was run with four different levels of DNA damage (low damage, medium 

damage, high damage and excess damage) to see how the reduced model (level-3) responded to DNA 

damage. 

As shown in Figure 5.46, the concentration of p21 increased with low damage and medium damage, 

and p21 showed oscillations as a result of high damage or excess damage. 

 

Figure 5.46 Time course of p21 resulting from the reduced model (level-3) runs with different levels 
of DNA damage 
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The same response to DNA damage was shown in the time course of p53 in Figure 5.47. The 

concentration of p53 increased with low damage and medium damage, and p53 showed oscillations 

as a result of high damage or excess damage. 

 

Figure 5.47 Time course of p53 resulting from the reduced model (level-3) runs with different levels 
of DNA damage 

 

Figures 5.48 and 5.49 show the time course of F2 (CycE + CycE/Cdk2) and time course of CycE/Cdk2-P, 

respectively. As a result of low or medium damage, the G1/S arrest was delayed, and with high damage 

or excess damage, the duration of the G1 arrest has been shortened because the cell initiates 

apoptosis. 

 

Figure 5.48 Time course of F2(CycE + CycE/Cdk2) lump resulting from the reduced model (level-3) 
runs with different levels of DNA damage 
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Figure 5.49 Time course of CycE/Cdk2-P resulting from the reduced model (level-3) runs with 
different levels of DNA damage 

 

The reduced model (level-3) simulation results of the G1/S checkpoint pathway with or without DNA-

damage were similar to and consistent with the results of the base model. that was consistent with 

biological experiments as reported by Iwamoto et al. (2011). Therefore, the reduced model (level-3) 

can be used to study G1 progression with and without DNA damage.  

 

5.2 Evaluation of the Reduced Model using Root Mean Squared Error (RMSE) 
and the Root Mean Squared Percentage Error (RMSPE) 

 
 

Both the root mean squared error (RMSE) and the root mean squared percentage error (RMSPE) were 

used to verify the model results in model evaluation. In this section, we used RMSE and RMSPE as 

measures of accuracy to compare forecasting errors of the reduced models (level-1), (level-2) and 

(level-3) against the base model without DNA damage. We also show concentration values for some 

species at different times from the base model, the reduced model (level-1), the reduced model (level-

2) and the reduced model (level-3) for different levels of DNA damage. 

Tables 5.1 to 5.3 present the values of RMSE and RMSPE for the reduced model (level-1), (level-2) and 

(level-3) with respect to the base model without DNA damage and with continuous outcomes. The 

tables show that for both RMSE and RMSPE values tended to increase with the increasing levels of 

lumping. Table 5.1 shows that the RMSPE between the base model and the reduced model (level-1) 

exceeded no more than 5% for any species. Furthermore, seven species (F2, Y19, Y25, Y26, Y27, F6 and 

Im), which represented 25% of the species of the reduced model (level-1), had 0% RMSPE. Moreover, 

Table 5.1 shows that the RMSE values did not have any value greater than 1.0 while the largest value 
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was 0.752273301 for lump F5 and the smallest value was 5.87313E-07 for lump F7. Table 5.1 

demonstrated that the reduced model (level-1) results compare very well with the base model results 

indicating that it is a good model to simulate the G1/S checkpoint pathways integrated with DNA 

damage pathway. 

 

Table 5.1 Reduced model (level-1) evaluation without DNA damage by using the root mean 
squared error (RMSE) and the root mean squared percentage error (RMSPE) 

 

Node/Lump No. Node/Lump name RMSE RMSPE 

1 Y4 5.6770E-04 2% 

2 Y5 5.7676E-04 1% 

3 F1 6.2718E-02 2% 

4 F2 5.7747E-05 0% 

5 Y8 5.7201E-05 1% 

6 F3 1.6871E-06 1% 

7 Y10 3.2142E-03 3% 

8 Y11 1.3396E-01 2% 

9 Y12 4.9696E-02 2% 

10 Y13 7.6647E-02 3% 

11 Y14 6.2572E-05 3% 

12 Y15 1.0544E-03 4% 

13 Y16 2.4980E-05 4% 

14 Y17 2.4425E-03 1% 

15 Y18 3.9376E-06 1% 

16 Y19 6.6400E-03 0% 

17 Y20 2.2466E-04 3% 

18 Y21 2.1374E-04 4% 

19 Y22 5.7809E-05 2% 

20 F4 5.3099E-02 5% 

21 Y25 0.0000E+00 0% 

22 Y26 3.0249E-02 0% 

23 Y27 0.0000E+00 0% 

24 F5 7.5227E-01 2% 

25 F6 0.0000E+00 0% 

26 Y32 1.0110E-04 2% 

27 F7 5.8731E-07 4% 

28 Im 0.0000E+00 0% 

 
 
Table 5.2 shows that with regard to RMSPE between the base model and the reduced model (level-2), 

only one species (Y15) has 6% RMSPE and the rest of the species did not exceed 5% RMSPE.  

Furthermore, eight species (F2, Y19, F9, Y25, Y26, Y27, F6 and Im), which represent approximately 31% 
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of the species of the reduced model (level-2), had 0% RMSPE. We also noted that seven species (F3, 

Y10, Y15, Y17, Y18, F5 and Y32) had increased RMSPE values in the reduced model (level-2) compared 

with their RMSPE values in the reduced model (level-1) (but these increases are very minor ranging 

from 1 to 4%), while 14 species (Y4, Y5, F2, Y8, Y12, Y13, Y22, F9, Y25, Y26, Y27, F6, F7 and Im) have 

maintained their RMSPE value. Moreover, Table 5.2 shows that with regard to RMSE it has one value 

greater than 1.0 (equalling 1.558623053) for lump F7 and the RMSE value less than 1.0 for the rest of 

the species. The smallest RMSE value was 5.25861E-06 for Y18. Table 5.2 demonstrates that the 

reduced model (level-2) results compare well with the base model results and it is still a good model 

to simulate G1/S checkpoint pathways integrated with DNA damage pathway. 

 

Table 5.2 Reduced model (level-2) evaluation without DNA damage by the using root mean 
squared error (RMSE) and the root mean squared percentage error (RMSPE) 

Node/lump No. Node/Lump name RMSE RMSPE 

1 Y4 8.6830E-04 2% 

2 Y5 1.1674E-03 1% 

3 F8 6.2781E-02 5% 

4 F2 6.8966E-05 0% 

5 Y8 6.4016E-05 1% 

6 F3 1.0708E-02 4% 

7 Y10 2.0365E-02 4% 

8 Y11 5.4230E-02 1% 

9 Y12 4.8779E-02 2% 

10 Y13 7.6622E-02 3% 

11 Y14 7.2844E-06 1% 

12 Y15 5.9816E-04 6% 

13 Y17 1.5980E-03 5% 

14 Y18 5.2586E-06 4% 

15 Y19 6.6443E-03 0% 

16 Y20 8.8235E-03 2% 

17 Y22 1.1307E-04 2% 

18 F9 4.2291E-02 0% 

19 Y25 0.0000E+00 0% 

20 Y26 0.0000E+00 0% 

21 Y27 0.0000E+00 0% 

22 F5 8.8215E-01 3% 

23 F6 0.0000E+00 0% 

24 Y32 1.3265E-03 3% 

25 F7 1.5586E+00 4% 

26 Im 0.0000E+00 0% 
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Table 5.3 shows that with regard to RMSPE between the base model and the reduced model (level-3), 

only one species (Y15) has 6% RMSPE and the rest of the species have no more than 5% RMSPE.  

Furthermore, seven species (F2, Y19, Y25, Y26, Y27, F6 and Im), which represents approximately 29% 

of the species of the reduced model (level-3), had 0% RMSPE. We also noted that two species (Y10 and 

F9) have increased RMSPE values in the reduced model (level-3) compared with their RMSPE values in 

the reduced model (level-2), while 21 species have maintained their RMSPE values. Table 5.3 shows 

that in terms of RMSE, there was one value greater than 1.0 for lump F7 and a RMSE value of less than 

1.0 for the rest of the species. The largest value, 1.558623167, was for lump F7 and the smallest value 

was 5.72013E-05 for Y8. Table 5.3 demonstrates that the reduced model (level-3) compares well with 

the base model and thus it is still a good model to simulate the G1/S checkpoint pathways integrated 

with DNA damage pathway. 

 

Table 5.3. Reduced model (level-3) evaluation without DNA damage by using the root mean 
squared error (RMSE) and the root mean squared percentage error (RMSPE) without DNA damage 

Node/Lump No. Node/Lump name RMSE RMSPE 

1 Y4 8.6830E-04 2% 

2 Y5 1.1674E-03 1% 

3 F8 6.2781E-02 5% 

4 F2 6.8966E-05 0% 

5 Y8 5.7201E-05 1% 

6 F10 1.3871E-02 3% 

7 Y10 2.5056E-02 5% 

8 Y11 5.4230E-02 1% 

9 Y12 4.8779E-02 2% 

10 Y13 7.6622E-02 3% 

11 Y15 5.9816E-04 6% 

12 Y17 1.5980E-03 5% 

13 Y19 6.6443E-03 0% 

14 Y20 8.8235E-03 2% 

15 Y22 1.1307E-04 2% 

16 F9 7.9026E-02 4% 

17 Y25 0.0000E+00 0% 

18 Y26 0.0000E+00 0% 

19 Y27 0.0000E+00 0% 

20 F5 8.8215E-01 3% 

21 F6 0.0000E+00 0% 

22 Y32 1.6247E-03 3% 

23 F7 1.5586E+00 4% 

24 Im 0.0000E+00 0% 
 



 122 

The simulations with the base model, reduced model (level-1), reduced model (level-2) and reduced 

model (level-3) were run with four different levels of DNA damage to allow analysis of the differences 

in concentration of five species important in DNA damage response (CycE/Cdk2-P, p21, E2F, 

p21/CycE/Cdk2-P and p53) at t=1, t=500, t=1000, t=1500, t=2000 and t=2330.  The results of these 

simulations are summarised in Tables 5.4 to 5.23. These show that the concentration of CycE/Cdk2-P, 

p21, E2F, p21/CycE/Cdk2-P and p53 for the base model and reduced model (level-1, 2 and 3); is not 

significantly different; all values agreed with values taken from experimental data. 

 

Table 5.4 CycE/Cdk2-P values from the base model, the reduced model (level-1), the reduced 
model (level-2) and the reduced model (level-3) simulations with low DNA damage 

 

Time Base L1 L2 L3 

1 2.5746E-03 2.5463E-03 2.5483E-03 2.5483E-03 

500 2.9894E-03 2.9566E-03 2.9589E-03 2.9578E-03 

1000 3.6048E-03 3.5651E-03 3.5680E-03 3.5662E-03 

1500 5.4841E-03 5.4238E-03 5.4281E-03 5.4207E-03 

2000 2.6196E-02 2.5908E-02 2.5928E-02 2.5747E-02 

2330 5.9561E+00 5.8906E+00 5.8953E+00 5.8907E+00 

 
 

 
Table 5.5 CycE/Cdk2-P values from the base model, the reduced model (level-1), the reduced 

model (level-2) and the reduced model (level-3) simulations with medium DNA damage  
 

Time Base L1 L2 L3 

1 2.5746E-03 2.5463E-03 2.5483E-03 2.5483E-03 

500 2.9600E-03 2.9275E-03 2.9298E-03 2.9288E-03 

1000 3.5180E-03 3.4794E-03 3.4821E-03 3.4805E-03 

1500 5.1865E-03 5.1295E-03 5.1336E-03 5.1272E-03 

2000 2.0002E-02 1.9782E-02 1.9797E-02 1.9685E-02 

2330 4.9744E+00 4.9197E+00 4.9237E+00 4.8746E+00 

 
 

 
Table 5.6 CycE/Cdk2-P values from the base model, the reduced model (level-1), the reduced 

model (level-2) and the reduced model (level-3) simulations with high DNA damage 
 

Time Base L1 L2 L3 

1 2.5746E-03 2.5463E-03 2.5483E-03 2.5483E-03 

500 2.9763E-03 2.9436E-03 2.9460E-03 2.9447E-03 

1000 3.5889E-03 3.5495E-03 3.5523E-03 3.5508E-03 

1500 5.3872E-03 5.3280E-03 5.3323E-03 5.3249E-03 

2000 2.3462E-02 2.3204E-02 2.3223E-02 2.3074E-02 

2330 5.7917E+00 5.7280E+00 5.7326E+00 5.7167E+00 
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Table 5.7 CycE/Cdk2-P values from the base model, the reduced model (level-1), the reduced 

model (level-2) and the reduced model (level-3) simulations with excess DNA damage  
 

Time Base L1 L2 L3 

1 2.5746E-03 2.5463E-03 2.5483E-03 2.5483E-03 

500 2.9865E-03 2.9537E-03 2.9560E-03 2.9547E-03 

1000 3.6239E-03 3.5841E-03 3.5870E-03 3.5851E-03 

1500 5.4470E-03 5.3871E-03 5.3914E-03 5.3844E-03 

2000 2.3713E-02 2.3452E-02 2.3471E-02 2.3321E-02 

2330 5.8351E+00 5.7709E+00 5.7755E+00 5.7615E+00 

 
 
 

Table 5.8 p21 values from the base model, the reduced model (level-1), the reduced model (level-
2) and the reduced model (level-3) simulations with low DNA damage 

 

Time Base L1 L2 L3 

1 7.6500E-05 7.6500E-05 7.6500E-05 7.6500E-05 

500 8.9925E-02 8.9784E-02 8.6148E-02 8.6148E-02 

1000 1.5243E-01 1.5250E-01 1.4766E-01 1.4766E-01 

1500 1.6661E-01 1.6698E-01 1.6347E-01 1.6347E-01 

2000 1.6705E-01 1.6589E-01 1.6305E-01 1.6305E-01 

2330 2.2156E-02 6.5078E-02 6.4116E-02 6.4116E-02 

 
 

Table 5.9 p21 values from the base model, the reduced model (level-1), the reduced model (level-
2) and the reduced model (level-3) simulations with medium DNA damage 

 

Time Base L1 L2 L3 

1 7.6500E-05 7.6500E-05 7.6500E-05 7.6500E-05 

500 1.6563E-01 1.6538E-01 1.5927E-01 1.5927E-01 

1000 2.8956E-01 2.8968E-01 2.8089E-01 2.8089E-01 

1500 3.1724E-01 3.1788E-01 3.1136E-01 3.1136E-01 

2000 3.1381E-01 3.1081E-01 3.0676E-01 3.0676E-01 

2330 9.1402E-02 1.2503E-01 2.0345E-01 2.0345E-01 

 
Table 5.10 p21 values from the base model, the reduced model (level-1), the reduced model (level-

2) and the reduced model (level-3) simulations with high DNA damage 
 

Time Base L1 L2 L3 

1 7.6500E-05 7.6500E-05 7.6500E-05 7.6500E-05 

500 1.1469E-01 1.1447E-01 1.0480E-01 1.0480E-01 

1000 1.5406E-01 1.5421E-01 1.4692E-01 1.4692E-01 

1500 1.4493E-01 1.4529E-01 1.4152E-01 1.4152E-01 

2000 1.3463E-01 1.3353E-01 1.3111E-01 1.3111E-01 

2330 2.4086E-02 5.1688E-02 6.3039E-02 6.3039E-02 
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Table 5.11 p21 values from the base model, the reduced model (level-1), the reduced model (level-

2) and the reduced model (level-3) simulations with excess DNA damage 
 

Time Base L1 L2 L3 

1 7.6500E-05 7.6500E-05 7.6500E-05 7.6500E-05 

500 8.9119E-02 8.8976E-02 8.1721E-02 8.1721E-02 

1000 8.1550E-02 8.1630E-02 7.7017E-02 7.7017E-02 

1500 7.7565E-02 7.7760E-02 7.5521E-02 7.5521E-02 

2000 9.5152E-02 9.4439E-02 9.2962E-02 9.2962E-02 

2330 9.1229E-03 2.6034E-02 3.1826E-02 3.1826E-02 

 
 

