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Abstract

Cell-fate decisions are governed by the integration of multiple stimuli. Th cell

differentiation is a well-studied example of cell-fate decision: mature Th cells

emerge from the thymus in a naive state and, upon encounter with their cognate

antigen, differentiate into a specialised subtype depending on the polarising

cytokines present in their environment. The most common and first described

Th cell subtypes, Th1 and Th2 cells, differentiate in response to IFN-γ/STAT1

and IL-12/STAT4 (Th1) versus IL-4/STAT6 (Th2) signals, respectively, and start

expressing the master transcription factors T-bet or GATA-3. T-bet in Th1 cells

drives the expression of the effector cytokine IFN-γ that leads to the activation

of macrophages, whereas GATA-3 in Th2 cells controls the expression of IL-4,

IL-13 and IL-5, leading, among other things, to antibody class switching in B

cells. Recent discoveries concerning the plasticity of Th cell subtypes as well as

the existence of stable hybrid phenotypes, specifically T-bet+GATA-3+ hybrid

Th1/2 phenotypes, have put Th cell fate decision under a different light. Those new

findings stimulated the detailed study of the differentiation process under different

assumptions than the hitherto valid paradigm of single master transcription factor

expression deciding between alternative cell fates using complex cytokine signals

as inputs in this work.

Here, we developed a data-based approach for inferring the molecular network

underlying the differentiation of Th1, Th2 and hybrid Th1/2 lymphocytes. We

performed systematic titrations of the polarising cytokines IFN-γ, IL-12 and IL-4 in

all possible combinations during primary differentiation of ex vivo isolated naive

Th cells and, using flow cytometry, quantified signal transduction in the form

of STAT1, STAT4 and STAT6 phosphorylation as well as target-gene expression

(T-bet, GATA-3, STAT1, STAT4 and STAT6 expression). Visual inspection of the

thus generated dataset indicated the presence of a multitude of cytokine-specific

regulatory mechanisms; however, the size and complexity of the dataset made a

systematic analysis necessary to identify those mechanisms. To extract the network

topology, we used linear regression analysis, retrieving known regulatory mechan-

isms and predicting numerous novel ones. The predicted network topology was

verified experimentally and used to develop a mechanistic mathematical model of

cytokine signal integration that reproduces independent data and confirms the

significance of all predicted interactions.

This approach inferred a highly connected regulatory network. Previously un-

described functions of STAT signal transducers mediate network rewiring during

differentiation: self-reinforcing feedback within the Th1 and Th2 regulatory path-

ways, self-limiting feedback within the Th1 pathway, and strong mutual inhibition
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between the two pathways were predicted to be mediated by the phosphorylated

STATs, and selected new interactions were confirmed by experiments using gene-

deficient cells. Importantly, while mutual-inhibition motifs are often considered

canonical digital switches, the inferred Th-cell network acts as a rheostat, gen-

erating a continuum of differentiated states along the Th1-Th2 axis. This work

explains the observed Th1-Th2 cell fate continuum mechanistically and provides a

quantitative framework for the data-based inference of cellular signal integration

networks.



Zusammenfassung

Differenzierungsentscheidungen von Zellen werden durch die Integration meh-

rerer Stimuli bestimmt. Die Differenzierung von Helfer-T-Zellen (Th-Zellen) ist

hierfür ein gut untersuchtes Beispiel: reife Th-Zellen treten in einem naiven Zu-

stand aus dem Thymus aus und entwickeln sich beim Kontakt mit einem für sie

spezifischen Antigen zu einem spezialisierten Subtyp, der von den in ihrer Umge-

bung vorhandenen Zytokinen abhängt. Die häufigsten und zuerst beschriebenen

Th-Zell-Subtypen, Th1- und Th2-Zellen, differenzieren sich in Antwort auf IFN-γ /

STAT1- und IL-12 / STAT4-Signale (Th1) bzw. IL-4 / STAT6-Signale (Th2) und ex-

primieren dann die Mastertranskriptionsfaktoren T-bet bzw. GATA-3. T-bet in Th1-

Zellen treibt die Expression des Effektorzytokins IFN-γ, das zur Aktivierung von

Makrophagen führt, während GATA-3 in Th2-Zellen die Expression der Zytokine

IL-4, IL-13 und IL-5 steuert, die u. a. zum antikörper-Klassenwechsel in B-Zellen

führen. Neuere Entdeckungen bezüglich der Plastizität von Th-Zell-Subtypen

sowie die Existenz von stabilen Hybridphänotypen, insbesondere T-bet+GATA-3+

Hybrid-Th1/2-Phänotypen, haben die Schicksalscharakterisierung von Th-Zellen

in ein anderes Licht gesetzt. Diese neuen Ergebnisse motivierten die detaillierte

Untersuchung vom Differenzierungsprozessen von Th-Zellen in Anwesenheit

komplexer Zytokinsignale in dieser Arbeit.

Dazu haben wir einen Ansatz für die datenbasierte Inferenz der molekula-

ren Netzwerke entwickelt, die der Differenzierung von Th1-, Th2- und hybriden

Th1/2-Lymphozyten zugrunde liegen. Wir haben systematisch die polarisierenden

Zytokine IFN-γ, IL-12 und IL-4 in allen möglichen Kombinationen während der

primären Differenzierung ex vivo isolierter Th-Zellen titriert und mittels Durchflus-

szytometrie Signaltransduktion (STAT1-, STAT4- und STAT6-Phosphorylierung)

und Zielgenexpression (T-bet, GATA-3, STAT1, STAT4 und STAT6) quantifiziert.

Die visuelle Auswertung des erzeugten Datensatzes legte die Existenz einer Viel-

zahl von Zytokin-spezifischen Regulationsmechanismen nahe. Der Umfang und

die Komplexität der Daten machten jedoch eine systematische Analyse notwendig,

um diese Mechanismen genau zu identifizieren. Lineare Regressionsanalyse wurde

verwendet, um die Netzwerktopologie zu extrahieren. Dabei haben wir bekannte

Regulationsmechanismen wiedergefunden sowie zahlreiche neue Interaktionen

vorausgesagt. Die prognostizierte Netzwerktopologie wurde anschließend expe-

rimentell verifiziert und verwendet, um ein mechanistisches, mathematisches

Modell der Zytokinsignalintegration zu entwickeln, das unabhängige Daten re-

produziert und die Relevanz aller vorhergesagten Interaktionen bestätigt.

Diese Methode hat ein hochgradig venetztes regulatorisches Netzwerk infe-

riert. Bisher nicht beschriebene Funktionen von STAT-Signalwandlern vermitteln
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die Neuverkabelung (rewiring) des Netzwerkes während der Differenzierung:

Selbstverstärkende Rückkopplung innerhalb der Th1- und Th2-Regulationswege,

selbstlimitierende Rückkopplung innerhalb des Th1-Signalweges und starke ge-

genseitige Inhibierung zwischen den beiden Signalwegen, die durch die phospho-

rylierten STATs getrieben werden, wurden vorhergesagt, und ausgewählte neue

Interaktionen wurden in gezielten genetischen Experimenten bestätigt. Während

gegenseitige Inhibitionsmotive oft als kanonische digitale Schalter interpretiert

werden, funktioniert das Th-Zell-Netwerk als ein Rheostat, der Variationen der

Zytokinsignale in graduelle Expressionsänderungen der Mastertranskriptions-

faktoren GATA-3 und T-bet übersetzt. Unsere Arbeit erklärt mechanistisch das

beobachtete Kontinuum von Th-Zelldifferenzierungszuständen entlang der Th1-

Th2-Achse und beschreibt eine quantitative Methode für die datenbasierte Inferenz

zellulärer Netzwerke der Signalintegration.
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Chapter 1

Introduction

1.1 The immune system and T helper cells

Organisms are under constant threat of infection by a multitude of pathogens1. All

forms of life possess a defence system against pathogens, called immune system2,

that uses various mechanisms based on the same principle: the recognition and

tolerance of self versus the recognition and attack of non-self. Pathogenic cells,

like bacteria, yeast or helminth cells, can be identified by immune cells through

detection of generic patterns present directly on pathogens, like bacterial lipo-

polysaccharides (LPS) or nucleic acids3,4. Infected or cancer host cells can be

identified by the presence of foreign or modified antigen on the constitutively

expressed major histocompatibility complex (MHC) molecules on their surface;

healthy cells present self-antigen on their MHC molecules that induce tolerance

by the immune system5. Furthermore, some healthy specialised immune cells,

called antigen-presenting cells (APCs) can display foreign antigen on their surface

to signal the presence of a pathogen to other members of the immune system6.

Vertebrates possess a highly diversified immune system that is divided into

two major branches7. The first barrier against pathogens, called the innate immune

system, is strongly conserved amongst species and is a non-specific system that

fights pathogens in a generic way, although different cell types act against different

types of threat to the organism: type 1 immunity is active against most infections

caused by small eukaryotic cells and is characterised by a high phagocytic activity,

while type 2 immunity is active mainly against helminth and characterised by high

antibody titers8. As its name suggests, innate immunity is already present and

functional at birth; it has no memory, which means that its response will be the

same if a pathogen is seen for the first time or has already infected the organism

before. This system is able to control most of the infections directly at the interface

between the organism and its environment through different simple mechanisms.
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The second barrier, adaptive immunity, is present only in vertebrates9 and is

active if the innate immune response fails to contain an infection. The adaptive

immune system fights pathogens in a specific manner: upon encounter with

pathogenic antigen, a massive expansion of adaptive immune cells targeting the

invading pathogen takes place (thus adapting the immune response to the detected

threat). Fighting infection is a time-sensitive process which can be described as

a contest between the pathogen multiplying in the host and the host destroying

the pathogen; thus, a fast immune response is crucial for the survival of the host.

Building an adaptive immune response takes times; However, so-called memory

cells remain after the elimination of an infection by the adaptive immune system.

These memory cells expand the pool of cells reacting to a specific antigen, thus

increasing the efficiency of the adaptive immune response drastically10.

1.1.1 The first line of defence: overview of the innate immune
system

The innate immune system is the dominant immune response in plants and

fungi but is also crucial for higher organisms. In order to fight a broad range

of infections, from viruses to helminths, several mechanisms play a part in the

mammalian innate defence: some are non-cellular, like the complement system,

some, like anatomical barriers, are made by non-immune cells, and some require

specialised cells. As a first line of defence, the innate immune system is responsible

for preventing the entry of pathogens into the organism; failing that, for the

clearing of the invading pathogens, and finally, if necessary, for the activation of

the adaptive immune response. The principal players and functions of the innate

immune system are:

Epithelial cells from the skin and mucosa secrete mucus and toxins that prevent

the entry of pathogens into the body11.

Inflammation aims at establishing a physical barrier around injured cells; those

cells release chemical factors, like histamine, that promote vasodilatation

and attract phagocytes to clear the pathogens12.

The complement system is a protein cascade that leads to the opsonising or cyto-

lysis of pathogens and triggers inflammation13,14; it complements the action

of antibodies.

Professional immune cells all develop from the same hematopoietic progenitor

cell, but differentiate into different cell types that have different roles2:

• Mast cells release inflammatory factors and chemokines to attract other

immune cells15.
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• Phagocytes (macrophages, neutrophils and dendritic cells) engulf patho-

gens and unhealthy host cells and present pathogenic antigens on their

MHC molecules so that other immune cells, specifically T cells, can be

activated16.

• Basophils and eosinophils secrete toxins against parasites and bac-

teria17.

• Natural killer (NK) cells attack unhealthy host cells (recognising the

‘missing self’ condition, for example in cancer or virus-infected cells)18.

1.1.2 A specific response to pathogens: the adaptive immune sys-
tem

Sometimes pathogens expand faster than the innate immune response can control.

When this is the case, a strong and specific immune response against the pathogen

in question is needed; this is provided by the adaptive immune system. Adaptive

immunity has a cellular and a humoral component. The effector immune cells,

called lymphocytes, are divided into two main cell types: B and T cells. T cells

mediate the cellular response, while B cells secrete immunoglobulins (Igs, also

called antibodies) and take part in the humoral response. Both cell types originate

from a common progenitor in the bone marrow that differentiates and matures in

the thymus (for T cells) or in the bone marrow and spleen (for B cells)19.