Table 5.12 E2F values from the base model, the reduced model (level-1), the reduced model (level-
2) and the reduced model (level-3) simulations with low DNA damage 

 

Time Base L1 L2 L3 

1 1.7713E-06 1.7713E-06 1.7713E-06 1.7713E-06 

500 2.9045E-02 2.9016E-02 2.8978E-02 2.8977E-02 

1000 6.8757E-02 6.8741E-02 6.8686E-02 6.8681E-02 

1500 1.1917E-01 1.1913E-01 1.1914E-01 1.1914E-01 

2000 2.3960E-01 2.3953E-01 2.3947E-01 2.3946E-01 

2330 1.8517E+00 1.8516E+00 1.8515E+00 1.8515E+00 

 
 

Table 5.13 E2F values from the base model, the reduced model (level-1), the reduced model (level-
2) and the reduced model (level-3) simulations with medium DNA damage 

 

Time Base L1 L2 L3 

1 1.7713E-06 1.7713E-06 1.7713E-06 1.7713E-06 

500 2.8926E-02 2.8896E-02 2.8858E-02 2.8858E-02 

1000 6.7960E-02 6.7945E-02 6.7885E-02 6.7885E-02 

1500 1.1652E-01 1.1648E-01 1.1649E-01 1.1649E-01 

2000 2.2067E-01 2.2060E-01 2.2053E-01 2.2053E-01 

2330 1.7734E+00 1.7733E+00 1.7732E+00 1.7732E+00 

 
 

Table 5.14 E2F values from the base model, the reduced model (level-1), the reduced model (level-
2) and the reduced model (level-3) simulations with high DNA damage 

 

Time Base L1 L2 L3 

1 1.7713E-06 1.7713E-06 1.7713E-06 1.7713E-06 

500 2.8833E-02 2.8803E-02 2.8765E-02 2.8765E-02 

1000 6.8386E-02 6.8370E-02 6.8310E-02 6.8310E-02 

1500 1.1828E-01 1.1825E-01 1.1826E-01 1.1826E-01 

2000 2.3195E-01 2.3188E-01 2.3181E-01 2.3181E-01 

2330 1.8448E+00 1.8447E+00 1.8446E+00 1.8446E+00 
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Table 5.15 E2F values from the base model, the reduced model (level-1), the reduced model (level-

2) and the reduced model (level-3) simulations with excess DNA damage 
 

Time Base L1 L2 L3 

1 1.7713E-06 1.7713E-06 1.7713E-06 1.7713E-06 

500 2.8965E-02 2.8936E-02 2.8897E-02 2.8897E-02 

1000 6.8826E-02 6.8810E-02 6.8750E-02 6.8750E-02 

1500 1.1923E-01 1.1919E-01 1.1920E-01 1.1920E-01 

2000 2.3396E-01 2.3389E-01 2.3382E-01 2.3382E-01 

2330 1.8465E+00 1.8465E+00 1.8464E+00 1.8464E+00 

 
 

Table 5.16 p21/CycE/Cdk2-P values from the base model, the reduced model (level-1), the reduced 
model (level-2) and the reduced model (level-3) simulations with low DNA damage 

 

Time Base L1 L2 L3 

1 1.4772E-09 1.4772E-09 1.4772E-09 1.4772E-09 

500 3.8569E-04 3.8103E-04 3.6758E-04 3.6758E-04 

1000 1.8683E-03 1.7959E-03 1.7294E-03 1.7294E-03 

1500 4.2373E-03 3.5924E-03 3.4790E-03 3.4790E-03 

2000 1.0443E-02 1.1162E-02 1.0897E-02 1.0897E-02 

2330 2.1726E-01 1.5299E-01 1.5022E-01 1.5022E-01 

 
 

Table 5.17 p21/CycE/Cdk2-P values from the base model, the reduced model (level-1), the reduced 
model (level-2) and the reduced model (level-3) simulations with medium DNA damage 

 

Time Base L1 L2 L3 

1 1.4772E-09 1.4772E-09 1.4772E-09 1.4772E-09 

500 6.7528E-04 6.6722E-04 6.4620E-04 6.4620E-04 

1000 3.4201E-03 3.2909E-03 3.1770E-03 3.1770E-03 

1500 7.7653E-03 6.6431E-03 6.4397E-03 6.4397E-03 

2000 1.7767E-02 2.0534E-02 1.8043E-02 1.8043E-02 

2330 3.0070E-01 2.7969E-01 1.6720E-01 1.6720E-01 

 
 

Table 5.18 p21/CycE/Cdk2-P values from the base model, the reduced model (level-1), the reduced 
model (level-2) and the reduced model (level-3) simulations with high DNA damage 

 

Time Base L1 L2 L3 

1 1.4772E-09 1.4772E-09 1.4772E-09 1.4772E-09 

500 8.9197E-04 8.8100E-04 8.4613E-04 8.4613E-04 

1000 2.4843E-03 2.4081E-03 2.2708E-03 2.2708E-03 

1500 4.7001E-03 4.0974E-03 3.9029E-03 3.9029E-03 

2000 9.4877E-03 1.0299E-02 9.6343E-03 9.6343E-03 

2330 1.5400E-01 1.2090E-01 1.0075E-01 1.0075E-01 
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Table 5.19 p21/CycE/Cdk2-P values from the base model, the reduced model (level-1), the reduced 

model (level-2) and the reduced model (level-3) simulations with excess DNA damage 
 

Time Base L1 L2 L3 

1 1.4772E-09 1.4772E-09 1.4772E-09 1.4772E-09 

500 5.7961E-04 5.7225E-04 5.3718E-04 5.3718E-04 

1000 1.5473E-03 1.4991E-03 1.3951E-03 1.3951E-03 

1500 2.7550E-03 2.4201E-03 2.2835E-03 2.2835E-03 

2000 5.6904E-03 6.2466E-03 5.9638E-03 5.9638E-03 

2330 9.9970E-02 7.7965E-02 6.7427E-02 6.7427E-02 

 
 
Table 5.20 p53 values from the base model, the reduced model (level-1), the reduced model (level-

2) and the reduced model (level-3) simulations with low DNA damage 
 

Time Base L1 L2 L3 

1 2.6574E-02 2.6574E-02 2.6574E-02 2.6574E-02 

500 6.0887E-01 6.0887E-01 6.0887E-01 6.0887E-01 

1000 7.7085E-01 7.7085E-01 7.7085E-01 7.7085E-01 

1500 7.9809E-01 7.9809E-01 7.9809E-01 7.9809E-01 

2000 8.0281E-01 8.0281E-01 8.0281E-01 8.0281E-01 

2330 8.0361E-01 8.0361E-01 8.0361E-01 8.0361E-01 

 
 

Table 5.21 p53 values from the base model, the reduced model (level-1), the reduced model (level-
2) and the reduced model (level-3) simulations with medium DNA damage 

 

Time Base L1 L2 L3 

1 2.6574E-02 2.6574E-02 2.6574E-02 2.6574E-02 

500 1.1901E+00 1.1901E+00 1.1901E+00 1.1901E+00 

1000 1.5163E+00 1.5163E+00 1.5163E+00 1.5163E+00 

1500 1.5574E+00 1.5574E+00 1.5574E+00 1.5574E+00 

2000 1.5399E+00 1.5399E+00 1.5399E+00 1.5399E+00 

2330 1.5426E+00 1.5426E+00 1.5426E+00 1.5426E+00 

 
 

Table 5.22 p53 values from the base model, the reduced model (level-1), the reduced model (level-
2) and the reduced model (level-3) simulations with high DNA damage 

 

Time Base L1 L2 L3 

1 2.6574E-02 2.6574E-02 2.6574E-02 2.6574E-02 

500 3.8120E-01 3.8120E-01 3.8120E-01 3.8120E-01 

1000 1.2190E+00 1.2190E+00 1.2190E+00 1.2190E+00 

1500 2.0363E-01 2.0363E-01 2.0363E-01 2.0363E-01 

2000 9.8040E-01 9.8040E-01 9.8040E-01 9.8040E-01 

2330 8.8277E-01 8.8277E-01 8.8277E-01 8.8277E-01 
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Table 5.23 p53 values from the base model, the reduced model (level-1), the reduced model (level-
2) and the reduced model (level-3) simulations with excess DNA damage 

 

Time Base L1 L2 L3 

1 2.6574E-02 2.6574E-02 2.6574E-02 2.6574E-02 

500 6.3022E-02 6.3022E-02 6.3022E-02 6.3022E-02 

1000 1.6623E-01 1.6623E-01 1.6623E-01 1.6623E-01 

1500 4.4280E-01 4.4280E-01 4.4280E-01 4.4280E-01 

2000 9.5634E-01 9.5634E-01 9.5634E-01 9.5634E-01 

2330 2.1695E-01 2.1695E-01 2.1695E-01 2.1695E-01 
 
 
 

5.3 Comparison of the Reduced Models (level-1), (level-2) and (level-3) with 
the Base Model from a Computational Viewpoint 

 
In this section, we focus on comparing the complexity dimensions: level of details, simulation efficiency 

and simplification ratio to prove that the reduced models (level-1), (level-2) and (level-3) were simpler 

and more efficient to run the system and generate solutions than the ODE base model. 

From a computational point of view, the reduced models (level-1), (level-2) and (level-3) were simpler 

in representing the G1/S checkpoint and DNA damage pathways than the ODE base model due to the 

reduced number of network nodes, number of interactions between nodes and number of system 

equations, as shown in Table 5.24. 

 

Table 5.24 Simplification achieved by the reduced models (level1), (level-2) and (level-3), in 

comparison to the ODE base model 
 

No. Entities compared Base 
model 

Reduced 
model (L1) 

Reduced 
model (L2) 

Reduced 
model (L3) 

1 No. of nodes 35 28 26 24 

2 No. of interactions 88 82 80 78 

3 No. of kinetic parameters 92 86 83 82 

4 No. of equations 37 30 28 26 

 
Table 5.25 shows the percentage reduction in the number of nodes in the reduced model (level-1), 

(level-2) and (level-3) compared to the base model, with up to 31% at the third level of reduction, the 

reduced model (level-3). 

 

Table 5.25 Simplifying the percentages in the number of nodes of the reduced models (level1), 

(level-2) and (level-3) vs. the ODE base model 

 

No. Level No. Lump nodes Individual nodes Total nodes  Percentage reduction 

1 Base 0 35 35 0% 

2 L1 7 21 28 20% 

3 L2 7 19 26 26% 

4 L3 7 17 24 31% 
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From a computational viewpoint, the reduced models (level-1), (level-2) and (level-3) were more 

efficient to run the system and generate solutions than the ODE base model as shown in Table 5.26; 

the efficiency is particularly pronounced for larger cell populations. The saving rates of the run times 

reached approximately 30%, 44% and 52% for the reduced models (level-1), (level-2) and (level-3), 

respectively. 

 

 
Table 5.26 Efficiency the reduced model (level-1), (level-2) and (level-3) run time vs. the ODE 

base model run time 

 

No. Size of sample Base model Reduced model 
(L1) 

Reduced model 
(L2) 

Reduced model 
(L3) 

1 10 cells 27 Sec. 19 Sec. 15 Sec. 13 Sec. 

2 100 cells 4:30 Min. 3:10 Min. 2:30 Min. 2:10 Min. 

3 1000 cells 45 Min. 31:40 Min. 25 Min. 21:40 Min. 

4 100000 cells 75 Hr. 52:46:40 Hr. 41:40 Hr. 36:06:40 Hr. 

 
 

 

Table 5.27 compares the level of complexity, level of details and run times between the base model 

and the three reduced models (level-1, 2 and 3) for the studied G1/S checkpoint and DNA damage 

pathways. 

 

Table 5.27 General comparison between the base model and reduced models (level-1, 2 and 3) 
 

Model Complexity Details Run 

The base  Very complex Full of details Slow 

(Level-1) Complex High level of details Normal 

(Level-2) Simple Medium level of details Fast 

(Level-3) Very simple Low level of details Very fast 

 

 
Representation of the biological networks by lumping proteins together in containers (lumps) can 

make biological networks sharper and clearer for researchers as shown in Figure 5.50. 
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Figure 5.50 Network reduction: (a) Base model (b) Reduced model (level-1) (c) Reduced model 
(level-2) (d) Reduced model (level-3) of the original network 
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5.4 Summary of the Chapter  
 

In this chapter, we validated the reduced models (level-1, 2 and 3) with the base model by using two 

types of comparison: firstly, by comparing the behaviour of the model elements.  All simulation results 

of the reduced models (level-1, 2 and 3) of the G1/S checkpoint pathway with or without DNA-damage 

were similar to and consistent with the results of the base model, and that was consistent with 

biological experiments as reported by Iwamoto et al. (2011).  

Secondly, by comparing model results, and finding the root mean squared error (RMSE) and the root 

mean squared percentage error (RMSPE). we used RMSE and RMSPE as measures of accuracy to 

compare forecasting errors of the reduced models (level-1, 2 and 3) against the base model without 

DNA damage. The comparison demonstrates that the reduced models (level-1, 2 and 3) compares well 

with the base model and thus it is still a good model to simulate the G1/S checkpoint pathways 

integrated with DNA damage pathway. Also, the simulations with the base model, reduced model 

(level-1, 2 and 3)  were run with four different levels of DNA damage to allow analysis of the differences 

in concentration of five species important in DNA damage response (CycE/Cdk2-P, p21, E2F, 

p21/CycE/Cdk2-P and p53) at t=1, t=500, t=1000, t=1500, t=2000 and t=2330.  The results of these 

simulations show that the concentration of CycE/Cdk2-P, p21, E2F, p21/CycE/Cdk2-P and p53 for the 

base model and the reduced model (level-1, 2 and 3); is not significantly different. Therefore, the 

reduced models (level-1, 2 and 3) can be used to study G1 progression with and without DNA damage. 

Finaly, we Compared the reduced models (level-1, 2 and 3) with the base model from a computational 

viewpoint. To prove that the reduced models were simpler and more efficient to run the system and 

generate solutions than the ODE base model. By compared the level of complexity, level of details and 

run times between the base model and the three reduced models for the studied G1/S checkpoint and 

DNA damage pathways. We proved the representation of the biological networks by lumping proteins 

together in containers (lumps) can make biological networks sharper and clearer for researchers and 

the three reduced models were simpler and more efficient to run the system and generate solutions 

than the ODE base model. 
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Chapter 6 

Using Time Windows and Logical Representation to Reduce the 

G1/S Checkpoint Pathway with DNA Damage 

The purpose of this chapter is to offer another method to aid in model reduction yielding the expected 

behaviour of the G1/S checkpoint with and without DNA damage. We, therefore, focus on simplifying 

the time dimension by dividing the G1/S checkpoint pathway into time windows (active time windows, 

and steady or frozen time windows). The active time windows were then represented by logical 

models. This was undertaken to aid the reduction process. 

This chapter is organised as follows: after a brief Summary in Section 6.1 followed by Introduction and 

Background (Section 6.2), the approach to reduce the framework is described in the Research 

Methodology section (Section 6.3). The reduced approach is analysed in the Results and Discussion 

section (Section 6.4). The Conclusion (Section 6.5) is devoted to a further discussion on the efficiency 

of the reduction method and directions for future work.  

6.1 Summary 

Most knowledge about regulatory and signalling networks is of a qualitative nature, which allows these 

networks to be represented by logical models, where the state of a molecule is either 0 (inactive) or 1 

(active). These models have many advantages, as simple models do not need specific values for kinetic 

parameters and are able to capture the essential behaviour of a network. However, they are not 

suitable to reproduce detailed time courses for the concentration of molecules. 

Experiments nowadays yield more and more quantitative data, so many quantitative models have 

been built and most of these models are very complex. An obvious question, therefore, is how to 

reduce complex quantitative models, which can then be used to explain and predict the outcome of 

these experiments. 

In this chapter, we present a way of reducing complex quantitative models into logical models, where 

the use of time windows allows reductions in time complexity, and a logical representation to remove 

the kinetic parameters from a system. The method is standardized and can readily be applied to other 

complex quantitative models. Moreover, we discuss and generalize the existing theoretical results 

about the relations between Boolean and continuous models. In a case study, a continuous ODE model 

was used to produce a reduced logical model that describes the G1/S checkpoint with and without 

DNA damage. We discuss how this model can explain and predict G1/S checkpoint behaviour with DNA 
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damage, including oscillations of some molecules and cell fate. This shows that the reduced is model 

is still useful for gaining biological insights and is easier to run and analyse. 

The approach presented in this study greatly helps in simplifying complex quantitative models into 

simple models and will facilitate the interactions between modelling and experiments. Moreover, it 

will also help researchers who build the models to focus on understanding and representing system 

behaviour rather than focusing on determining the values of the kinetic parameters. 

6.2   Introduction and Literature Review 

The control of cell cycle progress is tightly regulated by complex proteins in regulatory networks to 

achieve the correct cell division (Behl & Ziegler, 2014). It has several checkpoints; for example, the 

G1/S and G2/M checkpoints (Saltman, 2005). Moreover, dysfunction in cell cycle can lead to changes 

in DNA, which means the development of diseases such as breast cancer (King et al., 2003; Azimi et al., 

2017; Farr et al., 2017). A better understanding of protein regulatory networks will, therefore, not only 

advance our understanding of fundamental cell cycle regulation, such as the G1/S checkpoint, but also 

provide more understanding into disease processes; thus, increasing the efficiency in the treatment of 

diseases. 

Biologists have used many ways to understand the mechanics of protein regulatory networks. One way 

is to construct models that simulate the mechanisms of the interactions between the proteins. Several 

types of models have been developed to represent cell cycle that involves protein to protein 

interactions. These types of models include: mathematical ordinary differential equations (ODE) 

(Aguda, 1999; Novak& Tyson, 2004; Tashima et al., 2007; Iwamoto et al., 2008; Ling et al., 2010; 

Iwamoto et al., 2011; Zhao et al., 2012), Boolean (Fauré et al., 2006), petri net (Kotani et al., 2002; 

Herajy et al., 2013), recurrent neural networks (Ling et al., 2013) and hybrid (Singhania et al., 2011). 

ODE models are the most common type used for modelling biological networks. Over time the amount 

of data obtained from laboratory experiments increased, so these models became more complex; 

especially, if they contains hundreds or thousands of variables, they will be ineffective (Danos et al., 

2007). Because of the complexity of these most widely used models they offer new opportunities for 

researchers to develop new methods to reduce biochemical reaction network models. Many 

approaches to model reduction have been proposed (Clarke, 1992; Maas & Pope, 1992; Lam & Goussis, 

1994; Maas & Pope, 1994; Clarke et al., 1996; Gorban & Karlin, 2005; Feret et al., 2009; Gorban et al., 

2010; Noel et al., 2011; Radulescu et al., 2012; Rao et al., 2013; Sonday et al., 2013; Rao et al., 2014; 

Radulescu et al., 2015). 

For the purpose of the current study, a biological network model reduction is defined as any method 

designed to decompose/reproduce the original model into a smaller models that produces the same 
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behaviour as the original model. This is undertaken by reducing one or more dimensions of the 

complextity, of the biological network model (by reducing the number of species, reducing the number 

of reactions or reducing the model run time). 

In this work, we focus on reducing complex ODE mathematical models resulting from modelling large 

regulatory and signalling networks and improving the reduction process by using time windows and 

simple logical models. As a case study, a continuous ODE model (Iwamoto et al., 2011) was reduced 

into a reduced logical model describing the G1/S checkpoint with and without DNA damage. 

The regulatory and signalling networks have been represented by logical models since the time of 

Kauffman (1969), who was the pioneer in this field. A logical model is the simplest models that can be 

used to describe the dynamics of regulatory and signalling networks without the need of many 

parameters. A logical model contains a series of interconnected elements Y1… Yn. Each element has 

only two possible states of activation, 1 (active) and 0 (inactive). The regulatory and signalling network 

is completely described by set of logical equations as shown in Eq. 6.1(a, b, c): 

 

𝑌𝑖(𝑡 + 1) =

{
 

 (𝑌1
𝑎(𝑡) 𝑂𝑅 𝑌2𝑎(𝑡)…𝑂𝑅 𝑌𝑛𝑎(𝑡)) 𝐴𝑁𝐷 𝑁𝑂𝑇 (𝑌1𝑖(𝑡) 𝑂𝑅 𝑌2𝑖(𝑡)…𝑂𝑅 𝑌𝑚𝑖(𝑡)) (6.1. 𝑎)

𝑌1𝑎(𝑡) 𝑂𝑅  𝑌2𝑎(𝑡)…𝑂𝑅 𝑌𝑛𝑎(𝑡)(6.1. 𝑏)

𝑁𝑂𝑇 (𝑌1𝑖(𝑡) 𝑂𝑅 𝑌2𝑖(𝑡)…𝑂𝑅 𝑌𝑚𝑖(𝑡)) (6.1. 𝑐)

 

  

where Yi∈ {0, 1}, {Yna} is the set of activators of Yi, {Ymi} is the set of inhibitors of Yi. If Yi has activators 

and inhibitors use Eq. 6.1.a, if Yi has only activators use Eq. 6.1.b and if Yi has only inhibitors use Eq. 

6.1.c. 

Building a logical model involves three steps: (i) find a regulatory graph for the system; (ii) define the 

logical parameters of the system; (iii) specify the logical equations (for updating). Figure 6.1 shows an 

example of building a logical model. 

As seen in Figure 6.1, a logical model is represented by a Logic-based graph and every node in the 

logical model can be derived from the state of other nodes through a logical equation. change in the 

state of nodes from ‘on’ to ‘off’ or vice-versa through a sequence of changes in state is called a 

biological process. (Chen et al., 2016). The dynamics of a logical model are defined by synchronous (all 

nodes are updated at the same time) or asynchronous (each node is updated individually by sequential 

order) updating. The system dynamics are mainly determined by the choice of updating scheme 

(Aracena et al., 2009). Logical models have many advantages: it is easy to build, easy to compose and 

easy to simulate perturbations (Le Novere, 2015). 
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Several software tools exist that building and finding the dynamics of logical models, such as GINsim 

(Gonzalez et al., 2006), SQUAD (Di Cara et al., 2007), Boolean Net (Albert et al., 2008), Chem Chains 

(Helikar & Rogers, 2009), Odefy (Krumsiek et al., 2010), Bool Net (Müssel et al., 2010), Cell NOpt (Terfve 

et al., 2012), MaBoSS (Stolletal., 2012) and; Cell Collective (Helikar et al., 2013). 

 

 

Figure 6.1 Interaction graph, logical model and logical equations of protein network examples (a) 
Interaction graph: The nodes (Y1, Y2 … Y6) in the graph represent proteins, and the edges 

represent interactions. Blue arrows represent activations and red bar arrows inhibitions. (b) Logic-
based representation of a logical model for the interaction graph given in (a). (c) Equations of a 

logical model for the interaction graph given in (a). 

 

There are few logical models that have been applied to the mammalian cell cycle. To know more about 

these models, see (Huang & Ingber, 2000; Fauré et al., 2006; Sahin et al., 2009; Mombach et al., 2014, 

Tanaka et al., 2017). Moreover, many logical models have been built to model cell cycle of budding 

yeast (Li et al., 2004; Faur´e et al., 2009; Irons, 2009; Todd & Helikar, 2012; Alcasabas et al., 2013; 

Rubinstein et al., 2013; Chasapi et al. 2015; Linke et al., 2017). 
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6.3   Research Methodology 

Reducing a model of the biological network into a simple one using time windows and simple logical 

models involves the following tasks: (i) Understanding the protein interactions involved in the system; 

(ii) Dividing the dynamics of the system into time windows (active time windows, steady or frozen time 

windows); (iii) Determining the key elements in each active time windows; and (iv) Building a logical 

model for each active time window. Last task is divided into three sub-tasks: first, finding a regulatory 

graph for the system; secondly, defining the logical parameters of the system; and thirdly, specifiy the 

logical equations (for updating). 

6.3.1 Understand the Protein Interactions Involved in the System 

We used the base model presented in Section 4.1 (G1/S checkpoint pathway and DNA damage 

pathways model) as a complex system case study to apply our new reduction approach. Understanding 

protein interactions involves understanding system dynamics in the G1/S checkpoint pathway and the 

DNA damage pathway base model involving protein-protein interactions. This is considered the first 

step in the model reduction process. 

The system and form of molecular interactions in the network were described in the section on the 

base model (Section 4.1). The base model, as shown in Figure 4.7, shows the reaction scheme of the 

proposed model, which integrated the G1/S model and the DNA damage signalling pathway. The 

model consists of 35 dependent variables, 88 interactions and 92 kinetic parameters (see Appendix B). 

 

6.3.2 Divide the Dynamics of the System into Time Windows (Active Time Windows, Steady 

or Frozen Time Windows) 

Biological processes can take place over a long timescale. For example, the G1/S network that 

generates a circadian rhythm, as shown in Figure 6.2, shows protein behaviour over three distinct time-

windows. In time window A, some proteins undergo changes in concentration and in others, no change 

occurs. In time window B, there are no changes in most proteins. In time window C, some proteins 

have changes in concentration and, in others, no change occurs. To model a system that involves 

processes acting in different time-windows, primary time windows must be chosen (time window A 

and C). Other time-windows are then treated as being frozen in time (time window B). 
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Figure 6.2 Behaviour of multiple time windows 

These time window separations are made during model construction; they often motivate the 

decisions about what species and processes should be included in the model and what can be ignored. 

In other cases, existing models that incorporate separate time windows can be simplified. This model 

reduction process approximates the original model with a model of reduced complexity. 

Model reduction by time window separation leads to similar results to an original model, where a 

differential equation describing a state variable is replaced by a new simple differential equation. The 

main Idea in model reduction techniques by time windows is to treat a slow variable as a fixed 

parameter (constant value), rather than as a state variable. In the reduction method using time 

windows, the number of elements in the system depends on the time window and the number of 

elements changing with time. 

6.3.3 Determine the Key Elements in Each Active Time Windows 

After studying the G1/S checkpoint protein behaviour with and without DNA damage in multiple time 

slides, the key elements in each active time window are determined. Table 6.1 shows the G1/S 

checkpoint protein behaviour with and without DNA damage over multiple time windows: 

Time window A contains 14 elements that play main roles in the time window A. These elements are 

CycD, Cdk4, CycD/Cdk4, p27, p27/CycD/Cdk4, p21, p21/CycD/Cdk4, p16, Rb/E2F, Rb-PP/E2F, Rb, p53, 

Mdm2 and ATM/ATR. Also, time window C contains 14 elements that play main roles in time window 

C. These elements are CycE, Cdk2, CycE/Cdk2, CycE/Cdk2-P, p27, p27/CycE/Cdk2-P, p21, 

p21/CycE/Cdk4-P, Rb-PP/E2F, E2F, Rb-PPP, p53, Mdm2 and ATM/ATR. 
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Table 6.1 G1/S checkpoint protein behaviour with and without DNA damage in multiple time 
windows 

No Molecular A B C 

1 CycD Fast Slow Slow 

2 CycE Slow Slow Fast 

3 CycA Slow Slow Fast 

4 Cdk4 Fast Slow Slow 

5 Cdk2 Slow Linear Slow 

6 CycD/Cdk4 Fast Slow Slow 

7 CycE/Cdk2 Slow Slow Fast 

8 CycE/Cdk2-P Slow Slow Fast 

9 CycA/Cdk2 Slow Slow Fast 

10 CycA/Cdk2-P Slow Slow Fast 

11 p27 Fast Slow Fast 

12 p27/CycD/Cdk4 Fast Slow Slow 

13 p27/CycE/Cdk2-P Slow Slow Fast 

14 p27/CycA/Cdk2-P Slow Slow Fast 

15 p21 Fast Slow Fast 

16 p21/CycD/Cdk4 Fast Linear Slow 

17 p21/CycE/Cdk2-P Slow Slow Fast 

18 p21/CycA/Cdk2-P Slow Slow Fast 

19 p16 Linear Linear Linear 

20 Rb/E2F Fast Slow Slow 

21 Rb-PP/E2F Fast Slow Fast 

22 E2F Slow Slow Fast 

23 Rb-PPP Slow Slow Fast 

24 Rb Fast Slow Slow 

25 p53 Fast Slow Slow 

26 Mdm2 Fast Slow Slow 

27 ATM/ATR Fast Slow Slow 

28 Cdc25A Slow Linear Slow 

29 Cdc25A-P Slow Slow Slow 

30 Chk1 Linear Slow Slow 

31 Chk1-P Slow Slow Slow 

32 NF-Y Slow Slow Slow 

33 B-Myb Linear Linear Slow 

34 B-Myb-P Slow Slow Slow 

35 Im Fast Slow Slow 

 

 



 138 

6.3.4 Building Logical Model for each Active Time Window 

We need to build two logical models, R1 and R2. R1 to represent the reduced model for time window 

A and R2 to represent the reduced model for time window C.  The first step to construct any logical 

model is to find a regulatory graph for the system, which in our case depends on the ODE model. See 

Table I.1 in Appendix I, where it shows the ODEs of the reduced model (R1) after refinement, and see 

Table J.1 in Appendix J, where it shows the ODEs of the reduced model (R2) after refinement. 

Figure 6.3 shows a regulatory graph for the reduced model (R1) and Figure 6.4 shows the regulatory 

graph for the reduced model (R2). 

The second step is to convert a regulatory graph into a logic-based graph. Figure 6.5 shows the logical 

model with the underlying interaction graph given in Figure 6.3, while Figure 6.6 shows the logical 

model with underlying interaction graph given in Figure 6.4. 

 

 

Figure 6.3 Regulatory graph for the reduced model (R1) for time window A 

 

The last step is to specify the logical equations (for updating) and the initial values of the proteins. The 

reduced model (R1) represents 14 logical equations (see I.3 in Appendix I). Table I.2 shows the initial 

conditions of the reduced model (R1). Meanwhile, the reduced model (R2) represents 14 logical 

equations (see J.3 in Appendix J). Table J.2 shows the initial conditions of the reduced model (R2). 

Synchronous method is used to update the status of nodes.   
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Figure 6.4 Regulatory graph for the reduced model (R2) for time window C 

 

 

Figure 6.5 Logic-based graph for the reduced model (R1) 
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Figure 6.6 Logic-based graph for the reduced model (R2) 

 

6.4   Results and Discussion 

The simulation results of the reduced model (R1) and the reduced model (R2), with and without DNA 

damage, agreed with the biological knowledge from previous studies as described below. CycD and 

CycE play the main roles in mammalian G1-to-S transition. As shown in Figure 6.7, for the reduced 

model (R1) without DNA damage, the state of CycD becomes active in early G1/S. CycD binds to Cdk4 

forming the binary complex, CycD/Cdk4. As shown (at time step 2), CycD/Cdk4 becomes active. 