Both B and T cells recognise antigens through special proteins made of several

chains that vary between clonal populations. T cells bind antigens via a T cell

receptor (TCR) and B cells via a membrane-bound immunoglobulin (Ig) that forms

the B cell receptor (BCR). Those receptors must have a very high affinity for one

antigen to achieve the specificity of the adaptive immune response. This specificity

is achieved by recombinations in the TCR and Ig gene loci; the T and B cells

are mature once those recombination processes are finished20,21. In B cells, the

immunoglobulin gene undergoes further mutations after an antigen encounter,

called somatic hypermutations, which allow B cells to increase the affinity of their

Igs for their cognate antigen at each encounter22. Once the maturation process

is terminated, both T and B cells are considered naive as long as they have not

encountered their cognate antigen, and have to be activated in order to become

fully functional. This happens in a similar fashion for both cell types.

B cell maturation and function

B cells get activated when their BCR binds a free antigen and the cell receives a

co-stimulus at the same time; the antigen is then engulfed, digested and presented

as a peptide on a MHC class-II molecule at the cell surface. The peptide can then be

recognised by T helper cells with the same antigenic specificity, which will secrete
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cytokines allowing the B cell to mature into either an antibody-secreting plasma

cell and to multiply or, for a small subset, into a memory cell23. Memory cells and

long-lived plasma cells can survive for a long time24, and react fast to a secondary

infection thanks to their specific antibody epitope: no maturation process is needed

and the antigen encounter is followed by a quick clonal expansion. Plasma cells

derived from naive progenitors or memory cells secrete immunoglobulins with the

same specificity as their BCR; those Igs act against pathogen in various fashions,

the principal ones being:

Agglutination or precipitation is the process in which immunoglobulins bind

several pathogenic antigens and join pathogenic cells (agglutination) or

antigens (precipitation), thus facilitating their elimination by phagocytes;

Complement activation is the process that triggers the complement protein cas-

cade;

Neutralisation is the process in which the binding of pathogenic antigens leads

to a reduction in pathogen activity.

T cell maturation and function

T cells are key mediators of the cellular adaptive immune response. Progenitor T

cells formed in the bone marrow migrate to the thymus where they expand and

undergo maturation into T helper cells that express the cluster of differentiation

(CD)4 marker or cytotoxic T cells that express the CD8 marker. The fate of T cells

is determined, among other things, by the class of the MHC molecule they bind

to during selection: cells interacting with MHC class-I molecules become CD8 T

cells, while cells interacting with MHC class-II molecules become CD4 T cells25.

The main role of cytotoxic T cells is to secrete cytotoxins leading to apoptosis of

injured or infected cells. Perforin, one of the secreted cytotoxins, forms pores in

the membrane of the target cell, allowing another kind of cytotoxin, granzymes, to

enter the cell and activate the caspase cascade that causes apoptosis of the target

cell26. The main role of T helper cells is to secrete cytokines activating other parts

of the immune response against the pathogen carrying their cognate antigen27,28.

Mature helper and cytotoxic T cells exiting the thymus are naive and have

to be activated by antigens to become functional. Unlike B cells, T cells do not

recognise free antigen; it has to be digested to peptides and presented on MHC

molecules by antigen presenting cells (e.g., dendritic cells, macrophages, B cells,

or non-professional antigen-presenting cells stimulated by interferon (IFN)-γ)28,29.

Presented pathogenic peptides are bound by the TCR, which signals through

the NFAT (Nuclear factor of activated T-cells) and MAPK (Mitogen-activated

protein kinase) pathways, leading to the transcription of genes like Tbx21 and
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Gata3 encoding the so-called master transcription factors (MTFs) T-box expressed

in T cells (T-bet) and GATA-3, as well as cytokine genes. The cytokine milieu

during activation determines which genes are upregulated during this activation

process, and thus the lineage into which the cells differentiate.

Immunological memory

The adaptive immune system has two hallmarks: the first one is the specificity of

each cell for a defined antigen, and the second is that the system recalls pathogens

it has already encountered. This is achieved by the presence of long-lived T and B

memory cells that arise during the primary infection and survive in the absence of

antigen30,31,24. These memory cells are already mature, having acquired a cytokine

profile during differentiation for T cells and undergone class switching for B

cells, making their response faster upon antigen re-encounter. Furthermore, the

presence of memory cells increases the number of cells with a given antigenic

specificity10, thus making the expansion process much more efficient.

It is unclear why a primarily activated T cell will survive and enter the memory

pool while most of its counterparts undergo apoptosis after the infection is cleared.

However, interleukin (IL)-7 signalling play a crucial role by inducing the expres-

sion of B-cell lymphoma (Bcl)-2, an anti-apoptotic factor, in both CD4 and CD8 T

cells32,33, while the latter also need IL-15 and TCR signalling for the homeostatic

proliferation of memory cells34,35. CD8 memory cells can be found in constant

numbers in the spleen, while their CD4 counterparts reside in the bone marrow in

the vicinity of IL-7-producing stroma cells36.

1.1.3 Co-ordinating the global immune response: T helper cells

T helper cells are the main constituents of the CD4 population; their role is to

activate other immune cells by secreting cytokines targeting the appropriate im-

mune cell population to fight the pathogen. Hence, the mediators of their effector

functions are those cytokines that signal to other cells (e.g., B cells, macrophages

or neutrophils). Although innate immune cells act in defence against pathogens

in the absence of T cell help, their response can be enhanced by the latter in case

of an infection progressing despite their autonomous activity. In order to elicit

a response adapted to the current threat to the organism, different Th cell types

expressing different cytokines that target different effector populations arise in

response to different pathogens37,28.

CD4 T cells exiting the thymus are naive (with the exception of natural regulat-

ory T (nTreg) cells38) and differentiate into one of several subtypes upon antigen

encounter, depending on the cytokine milieu39. Differentiation into a specific

subset is driven by polarising cytokines that signal mostly via Signal transducers
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and activators of transcription (STAT) proteins40, leading to the up-regulation

of master transcription factors that drive effector cytokine expression. MTFs are

defined by the fact that their expression is both necessary and sufficient to specify

a Th cell lineage. MTF expression is sustained throughout the T helper cell’s life

and maintains the cell’s phenotype in the memory phase. Commonly accepted

subtypes are T helper type (Th)1, Th2, Th17, T follicular helper (Tfh) and induced

regulatory T (iTreg) cells41 (Figure 1.1).

Effector cytokine expression and secretion is regulated at several levels42:

epigenetic changes take place during differentiation that lead to expression or

silencing of cytokine genes43,44,45; transcription is enhanced or repressed by tran-

scription factors, and post-translational mechanisms regulate mRNA stability or

protein secretion. Most of the cytokine regulation is carried out by lineage specific

master transcription factors. Cytokines signal in an endocrine manner: receptors

on the membrane of target cells relay the cytokine signals intracellularly, often via

the STAT protein family. The polarising cytokines, master transcription factors

and signature cytokines of the main Th cell types are listed below.

Th1 cells are characterised by a high T-bet expression46. The main Th1 cytokine

is IFN-γ and contributes to the response against intracellular pathogens by

signalling to macrophages. Their differentiation is driven by IFN-γ/STAT1

and IL-12/STAT4.

Th2 cells show a high GATA-3 expression47. They secrete mainly IL-4, a cytokine

that enhances the antigen-presenting capacity of B cells and fights extracel-

lular parasites, but also IL-5 and IL-1348. Their differentiation is driven by

IL-4/STAT6.

Th17 cells express the transcription factor RAR-related orphan receptor (ROR)γt49.

They produce, among others, IL-17A, which activate fibroblasts, epi- and

endothelial cells as well as stromal cells and recruit neutrophils. Th17 cells

also produce IL-17F, IL-21 and IL-2250,51. Their differentiation is driven by

Transforming growth factor (TGF)-β/SMAD2/3 and IL-6/STAT352.

Treg cells are characterised by a high Forkhead box (Fox)P3 expression53,54 and

are responsible for immune tolerance and tuning of the immune response by

repressing other immune cells55; they can arise already in the thymus (nTreg

cells) or during an immune response (iTreg cells)56. Their differentiation is

driven by TGF-β/SMAD2/357.

Tfh cells are dependent on Bcl-658,59 and are critical for B cell activation and

germinal centre formation by producing IL-4 and IL-21. Their differentiation

is driven by IL-6/STAT3 and IL-21/STAT1/360.
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Adapted from Schulz E.G., Mariani L., Radbruch A. and Höfer T.
Sequential polarisation and imprinting of type 1 T helper lymphocytes by interferon-χ and

interleukin-12.
Immunity 30(5), 673-683, May (2009).

Figure 1.1: Subtypes of CD4+ T cells

Stability and plasticity of Th cell lineages

Antagonistic relationships between the different Th cell lineages have often been

observed. The master transcription factor of Treg cells, Foxp3, is known to

repress the master transcription factor of Th17 cell, RORχt61; conversely, the

Th17-polarising cytokine IL-6 represses Foxp3 expression62. Foxp3 expression

is also repressed by both T-bet and GATA-3 in Th1 and Th2 cells63, while IFN-χ

signalling in Th1 cells and IL-4 signalling in Th2 cells inhibit Th17 differenti-

ation64,65. The Th1 and Th2 gene networks contain several mutually repressive

mechanisms discussed in detail below. Those discoveries lead to the belief that T

helper cells make a clear lineage decision during primary activation and cannot

be reprogrammed to express factors belonging to distinct lineages, even though

co-expression of IFN-χ and IL-4 was observed early after the description of the

Th1 and Th2 lineages66,67.

In recent years, many discoveries have been made concerning T cell plasticity68,

showing that differentiated cells can be reprogrammed to co-express factors from

different lineages and challenging the hitherto accepted paradigm of a unique,

lineage-defining transcription factor expression69. Virus-specific Th2 cells can

up-regulate both T-bet and IFN-χ without losing their Th2 characteristics upon

viral infection70; similarly, both Th1 and Th17 cells are able to express IL-4 upon
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helminth infections71. The Th17 phenotype shows particularly high plasticity, as

it can acquire Th1 and Th2 features72,73,74,71,75 as well as be combined to Treg cell

characteristics76,77,78. The finding that many mutually repressive factors can be

stably co-expressed in a single cell still needs to be investigated. The fact that the

cells are plastic (i.e., able to adopt some phenotypic characteristic not belonging to

their lineage after differentiation) does not mean that they are not stable; indeed,

with the exception of Treg cells being converted to pathogenic Th17 cells79, all

other lineages retain the expression of their original master transcription factors

and cytokines, although not necessarily in the same amount. This plasticity allows

for a better tuning of the immune response and is, in most cases, beneficial.

1.1.4 Th1, Th2 and hybrid Th1/2 cells: co-existence, mutual in-
hibition and auto-activation

Th1 and Th2 cells are the most abundant subtypes of T helper cells and were the

first described T helper phenotypes80. Th1 and Th2 cells have distinct activation

histories, gene expression profiles and functions. As such, the molecular network

underlying their differentiation and maintenance are well-studied, It has long

been postulated that the Th1 and Th2 programs were mutually exclusive81,68,

mainly because most studies of Th cells focused on one type of stimulus during

differentiation. Furthermore, mutually inhibitory mechanisms between Th1- and

Th2-specific factors have been described. However, it has recently been shown

that stable cells with a mixed Th1/Th2 phenotype70,82, expressing both T-bet and

GATA-3 as well as Th1 and Th2 cytokines, can be generated both in vivo and in vitro.

This type of cell can be obtained through viral infection of mice after the transfer of

virus-specific Th2 cells70, cells that then start up-regulating T-bet and co-produce

IL-4 and IFN-γ while maintaining their GATA-3 expression. T-bet+GATA-3+ cells

can also be found in mice after parasite infection with H. polygyrus82. In vitro,

T-bet+GATA-3+ cells are obtained when naive cells are activated in the presence

of the polarising cytokines IFN-γ, IL-12 and IL-482,83,84. Furthermore, it was shown

that a continuum of hybrid states existed between high T-bet expressing Th1

cells and high GATA-3 expressing Th2 cells, depending on the concentration and

combination of cytokines present during primary differentiation83,84.