Furthermore, the CycD/Cdk4 complex phosphorylates Rb bound to E2F, which becomes 

hypophosphorylated form, Rb-PP/E2F (Helin, 1998). We note that Rb/E2F becomes inactive (at time 

step 3), Rb-PP/E2F becomes active (at time step 4) and Rb becomes inactive (at time step 5). p53 and 

p21 stay inactive at all iterations in the simulation of the reduced model (R1) because there was no 

DNA damage. 
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Figure 6.7 Simulation results of the reduced model (R1) without DNA damage (green: active, red: 
inactive) 

 

After damage occured in DNA, the simulation results of the reduced model (R1) are shown in Figure 

6.8. The DNA damage signal activates ATM/ATR (at time step 1). p53 is activated by ATM/ATR (at time 

step 2), which regulated transcription of the large number of genes required for different purposes, 

including damage recovery or cell death processes (Ciliberto et al., 2005; Harris & Levine, 2005; Geva-

Zatorsky et al., 2006).   

p53 activation leads to the activation of p21 (Yu et al., 1999). The role of p21 was to inhibit the activity 

of CDK to effect cell cycle arrest through inhibition or phosphorylation of Rb to keep E2F inactive 

(Campisi & Fabrizio, 2007). This explains the activation of p21/CycD/Cdk4 (at time step 4). 

Furthermore, as seen in Figure 6.8, there were oscillations in the behaviour of p53 and p21. This result 

agreed with the experimental results as described in the previous chapter. 

 

Figure 6.8 Simulation results of the reduced model (R1) with DNA damage (green: active, red: 
inactive) 
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As shown in Figure 6.9, the simulation results of the reduced model (R2) without DNA damage are in 

mid G1. CycE/CDK2 activation is the main reason for further hyperphosphorylation of Rb-pp/E2F 

resulting in the dissociation of Rb-PPPP from E2F; thus, releasing E2F. As shown (at time step 1) in 

Figure 6.9, E2F and Rb-PPP become active. The increased concentration of E2F promotes the synthesis 

of CycE in the mid to late G1 phase (at time step 2). When CycE becomes active, this facilitates the 

binding between CycE and CDK2 to form more of CycE/CDK2 (at time step 3) so CycE/CDK2 becomes 

active. This results in further freeing of E2F; thus, establishing a positive feedback loop between E2F 

and CycE; increased concentrations of E2F and CycE move the cell from the G1/S checkpoint to the S 

phase (Satyanarayana & Kaldis, 2009). These results agree with the reported experimental results 

(Kohn, 1999; Hochegger et al., 2008). 

 

 

Figure 6.9 Simulation results of the reduced model (R2) without DNA damage (green: active, red: 

inactive) 

As shown in Figure 6.10 for the simulation results of the reduced model (R2) with DNA damage, p21 

active. The role of p21 to inhibit the activity of CDK to effect cell cycle arrest through inhibition of 

phosphorylation of Rb to keep E2F inactive (Campisi & Fabrizio, 2007). Protein p21 is bound to 

CycE/Cdk2-P forming the complex, p21/CycE/Cdk2-P. As shown (at time step 1), p21/CycE/Cdk2-P 

becomes active. This delays release of E2F from Rb-PP/E2F for one iteration more, which meant a delay 

in the synthesis of CycE. As shown in Figure 6.10, E2F becomes active (at time step 2) and CycE becomes 

active (at time step 3). This delay in activation represents cell cycle arrest. These results agree with 

experimental results (Lev Bar-Or et al., 2000; Batchelor et al., 2008). 
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Figure 6.10 Simulation results of the reduced model (R2) with DNA damage (green: active, red: 

inactive) 

6.5  Conclusions  

There has been a great deal of interest in the reduction of complex ODE regulatory network models 

for many reasons: (i) Most of the models that have been built to understand regulatory networks were 

ODE mathematical models; (ii) Most of the ODE mathematical models were complex and needed 

kinetic information for molecules that was not easily gathered; (iii) Simplifying complex ODE 

mathematical models can leads to a better understanding and control of these systems. 

We presented a way of reducing complex quantitative models into logical models where the use of 

time windows allowed the reduction of time complexity, and logical representation to get rid of the 

kinetic parameters in a system. The method is general and can be readily applied to complex 

quantitative models. Moreover, we discussed and generalized the existing theoretical results on the 

relations between Boolean and continuous models. As a case study, a continuous ODE model was 

changed into a reduced logical model to describe the G1/S checkpoint with and without DNA damage. 

We discussed how this model can explain and predict the G1/S checkpoint behaviour with DNA 

damage, including oscillations by some molecules and the fate of the cells. This showed the reduced 

model was still useful for obtaining biological insights and it was easier to run and to analyse. 

The approach presented here greatly helped to simplify complex quantitative models into simple 

models and will facilitate the interactions between modelling and experiments. Moreover, it will help 

researchers and those who build these models to focus on understanding and representing system 

behaviour rather than focusing on determining values for the kinetic parameters. 

Future work includes producing further reduction models yielding expected behaviour of whole cell 

cycle regulation with and without DNA damage. Moreover, the proposed reduced method could be 

improved by using time windows and multi-valued logical models (semi-quantitative models). 
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Chapter 7 

Conclusions and Future Directions  

The purpose of this research, and the preceding chapters, was to offer two methods to aid in reduction 

and approximation of complex ODE mathematical models. In particular, the ODE model of the G1/S 

checkpoint, with and without DNA damage, was offered as a motivating example of a complex system 

and two reduction methods were presented to aid in this reduction. This chapter includes four 

sections. Section 7.1 presents a general overview; and Section 7.2 presents the contributions made by 

the thesis. The future directions are presented in Section 7.3, and the overall conclusions are given in 

Section 7.4. 

7.1  General Overview 

This thesis addressed several issues related to complexity, model reduction and the control of complex 

systems. Two reduction methods were proposed in this thesis: the first approach was based on a 

hierarchical representation and lumping approach and the second approach used time windows and 

logical models. The issues studied in this thesis can be summarised as follows: 

First, the thesis presented a review of issues and facts about complex systems, model reduction, 

complexity of biological networks and reduction methods used to reduce mathematical models of 

biological systems (Chapter 2). 

Secondly, it provided a brief review of the biological background on the regulation of cell cycle and the 

details of the G1/S checkpoint and related models (Chapter 3). 

Thirdly, we developed a new method to simplify biological networks using a hierarchical 

representation and lumping approach. It has been shown that the new method not only can simplify 

biological networks, but also can improve the speed of running the system and generate solutions 

easier than with the ODEs original model. The quality of representation of biological networks with 

ODEs generally deteriorates with increasing size of biological but the new reduced method over comes 

this difficulty, and therefore, when the size of the biological networks increases the complex ODE 

model can be replaced with the reduced model (Chapter 4).  

Fourthly, we validated the reduced model output with base model through: comparing the behaviour 

of the elements of the model, the root mean squared error (RMSE) and the root mean squared 

percentage error (RMSPE); to be sure that the reduced model was useful for a particular purpose and 

applicable to answering a specific set of questions. Furthermore, the results showed that this new 
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reduce method was very effective; the reduced model generated faster solutions that were almost 

perfectly aligned with the behaviour of the complex biological network. In general, the reduced model 

achieved excellent agreement in results compared with original ODE model. This can lead to better 

understanding and help in the treatment of diseases, especially (cancer) (Chapter 5). 

Fifthly, we offered another method to aid in the reduction yielding the expected behaviour of the G1/S 

checkpoint with and without DNA damage. We divided the G1/S checkpoint pathway into time 

windows (active time windows and steady or frozen time windows). The active time windows were 

then represented by logical models. The reduced model agreed with the original model results and 

biological evidence (Chapter 6). 

Finally, we discussed the conclusions and outcomes from this research and proposed future research 

directions. The main conclusion was that relaxing the struggle with complexity of mathematical models 

was possible and the proposed reduction methods have the potential to make important impacts 

across many fields of biomedical and other research (Chapter 7). 

7.2   Contributions 

The contributions and outcomes from this thesis can be broken down as follows: 

1. A review of complex systems and reduction methods that will open the minds of researchers 

to improve the existing reduction methods or to suggest new reduction methods. 

2. A good summary of the regulation of cell cycle that will help researchers who do not have a 

strong biology background. 

3. A new reduction method to simplify protein-protein interaction (PPI) networks based on a 

hierarchical representation and lumping approach that could be applied to different kinds of 

complex systems. The new reduction method provides possibility to zoom in and out several 

levels of complexity with good results. So, this make it unique compared to the existing ones.  

4. A new reduction method to simplify complex ODE mathematical models of biological signalling 

networks, using time windows and logical models that could be applied to different kinds of 

complex systems. This new reduction method is the first method that combined Boolean 

models and time windows to reduce the complex biological models with good results. So, this 

makes it unique compared to the existing ones. 

 

5. The two new reduction methods provided many advantages from two different perspectives 

(computational and biological): 
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A. From a computational viewpoint: 

i. The reduced model was more efficient in running the system and generating 

solutions than the ODE base model. 

ii. The reduced model was easier to run and generate solutions than the ODE base 

model. 

iii. The reduced model was easier to represent than the ODE base model through 

reducing the number of nodes in the network, thereby reducing the number of 

interactions between nodes and the number of system equations. 

B. From biological viewpoint: 

i. Better understanding of protein interactions. 

ii. Easier understanding of system behaviour. 

iii. Easier analyseis of results. 

iv. The reduction method allowed representation of biological networks in multiple 

levels of abstraction (zoom in, zoom out). 

v. The reduction method allowed assembling different models of a biological system 

in one global view (a comprehensive biological network).  

vi. Easier to apply perturbing functions in the reduced model than in the base model 

because the reduction method was based on a lumping approach, were every lump 

was a functional unit. Therefore, we can remove these lumps one by one and see 

what happenes to the system behaviour. 

vii. The reduced model enabled simulation of many scenarios for various emergent 

properties and behaviour. 

6. A better understanding of intracellular signalling networks that can contribute to better 

treatment of diseases, especially (cancer).  
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7.3   Future Directions 

The present work has, so far, helped in reducing complex ODE mathematical models resulting from 

modelling the G1/S checkpoint pathway with and without DNA damage, and made improvement in 

simulation and knowledge of a variety of possible scenarios using reduced models. Future work could 

continue to focus on these areas. 

In future work, we intend to extend the method based on a hierarchical representation and lumping 

approach to more complex biological networks, such as the whole cell cycle with and without DNA 

damage. In addition to further development of the first reduction method, there are other lumping 

methods that could offer interesting results. For example, nested fuzzy cognitive maps (FCMs) can be 

used to obtain a hierarchical representation and, lumping as it follows similar in principles. the 

researcher believes that there must be a way to bring these methods together. 

There are many open questions about the reduction of complex ODE mathematical models of 

biological systems that have been developed. How can we use the reduced models to build a 

comprehensive biological model? How can we balance the degree of simplification and accuracy of the 

results required in the reduction process, as well as other related research questions? These are all 

issues that should be considered in future development and could produce very interesting results. 

Future extensions of the reduced method using time windows and logical models include reductions 

yielding the expected behaviour of the whole cell cycle regulation, with and without DNA damage. 

Moreover, the reduced method could be improved by using time windows and a multi-valued logical 

model (semi-quantitative models). 

While this research offered two methods of reduction for complex ODE mathematical models, it should 

be obvious that there exists a great deal of room for future work (directly and indirectly) related to the 

current work. 

7.4  Conclusions  

There has been a great deal of interest in the reduction of complex ODE regulatory network models 

for many reasons: (i) Most of the models that have been built to understand regulatory networks were 

ODE mathematical models; (ii) Most of the ODE mathematical models were complex and needed 

kinetic information for molecules and that was not easily gathered; (iii) Simplifying the complex ODE 

mathematical models can lead to better understanding and control of these systems; and (iv) The 

known reduction methods often faced difficulties when applied to complex systems. 
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For the purpose of the current study, a biological network model reduction was defined as any method 

designed to reproduce the original model in a smaller model that produced the same behaviour as the 

original model, by reducing one or more dimensions in a biological network model. 

In conclusion, behind each complex system there is a network that defines the interactions between 

the components. We will never understand complex systems unless we map and understand the 

networks behind them. Proposing simplified dynamic models for large and complex biological 

networks by using these new reduced techniques could allow building a comprehensive biological 

network. That would help researchers gain a greater understanding of the emerging properties of 

cellular activities. Hierarchical modelling is important when there is the need and possibility to zoom 

in and out several levels of complexity. Critical parameter identification is an important issue in 

systems biology. There are many reduction methods but a fully formal method that exploited the 

hierarchical orders for large volumes of variables was missing. 

This thesis proposed and developed two ODE model reduction approaches to reduce the dimensions 

and complexity of highly-dimensional ODE models. The two approaches were then applied to an ODE 

model of G1/S checkpoint pathway integrated with DNA damage pathways. 

The proposed approaches can help greatly simplify complex quantitative models into simple models 

that facilitate the interactions between the modelling and experiments. Moreover, they can help 

researchers and those who build the models to focus on understanding and representing system 

behaviour rather than focusing on determining the values of a large number of kinetic parameters. The 

advantage is greater in particular in application to molecular networks that have many well separated 

time windows. The reduced model has improved our understanding of the dynamics of the G1/S 

checkpoint pathway with and without DNA damage.  

This work showed that relaxing the struggle with the complexity of mathematical models is possible 

and the proposed reduction methods have the potential to make an impact across many fields of 

biomedical and other research. 
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Appendix A 

Initial conditions, kinetic parameters and mass balance equations of 

the ODE mathematical model for the DNA damage signalling 

pathway and whole cell cycle regulation  

A.1 Initial conditions of the mathematical model (Iwamoto et al., 2011) 

Table A.1 Initial conditions of the mathematical model  
 

Chemical 

species 
Initial value 

Chemical 

species 
Initial value 

Chemical 

species 
Initial value 

Y1 3.00e-02 Y19 1.00e-03 Y37 1.00e-03 

Y2 1.00e-03 Y20 1.95e+00 Y38 0 

Y3 4.00e-05 Y21 1.00e-03 Y39 0 

Y4 5.00e+00 Y22 0 Y40 0 

Y5 1.50e+01 Y23 1.00e-02 Y41 0 

Y6 7.50e+00 Y24 5.00e-02 Y42 1.00e-06 

Y7 1.00e-03 Y25 2.65e-02 Y43 1.00e-06 

Y8 1.00e-03 Y26 2.35e-04 Y44 3.00e-02 

Y9 4.00e-04 Y27 0 Y45 0 

Y10 1.00e-04 Y28 1.00e-03 Y46 2.00e+00 

Y11 1.40e+01 Y29 1.00e-04 Y47 3.00e-02 

Y12 1.00e-03 Y30 9.90e-01 Y48 9.00e-01 

Y13 1.00e+00 Y31 1.00e-02 Y49 1.00e-01 

Y14 1.00e-04 Y32 0 Y50 1.00e-01 

Y15 0 Y33 0 Y51 9.00e-01 

Y16 0 Y34 1.00e+01 Y52 0 

Y17 0 Y35 1.00e-04 Y53 0 

Y18 0 Y36 1.00e-04 Im 0 

 
Abbreviations are as follows: Y1: CycD, Y2: CycE, Y3: CycA, Y4: Cdk4, Y5: Cdk2, Y6: CycD/Cdk4, Y7: 
iCycE/Cdk2, Y8: aCycE/Cdk2, Y9: iCycA/Cdk2, Y10: aCycA/Cdk2, Y11: p27, Y12: p27/CycD/Cdk4, Y13: 
p27/CycE/Cdk2, Y14: p27/CycA/Cdk2, Y15: p21, Y16: p21/CycD/Cdk4, Y17: p21/CycE/Cdk2, Y18: 
p21/CycA/Cdk2, Y19: p16, Y20: Rb/E2F, Y21: Rb-PP/E2F, Y22: E2F, Y23: Rb-PPP, Y24: Rb, Y25: p53, Y26: 
Mdm2, Y27: ATM/ATR, Y28: iCdc25A, Y29: aCdc25A, Y30: iChk1, Y31: aChk1, Y32: NF-Y, Y33: CycB, Y34: 
Cdk1, Y35: iCycB/Cdk1cyto, Y36: aCycB/Cdk1cyto, Y37: Wee1, Y38: Wee1p, Y39: p21/CycB/Cdk1, Y40: 
iB-Myb, Y41: aB-Myb, Y42: iCdc25C, Y43: aCdc25C, Y44: iCdc25CPs216, Y45: aCdc25CPs216, Y46: 14-3-
3σ, Y47: 14-3-3σ/iCdc25CPS216, Y48: iAPC/Ccdc20, Y49: aAPC/Ccdc20, Y50: iAPC/Ccdh1, Y51: 
aAPC/Ccdh1, Y52: iCycB/Cdk1nuc, Y53: aCycB/Cdk1nuc, Im: Intermediate, DDS: DNA damage signal 

 
 
 
 
 
 
 
 
 



 150 

A.2 Kinetic parameters of the ODE mathematical model (Iwamoto et al., 
2011) 

Table A.2 Kinetic parameters of the ODE mathematical model  
 

Kinetic 

parameter 
Value 

Kinetic 

parameter 
Value 

Kinetic 

parameter 
Value 

Kinetic 

parameter 
Value 

k1 5.00e-04 k36 1.50e-03 k71 4.00e-03 k106 5.00e-02 

k2 5.00e-04 k37 5.00e-05 k72 1.00e-08 k107 2.00e-03 

k3 5.00e-03 k38 1.00e-03 k73 3.00e+00 k108 1.00e-05 

k4 2.50e-03 k39 5.00e-03 k74 7.72e-01 k109 1.00e-02 

k5 1.00e-01 k40 2.00e-03 k75 1.00e-05 k110 1.00e+00 

k6 2.50e-03 k41 5.00e-05 k76 5.56e-02 k111 1.00e-03 

k7 2.50e-03 k42 1.00e-04 k77 2.00e-02 k112 1.00e-02 

k8 2.50e-05 k43 5.00e-04 k78 2.00e-01 k113 1.00e-03 

k9 3.00e-04 k44 5.00e-04 k79 1.00e-02 k114 1.00e-04 

k10 5.00e-04 k45 5.00e-05 k80 4.00e-02 k115 1.00e-02 

k11 5.00e-04 k46 2.50e-03 k81 1.00e-03 k116 1.00e+00 

k12 2.00e-04 k47 2.50e-03 k82 5.00e-02 k117 1.00e+00 

k13 5.00e-04 k48 2.50e-03 k83 5.00e-03 k118 1.00e-02 

k14 7.50e-03 k49 4.00e-02 k84 1.00e-03 k119 1.00e+00 

k15 5.00e-03 k50 2.50e-03 k85 5.00e-03 k120 1.00e+02 

k16 5.00e-03 k51 5.00e-08 k86 5.00e-04 k121 1.00e+00 

k17 5.00e-02 k52 5.00e-07 k87 1.00e+00 k122 5.00e-03 

k18 5.00e-04 k53 5.00e-05 k88 1.00e+00 k123 1.00e-02 

k19 5.00e-03 k54 1.00e-02 k89 1.00e-03 k124 1.00e-02 

k20 5.00e-04 k55 5.00e-08 k90 5.00e-04 k125 5.00e-03 

k21 5.00e-05 k56 5.00e-05 k91 2.00e-02 k126 5.00e-03 

k22 6.00e-03 k57 5.00e-03 k92 5.00e-03 k127 5.00e-03 

k23 1.75e-03 k58 5.00e-05 k93 1.25e-03 k128 1.00e-03 

k24 2.25e-02 k59 5.00e-04 k94 2.50e-04 k129 3.00e-01 

k25 1.75e-04 k60 1.00e-04 k95 5.00e-02 k130 3.00e-06 

k26 2.25e-02 k61 7.00e-02 k96 1.00e-04 k131 1.00e-02 

k27 1.75e-04 k62 1.00e-03 k97 5.00e-03 k132 5.00e-05 

k28 9.00e-04 k63 9.40e-04 k98 5.00e-03 k133 5.00e-04 

k29 5.00e-05 k64 2.00e-02 k99 2.00e-04 k134 1.00e-02 

k30 2.50e-03 k65 9.50e+00 k100 1.00e-01 k135 5.00e-03 

k31 1.75e-04 k66 1.00e+01 k101 1.00e+00 k136 5.00e-03 

k32 2.50e-03 k67 5.00e-03 k102 1.00e+00 k137 3.00e-02 

k33 1.75e-04 k68 5.00e-02 k103 2.25e-02 DDS * 

k34 5.00e-08 k69 8.00e-04 k104 1.75e-04   

k35 5.00e-02 k70 6.00e+00 k105 5.00e-02   

 
* The values of DDS were as follows: 0 (no-damage), 0.002 (low-damage), 0.004 (medium-damage), 
0.008 (high-damage), and 0.016 (excess-damage). 
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A.3 Mass balance equations of the ODE mathematical model (Iwamoto et 
al., 2011) 

Table A.3 Mass balance equations of ODE mathematical model  
dY1/dt = k1 + k4Y6 − (k2 + k3Y4)Y1 

dY2/dt = k5Y22 + k8Y7 − (k6 + k7Y5)Y2 

dY3/dt = k9Y41 + k130Y22 + k12Y9 + k75Y32 − (k10 + k11Y5 + k126Y49 + k127Y51)Y3 

dY4/dt = k4Y6 + k13Y6 − k3Y1Y4 

dY5/dt = k8Y7 + k12Y9 + k14Y10(Y49 + Y51) + k15Y9(Y49 + Y51) + k16Y7 + k17Y8Y8 − (k7Y2 + 

k11Y3)Y5 

dY6/dt = k3Y1Y4 + k19Y16 + k21Y12 − (k4 + k13 + k18Y15 + k20Y11 + k44Y19)Y6 

dY7/dt = k7Y2Y5 + k23Y8 − (k8 + k22Y29 + k16)Y7 

dY8/dt = k22Y7Y29 + k25Y13 + k27Y17 − (k23 + k24Y11 + k26Y15 + k17Y8)Y8 

dY9/dt = k11Y3Y5 + k29Y10 − (k12 + k28Y29 + k15(Y49 + Y51))Y9 

dY10/dt = k28Y9Y29 + k31Y14 + k33Y18 − (k29 + k30Y11 + k32Y15 + k14(Y49 + Y51))Y10 

dY11/dt = k34 + k21Y12 + k25Y13 + k31Y14 − (k35Y8 + k36Y10 + k20Y6 + k24Y8 + k30Y10)Y11 

dY12/dt = k20Y6Y11 − k21Y12 

dY13/dt = k24Y8Y11 − k25Y13 

dY14/dt = k30Y10Y11 − k31Y14 

dY15/dt = k37 + k38Y25 + k19Y16 + k27Y17 + k33Y18 + k104Y39 − (k39 + k18Y6 + k26Y8 + k32Y10 + 

k103Y53)Y15 

dY16/dt = k18Y6Y15 − k19Y16 

dY17/dt = k26Y8Y15 − k27Y17 

dY18/dt = k32Y10Y15 − k33Y18 

dY19/dt = k40 + k41/(1 + k42Y24) − (k43 + k44Y6)Y19 

dY20/dt = k45Y22Y24 − (k46Y6 + k47Y12 + k48Y16)Y20 

dY21/dt = k46Y6Y20 + k47Y12Y20 + k48Y16Y20 − (k49Y8 + k50Y10)Y21 

dY22/dt = k49Y8Y21 + k50Y10Y21 + k51Y22 + k52 − (k45Y24 + k53 + k54Y10)Y22 

dY23/dt = k49Y8Y21 + k50Y10Y21 − k55Y23 

dY24/dt = k56 + k58/(1 + k59Y19) + k55Y23 − (k57 + k45Y22)Y24 

dY25/dt = k60 + k61Y27 − (deg (t)Y26 + k62)Y25 

dY26/dt = k63 + (k66Im
50)/(k65

50 + Im50) − k64Y26 

dY27/dt = k78sig (t) − k79Y27 

dY28/dt = k80Y22 + k85Y29 − (k81Y31 + k82(Y8 + Y10) + k83)Y28 

dY29/dt = k82(Y8 + Y10)Y28 − (k84Y31 + k85 + k86)Y29 

dY30/dt = k87Y31 − k88Y27Y30 

dY31/dt = k88Y27Y30 − k87Y31 

dY32/dt = k89Y10 − k90Y32 

dY33/dt = k91Y32 + k94Y35 − (k92 + k93Y34 + k128Y49 + k129Y51)Y33 

dY34/dt = k94Y35 + k97Y35(Y49 + Y51) + k98Y36(Y49 + Y51) − k93Y33Y34 

dY35/dt = k93Y33Y34 + k96Y36 − (k94 + k95(Y43 + Y45) + k97(Y49 + Y51))Y35 

dY36/dt = k95(Y43 + Y45)Y35 + k132Y53 − (k96 + k98(Y49 + Y51) + k131Y36)Y36 

dY37/dt = k99 + k101Y38 − k100Y53Y37 

dY38/dt = k100Y53Y37 − (k101 + k102)Y38 

dY39/dt = k103Y53Y15 − k104Y39 

dY40/dt = k105Y22 − k106Y10Y40 

dY41/dt = k106Y10Y40 − k107Y41 

dY42/dt = k108 + k109Y43 − (k110(Y36 + Y53) + k111Y31)Y42 
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dY43/dt = k110(Y36 + Y53)Y42 + k112Y45 − (k109Y43 + k113Y31 + k114)Y43 

dY44/dt = k111Y31Y42 + k115Y45 − (k116(Y36 + Y53) + k120Y46)Y44 

dY45/dt = k113Y31Y43 + k116(Y36 + Y53)Y44 − (k115 + k112)Y45 

dY46/dt = k117 + k118Y25 − (k119 + k120Y44)Y46 

dY47/dt = k120Y44Y46 − k121Y47 

dY48/dt = k122Y49Y51 − k123Y48Y53 

dY49/dt = k123Y48Y53 − k122Y49Y51 

dY50/dt = k124Y51(Y53 + Y10) − k125Y50 

dY51/dt = k125Y50 − k124Y51(Y53 + Y10) 

dY52/dt = k133Y53Y37 − (k134(Y43 + Y45) + k136(Y49 + Y51))Y52 

dY53/dt = k131Y36Y36 + k134(Y43 + Y45)Y52 + k104Y39 − (k132 + k133Y37 + k135Y49 + k137Y51 + 

k103Y15)Y53 

dIm/dt = k70Y25sig(t)/(1 + k71Y25Y26) − k67Im 

sig(t) = DDS×exp(−k72×time) 

deg(t) = k76 − k74×(sig(t) − DDS×exp(−k77×DDS×time)) 
 

Abbreviations are shown in Table A.1. 
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Appendix B 

Initial conditions, kinetic parameters and mass balance equations of 

the ODE mathematical model for the DNA damage signalling 

pathway and G1/S checkpoint used as the basis for the current 

study  

B.1 Initial conditions of the mathematical model used as the basis for the 
current study 

Table B.1 Initial conditions of the mathematical model used as the basis for the current study 
 

Chemical 

species 
Initial value 

Chemical 

species 
Initial value 

Chemical 

species 
Initial value 

Y1 3.00e-02 Y13 1.00e+00 Y25 2.65e-02 

Y2 1.00e-03 Y14 1.00e-04 Y26 2.35e-04 

Y3 4.00e-05 Y15 0 Y27 0 

Y4 5.00e+00 Y16 0 Y28 1.00e-03 

Y5 1.50e+01 Y17 0 Y29 1.00e-04 

Y6 7.50e+00 Y18 0 Y30 9.90e-01 

Y7 1.00e-03 Y19 1.00e-03 Y31 1.00e-02 

Y8 1.00e-03 Y20 1.95e+00 Y32 0 

Y9 4.00e-04 Y21 1.00e-03 Y33 0 

Y10 1.00e-04 Y22 0 Y34 0 

Y11 1.40e+01 Y23 1.00e-02 Im 0 

Y12 1.00e-03 Y24 5.00e-02   

 

Abbreviations are as follows: Y1: CycD, Y2: CycE, Y3: CycA, Y4: Cdk4, Y5: Cdk2, Y6: CycD/Cdk4, Y7: 
CycE/Cdk2, Y8: CycE/Cdk2-P, Y9: CycA/Cdk2, Y10: CycA/Cdk2-P, Y11: p27, Y12: p27/CycD/Cdk4, Y13: 
p27/CycE/Cdk2-P, Y14: p27/CycA/Cdk2-P, Y15: p21, Y16: p21/CycD/Cdk4, Y17: p21/CycE/Cdk2-P, Y18: 
p21/CycA/Cdk2-P, Y19: p16, Y20: Rb/E2F, Y21: Rb-PP/E2F, Y22: E2F, Y23: Rb-PPP, Y24: Rb, Y25: p53, 
Y26: Mdm2, Y27: ATM/ATR, Y28: Cdc25A, Y29: Cdc25A-P, Y30: Chk1, Y31: Chk1-P, Y32: NF-Y, Y33: B-
Myb, Y34: B-Myb-P, Im: Intermediate, DDS: DNA damage signal. 
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B.2 Kinetic parameters of the ODE mathematical model used as the basis for 
the current study 

Table B.2 Kinetic parameters of the ODE mathematical model used as the basis for the current 
study 

 

Kinetic 

parameter 
Value 

Kinetic 

parameter 
Value 

Kinetic 

parameter 
Value 

Kinetic 

parameter 
Value 

k1 5.00e-04 k25 1.75e-04 k49 4.00e-02 k73 2.00e-03 

k2 5.00e-04 k26 2.25e-02 k50 2.50e-03 k74 7.72e-01 

k3 5.00e-03 k27 1.75e-04 k51 5.00e-08 k75 1.00e-05 

k4 2.50e-03 k28 9.00e-04 k52 5.00e-07 k76 5.56e-02 

k5 1.00e-01 k29 5.00e-05 k53 5.00e-05 k77 2.00e-02 

k6 2.50e-03 k30 2.50e-03 k54 1.00e-02 k78 2.00e-01 

k7 2.50e-03 k31 1.75e-04 k55 5.00e-08 k79 1.00e-02 

k8 2.50e-05 k32 2.50e-03 k56 5.00e-05 k80 4.00e-02 

k9 3.00e-04 k33 1.75e-04 k57 5.00e-03 k81 1.00e-03 

k10 5.00e-04 k34 5.00e-08 k58 5.00e-05 k82 5.00e-02 

k11 5.00e-04 k35 5.00e-02 k59 5.00e-04 k83 5.00e-03 

k12 2.00e-04 k36 1.50e-03 k60 1.00e-04 k84 1.00e-03 

k13 5.00e-04 k37 5.00e-05 k61 7.00e-02 k85 5.00e-03 

k14 7.50e-03 k38 1.00e-03 k62 1.00e-03 k86 5.00e-04 

k15 5.00e-03 k39 5.00e-03 k63 9.40e-04 k87 1.00e+00 

k16 5.00e-03 k40 2.00e-03 k64 2.00e-02 k88 1.00e+00 

k17 5.00e-02 k41 5.00e-05 k65 9.50e+00 k89 1.00e-03 

k18 5.00e-04 k42 1.00e-04 k66 1.00e+01 k90 5.00e-04 

k19 5.00e-03 k43 5.00e-04 k67 5.00e-03 k91 5.00e-03 

k20 5.00e-04 k44 5.00e-04 k68 5.00e-02 k92 3.00e-06 

k21 5.00e-05 k45 5.00e-05 k69 5.00e-02 DDS * 

k22 6.00e-03 k46 2.50e-03 k70 6.00e+00   

k23 1.75e-03 k47 2.50e-03 k71 4.00e-03   

k24 2.25e-02 k48 2.50e-03 k72 1.00e-08   

 

* The values of DDS were as follows: 0 (no-damage), 0.002 (low-damage), 0.004 (medium-damage), 
0.008 (high-damage), and 0.016 (excess-damage). 
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B.3 Biochemical meaning of the kinetic parameters of the G1/S base model 