Th1 cells

Th1 cells mediate type-1 immunity and are defined by the expression of the master

transcription factor T-bet46. The secretion of IFN-γ as well as high amounts of

Tumor necrosis factor (TNF)-α stimulate macrophage, while the expression of the

chemokine receptors CXCR3 and CCR585,86 leads them to sites of bacterial and
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Figure 1.2: Canonical signalling pathways of the cytokines IL-4, IL-12 and IFN-γ.

viral infections where their respective ligands CXCL9 and CXCL1087, and MIP-1α,

MIP-1β and RANTES88 are expressed89,90.

The gene network underlying Th1 differentiation and maintenance is not fully

known, although several mechanisms are well-described. It involves several

positive feedback loops on T-bet and cytokine genes that induce and maintain

the Th1 phenotype and the expression of T-bet. Differentiation of naive cells into

Th1 cells occurs when naive Th cells are in an IL-4-free environment and in the

presence of IL-1291,92 and IFN-γ 93,94 and happens in several steps. First, IFN-γ,

produced by other neighbouring cells or, in the absence of IL-4, stochastically

by the naive Th cells upon TCR stimulus, will induce the Tbx21 gene via STAT1

signalling; T-bet will then up-regulate the expression of both IFN-γ 46 and IL-

12Rβ2, which is part of the IL-12 receptor95. This renders the cells responsive to

IL-12 signalling. Then, external IL-12 can further up-regulate T-bet and IFN-γ in

IL-12 responsive cells via STAT4 signalling96, leading to full Th1 differentiation.

Thus, even though T-bet is sufficient to drive IFN-γ expression, Th1 differentiation

also relies on both STAT1 and STAT4. Furthermore, T-bet co-operates with several

other transcription factors to regulate IFN-γ expression via epigenetic changes at

the Ifng locus, among which Eomesodermin97, Runt-related transcription factor

(Runx)398,97, H2.0-like homeobox protein (Hlx)99 and E26 transformation-specific

(Ets) transcription factors100,101.
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There are thus several cytokine-dependent positive feedback loops on T-bet

expression: via IFN-γ signalling, which up-regulates T-bet via STAT1, as well

as via IL-12 signalling through the up-regulation of the IL-12 receptor. A more

direct feedback loop on T-bet might be achieved through the transcription factor

Onecut2, which might be up-regulated by T-bet and might, in turn, enhance T-bet

transcription102, as well as directly by T-bet itself through auto-activation95,103.

Th2 cells

Th2 cells mediate type-2 immunity and are defined by the high expression of the

transcription factor GATA-347. They secrete the signature cytokines IL-4, IL-13

and IL-5 which are involved in class switching of B cells to IgG1 and IgE104,105 as

well as alternative activation of macrophages106. The expression of the chemokine

receptor CCR486 leads them to sites of type-2 inflammation107.

The Th2 differentiation network also involves positive feedback loops on

GATA-3, allowing its long-term expression. Th2 cells arise when IL-4 is present

and IFN-γ and IL-12 are absent during primary activation of naive Th cells; IL-4

signalling occurs via STAT6 and up-regulates GATA-3 expression108,109. GATA-3

in turn stimulates the expression of IL-4 by the Th2 cell itself110,111 in concert

with IL-2-activated STAT5108,112,113, as well as its own expression. Other tran-

scription factors are Th2-specific and involved in cytokine regulation; c-Maf and

JunB promote IL-4 expression114,115,116. Th2 differentiation could also be induced

independently of IL-4 through T Cell Factor 1 (TCF-1), which is induced by TCR

signalling and activates GATA-359. Thus, as is the case for T-bet in Th1 cells,

GATA-3 depends on several other transcription factors to orchestrate full Th2

differentiation, most importantly STAT6.

In this way, GATA-3 expression is amplified in various fashions: it trans-

activates its gene, thereby directly maintaining its own expression117,118, and in-

duces IL-4 expression which in turn enhances GATA-3 expression via STAT6108,109,110,111.

Another feedback loop could be via Dec2 during Th2 differentiation: Dec2 is in-

duced by GATA-3 and induces IL-4, IL-5 and IL-1348,119,120.

Mutual inhibition of the Th1 and Th2 pathways

The full range of interactions between the two gene networks is still unclear. GATA-

3 is known to down-regulate STAT4121 and IL-12Rβ2122, which are important parts

of the Th1 gene network, and to silence the T-bet locus123. Furthermore, GATA-3

has also been reported to silence the IFN-γ locus124,123 and to block IFN-γ induction

by Runx3 and Eomes97. c-Maf and TCF-1 are also thought to down-regulates IFN-

γ in Th2 cells114,59. The transcription factor Ikaros also silences T-bet and IFN-γ in

Th2 cells125,126.
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Conversly, T-bet has been reported to bind GATA-3 and repress its transcrip-

tion factor activity (thereby possibly also its auto-activation)127. STAT4 has also

been shown to suppress GATA-3 expression, although, as the study predates

the discovery of T-bet, it is not clear if the effect is T-bet-mediated or direct122.

IFN-γ signalling has been linked to a reduced IL-4 expression128,129. Another Th1

transcription factor, Runx3, could cooperate with T-bet to silence IL-4 (as well as

enhance IFN-γ), and also interacts with GATA-3 to attenuate the Th2 phenotype

in Th1 cells130,98,131. Lymphoid enhancer-binding factor (LEF)1 is expressed in Th1

but not Th2 cells and seems to down-regulate IL-4 in Th1 cells132. Furthermore,

TCR-mediated signalling, present during both Th1 and Th2 differentiation, has

been reported to bias differentiation depending on its strength and duration: while

weak signals were associated with Th2 differentiation, stronger stimulation was

linked with Th1 differentiation133,134,135,136.

Models of Th1 and Th2 regulatory gene networks

Network inference is the reconstruction of biological networks based on large

datasets; inference is typically done using high-throughput data. State-of-the-

art methods for network inference include machine learning and pattern clas-

sification as well as probabilistic methods137,138,139. Several studies have used

high-throughput data to unravel the network underlying Th cell differentiation,

including Th1-Th2 plasticity140, Th17 differentiation141,142,143, discovery of master

regulators144, identification of genes regulated by polarising cytokines145 and in-

volved in Th1/Th2 differentiation146,147, comparison of Th cell subsets expression

profiles148, epigenetic patterns149 as well as DNA binding of GATA-3 and STAT

proteins123,150. The role of STAT6 during Th2 differentiation was studied using

RNAi and ChIP sequencing151. Network inference allows to describe network

topologies that can be used for dynamical modelling.

Dynamical mathematical modelling is a way of describing the dynamics of

real phenomena (physical systems, biological interactions, ecological problems or

economic situations, for example) by equations representing the different players

and their interactions in the modelled system. It can describe exact mechanics

and dynamics of a system. Specifically, biological modelling allows to simulate

the behaviour of biological systems in order to reproduce experimental data,

thereby confirming or excluding mechanisms leading to the observed phenotypes

or reconstructing gene regulatory networks. It can also be used to predict the

behaviour of a biological system under certain conditions, for example the knock-

out of genes in a regulatory network, to discover new mechanisms and new roles

for these mechanisms.

Several mathematical models of Th cell regulatory networks, and specifically

Th1 and Th2 networks, can be found in the literature152. Suppression of one
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phenotype by the other was present in an early model in the form of competition

for antigenic stimulation and cross-suppression by cytokines153. Later models

model the expression of the master transcription factors T-bet and GATA-3; T-bet

expression has been modelled by E. Schulz et al.96 considering IL-12Rβ2, T-bet and

IFN-γ. In this model, TCR signalling activates T-bet, which in turns promote the

expression of IFN-γ and IL-12Rβ2, the latest being repressed by TCR signalling at

the beginning of differentiation. IFN-γ then enhances T-bet expression via STAT1;

later on, IL-12 signalling via STAT4 enhances T-bet expression, but also IFN-γ

expression. The crosstalk between IL-12, IFN-γ and TNF-α has been investigated

using a Th1 cell model154. GATA-3 expression and regulation has been modelled

by T. Höfer et al.155 and L. Mariani et al.156. In these models, GATA-3 is induced by

STAT6 signalling and trans-activates its own gene; interleukins are not included.

In T. Höfer et al.’s model, several processing steps between mRNA and protein are

included, whereas L. Mariani et al.’s model uses only one translation step. Both

models generate a bistable behaviour for GATA-3 protein expression.

Simple models of interactions between T-bet and GATA-3 (and so the Th1

and Th2 networks) have also been published157,158; they include auto-activation

loops and mutual repression between GATA-3 and T-bet. In one model, polarising

cytokines are included as parameters157, and are not present in the other model158.

A complex model aiming at explaining the principal constituents of the regulatory

networks in terms of cytokines, cytokine receptors and transcription factors has

also been published159; however, this model is not data-based. Furthermore,

models including other Th cell phenotypes like Treg and Th17 cells have been

developed to study Th cell differentiation160,161,162,163. All of these models are

based on the assumption that T-bet and GATA-3 are mutually exclusive, so that

none of them account for co-expression of T-bet and GATA-3 or explain the signal

integration process by the cells when several distinct cytokines are present during

differentiation, even though one model accounts for Treg/Th17 plasticity163.

Following the numerous descriptions of Th cell plasticity, models studying

this process have been developed. A logical, non-data-based model predicted the

four stable Th1, Th2, Th17 and Treg states as well as transient hybrid states164.

The combination of microarray human gene data and large gene network ana-

lysis allowed the development of a gene regulatory network describing a stable

Th1/Th2 hybrid state extending beyond T-bet and GATA-3140. This model did

not, however, explain quantitative differences but only represented the genes as

active or inactive. The plasticity of the different Th subsets has been investigated

using a logical model, making predictions about possible hybrid cell types not yet

described165.



1.2. Aim of the study 21

1.2 Aim of the study

This study focuses on Th1 and Th2 cells, the most abundant T helper cell subtypes,

as well as hybrid Th1/2 cells. More precisely, we will focus on the molecular

regulation of their differentiation programs.

Dysregulations of the T helper cell immune response are involved in several hu-

man diseases. Th1 cells are linked to autoimmune diseases such as type-1 diabetes

and rheumatoid arthritis166,167 and to chronic inflammation168, while Th2 response

imbalance is involved in allergic reactions such as asthma169 or antibody-linked

autoimmune diseases such as lupus170. It is therefore important to understand the

mechanisms underlying Th cell differentiation, memory, phenotype maintenance

as well as the interactions between differentiation programs that allow a well-

tuned immune response. Furthermore, Th cells are a well-established model of

cell fate decision and lineage commitment in biology, so that understanding their

differentiation pathways and maintenance mechanisms may provide a blueprint

for understanding many other biological phenomena. Indeed, the concept of

master regulators extends beyond the immune system and is pivotal in the study

of lineage decision-making (e.g, in stem cell and cancer biology).

The goal of this project is to get an insight into the gene networks underlying

Th1, Th2 and hybrid Th1/2 cell differentiation, more precisely the regulation of

the master transcription factors T-bet and GATA-3, which govern the functional

activity of Th1 and Th2 cells, respectively. Through experimental work and data-

based mathematical modelling, the regulatory mechanisms leading to T-bet and

GATA-3 expression patterns will be analysed in order to answer the following

questions:

• Can a methodology be developed to reconstruct gene regulatory networks

based on straightforward experiments and basic knowledge of the network’s

hierarchy?

• How does a cell integrate several differentiating signals to decide its pheno-

type?

• How do the Th1 and the Th2 lineage-specific and signature genes influence

each other during differentiation?

• What determines the amplitude of the functional response in differentiated

cells?

1.3 Methodology

In this section, we present the general experimental and computational approach

we used to address the questions at the centre of this study. Detailed protocols are
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Figure 1.3: Experimental protocol. a Freshly ex vivo isolated naive CD4+ T cells were cultured for five
days with antigen presenting cells, antigen, IL-2, polarising cytokines and blocking antibodies. pSTATs,
total STATs, T-bet and GATA-3 were measured by flow cytometry on a daily basis, and the cytokine
production after restimulation was quantified on day 5. b The three main Th1 and Th2 skewing cytokines
IFN-χ, IL-12 and IL-4 were titrated in naive CD4 T cell cultures in the absence and/or presence of the
other two cytokines.

described in the Materials and Methods section. We used a combination of highly

quantitative experiments, linear regression analysis and dynamical modelling to

unravel the cytokine network underlying Th1 and Th2 differentiation.