Table B.3 Biochemical meaning of the kinetic parameters of the G1/S base model 

Parameter Biochemical Meaning  

K1 Synthesis rate of CycD  

K2 Degradation rate of CycD  

K3 Association rate of CycD/CDK4 

K4 Dissociation rate of CycD/CDK4  

K5 Synthesis rate of CycE through E2F 

K6 Degradation rate of CycE  

K7 Association rate of CycE/CDK2  

K8 Dissociation rate of CycE/CDK2  

K9 Synthesis rate of CycA through B-Myb-P 

K10 Degradation rate of CycA  

K11 Association rate of CycA/CDK2  

K12 Dissociation rate of CycA/CDK2  

K13 Rate of CDK4 production through CycD/CDK4 

K14 Rate of CDK2 production through CycA/CDK2-P 

K15 Rate of CDK2 production through CycA/CDK2 

K16 Rate of CDK2 production through CycE/CDK2 

K17 Rate of CDK2 production through CycE/CDK2-P 

K18 Association rate of p21/CycD/CDK4 

K19 Disassociation rate of p21/CycD/CDK4 

K20 Association rate of p27/CycD/CDK4  

K21 Disassociation rate of p27/CycD/CDK4 

K22 Phosphorylation rate of CycE/CDK2 to form CycE/CDK2-P 

K23 De-phosphorylation rate of CycE/CDK2-P to form CycE/CDK2 

K24 Association rate of p27/CycE/CDK2-P  

K25 Disassociation rate of p27/CycE/CDK2-P  

K26 Association rate of p21/CycE/CDK2-P  

K27 Disassociation rate of p21/CycE/CDK2-P  

K28 Phosphorylation rate of CycA/CDK2 to form CycA/CDK2-P 

K29 De-phosphorylation rate of CycA/CDK2-P to form CycA/CDK2 

K30 Association rate of p27/CycA/CDK2-P  

K31 Disassociation rate of p27/CycA/CDK2-P  

K32 Association rate of p21/CycA/CDK2-P  

K33 Disassociation rate of p21/CycA/CDK2-P  

K34 Synthesis rate of p27  

K35 Association rate of p27/CycE/CDK2-P 

K36 Association rate of p27/CycA/CDK2-P 

K37 Synthesis rate of p21  

K38 Rate of synthesis of p21 through p53 

K39 Degradation rate of p21 

K40 Synthesis rate of p16 

K41 Constant as influx or precursor 

K42 Rate of inhibition of synthesis p16 by Rb 

K43 Degradation rate of p16 
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K44 Degradation rate of p16 by CycD/CDK4 

K45 Association rate of Rb/E2F 

K46 Phosphorylation rate of Rb/E2F to form Rb-PP/E2F through CycD/CDK4 

K47 Phosphorylation rate of Rb/E2F to form Rb- PP/E2F through p27/CycD/CDK4 

K48 Phosphorylation rate of Rb/E2F to form Rb-PP/E2F through p21/CycD/CDK4 

K49 Rate of activation of E2F by CycE/CDK2-P 

K50 Rate of activation of E2F by CycA/CDK2-P 

K51 Rate of synthesis of E2F promoted by itself 

K52 Synthesis rate of E2F 

K53 Degradation rate of E2F 

K54 Rate of E2F degradation by CycA/CDK2-P 

K55 De-phosphorylation rate of Rb-PPP to Rb 

K56 Synthesis rate of Rb 

K57 Degradation rate of Rb 

K58 Constant as influxes or precursor 

K59 Rate of inhibition of synthesis Rb by p16 

K60 Synthesis rate of p53 

K61 Rate of synthesis of p53 through ATM/ATR 

K62 Degradation rate of p53 

K63 Synthesis rate of Mdm2 

K64 Degradation rate of Mdm2 

K65 Dissociation constant in the Hill function 

K66 Rate of synthesis of Mdm2 through Im 

K67 Degradation rate of Im 

K68 Synthesis rate of B-Myb through E2F 

K69 Phosphorylation rate of B-Myb to form B-Myb-P through CycA/Cdk2-P 

K70 Rate of p53’s sequence-specific DNA binding activity by DNA-damage signal 

K71 Association rate of p53 and Mdm2 

K72 Rate of DNA-damage repair 

K73 Degradation rate of B-Myb-P 

K74 Rate of inhibition of degradation of p53 and/or Mdm2 by DNA-damage signal 

K75 Synthesis rate of CycA through NF-Y 

K76 Strength rate of Mdm2’s ability to promote p53 degradation 

K77 Rate of inhibition of Mdm2-mediated p53 degradation under the initial damage signal 

K78 Rate of synthesis of ATM/ATR through DNA-damage signal 

K79 Degradation rate of ATM/ATR  

K80 Rate of Cdc25A production through E2F 

K81 Degradation rate of Cdc25A through Chk1-P 

K82 

Phosphorylation rate of Cdc25A to form Cdc25A-P through CycA/Cdk2-P and 

CycA/Cdk2-P 

K83 Degradation rate of Cdc25A  

K84 Degradation rate of Cdc25A-P through Chk1-P 

K85 

De-phosphorylation rate of Cdc25A-P to form Cdc25A through CycE/Cdk2to be 

CycE/Cdk2-P 

K86 

De-phosphorylation rate of Cdc25A-P to form Cdc25A through CycA/Cdk2to be 

CycA/Cdk2-P 

K87 De-phosphorylation rate of Chk1-P to form Chk1 
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K88 Phosphorylation rate of Chk1 to form Chk1-P 

K89 Synthesis rate of NF-Y through CycA/Cdk2-P 

K90 Degradation rate of NF-Y 

K91 Degradation rate of CycA 

K92 Synthesis rate of CycA through E2F 
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B.4 Mass balance equations of the ODE mathematical model used as the 
basis for the current study 

 

Table B.4 Mass balance equations of the ODE mathematical model used as the basis for the current 
study 

CycD dY1/dt = k1 + k4Y6 − (k2 + k3Y4)Y1 

CycE dY2/dt = k5Y22 + k8Y7 − (k6 + k7Y5)Y2 

CycA dY3/dt = k9Y34 + k92Y22 + k12Y9 + k75Y32 − (k10 + k11Y5 + k91)Y3 

Cdk4 dY4/dt = k4Y6 + k13Y6 − k3Y1Y4 

Cdk2 dY5/dt = k8Y7 + k12Y9 + k14Y10 + k15Y9 + k16Y7 + k17Y8Y8 − (k7Y2 + k11Y3)Y5 
CycD/Cdk4 dY6/dt = k3Y1Y4 + k19Y16 + k21Y12 − (k4 + k13 + k18Y15 + k20Y11 + k44Y19)Y6 

CycE/Cdk2 dY7/dt = k7Y2Y5 + k23Y8 − (k8 + k22Y29 + k16)Y7 

CycE/Cdk2-P dY8/dt = k22Y7Y29 + k25Y13 + k27Y17 − (k23 + k24Y11 + k26Y15 + k17Y8)Y8 

CycA/Cdk2 dY9/dt = k11Y3Y5 + k29Y10 − (k12 + k28Y29 + k15)Y9 

CycA/Cdk2-P dY10/dt = k28Y9Y29 + k31Y14 + k33Y18 − (k29 + k30Y11 + k32Y15 + k14)Y10 

p27 dY11/dt = k34 + k21Y12 + k25Y13 + k31Y14 − (k35Y8 + k36Y10 + k20Y6 + k24Y8 + k30Y10)Y11 

p27/CycD/Cdk4 dY12/dt = k20Y6Y11 − k21Y12 

p27/CycE/Cdk2-P dY13/dt = k24Y8Y11 − k25Y13 

p27/CycA/Cdk2-P dY14/dt = k30Y10Y11 − k31Y14 

p21  dY15/dt = k37 + k38Y25 + k19Y16 + k27Y17 + k33Y18 − (k39 + k18Y6 + k26Y8 + k32Y10)Y15 

p21/CycD/Cdk4 dY16/dt = k18Y6Y15 − k19Y16 

p21/CycE/Cdk2-P dY17/dt = k26Y8Y15 − k27Y17 

p21/CycA/Cdk2-P dY18/dt = k32Y10Y15 − k33Y18 

p16 dY19/dt = k40 + k41/(1 + k42Y24) − (k43 + k44Y6)Y19 

Rb/E2F dY20/dt = k45Y22Y24 − (k46Y6 + k47Y12 + k48Y16)Y20 

Rb-PP/E2F dY21/dt = k46Y6Y20 + k47Y12Y20 + k48Y16Y20 − (k49Y8 + k50Y10)Y21 

E2F dY22/dt = k49Y8Y21 + k50Y10Y21 + k51Y22 + k52 − (k45Y24 + k53 + k54Y10)Y22 

Rb-PPP dY23/dt = k49Y8Y21 + k50Y10Y21 − k55Y23 

Rb dY24/dt = k56 + k58/(1 + k59Y19) + k55Y23 − (k57 + k45Y22)Y24 

p53 dY25/dt = k60 + k61Y27 − (deg (t)Y26 + k62)Y25 

Mdm2 dY26/dt = k63 + (k66Im
50)/(k65

50 + Im50) − k64Y26 

ATM/ATR dY27/dt = k78sig (t) − k79Y27 

Cdc25A dY28/dt = k80Y22 + k85Y29 − (k81Y31 + k82(Y8 + Y10) + k83)Y28 

Cdc25A-P dY29/dt = k82(Y8 + Y10)Y28 − (k84Y31 + k85 + k86)Y29 

Chk1 dY30/dt = k87Y31 − k88Y27Y30 

Chk1-P dY31/dt = k88Y27Y30 − k87Y31 

NF-Y dY32/dt = k89Y10 − k90Y32 

B-Myb dY33/dt = k68Y22 – k69Y10Y33 

B-Myb-P dY34/dt = k69Y10Y33 – k73Y34 

Im dIm/dt = k70Y25sig(t)/(1 + k71Y25Y26) − k67Im 
Sig sig(t) = DDS × exp(−k72×time) 

Deg deg(t) = k76 − k74×(sig(t) – DDS × exp(−k77×DDS×time)) 
 

Abbreviations are shown in Table B.1. 
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Appendix C 

Initial conditions, lump nodes, partial elements, kinetic parameters 

and mass balance equations of the reduced model (level-1)  

C.1 Initial conditions of the reduced model (level-1) 

Table C.1 Initial conditions of the reduced model (level-1) 
 

Chemical 

species 
Initial value 

Chemical 

species 
Initial value 

Chemical 

species 
Initial value 

F1 7.53E+00 Y14 1.00e-04 Y25 2.65e-02 

F2 2.00E-03 Y15 0 Y26 2.35e-04 

F3 4.40E-04 Y16 0 Y27 0 

Y4 5.00e+00 Y17 0 F5 1.10E-03 

Y5 1.50e+01 Y18 0 F6 1.00E+00 

Y8 1.00e-03 Y19 1.00e-03 Y32 0 

Y10 1.00e-04 Y20 1.95e+00 F7 0 

Y11 1.40e+01 Y21 1.00e-03 Im 0 

Y12 1.00e-03 Y22 0   

Y13 1.00e+00 F4 6.00E-02   

 

Abbreviations are as follows: F1: (CycD, CycD/Cdk4),  F2: (CycE, CycE/Cdk2), F3: (CycA, CycA/Cdk2), Y4: 
Cdk4, Y5: Cdk2, Y8: CycE/Cdk2-P, Y10: CycA/Cdk2-P, Y11: p27, Y12: p27/CycD/Cdk4, Y13: 
p27/CycE/Cdk2-P, Y14: p27/CycA/Cdk2-P, Y15: p21, Y16: p21/CycD/Cdk4, Y17: p21/CycE/Cdk2-P, Y18: 
p21/CycA/Cdk2-P, Y19: p16, Y20: Rb/E2F, Y21: Rb-PP/E2F, Y22: E2F, F4: (Rb-PPP, Rb), Y25: p53, Y26: 
Mdm2, Y27: ATM/ATR, F5: (Cdc25A, Cdc25A-P), F6: (Chk1, Chk1-P), Y32: NF-Y, F7: (B-Myb, B-Myb-P), 
Im: Intermediate, DDS: DNA damage signal. 

 

C.2 Lump node composition of the reduced model (level-1) 

Table C.2 Lump composition of the reduced model (level-1) 
 

Lump node Value 

F1 = Y1 + Y6 

F2 = Y2 + Y7 

F3 = Y3 + Y9 

F4 = Y23 + Y24 

F5 = Y28 +Y29       

F6 = Y30 + Y31                            

F7 = Y33 + Y34                            
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C.3 Initial conditions of the reduced model (level-1) for partial elements  

Table C.3 Initial conditions of the lumped nodes in the reduced model (level-1) 
 

Chemical 

species 
Initial value 

Chemical 

species 
Initial value 

Chemical 

species 
Initial value 

Y1p 3.98E-03 Y9p 9.09E-01 Y30p 9.90E-01 

Y6p 9.96E-01 Y23p 1.67E-01 Y31p 1.00E-02 

Y2p 5.00E-01 Y24p 8.33E-01 Y33p 0.00E+00 

Y7p 5.00E-01 Y28p 9.09E-01 Y34p 0.00E+00 

Y3p 9.09E-02 Y29p 9.09E-02   

 
 

C.4 Kinetic parameters of the reduced model (level-1) 

Table C.4 Kinetic parameters of the reduced model (level-1) 
 

Kinetic 

parameter 
Value 

Kinetic 

parameter 
Value 

Kinetic 

parameter 
Value 

Kinetic 

parameter 
Value 

B1 4.59E-04 B23 1.75E-03 B45 1.22E-05 B67 5.00E-03 

B2 4.29E-04 B24 2.25E-02 B46 2.14E-03 B68 5.00E-02 

B3 7.11E-04 B25 1.75E-04 B47 2.50E-03 B69 5.00E-02 

B4 2.14E-03 B26 2.25E-02 B48 2.50E-03 B70 6.00E+00 

B5 1.00E-01 B27 1.75E-04 B49 4.00E-02 B71 4.00E-03 

B6 4.38E-04 B28 5.63E-04 B50 2.50E-03 B72 1.00E-08 

B7 4.38E-04 B29 5.00E-05 B51 5.00E-08 B73 1.00E-04 

B8 2.06E-05 B30 2.50E-03 B52 5.00E-07 B74 7.72E-01 

B9 5.00E-09 B31 1.75E-04 B53 5.00E-05 B75 1.00E-05 

B10 1.71E-03 B32 2.50E-03 B54 1.00E-02 B76 5.56E-02 

B11 1.42E-04 B33 1.75E-04 B55 5.00E-05 B77 2.00E-02 

B12 1.38E-04 B34 5.00E-08 B56 3.00E-06 B78 2.00E-01 

B13 2.70E-03 B35 5.00E-02 B57 6.00E-04 B79 1.00E-02 

B14 7.50E-03 B36 1.50E-03 B58 5.00E-05 B80 4.00E-02 

B15 3.45E-03 B37 5.00E-05 B59 5.00E-04 B81 1.00E-03* 

B16 4.12E-03 B38 1.00E-03 B60 1.00E-04 B82 4.55E-02 

B17 5.00E-02 B39 5.00E-03 B61 7.00E-02 B83 4.60E-03 

B18 4.29E-04 B40 2.00E-03 B62 1.00E-03 B84 5.00E-04 

B19 5.00E-03 B41 5.00E-05 B63 9.40E-04 B85 1.00E-03 

B20 4.29E-04 B42 5.00E-10 B64 2.00E-02 B86 4.53E-05 

B21 5.00E-05 B43 5.00E-04 B65 9.50E+00 DDS ** 

B22 4.48E-04 B44 4.29E-04 B66 1.00E+01   

 
* If DDS <> 0 Then B81= 5.00E-05 else B81= 1.00E-03. 
** The values of DDS were as follows: 0 (no-damage), 0.002 (low-damage), 0.004 (medium-damage), 
0.008 (high-damage), and 0.016 (excess-damage). 
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C.5 Mass balance equations of the reduced model (level-1) 