Experimental setup

To obtain an integrated picture of signalling and gene expression during Th1 and

Th2 cell differentiation, we differentiated freshly ex vivo isolated, FACSorted naive

CD4+ LCMV-TCRtg T cells in the presence of cognate antigen stimulus (in form of

GP64(61≻80) peptide), the growth factor IL-2 and the instructive cytokines IFN-χ,

IL-12 and/or IL-4 (Figure 1.3). We call cells generated with IFN-χ and/or IL-12 and

anti-IL-4 ‘Th1’; cells generated with IFN-χ and/or IL-12 and IL-4 ‘hybrid Th1/2’

and cells generated with anti-IFN-χ, anti-IL-12 and IL-4 ‘Th2’. We measured

the phosphorylation levels of the three main signal transducers downstream

of the instructive cytokines (STAT1, STAT4 and STAT6) as well as their total

protein levels and those of the master transcription factors T-bet and GATA-3 by

flow cytometry on a daily basis up to day 5 of differentiation. To characterise

the functional phenotype of the cells after differentiation, we re-stimulated the

cells in the absence of instructive cytokines with PMA/ionomycin, mimicking a

strong antigen stimulus, and measured the production of key cytokines by flow

cytometry after intracellular cytokine staining. We thus obtained quantitative

information on signal transduction and transcription factor expression from early

to late differentiation as well as a functional read-out in differentiated cells.

To investigate how the cells respond to a broad range of mixed cytokine

stimuli, in particular how different combinations and amounts of IFN-χ, IL-12

and IL-4 influence master transcription factor expression, we titrated each one

of the three cytokines (e.g., IFN-χ) in the presence or absence of one or both

of the other cytokines (e.g., IL-12, IL-4) (Figure 1.3b). The titration steps were
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chosen empirically as to induce different levels of T-bet and/or GATA-3 upon

differentiation. This resulted in a total of twelve groups of titrations, with 48

different cytokine combinations each evaluated at five time points (a list of all

conditions used is available in Supplementary Table 7.1). Th cells do not produce

IL-12, but may produce IFN-γ or IL-12; to ensure that the amounts of polarising

cytokines in the culture medium were strictly controlled and that the results were

not confounded by IFN-γ or IL-4 produced by the Th cells themselves during

the culture, we used Ifng-/- T cells as well as blocking antibodies to IL-4 in the

Th1 conditions for the IFN-γ and IL-12 titrations. Similarly, we used Il4-/- cells

and blocking antibodies to IFN-γ in the Th2 conditions for the IL-4 titrations.

Furthermore, we used cells deficient in both IL-12 and IFN-γ as antigen-presenting

cells (no significant amount of IL-4 is produced by the APCs used in this setup).

Thus, the levels of polarising cytokines are determined externally.

The data generated with these time-resolved titration experiments was ana-

lysed to reconstruct the regulatory network through which master transcription

factors are regulated by the STATs and each other, but also through which the

STATs themselves and cytokine expression are regulated.

Computational analysis

The experimental part of this project generated a large amount of data: eight

proteins were measured at five different time points in 48 different conditions.

Although a first visual analysis of the data put several mechanisms in evidence,

it soon became clear that the number of regulatory interactions involved made

an unambiguous interpretation of the origin of the observed effects difficult. To

systematically analyse this titration data and derive a general topology of the

signalling network underlying Th1 and Th2 differentiation, we used a series of

linear regression models describing how a layer of regulators (e.g., cytokines or

pSTATs) controls a corresponding layer of regulatees (e.g., pSTATs or transcription

factors, respectively):

regulateei = α0 +
∑
j

αj · regulatorj

with all combinations of j for each i.

We thus obtained families of linear models describing the amount of each protein

quantified during the titration experiments in function of the polarising cytokines

used during the cell cultures. Model comparison using goodness of fit measures

(R2 and Akaike information criterion (AIC)) quantified the correlations between

the factors measured. Furthermore, we used the time-resolved data to gain in-

formation about the kinetics of regulation by taking the amount of regulators at
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previous time points into account to explain the amount of regulators at a given

moment, i.e., a weighted sum of the expression of the regulators over time was

used to explain the expression of the regulatee at each time point. Repetition of

this analysis for each time point and each layer considered, i.e., STAT phosphoryla-

tion by the cytokines, transcription factors expression regulation by the activated

STATs and the master transcription factors, and cytokine expression regulation by

T-bet and GATA-3 allowed us to determine the most probable complete network

of interactions at each time point.

Linear models can describe the general topology of a network, but usually

cannot capture its dynamics. Furthermore, a linear model allows only linear in-

teractions between one layer of regulators and one of regulatees, and thus cannot

describe feedback loops such as auto-activation. To further study those points

and test the network topology against time-resolved data, we designed a dy-

namical, ordinary-differential-equations (ODE)-based model derived from the

linear-regression network topology. This model was used to reproduce the kinet-

ics of phosphorylation and/or up-regulation of the transcription factors STAT1,

STAT4, STAT6, T-bet and GATA-3, to predict the response of the system to gradi-

ents of polarising cytokines, and to study the relative effect of the phosphorylated

STAT and MTF proteins on the final phenotype of the Th cells.
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Th1 and Th2 cells are the most abundant subtypes among T helper cells, which

are part of cellular adaptive immunity and are responsible for coordinating the

adaptive immune response via cytokine secretion. Th1 cells are characterised

by the expression of the master transcription factor T-bet, which is up-regulated

by IFN-γ/STAT1 and IL-12/STAT4 signalling and leads to IFN-γ secretion,

while Th2 cells are characterised by high expression of the master transcription

factor GATA-3, which is up-regulated by IL-4/STAT6 signalling and leads to

IL-4 secretion. Although the Th1 and Th2 lineages have long been thought to

exclude one another due to several mutually repressive mechanisms involving

their master transcription factors, hybrid Th1/2 cells have recently been shown

to arise and remain stable in vivo. This works aims at understanding how mixed

cytokine signals are integrated during Th cell differentiation and how they

influence master transcription factor expression and lineage decision, using

quantitative time-resolved experiments followed by computational analysis in

form of linear regression and dynamical mathematical modelling.
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Figure 1.4: Methodology.





Chapter 2

Experimental results

Th1 differentiation occurs when IFN-γ and IL-12 up-regulate T-bet expression

via STAT1 and STAT4 signalling, respectively93,94,91,92, while Th2 differentiation

requires GATA-3 up-regulation following STAT6 signalling108,109. Hybrid Th1/2

cells arise when all three signalling pathways are activated simultaneously, leading

to the up-regulation of T-bet and GATA-382,83,84. Both Th1 and Th2 differentiation

have been studied extensively under conditions which elicit one or the other

response. However, the molecular network that mediates the responses of naive T

helper cells to gradients and combinations of cytokines remains poorly understood.

This chapter describes the qualitative changes occurring during differentiation in

response to distinct cytokine amounts and combinations at three levels (Figure

2.1): the phosphorylation of the STATs, the protein expression of T-bet, GATA-

3, STAT1, STAT4 and STAT6, and the cytokine production by the differentiated

Th cells upon restimulation. We start by studying the kinetics of expression

and phosphorylation in ‘classical’ conditions, i.e., Th1, Th2 and hybrid Th1/2

with fixed cytokine concentrations, in order to determine how the polarising

cytokines used in standard in vitro setups affect the expression and activity of

various regulators. We then go on to qualitatively analyse the dose-response of

the transcription factors to the cytokines IFN-γ, IL-12 and IL-4 and their response

to different cytokine combinations.

Cytokine stimuli

IFN-γ, IL-12, IL-4

TF expression

T-bet, GATA-3
STAT1, STAT4, STAT6

STAT phosphorylation

pSTAT1, pSTAT4, pSTAT6

Cytokine production

IFN-γ , IL-4, ...

Figure 2.1: Sequential levels of response to cytokine stimuli during differentiation.
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Figure 2.2: Quantitative differences in cytokine concentrations are reflected on the MTF expression.
A continuum of T-bet-GATA-3 co-expression patterns was generated on day 4 in response to the titrated
cytokines, normalised geometric mean indices for all conditions are shown.

2.1 STAT, master transcription factor and cytokine ex-

pressions are dynamically regulated in Th1, Th2

and Th1/2 hybrid cells

Previous work has shown that Th1 versus Th2 differentiation is driven by the

cytokines IL-1291,92 and IFN-γ 93,94 versus IL-4108,109, acting through their canonical

Jak-STAT pathways (STAT1 for IFN-γ 171,172, STAT4 for IL-12173,174, and STAT6 for

IL-4175,176) to up-regulate T-bet versus GATA-3; these studies have focused on

either Th1-polarising or Th2-polarising stimuli. However, T-bet and GATA-3 were

recently shown to be co-expressed in a gradual manner in response to increasing

amounts of cytokines83,84. This co-expression was accompanied by the capacity

to express both Th1 and Th2 cytokines as well as the simultaneous activation of

STAT1, STAT4 and STAT682. Furthermore, quantification of T-bet and GATA-3

protein amounts after differentiation showed that Th cells can adopt a continuum

of T-bet and GATA-3 co-expression levels after primary differentiation, and that

most cytokine combinations actually generated hybrid Th1/2 cells with T-bet and

GATA-3 co-expression (Figure 2.2 and Reference 83). These findings raised the

question of how differences in amounts of polarising cytokines are integrated by a

T helper cell so that they are reflected in the expression of the master transcription

factors and signature cytokines.

We reasoned that for quantitative differences in cytokine amounts to be reflec-

ted on the transcription factor expression level, the strength and/or duration of

signalling downstream of the cytokines must also vary depending on the input

stimuli, which motivated us to study the relation between the amount of phos-

phorylated STAT and master transcription factor. As a matter of fact, we observed

that, for a definite cytokine stimulus, the amount of active signal transducers cor-

related to the amount of target master transcription factor (Figure 2.3): co-staining

pSTAT4 and T-bet or pSTAT6 and GATA-3 in Th1 cells differentiated for 72 hours
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Figure 2.3: Quantitative differences in MTF expression correlates to the amounts of pSTAT. T-bet and
pSTAT4, and GATA-3 and pSTAT6 were co-stained in Th1 and Th2 cells after 72 hours of differentiation.

with IL-12 and IFN-γ and in Th2 cells differentiated for 72 hours with IL-4 showed

that the cells with the highest master transcription factor expression also had the

highest corresponding pSTAT amounts. The stainings for pSTAT4 in Th2 cells and

pSTAT6 in Th1 cells can be interpreted as negative even though they are higher

than the isotype control; this is a technical artefact due to the staining protocol.

Indeed, in order to obtain a good co-staining of the master transcription factors

and the pSTAT proteins, BD Phosflow buffers were used as in a total STAT/pSTAT

co-staining (see subsection 6.1.2 on page 111), but the last washing step after

staining was omitted, causing an increase in pSTAT intensity compared to the

standard staining method using which the isotype control was calibrated.

We thus proceeded to quantify the phosphorylation and up-regulation kinetics

of the main players in the known signalling cascades involved in Th1 and Th2

differentiation: pSTAT1, pSTAT4 and pSTAT6, T-bet and GATA-3, as well as the

total STAT1, STAT4 and STAT6 proteins, in order to see if and how different

cytokine combinations affected the amount and dynamics of those transcription

factors. Given that T-bet and GATA-3 orchestrate the functional Th cell response,

we also measured the production of effector cytokines after TCR restimulation at

the end of differentiation. Kinetics and representative flow cytometry stainings in

Th1, Th2 and Th1/2 hybrid cells are shown in Figure 2.4.

The phosphorylated STATs constitute the first level of the intracellular response

we quantified. The canonical STATs downstream of the polarising cytokines, i.e.,

STAT1 downstream of IFN-γ, STAT4 downstream of IL-12 and STAT6 downstream

of IL-4, were phosphorylated with a unimodal distribution in the cell population;

the left panel of Figure 2.4a shows the phosphorylation on day 2 of culture (day 2

was chosen due to the fact that Th cells are responsive to all three cytokine at this

time point). This phosphorylation pattern allowed us to use the geometric mean

index (GMI, see subsection 6.2.1 on page 112 for a description of the normalisation

procedure) of the staining, a population average, for further quantitative analyses.

Phosphorylation lasted long with still marked amount of pSTAT4 and pSTAT6 on
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day 5. Maximal phosphorylation levels were reached on day 3 for pSTAT1 and

pSTAT6 and on day 4 for pSTAT4 (Figure 2.4a, right panel).