Table C.5 Mass balance equations of the reduced model (level-1) 
 

Cdk4 dY4/dt = (B4+B2)F1 − B3F1Y4 

Cdk2 dY5/dt = (B8+B16)F2 + (B12+B15)F3 + B14Y10 + B17Y8Y8 − (B7F2 + B11F3)Y5 

F1 dF1/dt = B1 + (B3dY4)F1 + B19Y16 + B21Y12 − (B2 + B18Y15 + B20Y11 + B44Y19)F1 

F2 dF2/dt = B5Y22 + B7F2dY5 + B23Y8 − (B6 + B22F5 + B16)F2 

aCycE/Cdk2 dY8/dt = B22F2F5 + B25Y13 + B27Y17 − (B23 + B24Y11 + B26Y15 + B17Y8)Y8 

F3 dF3/dt = B9F7 + B56Y22 + B11F3dY5 + B75Y32  + B29Y10 − (B10 + B28F5 + B15)F3 

aCycA/Cdk2 dY10/dt = B28F3F5 + B31Y14 + B33Y18 − (B29 + B30Y11 + B32Y15 + B14)Y10 

p27 dY11/dt = B34 + B21Y12 + B25Y13 + B31Y14 − ((B35+B24)Y8 + (B36+B30)Y10 + B20F1)Y11 

p27/CycD/Cdk4 dY12/dt = B20F1Y11 − B21Y12 

p27/CycE/Cdk2-P dY13/dt = B24Y8Y11 − B25Y13 

p27/CycA/Cdk2-P dY14/dt = B30Y10Y11 − B31Y14 

p21  dY15/dt = B37 + B38Y25 + B19Y16 + B27Y17 + B33Y18 − (B39 + B18F1 + B26Y8 + B32Y10)Y15 

p21/CycD/Cdk4 dY16/dt = B18F1Y15 − B19Y16 

p21/CycE/Cdk2-P dY17/dt = B26Y8Y15 − B27Y17 

p21/CycA/Cdk2-P dY18/dt = B32Y10Y15 − B33Y18 

p16 dY19/dt = B40 + B41/(1 + B42F4) − (B43 + B44F1)Y19 

Rb/E2F dY20/dt = B45Y22F4 − (B46F1 + B47Y12 + B48Y16)Y20 

Rb-PP/E2F dY21/dt = B46F1Y20 + B47Y12Y20 + B48Y16Y20 − (B49Y8 +B50Y10)Y21 

E2F dY22/dt = B49Y8Y21 + B50Y10Y21 + B51Y22 + B52 − (B45F4 + B53 + B54Y10)Y22 

F4 dF4/dt = B55 + B49Y8Y21 + B50Y10Y21 + B58/(1 + B59Y19) − (B57 + B45Y22)F4 

p53 dY25/dt = B60 + B61Y27 − (deg (t)Y26 + B62)Y25 

Mdm2 dY26/dt = B63 + (B66Im
50)/(B65

50 + Im50) − B64Y26 

ATM/ATR dY27/dt = B78sig (t) − B79Y27 

F5 dF5/dt = B80Y22 + B82(Y8 + Y10)dF5 − B83  − (B81F6)F5 

F6 dF6/dt = − B13Y27F6 

NF-Y dY32/dt = B85Y10 – B84Y32 

F7 dF7/dt = B68Y22 + B69Y10dF7 – B73F7 

Im dIm/dt = B70Y25sig(t)/(1 + B71Y25Y26) − B67Im 

Sig sig(t) = DDS × exp(−B72×time) 

Deg deg(t) = B76 − B74×(sig(t) – DDS × exp(−B77×DDS×time)) 
 

Abbreviations are shown in Table C.1. 
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Appendix D 

Initial conditions, lump nodes, partial elements, kinetic parameters 

and mass balance equations of the reduced model (level-2)  

D.1 Initial conditions of the reduced model (level-2) 

Table D.1 Initial conditions of the reduced model (level-2) 
 

Chemical 

species 
Initial value 

Chemical 

species 
Initial value 

Chemical 

species 
Initial value 

F8 7.53E+00 Y13 1.00e+00 Y25 2.65e-02 

F2 2.00E-03 Y14 1.00e-04 Y26 2.35e-04 

F3 4.40E-04 Y15 0 Y27 0 

Y4 5.00e+00 Y17 0 F5 1.10E-03 

Y5 1.50e+01 Y18 0 F6 1.00E+00 

Y8 1.00e-03 Y19 1.00e-03 Y32 0 

Y10 1.00e-04 Y20 1.95e+00 F7 0 

Y11 1.40e+01 Y22 0 Im 0 

Y12 1.00e-03 F9 6.10E-02   

 

Abbreviations are as follows: F8: (CycD, CycD/Cdk4, p21/CycD/Cdk4),  F2: (CycE, CycE/Cdk2), F3: (CycA, 
CycA/Cdk2), Y4: Cdk4, Y5: Cdk2, Y8: CycE/Cdk2-P, Y10: CycA/Cdk2-P, Y11: p27, Y12: p27/CycD/Cdk4, 
Y13: p27/CycE/Cdk2-P, Y14: p27/CycA/Cdk2-P, Y15: p21, Y17: p21/CycE/Cdk2-P, Y18: p21/CycA/Cdk2-
P, Y19: p16, Y20: Rb/E2F, Y22: E2F, F9: (Rb-PP/E2F, Rb-PPP, Rb), Y25: p53, Y26: Mdm2, Y27: ATM/ATR, 
F5: (Cdc25A, Cdc25A-P), F6: (Chk1, Chk1-P), Y32: NF-Y, F7: (B-Myb, B-Myb-P), Im: Intermediate, DDS: 
DNA damage signal. 

 

D.2 Lump node composition of the reduced model (level-2) 

Table D.2 Lump node composition of the reduced model (level-2) 
 

Lump node Value 

F8 = Y1 + Y6 + Y16 

F2 = Y2 + Y7 

F3 = Y3 + Y9 

F9 = Y21 +Y23 + Y24 

F5 = Y28 +Y29       

F6 = Y30 + Y31                            

F7 = Y33 + Y34                            
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D.3 Initial conditions of the reduced model (level-2) for partial elements  

Table D.3. Initial conditions of the lumped nodes in the reduced model (level-2) 
 

Chemical 

species 
Initial value 

Chemical 

species 
Initial value 

Chemical 

species 
Initial value 

Y1p 3.98E-03 Y9p 9.09E-01 Y30p 9.90E-01 

Y6p 9.96E-01 Y21p 1.64E-02 Y31p 1.00E-02 

Y16p 0.00E+00 Y23p 1.64E-01 Y33p 0.00E+00 

Y2p 5.00E-01 Y24p 8.20E-01 Y34p 0.00E+00 

Y7p 5.00E-01 Y28p 9.09E-01   

Y3p 9.09E-02 Y29p 9.09E-02   

 
 

D.4 Kinetic parameters of the reduced model (level-2) 

Table D.4. Kinetic parameters of the reduced model (level-2) 
 

Kinetic 

parameter 
Value 

Kinetic 

parameter 
Value 

Kinetic 

parameter 
Value 

Kinetic 

parameter 
Value 

C1 4.59E-04 C22 4.48E-04 C43 5.00E-04 C64 2.00E-02 

C2 4.29E-04 C23 1.75E-03 C44 4.29E-04 C65 9.50E+00 

C3 7.11E-04 C24 2.25E-02 C45 1.58E-06 C66 1.00E+01 

C4 2.14E-03 C25 1.75E-04 C46 2.14E-03 C67 5.00E-03 

C5 1.00E-01 C26 2.25E-02 C47 2.50E-03 C68 5.00E-02 

C6 4.38E-04 C27 1.75E-04 C48 1.00E-03 C69 5.00E-02 

C7 4.38E-04 C28 8.44E-04 C49 3.48E-02 C70 6.00E+00 

C8 2.06E-05 C29 5.00E-05 C50 2.18E-03 C71 4.00E-03 

C9 5.00E-09 C30 2.50E-03 C51 5.00E-08 C72 1.00E-08 

C10 1.71E-03 C31 1.75E-04 C52 5.00E-07 C73 1.00E-04 

C11 1.42E-04 C32 2.50E-03 C53 5.00E-05 C74 7.72E-01 

C12 1.38E-04 C33 1.75E-04 C54 1.00E-02 C75 1.00E-05 

C13 2.70E-03 C34 5.00E-08 C55 5.00E-05 C76 5.56E-02 

C14 7.50E-03 C35 5.00E-02 C56 3.00E-06 C77 2.00E-02 

C15 3.45E-03 C36 1.50E-03 C57 7.80E-05 C78 2.00E-01 

C16 4.12E-03 C37 5.00E-05 C58 5.00E-05 C79 1.00E-02 

C17 5.00E-02 C38 1.00E-03 C59 5.00E-04 C80 4.00E-02 

C18 4.29E-04 C39 5.00E-03 C60 1.00E-04 C81 1.00E-03* 

C19 5.00E-04 C40 2.00E-03 C61 7.00E-02 C82 4.55E-02 

C20 4.29E-04 C41 5.00E-05 C62 1.00E-03 C83 4.60E-03 

C21 5.00E-05 C42 6.47E-11 C63 9.40E-04 DDS ** 

 
* If DDS <> 0 Then C81= 5.00E-05 else C81= 1.00E-03. 
** The values of DDS were as follows: 0 (No-damage), 0.002 (Low-damage), 0.004 (Medium-
damage), 0.008 (High-damage), and 0.016 (Excess-damage). 
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D.5 Mass balance equations of the reduced model (level-2) 

Table D.5. Mass balance equations of the reduced model (level-2) 
 

Cdk4 dY4/dt = (C4+C2)F8− C3F8Y4 

Cdk2 dY5/dt = (C8+C16)F2 + (C12+C15)F3 + C14Y10 + C17Y8Y8 − (C7F2 + C11F3)Y5 

F8 dF8/dt = C1 + (C3dY4)F8 + C21Y12 − (C2 + C18dY15 + C20Y11 + C44Y19)F8 

F2 dF2/dt = C5Y22 + C7F2dY5 + C23Y8 − (C6 + C22F5 + C16)F2 

aCycE/Cdk2 dY8/dt = C22F2F5 + C25Y13 + C27Y17 − (C23 + C24Y11 + C26Y15 + C17Y8)Y8 

F3 dF3/dt = C9F7 + C56Y22 + C11F3dY5 + C75Y32  + C29Y10 − (C10 + C28F5 + C15)F3 

aCycA/Cdk2 dY10/dt = C28F3F5 + C31Y14 + C33Y18 − (C29 + C30Y11 + C32Y15 + C14)Y10 

p27 dY11/dt = C34 + C21Y12 + C25Y13 + C31Y14 − ((C35+C24)Y8 + (C36+C30)Y10 + C20F8)Y11 

p27/CycD/Cdk4 dY12/dt = C20F8Y11 − C21Y12 

p27/CycE/Cdk2-P dY13/dt = C24Y8Y11 − C25Y13 

p27/CycA/Cdk2-P dY14/dt = C30Y10Y11 − C31Y14 

p21  dY15/dt =C37 + C38Y25 + C27Y17 + C33Y18 − (C39 + C18F8 + C26Y8 + C32Y10)Y15 

p21/CycE/Cdk2-P dY17/dt = C26Y8Y15 − C27Y17 

p21/CycA/Cdk2-P dY18/dt = C32Y10Y15 − C33Y18 

p16 dY19/dt = C40 + C41/(1 + C42F9) − (C43 + C44F8)Y19 

Rb/E2F dY20/dt = C45Y22F9 − (C46F8 + C47Y12)Y20 

E2F dY22/dt = C49Y8F9 + C50Y10F9 + C51Y22 + C52 − (C45F9 + C53 + C54Y10)Y22 

F9 dF9/dt = C55 + C46F8Y20 + C47Y12Y20 + C58/(1 + C59Y19) − (C57 + C45Y22 + C49dY8 

+C50dY10)F9 

p53 dY25/dt = C60 + C61Y27 − (deg (t)Y26 + C62)Y25 

Mdm2 dY26/dt = C63 + (C66Im
50)/(C65

50 + Im50) − C64Y26 

ATM/ATR dY27/dt = C78sig (t) − C79Y27 

F5 dF5/dt = C80Y22 + C82(Y8 + Y10)dF5 − C83  − (C81F6)F5 

F6 dF6/dt = − C13Y27F6 

NF-Y dY32/dt = C48Y10 – C19Y32 

F7 dF7/dt = C68Y22 + C69Y10dF7 – C73F7 

Im dIm/dt = C70Y25sig(t)/(1 + C71Y25Y26) − C67Im 

Sig sig(t) = DDS × exp(−C72×time) 

Deg deg(t) = C76 − C74×(sig(t) – DDS × exp(−C77×DDS×time)) 
 

Abbreviations are shown in Table D.1. 
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Appendix E 

Initial conditions, lump nodes, partial elements, kinetic parameters 

and mass balance equations of the reduced model (level-3)  

E.1 Initial conditions of the reduced model (level-3) 

Table E.1 Initial conditions of the reduced model (level-3) 
 

Chemical 

species 
Initial value 

Chemical 

species 
Initial value 

Chemical 

species 
Initial value 

F8 7.53E+00 Y12 1.00e-03 Y25 2.65e-02 

F2 2.00E-03 Y13 1.00e+00 Y26 2.35e-04 

F10 5.40E-04 Y15 0 Y27 0 

Y4 5.00e+00 Y17 0 F5 1.10E-03 

Y5 1.50e+01 Y19 1.00e-03 F6 1.00E+00 

Y8 1.00e-03 Y20 1.95e+00 Y32 0 

Y10 1.00e-04 Y22 0 F7 0 

Y11 1.40e+01 F9 6.10E-02 Im 0 

 

Abbreviations are as follows: F8: (CycD, CycD/Cdk4, p21/CycD/Cdk4),  F2: (CycE, CycE/Cdk2), F10: 
(CycA, CycA/Cdk2, p27/CycA/Cdk2-P, p21/CycA/Cdk2-P), Y4: Cdk4, Y5: Cdk2, Y8: CycE/Cdk2-P, Y10: 
CycA/Cdk2-P, Y11: p27, Y12: p27/CycD/Cdk4, Y13: p27/CycE/Cdk2-P, Y15: p21, Y17: p21/CycE/Cdk2-P, 
Y19: p16, Y20: Rb/E2F, Y22: E2F, F9: (Rb-PP/E2F, Rb-PPP, Rb), Y25: p53, Y26: Mdm2, Y27: ATM/ATR, 
F5: (Cdc25A, Cdc25A-P), F6: (Chk1, Chk1-P), Y32: NF-Y, F7: (B-Myb, B-Myb-P), Im: Intermediate, DDS: 
DNA damage signal. 