The master transcription factors T-bet and GATA-3 were expressed with a

unimodal distribution within the Th1, Th2 and hybrid Th1/2 populations (Fig-

ure 2.4b, left panel), allowing the use of the geometric mean index for further

analysis. Up-regulation started already at day 2 of differentiation, before extensive

cell division occurred; the up-regulation of transcription was visible even earlier

(day 1; Supplementary Figure 7.3a,b). The combination of IL-4, IL-12 and IFN-γ

gave rise to hybrid Th1/2 cells, with co-expression of T-bet and GATA-3 in indi-

vidual cells albeit at somewhat lower levels than in Th1 and Th2 cells, respectively

(shown in purple in Figure 2.4b and from here on), rather than distinct Th1 (shown

in blue) or Th2 (shown in red) phenotypes. The simultaneous presence of Th1 and

Th2 cytokines affected the expression level of the master transcription factors, but

not the kinetics of their up-regulation.

We found that the expression levels of all three STATs were also dynamically

and differentially regulated depending on the cytokine milieu; indeed, clear differ-

ences in the expression levels could be observed already on day 1 for STAT1 and

on day 2 for STAT4 and STAT6. STAT1 and STAT4 were up-regulated in Th1 and

hybrid Th1/2 cells whereas STAT6 expression was augmented in Th2 and hybrid

Th1/2 cells (Figure 2.4c); these changes were also seen at the RNA level for STAT1

and STAT4 (Supplementary Figure 7.3c,d). The unimodal expression of those five

transcription factors allowed us to use the geometric mean index of the stainings

for the quantification of their expression.

In contrast to the uniform regulation of transcription factor expression, the

cytokine recall response showed the typical separation of the population into

responders and non-responders177,178, with a fraction of hybrid Th1/2 cells pro-

ducing both IFN-γ and IL-4 (Figure 2.4d). Therefore, we quantified cytokine

production using the fraction of producing cells and not the geometric mean.

The observed prolonged phosphorylation of the STATs as well as the changes

in their expression levels point to an underlying dynamic regulatory network

that evolves on a timescale of days, stimulating a careful kinetic analysis of the

changes occurring during differentiation. In the next sections, we thus study the

dose response of the pSTATs and transcription factors amounts to cytokines in a

time-resolved manner.
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STAT1, STAT4 and STAT6 were phosphorylated with a unimodal distribution

during up to five days in the presence of their canonical cytokines IFN-γ, IL-12

and IL-4, respectively. The expression of the master transcription factors and

the STATs was dynamically and differentially regulated during Th1, Th2 and

hybrid Th1/2 differentiation. The Th1 factors T-bet, STAT1 and STAT4 were

highly expressed in Th1 cell, intermediate in hybrid Th1/2 cells and low in Th2

cells. The Th2 factors GATA-3 and STAT6 showed the inverse behavior.
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2.2 STAT activation is dose-dependent, long-lasting

and happens outside of the canonical pathways

In the previous section, we showed that STAT4 phosphorylation correlated posit-

ively with T-bet expression, and STAT6 phosphorylation with GATA-3 expression,

at the single cell level. Furthermore, a unimodal and long-lasting phosphorylation

of STAT1, STAT4 and STAT6 in response to IFN-γ, IL-12 and IL-4, respectively,

was observed. In order to understand how adverse signals, like IFN-γ and IL-4 or

IL-12 and IL-4, are integrated by the the cells during hybrid Th1/2 differentiation

as well as how quantitative differences in cytokine concentrations are translated

into graded master transcription factor expression, we asked how the presence

of multiple and particularly mixed Th1-Th2 stimuli affects the way cytokines act

on each STAT pathway. To this end, we measured the phosphorylation of the

three relevant STATs during a 5-day time course in ex vivo isolated naive murine

CD4 T cells, carrying an LCMV-specific T cell receptor, in the presence of antigen-

presenting cells loaded with cognate antigen and different mixtures of cytokines

to induce differentiation into Th1, Th2 or hybrid cells. We titrated each cytokine

(e.g., IFN-γ) in the presence and absence of one or both of the other cytokines

(e.g., IL-12, IL-4) and examined the response of each STAT to all three cytokines.

Although we focused on the dose-response of the canonical pSTAT downstream

of each cytokine in the following sections, all three pSTATs were measured and

analysed during each titration experiment; the data is not shown here to avoid

unnecessary redundancy.

We start by analysing STAT1 phosphorylation in response to an IFN-γ titration,

as IFN-γ induces the phosphorylation of STAT1171,172. To examine the response

of pSTAT1 to different doses of IFN-γ in combination with other cytokines, we

performed a 5-step titration of IFN-γ (i.e., no IFN-γ, 0.003, 0.03, 0.3 and 3 ng/ml

of IFN-γ) in the presence of 5 ng/ml IL-12, 10 ng/ml IL-4, both of them, and

none of them. Representative flow cytometry stainings for selected conditions

on day 2 and the whole normalised dataset for pSTAT1 are shown in the form of

GMI time courses in Figure 2.5. The different IFN-γ concentrations led to graded

pSTAT1 elevations in both Th1 and hybrid conditions, but did not influence the

duration of phosphorylation (Figure 2.5): no pSTAT1 was detected on day 5 in

Th1 cells, no matter what the initial IFN-γ concentration was, and little in hybrid

cells. Little effect of the two smaller concentrations could be observed, with

only a small increase compared to the condition without IFN-γ on days 3 and

4. Furthermore, IL-12 and IL-4 also influenced STAT1 phosphorylation. Indeed,

comparing the left and right columns in Figure 2.5b, we see an increase in pSTAT1

in the presence of IL-12. Interestingly, the presence of the Th2 cytokine IL-4 did

not reduce the amount of pSTAT1; on the contrary, the latter seemed to increase in
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Figure 2.5: pSTAT1 is phosphorylated gradually in response to titrated IFN-γ. a pSTAT1 stainings
on day 2 of culture with increasing amount of IFN-γ. b Time courses of STAT1 phosphorylation with
increasing amounts of IFN-γ with IL-12 (left) or without IL-12 (right), anti-IL-4 (top) or IL-4 (bottom).

the presence of IL-4 (compare top and bottom rows in Figure 2.5b and the positive

staining without addition of IFN-γ in the lower panel of Figure 2.5a). Both those

effects could also be observed by measuring pSTAT1 in response to IL-12 and IL-4

titrations.

To study how STAT4 phosphorylation was induced by IL-12173,174 and other

cytokines, we performed a 4-step titration of IL-12 (i.e., no IL-12, 0.5, 1.5 and 45

ng/ml IL-12) in the presence of 10 ng/ml IFN-γ, 10 ng/ml IL-4, both and none

of them, similarly to what was done with IFN-γ. Representative flow cytometry

stainings on day 2 and the whole dataset for pSTAT4 in form of GMI time courses

are shown in Figure 2.6. Similarly to STAT1 downstream of IFN-γ, the amount of

pSTAT4 per cell increased gradually in response to IL-12, most notably so from

day 3 on; indeed, the differences in pSTAT4 intensity were small until the peak

of phosphorylation was reached. However, the period during which STAT4 was

phosphorylated also depended on IL-12: the more IL-12, the longer pSTAT4 could

be detected by flow cytometry: no phosphorylation was measured on day 5 with

the smaller IL-12 concentrations, while its level were nearly equal to the peak

levels with the highest concentration in Th1 conditions. Comparing the left and

right columns in Figure 2.6b, we see that the pSTAT4 levels are globally lower in

the absence of IFN-γ. IL-4 seemed to have two distinct effects: it increased the

intensity at the peak phosphorylation on day 3, but decreased it on later days

(compare upper and lower panels).

STAT6 is known to be phosphorylated downstream of IL-4175,176. We studied

its response to IL-4, IL-12 and IFN-γ using the same protocol used for pSTAT1

and pSTAT4: we titrated IL-4 in 4 steps (no IL-4, 0.5, 5 and 50 ng/ml IL-4) in the
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Figure 2.6: pSTAT4 is phosphorylated gradually in response to titrated IL-12. a pSTAT4 stainings
on day 2 of culture with increasing amount of IL-12. b Time courses of STAT4 phosphorylation with
increasing amounts of IL-12 with IFN-γ (left) or without IFN-γ (right), anti-IL-4 (top) or IL-4 (bottom).

presence and absence of 5 ng/ml IL-12 and/or 10 ng/ml IFN-γ and quantified

pSTAT6 every day. Representative data from day 2 and the kinetics of pSTAT6

GMI in all the conditions are shown in Figure 2.7. STAT6 was phosphorylated

in a graded manner in response to IL-4 in all the conditions observed, with clear

differences visible from day 1 up to day 5. As is the case for pSTAT4 downstream

of IL-12, phosphorylation of pSTAT6 could still be measured on day 5 when

high IL-4 concentrations were used. The presence of IL-12 and IFN-γ did not

induce significant changes in the pSTAT6 intensities, but peak phosphorylation

was reached earlier, on day 2 rather than day 3, in the presence of IL-12 (compare

upper and lower rows of Figure 2.7b).

The amplitude of the pSTAT signals increased with the concentration of the

corresponding canonical cytokines. However, the presence of other cytokines

also affected signalling: IL-4 increased the peak levels of pSTAT1 and pSTAT4

in response to IFN-γ and IL-12, but also caused lower pSTAT4 on day 4 and 5.

IL-12 augmented the pSTAT1 levels in addition to increasing the pSTAT4 levels.

Importantly, this data indicates that cytokines additional to the canonical ones

induce and modulate STAT phosphorylation.



36 2. Experimental results

pSTAT6

IL-4 titration

an
ti-

IF
N

-γ
, a

nt
i-I

L-
12

IF
N

-γ
, I

L-
12

%
 o

f m
ax

im
um

IL-4
[ng/ml]:
50
5 
0
Isotype

IL-4
[ng/ml]:
50
5 
0
Isotype

0

50

100

pS
TA

T6
 (n

or
m

. G
M

I)

anti-IFN-γ (Th2)

0 2 4 6
Days

0

50

100

IFN-γ, IL-12 (Th1/2Hybrid)

IL-4
[ng/ml]:
50
5
0.5
0

0

50

100

IFN-γ (Th1/2Hybrid)

IL-4
[ng/ml]:
50
5
0.5
0

0 2 4 6
0

50

100

anti-IFN-γ, IL-12 (Th1/2Hybrid)

Days

a b

pS
TA

T6
 (n

or
m

. G
M

I)

pS
TA

T6
 (n

or
m

. G
M

I)
pS

TA
T6

 (n
or

m
. G

M
I)

Figure 2.7: pSTAT6 is phosphorylated gradually in response to titrated IL-4. a pSTAT6 stainings on
day 2 of culture with increasing amount of IL-4. b Time courses of STAT6 phosphorylation with increasing
amounts of IL-4 with IL-12 (bottom) or without IL-12 (top), IFN-γ (right) or anti-FN-γ (left).

2.3 Transcription factor expression is regulated both

positively and negatively in a dose-dependent man-

ner downstream of polarising cytokines

We focus on five of the transcription factors involved in Th cell differentiation

and function that are critical for both lineage decision and cytokine expression

regulation. The master transcription factors T-bet (expressed in Th1 cells46) and

GATA-3 (highly expressed in Th2 cells47) are both necessary and sufficient for

determining the gene expression profile of differentiated Th cells. STAT proteins, in

particular STAT1, STAT4 and STAT6, are essential parts of the signalling pathways

controlling T-bet and GATA-3 expression40. In the previous sections, we showed

that all five proteins were differentially regulated in Th1, Th2 and hybrid Th1/2

cells during primary differentiation and that the upstream pSTAT phosphorylation

was dose-dependent and influenced by cytokines within and outside of their

canonical pathways. Here, we concentrate on the effect the same cytokines exert

on the expression levels of those five transcription factors using titrations as

described previously.
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2.3.1 T-bet and GATA-3 can be regulated in a synergistic man-
ner by several cytokines and do not respond differently to
antigen concentration

Key targets of pSTAT1/pSTAT4 and pSTAT6 downstream of IFN-γ/IL-12 and IL-4

are the master transcription factors T-bet and GATA-3, respectively93,94,91,92,108,109.