 

E.2 Lump node composition of the reduced model (level-3) 

Table E.2 Lump node composition of the reduced model (level-3) 
 

Lump node Value 

F8 = Y1 + Y6 + Y16 

F2 = Y2 + Y7 

F10 = Y3 + Y9 + Y14 + Y18 

F9 = Y21 +Y23 + Y24 

F5 = Y28 +Y29       

F6 = Y30 + Y31                            

F7 = Y33 + Y34                            
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E.3 Initial conditions of the lumped nodes in the reduced model (level-3) 

Table E.3 Initial conditions of the lumped nodes in the reduced model (level-3) 
 

Chemical 

species 
Initial value 

Chemical 

species 
Initial value 

Chemical 

species 
Initial value 

Y1p 3.98E-03 Y9p 7.41E-01 Y28p 9.09E-01 

Y6p 9.96E-01 Y14p 1.85E-01 Y29p 9.09E-02 

Y16p 0.00E+00 Y18p 0.00E+00 Y30p 9.90E-01 

Y2p 5.00E-01 Y21p 1.64E-02 Y31p 1.00E-02 

Y7p 5.00E-01 Y23p 1.64E-01 Y33p 0.00E+00 

Y3p 7.41E-02 Y24p 8.20E-01 Y34p 0.00E+00 

 
 

E.4 Kinetic parameters of the reduced model (level-3) 

Table E.4 Kinetic parameters of the reduced model (level-3) 
 

Kinetic 

parameter 
Value 

Kinetic 

parameter 
Value 

Kinetic 

parameter 
Value 

Kinetic 

parameter 
Value 

D1 4.59E-04 D22 4.48E-04 D43 5.00E-04 D64 2.00E-02 

D2 4.29E-04 D23 1.75E-03 D44 4.29E-04 D65 9.50E+00 

D3 7.11E-04 D24 2.25E-02 D45 1.58E-06 D66 1.00E+01 

D4 2.14E-03 D25 1.75E-04 D46 2.14E-03 D67 5.00E-03 

D5 1.00E-01 D26 2.25E-02 D47 2.50E-03 D68 5.00E-02 

D6 4.38E-04 D27 1.75E-04 D48 1.00E-03 D69 5.00E-02 

D7 4.38E-04 D28 5.63E-05 D49 3.48E-02 D70 6.00E+00 

D8 2.06E-05 D29 5.00E-05 D50 2.18E-03 D71 4.00E-03 

D9 5.00E-09 D30 2.50E-03 D51 5.00E-08 D72 1.00E-08 

D10 1.71E-03 D31 2.00E-04 D52 5.00E-07 D73 1.00E-04 

D11 1.42E-04 D32 2.50E-03 D53 5.00E-05 D74 7.72E-01 

D12 1.38E-04 D33 4.60E-03 D54 1.00E-02 D75 1.00E-05 

D13 2.70E-03 D34 5.00E-08 D55 5.00E-05 D76 5.56E-02 

D14 7.50E-03 D35 5.00E-02 D56 3.00E-06 D77 2.00E-02 

D15 3.45E-03 D36 1.50E-03 D57 7.80E-05 D78 2.00E-01 

D16 4.12E-03 D37 5.00E-05 D58 5.00E-05 D79 1.00E-02 

D17 5.00E-02 D38 1.00E-03 D59 5.00E-04 D80 4.00E-02 

D18 4.29E-04 D39 5.00E-03 D60 1.00E-04 D81 1.00E-03 

D19 5.00E-04 D40 2.00E-03 D61 7.00E-02 D82 4.55E-02 

D20 4.29E-04 D41 5.00E-05 D62 1.00E-03 DDS ** 

D21 5.00E-05 D42 6.47E-11 D63 9.40E-04   

 
* If DDS <> 0 Then D81= 5.00E-05 else D81= 1.00E-03. 
** The values of DDS were as follows: 0 (no-damage), 0.002 (low-damage), 0.004 (medium-damage), 
0.008 (high-damage), and 0.016 (excess-damage). 
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E.5 Mass balance equations of the reduced model (level-3) 

Table E.5 Mass balance equations of the reduced model (level-3) 
 

Cdk4 dY4/dt = (D4+D2)F8 − D3F8Y4 

Cdk2 dY5/dt = (D8+D16)F2 + (D12+D15)F10 + D14Y10 + D17Y8Y8 − (D7F2 + D11F10)Y5 

F8 dF8/dt = D1 + (D3dY4)F8 + D21Y12 − (D2 + D18dY15 + D20Y11 + D44Y19)F8 

F2 dF2/dt = D5Y22 + D7F2dY5 + D23Y8 − (D6 + D22F5 + D16)F2 

aCycE/Cdk2 dY8/dt = D22F2F5 + D25Y13 + D27Y17 − (D23 + D24Y11 + D26Y15 + D17Y8)Y8 

F10 dF10/dt = D9F7 + D56Y22 + D11F10dY5 + D75Y32  + D29Y10 + D30Y10Y11 + D32Y10Y15 − (D10 

+ D28F5 + D15 + D31)F10 

aCycA/Cdk2 dY10/dt = D28F10F5 + D31F10 − (D29 + D30Y11 + D32Y15 + D14)Y10 

p27 dY11/dt = D34 + D21Y12 + D25Y13 + D31F10 − ((D35+D24)Y8 + (D36 +D30)Y10 + D20F8)Y11 

p27/CycD/Cdk4 dY12/dt = D20F8Y11 − D21Y12 

p27/CycE/Cdk2-P dY13/dt = D24Y8Y11 − D25Y13 

p21  dY15/dt = D37 + D38Y25 + D27Y17 + D31F10 − (D39 + D18F8 + D26Y8 + D32Y10)Y15 

p21/CycE/Cdk2-P dY17/dt = D26Y8Y15 − D27Y17 

p16 dY19/dt = D40 + D41/(1 + D42F9) − (D43 + D44F8)Y19 

Rb/E2F dY20/dt = D45Y22F9 − (D46F8 + D47Y12)Y20 

E2F dY22/dt = D49Y8F9 + D50Y10F9 + D51Y22 + D52 − (D45F9 + D53 + D54Y10)Y22 

F9 dF9/dt = D55 + D46F8Y20 + D47Y12Y20 + D58/(1 + D59Y19) − (D57 + D45Y22 + D49dY8 + 

D50dY10)F9 

p53 dY25/dt = D60 + D61Y27 − (deg (t)Y26 + D62)Y25 

Mdm2 dY26/dt = D63 + (D66Im
50)/(D65

50 + Im50) − D64Y26 

ATM/ATR dY27/dt = D78sig (t) − D79Y27 

F5 dF5/dt = D80Y22 + D82(Y8 + Y10)dF5 – D33  − (D81F6)F5 

F6 dF6/dt = − D13Y27F6 

NF-Y dY32/dt = D48Y10 – D19Y32 

F7 dF7/dt = D68Y22 + D69Y10dF7 – D73F7 

Im dIm/dt = D70Y25sig(t)/(1 + D71Y25Y26) − D67Im 

Sig sig(t) = DDS × exp(−D72×time) 

Deg deg(t) = D76 − D74×(sig(t) – DDS × exp(−D77×DDS×time)) 
 

Abbreviations are shown in Table E.1. 
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Appendix F 

All time courses of the reduced model (level-1) elements 

F.1 All time courses of the reduced model (level-1) elements without DNA 
damage vs the base model  
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F.2 All time courses of the reduced model (level-1) elements with different 
levels of DNA damage 
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Appendix G 

All time courses of the reduced model (level-2) elements 

G.1 All time courses of the reduced model (level-2) elements without DNA 
damage vs the base model  
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G.2 All time courses of the reduced model (level-2) elements with different 
levels of DNA damage 
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Appendix H 

All time courses of the reduced model (level-3) elements 

H.1 All time courses of the reduced model (level-3) elements without DNA 
damage vs the base model  
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H.2 All time courses of the reduced model (level-3) elements with different 
levels of DNA damage 
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Appendix I 

ODEs, initial conditions and logical equations of the reduced model 

(R1) (used for time slicing and logical modelling) 

I.1 ODEs of the reduced model (R1) 

Table I.1 ODEs of the reduced model (R1) 
 

1 CycD dY1/dt = k1 + k4Y6 − (k2 + k3Y4)Y1 

2 Cdk4 dY4/dt = k4Y6 + k13Y6 − k3Y1Y4 

3 CycD/Cdk4 dY6/dt = k3Y1Y4 + k19Y16 + k21Y12 − (k4 + k13 + k18Y15 + k20Y11 + k44Y19)Y6 

4 p27 dY11/dt = k34 + k21Y12 − (k20Y6)Y11 

5 p27/CycD/Cdk4 dY12/dt = k20Y6Y11 − k21Y12 

6 p21  dY15/dt = k37 + k38Y25 + k19Y16 − (k39 + k18Y6)Y15 

7 p21/CycD/Cdk4 dY16/dt = k18Y6Y15 − k19Y16 

8 p16 dY19/dt = k40 + k41/(1 + k42Y24) − (k43 + k44Y6)Y19 

9 Rb/E2F dY20/dt = − (k46Y6 + k47Y12 + k48Y16)Y20 

10 Rb-PP/E2F dY21/dt = k46Y6Y20 + k47Y12Y20 + k48Y16Y20  
11 Rb dY24/dt = k56 + k58/(1 + k59Y19) − (k57)Y24 

12 p53 dY25/dt = k60 + k61Y27 − (deg (t)Y26 + k62)Y25 

13 Mdm2 dY26/dt = k63 + (k66Im
50)/(k65

50 + Im50) − k64Y26 

14 ATM/ATR dY27/dt = k78sig (t) − k79Y27 

15 Im dIm/dt = k70Y25sig(t)/(1 + k71Y25Y26) − k67Im 

16 Sig sig(t) = DDS × exp(−k72×time) 

17 Deg deg(t) = k76 − k74×(sig(t) – DDS × exp(−k77×DDS×time)) 

 
Abbreviations are as follows: Y1: CycD, Y4: Cdk4, Y6: CycD/Cdk4, Y11: p27, Y12: p27/CycD/Cdk4, Y15: 
p21, Y16: p21/CycD/Cdk4, Y19: p16, Y20: Rb/E2F, Y21: Rb-PP/E2F, Y24: Rb, Y25: p53, Y26: Mdm2, Y27: 
ATM/ATR, Im: Intermediate, DDS: DNA damage signal. 
 

I.2 Initial conditions of the reduced model (R1) 

Table I.2 Initial conditions of the reduced model (R1) 
 

No Chemical species Initial value No Chemical species Initial value 

1 CycD 0 8 p16 0 

2 Cdk4 1 9 Rb/E2F 1 

3 CycD/Cdk4 0 10 Rb-PP/E2F 0 

4 p27 1 11 Rb 1 

5 p27/CycD/Cdk4 0 12 p53 0 

6 p21 0 13 Mdm2 0 

7 p21/CycD/Cdk4 0 14 ATM/ATR 0 
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I.3 Logical equations of the reduced model (R1) 

Table I.3 Logical equations of the reduced model (R1) 
 

1 CycD = GFs And Not (CycD And Cdk4) 

2 Cdk4 = Cdk4 And Not (CycD And Cdk4) 

3 CycD/Cdk4 = (CycD/Cdk4 Or (CycD And Cdk4)) And Not p16 

4 p27 = p27 

5 p27/CycD/Cdk4 = (p27 And CycD/Cdk4) Or p27/CycD/Cdk4 

6 p21 = p53  

7 p21/CycD/Cdk4 = (p21 And Cyc/DCdk4) Or p21/CycD/Cdk4 

8 p16 = p16 Or (Rb And CycD/Cdk4) 

9 Rb/E2F = Not (CycD/Cdk4 Or p27/CycD/Cdk4 Or p21/CycD/Cdk4) 

10 Rb-PP/E2F = Rb-PP/E2F Or (CycD/Cdk4 And Rb/E2F) 

11 Rb = Not p16 

12 p53 = ATM/ATR And Not Mdm2 

13 Mdm2 = p53 And Not Mdm2 

14 ATM/ATR = Sig 

 

*** GFs: Growth factors equals 1 at t=1, Sig: DNA damage signal (0 or 1). 
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Appendix J 

ODEs, initial conditions and logical equations of the reduced model 

(R2) (used for time slicing and logical modelling) 

J.1 ODEs of the reduced model (R2) 

Table J.1 ODEs of the reduced model (R2) 
 

1 CycE dY2/dt = k5Y22 + k8Y7 − (k6 + k7Y5)Y2 

2 Cdk2 dY5/dt = k8Y7 + k16Y7 + k17Y8Y8 − (k7Y2)Y5 

3 CycE/Cdk2 dY7/dt = k7Y2Y5 + k23Y8 − (k8 + k16)Y7 

4 CycE/Cdk2-P dY8/dt = k25Y13 + k27Y17 − (k23 + k24Y11 + k26Y15 + k17Y8)Y8 

5 p27 dY11/dt = k34 + k25Y13 − (k35Y8 + k24Y8)Y11 

6 p27/CycE/Cdk2-P dY13/dt = k24Y8Y11 − k25Y13 

7 p21  dY15/dt = k37 + k38Y25 + k27Y17 − (k39 + k26Y8)Y15 

8 p21/CycE/Cdk2-P dY17/dt = k26Y8Y15 − k27Y17 

9 Rb-PP/E2F dY21/dt = − (k49Y8)Y21 

10 E2F dY22/dt = k49Y8Y21 + k51Y22 + k52 − (k45Y24 + k53)Y22 

11 Rb-PPP dY23/dt = k49Y8Y21 − k55Y23 

12 p53 dY25/dt = k60 + k61Y27 − (deg (t)Y26 + k62)Y25 

13 Mdm2 dY26/dt = k63 + (k66Im
50)/(k65

50 + Im50) − k64Y26 

14 ATM/ATR dY27/dt = k78sig (t) − k79Y27 

15 Im dIm/dt = k70Y25sig(t)/(1 + k71Y25Y26) − k67Im 

16 Sig sig(t) = DDS × exp(−k72×time) 

17 Deg deg(t) = k76 − k74×(sig(t) – DDS × exp(−k77×DDS×time)) 

 
Abbreviations are as follows: Y2: CycE, Y5: Cdk2, Y7: CycE/Cdk2, Y8: CycE/Cdk2-P, Y11: p27, Y13: 
p27/CycE/Cdk2-P, Y15: p21, Y17: p21/CycE/Cdk2-P, Y21: Rb-PP/E2F, Y22: E2F, Y23: Rb-PPP, Y25: p53, 
Y26: Mdm2, Y27: ATM/ATR, Im: Intermediate, DDS: DNA damage signal. 
 

J.2 Initial conditions of the reduced model (R2) 

Table J.2 Initial conditions of the reduced model (R2) 
 

No Chemical species Initial value No Chemical species Initial value 

1 CycE 0 8 p21/CycE/Cdk2-P 0 

2 Cdk2 1 9 Rb-PP/E2F 1 

3 CycE/Cdk2 0 10 E2F 0 

4 CycE/Cdk2-P 1 11 Rb-PPP 0 

5 p27 1 12 p53 0 

6 p27/CycE/Cdk2-P 0 13 Mdm2 0 

7 p21 0 14 ATM/ATR 0 

 
*** Initial values of P53, p21, Mdm2 and ATM/ATR are 1 if there is DNA damage. 
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J.3 Logical equations of the reduced model (R2) 

Table J.3 Logical equations of the reduced model (R2) 
 

1 CycE = E2F And Not (CycE And Cdk2) 

2 Cdk2 = Cdk2 And Not (CycE And Cdk2) 

3 CycE/Cdk2 = CycE/Cdk2 Or (CycE And Cdk2) 

4 CycE/Cdk2-P = (p21/CycE/Cdk2-P Or p27/CycE/Cdk2-P Or CycE/Cdk2) 

5 p27 = p27 And Not (p27 And CycE/Cdk2-P) 

6 p27/CycE/Cdk2-P = p27/CycE/Cdk2-P Or (p27 And CycE/Cdk2-P) 

7 p21 = p53 

8 p21/CycE/Cdk2-P = p21/CycE/Cdk2-P Or (p21 And CycE/Cdk2-P) 

9 Rb-PP/E2F = Rb-PP/E2F And CycE/Cdk2-P And p21 

10 E2F = E2F Or Not (Rb-PP/E2F And CycE/Cdk2-P And p21) 

11 Rb-PPP = Rb-PPP Or Not (Rb-PP/E2F And CycE/Cdk2-P And p21) 

12 p53 = ATM/ATR And Not Mdm2 

13 Mdm2 = p53 And Not Mdm2 

14 ATM/ATR = Sig 

 

*** Sig: DNA damage signal (0 or 1). 
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