The latter are up-regulated in differentiating Th cells under Th1 conditions (T-bet),

Th2 conditions (GATA-3) and hybrid Th1/2 conditions (T-bet and GATA-382,83,84)

and direct the expression of other lineage-specific genes that are essential for T

cell function, most notably cytokines and chemokine receptors. In addition to

cytokine signalling via activated STATs, TCR signalling in response to antigen is

necessary for the induction of the master transcription factors in naive cells. In the

next sections, we analyse the response of master transcription factors to antigen

stimulus and cytokine signals.

Antigen concentration does not bias Th cell differentiation

Previous studies have shown that the strength of the TCR stimulus influences

Th1 or Th2 cell fate decision133,134,135,136, but how universal these findings are is

unclear. To investigate how our system responded to titrated antigenic peptides,

we performed a 5-step titration of the lymphocytic choriomeningitis (LCMV)-

derived GP64-peptide (i.e., 0.05, 0.2, 0.8, 3.2 and 12.8 µg/ml GP64-peptide), for

which the transgenic cells used throughout this study have a specific TCR, in IFN-

γ-, IL-4-competent cells (Figure 2.8a). In order to discriminate between potentially

confounding effects of antigen signalling and cytokine signals and detect eventual

synergetic effects of antigen and cytokine signalling, the titration was performed

under several differentiating conditions: the ‘antigen only’ condition, without

addition of any cytokine or blocking antibody; the ‘Th0’ condition, in which the

three major cytokines IFN-γ, IL-12 and IL-4 were blocked, as well as ‘classical’

Th1 and Th2 conditions and hybrid Th1/2 conditions. The cytokine IFN-γ was

not added to the polarising mix, but produced by the T cell themselves. The flow

cytometry quantification of T-bet and GATA-3 after four days of differentiation is

shown in figure 2.8; similar results were obtained at day 2 and 6 of differentiation.

We observed no significant bias towards Th1 or Th2 differentiation depending

on the peptide concentration. The amount of peptide showed no specific correla-

tion with the mean per cell expression of T-bet or GATA-3 during differentiation.

Overall, the cells seemed to express higher amounts of master transcription factor

with higher antigen doses in the conditions where autogenous cytokine signalling

was involved: T-bet increased with the GP64 concentration in Th1, hybrid Th1/2

and antigen only conditions, all conditions in which Th cells produced IFN-γ; the

same was true for GATA-3 in Th2 and hybrid Th1/2 conditions in which IL-4 is
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produced by the cells (Figure 2.8b). This suggests that a higher antigen concen-

tration increases the whole activation status of the cells, thereby increasing their

cytokine production during the early days of differentiation, without specifically

influencing lineage decisions. However, higher antigen concentrations seemed to

repress the emergence of a population expressing intermediate levels of GATA-3

among the otherwise unimodal T-bet-positive Th1 cells, and to induce a small

T-bet-positive population in GATA-3-positive Th2 cells. The bimodality observed

here under Th1 and Th2 conditions in IFN-γ-, IL-4-competent cells was not seen

in experiments using Ifng-/- cells under Th2 conditions or Il4-/- cells under Th1

conditions. We thus did not consider this phenomenon further, as it is probably

due to the imperfect blockade of stochastically produced cytokines.

IFN-γ and IL-12 lead to the dose-dependent up-regulation of T-bet and repres-

sion of GATA-3, while IL-4 correlates positively with GATA-3

Having established that antigen concentration does not bias cell differentiation in

either the Th1 or Th2 direction in our system, we proceeded to study the effects

of the polarising cytokines. Previous studies83,84 and unpublished work by M.

Peine and C. Helmstetter shown in Figure 2.9 have shown that T-bet and GATA-3

can have a continuum of co-expression patterns if the Th cells are differentiated

with varying amounts of cytokines. To quantify the effect of each cytokine on each

master transcription factor, we used the same titration experiments during which

STAT phosphorylation was measured, i.e., IFN-γ, IL-12 and IL-4 were titrated

separately in the presence of one, both and none of the other two cytokines. T-bet

and GATA-3 were quantified on a daily basis during the 5-day differentiation.

We then analysed how multiple cytokine stimuli govern the expression of the

master transcription factors T-bet and GATA-3 in the differentiating (days 1-4)

and differentiated (day 5) cells. To be specific, we show here the data for day 4 of

culture as dose-response curves of master transcription factor expression versus

cytokine concentration; previous days and day 5 all gave qualitatively similar

results; day 4 represents a time-point at which differentiation is nearly completed

and the cells are still activated.

First focusing on the response of the Th1 master transcription factor T-bet

to IFN-γ (Figure 2.10a), we observed a graded up-regulation of T-bet protein in

response to IFN-γ in most conditions. However, when the Th cells were differen-

tiated in the presence of the Th1-polarising cytokine IL-12 in the absence of the

Th2-polarising cytokine IL-4 (full blue line), the addition of IFN-γ did not further

increase the expression of T-bet. Contrastingly, when IL-4 was added to the culture

(full purple line), the already up-regulated levels of T-bet rose in a dose-dependent

manner in response to IFN-γ in a steeper manner than in the absence of IL-12,

reaching nearly saturation and Th1-levels for the highest concentrations. In the
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GATA-3 expressions were measured by flow cytometry.
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Figure 2.10: T-bet is strongly positively correlated to IFN-γ and IL-12. a Dose response of T-bet to
IFN-γ with IL-12 (full lines) or without IL-12 (dotted lines), in the presence of IL-4 (purple lines) or
anti-IL-4 (blue lines). b Dose response of T-bet to IL-12 with IFN-γ (full lines) or without IFN-γ (dotted
lines), in the presence of IL-4 (purple lines) or anti-IL-4 (blue lines). c Dose response of T-bet to IL-4 with
IFN-γ (full lines) or anti-IFN-γ (dotted lines), in the presence of IL-12 (purple lines) or without IL-12 (red
lines).

absence of IL-12, the addition of IL-4 did not influence T-bet levels (compare the

purple and blue dotted lines) and even high concentrations of IFN-γ were only

associated to intermediate T-bet expression. Analysing the dose-response of T-bet

to IL-12, we observed a similar dependence of T-bet to the IL-12 concentration

than to the IFN-γ concentration: IL-12 correlated positively with T-bet amounts

(Figure 2.10b). However, IL-12 was strictly needed to achieve optimal T-bet expres-

sion, both in the presence and absence of IFN-γ. The positive effect of IFN-γ could

again be observed in hybrid conditions (compare full and dotted purple lines). The

addition of IL-4 led to reduced T-bet expression and a decreased responsiveness to

IL-12 in the absence of IFN-γ (compare blue and purple dotted lines), while IFN-γ

in the absence on IL-4 had no effect on the dose-response of T-bet to IL-12. Finally,

IL-4 showed no consistent effect on T-bet independently of IFN-γ and IL-12, but

correlated negatively with the Th1 master transcription factors in the presence

of IFN-γ (full lines). Collectively, these data show that cytokine effects on T-bet

expression are strongly modulated by other cytokines.

We then analysed the response of GATA-3 to IL-4, IFN-γ and IL-12. First

focusing on the titration of IL-4 (Figure 2.11c), its main regulator during Th2

differentiation, we observed a graded up-regulation of GATA-3 in response to

increasing IL-4 concentrations. However, this effect seemed to be dampened in
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Figure 2.11: GATA-3 is strongly positively correlated to IL-4 and negatively to IFN-γ and IL-12. a
Dose response of GATA-3 to IFN-γ with IL-12 (full lines) or without IL-12 (dotted lines), in the presence of
IL-4 (purple lines) or anti-IL-4 (blue lines). b Dose response of GATA-3 to IL-12 with IFN-γ (full lines)
or without IFN-γ (dotted lines), in the presence of IL-4 (purple lines) or anti-IL-4 (blue lines). c Dose
response of GATA-3 to IL-4 with IFN-γ (full lines) or anti-IFN-γ (dotted lines), in the presence of IL-12
(purple lines) or without IL-12 (red lines).

the presence of IFN-γ; indeed, the up-regulation was stronger when IFN-γ was

added to the culture (compare full and dotted lines), while no reduction of GATA-3

expression could be observed in the absence of IL-4. Contrastingly, the addition of

IL-12 did not diminish the effect of IL-4, although it reduced the overall expression

of GATA-3 (compare red and purple lines). This negative effect of IL-12 seemed

to be overridden by high IL-4 concentrations (dotted purple line). Focusing on

the response of GATA-3 to IFN-γ (Figure 2.11a), we observed a dose-dependent

reduction of GATA-3 expression, most notably so in conditions where IL-4 was

absent (blue lines). In the presence of IL-4, the effect of IFN-γ was visible at low

concentrations and did not consistently increase with augmenting IFN-γ amounts

(purple lines). IL-12 did not influence the response to IFN-γ (compare full and

dotted lines). Finally, IL-12 also caused a gradual decrease in GATA-3 expression

(Figure 2.11b) in most conditions. In ‘optimal’ Th2 conditions (i.e., in the presence

of IL-4 and absence of IFN-γ, dotted purple line), however, IL-12 was not able

to suppress the IL-4-induced up-regulation of GATA-3; the presence of IFN-γ

restored the effect of IL-12 in the presence of IL-4 (full purple line), but had no

influence on the dose response in its absence. Thus GATA-3, like T-bet, is regulated

in a complex manner by multiple cytokine inputs.
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The data on master transcitpion factor expression corroborated previously

described mechanisms, like the up-regulation of T-bet by IFN-γ and IL-12 and

the up-regulation of GATA-3 by IL-4. Distinct negative effects of both Th1

cytokines on GATA-3 could also be observed. Importantly, however, we found

that the cytokines modulated each other’s effects. The dose response of T-bet

to IFN-γ was steeper in the presence of IL-12, and IL-4 prevented maximal

T-bet up-regulation by IL-12 in the absence of IFN-γ. Conversely, the influence

of IL-4 on GATA-3 was reduced in the presence of IL-12, and both IL-12 and

IFN-γ were needed for maximal GATA-3 repression.
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2.3.2 Total STATs expression is influenced by the concentration
of polarising cytokines

The analysis of STAT phosphorylation showed negative effects of cytokines on

STAT pathways, specifically of IL-4 on STAT4 phosphorylation at the end of

differentiation. Therefore, we asked whether this negative cross-talk resulted from

inhibition of STAT phosphorylation (i.e., mediated by SOCS proteins179,180) or

from the regulation of STAT expression. Indeed, time-resolved flow cytometry

quantification of total STAT1, STAT4 and STAT6 under Th1, Th2 and hybrid

differentiation conditions showed that all three STAT proteins were dynamically

and differentially regulated depending on the cytokine milieu (cf. Figure 2.4c):

STAT1 and STAT4 were up-regulated in Th1 and hybrid Th1/2 cells whereas

STAT6 expression was augmented in Th2 and hybrid Th1/2 cells. To determine

how cytokines influenced STAT expression, we analysed the regulation of total

STAT protein expression in response to IFN-γ, IL-12 and IL-4 by titrating each

cytokine in the presence and absence of one or both of the others daily for five

days. As in the analysis of T-bet and GATA-3 regulation, we discuss here the data

for day 4, other days showing similar results.

The effect of IFN-γ, IL-12 and IL-4 on STAT1 expression are shown in Fig-

ure 2.12; the left panels depict typical stainings for all different cytokine com-

binations and the right panels the dose response to one cytokine in different

conditions. Looking at STAT1 expression in response to IFN-γ (Figure 2.12a,b), we

observed a gradual increase in protein levels with augmenting IFN-γ concentra-

tions (Figure 2.12b). The positive correlation could be observed independently of

the presence of IL-4 (compare blue and purple lines); however, the presence of

IL-12 reduced the steepness of the dose-response (compare dotted and full lines).

The positive effect of IFN-γ is also clearly visible in the histograms of Figure 2.12c

(compare full and dotted lines). In contrast to IFN-γ, when analysing the dose-

response of STAT1 to IL-12 (Figure 2.12c,d), we observed that the signal transducer

was repressed by IL-12 (Figure 2.12d), although this down-regulation was only vis-

ible in the presence of IFN-γ (full lines). In the absence of IL-4 and IFN-γ, a slight

positive correlation could be observed (dotted blue line). Finally, IL-4 showed

no correlation with STAT1 expression (Figure 2.12e,f), but the titration confirmed

the positive effect of IFN-γ (compare full and dotted lines in Figure 2.12f) and

the negative effect of IL-12 in the presence of IFN-γ (compare full red and purple

lines). Thus, STAT1 expression was up-regulated by IFN-γ and this activation was

counteracted by IL-12.

The effect of IFN-γ, IL-12 and IL-4 on STAT4 expression are shown in Fig-

ure 2.13. The regulation of STAT4 by Th1 cytokines was qualitatively similar to

that of STAT1. STAT4 expression was correlated positively to IFN-γ in all the
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Figure 2.12: STAT1 correlates positively with IFN-γ and negatively with IL-12. a STAT1 expression in
response to different cytokine combinations with and without IFN-γ. b Dose response of STAT1 to IFN-γ
with IL-12 (full lines) or without IL-12 (dotted lines), in the presence of IL-4 (purple lines) or anti-IL-4 (blue
lines).c STAT1 expression in response to different cytokine combinations with and without IL-12. d Dose
response of STAT1 to IL-12 with IFN-γ (full lines) or without IFN-γ (dotted lines), in the presence of IL-4
(purple lines) or anti-IL-4 (blue lines). e STAT1 expression in response to different cytokine combinations
with and without IL-4. f Dose response of STAT1 to IL-4 with IFN-γ (full lines) or anti-IFN-γ (dotted
lines), in the presence of IL-12 (purple lines) or without IL-12 (red lines).
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observed conditions (Figure 2.13a, b), although its overall levels were higher in the

absence of IL-4 (Figure 2.13a, compare purple and blue lines). STAT4 correlated

negatively to IL-12, despite the fact that IL-12 induces its phosphorylation (Fig-

ure 2.13c,d). This effect was augmented in the presence of IFN-γ (compare full and

dotted lines in Figure 2.13c), but not modified by the addition of IL-4. Looking at

the dose-response of STAT4 to IL-4, we observed that IL-4 induced a decrease in

the STAT4 amount in the absence of the Th1-cytokine IFN-γ (Figure 2.13f, dotted

lines), but had no effect otherwise. IL-12 did not influence the action of IL-4 on

STAT4, but the overall decrease in STAT4 expression levels in its presence could

be observed again (compare full and dotted lines). Collectively, these data show

complex regulation of STAT4 protein levels by the cytokines, with an up-regulation

downstream of IFN-γ and repression downstream of IL-12 and IL-4. Furthermore,

IFN-γ augmented the decrease in STAT4 expression in response to IL-12.

Finally, we show the dose responses of the signal transducer STAT6 in fig-

ure 2.14. The dose response of IFN-γ showed a gradual negative effect of the latter

on STAT6 (figure 2.14b), which was left unchanged by the addition of IL-12 or

IL-4, even though the overall STAT6 levels were higher in the presence of IL-4

(compare purple and blue lines). IL-12 had no detectable effect on STAT6 expres-

sion (Figure 2.14c,d). The strongest response observed was to IL-4 (Figure 2.14e,f):

STAT6 was strongly induced in response to increasing IL-4 concentrations (Fig-

ure 2.14f), suggesting a positive feedback-loop similar to that between STAT1 and

IFN-γ. IFN-γ seemed to reduce IL-4-induced STAT6 up-regulation (compare full

and dotted lines in figure 2.14f). Thus, STAT6 protein expression was positively

regulated by IL-4 and negatively by IFN-γ.

Interestingly, many different effects of the cytokines on STAT protein expression

could be observed: while IFN-γ acted both to induce the Th1 factors STAT1

and STAT4 and to repress the Th2 factor STAT6, IL-12 acted as a Th1-brake on

the protein expression level by repressing STAT1 and STAT4 expression while

still supporting Th1 differentiation on the signalling level. The function of IL-4

was more restricted to the Th2 lineage in enhancing STAT6 expression.



2.3. Transcription factor expression is regulated both positively and negatively in a
dose-dependent manner downstream of polarising cytokines 47

3 ng/ml IFN-γ no IFN-γ

45 ng/ml IL-12 no IL-12

50 ng/ml IL-4 no IL-4

anti-IL-4
no IL-12

IL-4
no IL-12
anti-IL-4
IL-12

IL-4
IL-12

anti-IL-4
no IFN-γ
IL-4
no IFN-γ

anti-IL-4
IFN-γ
IL-4
IFN-γ

no IL-12
no IFN-γ
IL-12
no IFN-γ

no IL-12
IFN-γ
IL-12
IFN-γ

ng/ml IL-4
0 100 101

ng/ml IL-12
0 10-1 100 101

0 10-3 10-2 10-1 100

ng/ml IFN-γ

IFN-γ titration

0

50

100

ST
A

T4
 (n

or
m

. G
M

I)

IL-12 titration

0

50

100

ST
A

T4
 (n

or
m

. G
M

I)

IL-4 titration

0

50

100

ST
A

T4
 (n

or
m

. G
M

I)

STAT4

%
 o

f m
ax

im
um

a b
anti-IL-4
no IL-12

IL-4
no IL-12

anti-IL-4
IL-12

IL-4
IL-12
Isotype

STAT4

%
 o

f m
ax

im
um anti-IL-4

no IFN-γ
IL-4
no IFN-γ

anti-IL-4
IFN-γ

IL-4
IFN-γ

Isotype

c d

STAT4

%
 o

f m
ax

im
um

no IL-12
no IFN-γ

IL-12
no IFN-γ

no IL-12
IFN-γ
IL-12
IFN-γ

Isotype

e f

Figure 2.13: STAT4 correlates positively with IFN-γ and negatively with IL-12. a STAT4 expression in
response to different cytokine combinations with and without IFN-γ. b Dose response of STAT4 to IFN-γ
with IL-12 (full lines) or without IL-12 (dotted lines), in the presence of IL-4 (purple lines) or anti-IL-4 (blue
lines). c STAT4 expression in response to different cytokine combinations with and without IL-12. d Dose
response of STAT4 to IL-12 with IFN-γ (full lines) or without IFN-γ (dotted lines), in the presence of IL-4
(purple lines) or anti-IL-4 (blue lines). e STAT4 expression in response to different cytokine combinations
with and without IL-4. f Dose response of STAT4 to IL-4 with IFN-γ (full lines) or anti-IFN-γ (dotted
lines), in the presence of IL-12 (purple lines) or without IL-12 (red lines).
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Figure 2.14: STAT6 correlates negatively with IFN-γ and positively with IL-4. a STAT6 expression in
response to different cytokine combinations with and without IFN-γ. b Dose response of STAT6 to IFN-γ
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2.4 The amounts of polarising cytokines are predict-

ive for the recall response of most cytokines

Th cells exert their function by secreting subset-specific effector cytokines both

during differentiation in the course of a primary immune response and as memory

cells, during a recall response triggered by a TCR stimulus (i.e., a secondary infec-

tion). TCR stimulation (here by addition of PMA and ionomycin, which mimick a

strong TCR stimulus) of differentiated Th cells causes reactivation of the cytokine

profile acquired during differentiation without the need for additional cytokine

cues. Th1 cells secrete IFN-γ 46, whereas Th2 cells secrete IL-4, IL-10 and IL-1347,

both cell types secrete IL-2 and TNF-α, although they are preferentially expressed

by Th1 cells181; hybrid subsets stably co-produce Th1 and Th2 cytokines82,83,84.

IL-5 is also expressed by Th247 and hybrid cells; however, two weeks of consec-

utive differentiation are necessary to up-regulate IL-5 production in vitro, so that

we do not consider it in this study. Binding of the master transcription factors to

cytokine genes has been shown to result in epigenetic modifications42. To study

the relation between MTF expression and cytokine recall response, we cultured

IFN-γ- and IL-4-competent naive Th cells with a gradient of both IL-12 and IL-4

(without addition of IFN-γ, relying on the autogenous production by the cells)

and measured T-bet and GATA-3 protein on day 5 (see figure 2.9), as well as IFN-γ,

IL-4, IL-13, IL-10, TNF-α and IL-2 production after restimulation of the cells. The

results are shown in the form of heat maps of T-bet and GATA-3 expression directly

before the restimulation (also see Figure 2.9 for the flow cytometry plots and dose

responses) and of cytokine production in terms of frequency of producing cells

directly after restimulation in Figure 2.15a and b, respectively.

As observed previously, T-bet expression both increased with the IL-12 concen-

tration (x-axis) and decreased with the IL-4 concentration (y-axis) (Figure 2.15a,

upper panel), while the expression of GATA-3 increased with IL-4 and decreased

with IL-12 (Figure 2.15a, lower panel). In addition to graded T-bet and GATA-3

co-expression patterns, we observed gradients in the frequency of cytokine produ-

cers, which were most pronounced for IFN-γ, IL-4, TNF-α and IL-2 (Figure 2.15b).

The frequency of IFN-γ producers was increased by IL-12 and reduced by IL-4,

showing a pattern similar to that of T-bet expression. While TNF-α and IL-2 also

correlated positively with IL-12 and negatively with IL-4, the resulting expression

patterns looked more like an inverse image of the GATA-3 pattern than like the

T-bet pattern. Looking at Th2 cytokines, we observed inverse correlations between

the frequency of IL-4 producers and the IL-12 and IL-4 concentrations added to

the culture to those present for IFN-γ, TNF-α and IL-2: more added IL-4 led to

more IL-4 producers, while more IL-12 reduced the number of IL-4 producers.

Qualitatively, this resembled the GATA-3 expression heat map. IL-13 production,
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Figure 2.15: Cytokine expression largely reflects T-bet and GATA-3 expression. FACS-sorted naive IFN-
χ- and IL-4-competent CD4 T cells were activated with APCs and GP61≻ 80 peptide under the indicated
conditions (legend on the right). On day 5, T-bet and GATA-3 expression levels were measured before the
cells were restimulated with PMA and ionomycin in the presence of brefeldin A for 3 hours. Cytokines
were then stained intracellularly. a Heatmap of T-bet and GATA-3 intensities before restimulation. b
Heatmaps of IFN-χ, IL-4, IL-13, TNF-ϕ, IL-2 and IL-10 percentages of producing cells.

although enhanced by the presence of added IL-4 (y-axis), seemed to be strongly

repressed by Th1 polarising cytokines; indeed, the mere absence of anti-IFN-χ

nearly abrogated its expression, even if high IL-4 concentration were used (second

column). IL-10 production showed a complicated pattern: it was clearly positively

correlated to the IL-4 concentration in the absence of Th1 cytokines (left column),

but also enhanced by high IL-12 (right columns). Very little IL-10 could be detected

with low to intermediate IL-12 concentrations in the absence of IFN-χ blockade,

unless high IL-4 concentrations were used (centre part of the plot).
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Several regulatory patterns seemed to exist for cytokine expression; IFN-γ,

TNF-α and IL-2 correlated positively to IL-12 and negatively to IL-4, but while

IFN-γ mirrored T-bet expression, TNF-α and IL-2 were inverse images of

GATA-3 expression. IL-4 and IL-13 were increased by IL-4 and decreased by

IL-12; IL-4 strongly mirrored GATA-3 expression, while IL-13 showed a mixed

pattern. IL-10 production correlated to IL-4, but both this correlation and the

frequency of producers were modulated by IL-12 in a complex manner.

2.5 Conclusion

Taken together, these results about STAT phosphorylation, master transcription

factor expression, total STAT expression and cytokine production showed that

graded stimuli induce graded responses and put multiple cross-effects between

the Th1 and Th2 inducing pathways in evidence. The latter occurred at multiple

levels: on the level of STAT phosphorylation, we observed phosphorylation of

typically Th1 STATs downstream of IL-4; on the transcription factor expression

levels, we observed repression of GATA-3 downstream of IFN-γ and IL-12 and

of STAT6 downstream of IFN-γ; and finally, down-regulation of IL-13 production

in response to Th1 cytokines. However, the piecemeal inspection of the multiple

dose-response data did not yield a clear picture of the underlying regulatory

interactions. The multiple correlations observed make it difficult to determine

which factor influences which other factor, most of all if the whole dataset, and not

only day four, is studied. We thus needed a more systematic approach to unravel

the topology of the signalling network, which will be the topic of the next chapter.





Chapter 3

Linear regression analysis

In Chapter 2, we presented a series of titrations of the cytokines IFN-γ, IL-12 and IL-

4 in differentiating T helper cells during which the downstream phosphorylation

of STAT1, STAT4 and STAT6, respectively, as well as the total protein expression

of the same STATs and T-bet and GATA-3 were measured. We analysed the

dose responses of each of these nine protein species in order to gain insights

into the integration of multiple signals resulting in Th1, Th2 and hybrid Th1/2

cells differentiation, as well as the cytokine production of the differentiated cells.

Multiple correlations, both positive and negative, were put in evidence by a

qualitative analysis of the data; however, the amount of data generated required a

more systematic approach to clarify the relationships at play between the different

transcription factors. Furthermore, as the protein amounts were measured using

flow cytometry, a technology yielding quantitative results, a method providing

quantitative information about the different mechanisms observed would allow a

better analysis of the Th1/Th2 regulatory network studied.

Based on previous knowledge, we started by defining three layers of regulatees

and regulators. The first layer is composed of the cytokines regulating STAT

phosphorylation, the second of active transcription factors (i.e., the phosphorylated

STATs, T-bet and GATA-3) regulating transcription factor expression, and the last

of T-bet and GATA-3 regulating cytokine production. Although activated STATs

have been shown to be involved in cytokine regulation, the protocol used in

this study focused on cytokine expression in differentiated cells following TCR

stimulation in the absence of polarising cytokines, and thus in the absence of

relevant amounts of phosphorylated STATs. We therefore omitted the latter in

our analysis of cytokine expression. To systematically analyse the titration data

presented in Chapter 2 in order to derive the topology of the regulation network,

we used a series of linear regression models describing how a layer of regulators
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Figure 3.1: Mechanistic assumption for Th cell differentiation. We assumed that the cytokines mediate
STAT phosphorylation, allowing the active pSTATs to regulate the expression of the master transcription
factors and the STATs. The master transcription factors in turn regulate each other’s expression, the
expression of the STATs and cytokine production upon restimulation.

controls a corresponding layer of regulatees:

regulateei = α0 +
∑
j

αj · regulatorj

The advantages of linear regression models are that they allow a straightfor-

ward and unbiased analysis of trends in the data with very few assumptions. In

our cases, the only assumption was the hierarchy of the network presented in

Figure 3.1, which is based on reliable biological knowledge: cytokines induce STAT

phosphorylation and transcription factors regulate the transcription of genes.

To allow for rigorous model selection, we considered a family of models

composed of all possible combinations of the potential regulators of each regulatee.

Specifically, this family contains all models with single regulators, all regulator

pairs, triplets, and so on. The models describing the amounts of phosphorylated

STATs, total STATs, T-bet, GATA-3 and fraction of cytokine producers were fitted to

the normalised data derived from all the titrations performed in order to determine

the values of the regression coefficients αj . We tested for each regulator wether it

made a significant contribution to the levels of the regulatee using the F -statistic

in analysis of variance (ANOVA) calculations182. In order to compare the models

for each regulatee and determine which of the regulators were significant for its

regulation, we ranked the models by goodness of fit (measured by the coefficient of

determination, R2) and Akaike information criterion183,184(AIC). R2 ranges from 0

to 1 and indicates the fraction of the data that is explained by the model while the

AIC additionally implements a trade-off between complexity of the model and

goodness of fit, allowing to quantify the quality of each model relative to the others.

The model with the lowest AIC, the highest R2 and no non-significant parameter
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was the most likely to explain the experimental data. We further inspected the

quality of the model fits using (i) Cook’s distance, which put outliers in evidence182,

and (ii) the probability plots of the residuals as well as the residuals themselves to

ascertain their normal distribution and the absence of bias in the model182. This

analysis and the associated statistics were computed using Wolfram Mathematica

10 (see Section 6.2.2 for more details).

3.1 STAT activation is induced, but not repressed, by

both canonical and non-canonical cytokines

The first layer of regulation downstream of the polarising cytokines is the phos-

phorylation of the STATs. The visual analysis of the data presented in the previous

chapter suggested the presence of several cross-effects between cytokines on STAT

phosphorylation. Such positive effects could be due to activation of non-canonical

STATs by cytokines or to up-regulation of signalling components, whereas neg-

ative effects could be caused by the induction of negative regulators of STAT

phosphorylation (e.g., SOCS proteins179,180) or down-regulation of components of

the signalling pathway. We analysed the effect of the cytokines on the phosphoryla-

tion level systematically. As dynamic regulation of the total STAT expression is

also reflected in the amount of pSTAT that is measured, without it being a direct

effect on phosphorylation, we computed the relative pSTAT values which inform

us about the fraction of protein being phosphorylated independently of the total

amount expressed. The idea is that STAT phosphorylation is a fast process (typic-

ally happening in 10 to 20 minutes) while changes in STAT expression occur on

much larger timescales. The relative pSTAT values were obtained by co-staining

pSTATs and total STATs during the experiments and dividing the pSTAT values by

the corresponding total STAT values after normalisation:

pSTATrel,i =
pSTATi − baseline

STATi

for i = 1, 4, 6 and each experiment. The baseline was set to be equal to the lowest

normalised pSTAT value for each experiment and each day.

We began by considering all possible models of how three cytokine stimuli

could control the phosphorylation of each of the three STATs, resulting in seven

models for each pSTAT (Figure 3.2). As input variables, we chose the logarithms

of the cytokine concentration,
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Figure 3.2: Possible ways of STAT phosphorylation. The general assumption that each cytokine can
induce or repress the phosphorylation of each STAT is tested by comparing models representing all the
different cytokine combinations.

motivated by the fact that receptor occupancy saturates. We performed this

linear regression analysis separately for each day.

pSTATrel↪i = ϕ1↪ilog(IFN-χ) + ϕ2↪ilog(IL-12) + ϕ3↪ilog(IL-4)

for i = 1↪ 4↪ 6 and allowing each ϕj↪i to be equal to zero; i.e., each cytokine to have

no effect at all on the phosphorylation of each STAT. The fitting to the relative

pSTAT data (ranged between 0 and 1) allowed us to compare the regression

coefficients obtained for different days.

The ranking of the models by goodness of fit and AIC is shown in Figure 3.3

for day 1 for pSTAT1 and day 3 for pSTAT4 and pSTAT6 (the days shown here

were those with the best-fitting models, see Table 3.1 for the other time points). We

selected the best model for each pSTAT according to the value of the AIC: the model

with the lowest AIC was best able to fit the data with only significant explanatory

variables. Standard diagnostics such as the plotting of Cook’s Distance, computing

the probability plots of the residuals and residual inspection were performed to

confirm that the model fits were satisfactory (Supplementary Figure 7.4).
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Figure 3.3: STAT phosphorylation can be induced by several non-canonical cytokines. The best model
is boxed and is the one with the lowest AIC, the greatest R2 and only significant regressors. Left: models
describing pSTAT1 on day 1; middle: models describing pSTAT4 on day 3; right: models describing
pSTAT6 on day 3.
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Using these linear modelling approach, we can indeed explain much of the

measured variability in the pSTAT data on most days with the combined effects

of the cytokine stimuli (Table 3.1; coefficients of determination, R2, for pSTAT1

0.32 to 0.75, for pSTAT4 0.62 to 0.75 and for pSTAT6 0.47 to 0.88). The finding that

all regression parameters are non-negative implies that cytokines only activate

(and never inhibit, in this particular setup) STAT phosphorylation (Table 3.1). This

finding implies that potential inhibitory cytokine effects are not due to crosstalk in

signal transduction.

The regression analysis identifies the known canonical signalling pathways (i.e.,

pSTAT1 activation by IFN-γ, pSTAT4 activation by IL-12 and pSTAT6 activation by

IL-4). In addition, we find weaker, non-canonical activations: phosphorylation of

STAT1 by IL-12, as well as phosphorylation of STAT1 and STAT4 by IL-4. Looking

at the kinetics of STAT1 phosphorylation, we observe a decrease in goodness

of fit from day 3 on accompanied by a reduction in the strength of the IFN-γ

effect, which corresponds to the time point where pSTAT1 amounts decreased. In

contrast, pSTAT4 levels are well explained during the whole time course; however,

the IL-12 effect becomes stronger with time, reflecting the late increase in pSTAT4.

pSTAT6 phosphorylation is only linked to IL-4, and this effect remains stable with

time. We summarised these results by averaging the regression coefficients over

days 1 to 5 for each interaction (Figure 3.4a, hitherto undescribed effects are shown

as green arrows here and later on).

The predictions of the regression modelling were verified directly by flow

cytometry; plots of the response of the pSTATs to their non-canonical cytokines on

day 3 of culture are shown in Figure 3.4b. The left panel shows the phosphorylation

of STAT1 (top) and the absence of phosphorylation of STAT6 (bottom) in response

to IL-12; STAT1 phosphorylation was increased by 45 ng/ml IL-12 2.5 times above

baseline. The middle panel shows that neither STAT4 nor STAT6 phosphorylation

were increased by IFN-γ. Finally, the right panel shows a 2-fold increase of STAT1

phosphorylation and a 2.9-fold increase of STAT4 phosphorylation in the presence

of IL-4 compared to the blockade of IL-4.

pSTAT1 pSTAT4 pSTAT6
IFN-γ IL-12 IL-4 IL-12 IL-4 IL-4

Day α1 α2 α3 R2 α2 α3 R2 α3 R2

1 0.67 0.21 0.26 0.75 0.34 0.28 0.63 0.91 0.88
2 0.6 0.4 0.7 0.7 0.63 0.17 0.7 0.88 0.85
3 0.15 0.46 0.39 0.39 0.63 0.27 0.75 0.85 0.85
4 0.2 0.26 0.34 0.34 0.69 0.15 0.69 0.91 0.81
5 0.19 0.1 0.32 0.32 0.7 0.17 0.62 0.73 0.47

Mean 0.36 0.29 0.2 0.5 0.6 0.21 0.68 0.86 0.78

Table 3.1: Best-fit parameters and R2 for pSTAT1, pSTAT4 and pSTAT6 on each day
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Figure 3.4: Observed ways of STAT phosphorylation. a Graphical representation of the best linear
models describing the effect of IL-12, IFN-γ and IL-4 on STAT1, STAT4 and STAT6 phosphorylation.
Grey arrows represent previously described interactions, green arrows hitherto undescribed mechanisms.
Numbers show the average strength of the effect the cytokines have during the 5 days of culture. b Flow
cytometry measurements of the non-canonical pSTATs downstream of IL-12 (left), IFN-γ (middle) and
IL-4 (right) on day 3 of culture.

Linear regression analysis allowed us to quantify statistically significant effects

of polarising cytokines on STAT phosphorylation. The challenge of naive T cells

with mixed Th1-Th2 cytokine stimuli revealed canonical and non-canonical

cytokine-induced STAT phosphorylation. Specifically, in addition to the well-

studied and dominating activation of STAT1 by IFN-γ, STAT4 by IL-12 and

STAT6 by IL-4, the activation of STAT1 and STAT4 by IL-4 as well as the

activation of STAT1 by IL-12 was observed. No negative regulation of STAT

phosphorylation by IFN-γ, IL-12 or IL-4 was observed.
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3.2 Transcription factor expression can be explained

by linear combinations of the weighted sums over

time of active transcription factors

Having established how the pSTATs depended on the cytokine inputs, we moved

on to the next layer of the Th1/Th2 regulatory network and analysed how tran-

scription factor expression is regulated. Complex interdependencies of the cy-

tokines in influencing the transcription factor expression observed in the data were

described in the previous chapter, which we again sought to capture by linear

regression models. Because cytokine signalling is carried out by pSTATs and the

master transcription factors and STATs are known to be their direct targets, and

because previous work has indicated that MTFs can affect each other’s expression,

we used the pSTATs and T-bet as explanatory variables (regulators) for GATA-3 ex-

pression, the pSTATs and GATA-3 for T-bet expression, and the pSTATs, T-bet and

GATA-3 for STAT1, STAT4 and STAT6 expression (Figure 3.5). Although GATA-3

and T-bet are known to enhance their own expression though several mechanisms,

the master transcription factors could not be included in the linear models describ-

ing their own expression; indeed, auto-activating loops cannot be represented

in linear models, as they only quantify the correlation between factors and one

factor always correlates 100% with itself (so that T-bet would be best explained

by only T-bet itself, for example). However, we expect that this is not a major

restriction of the analysis, because auto-activation has primarily been implicated

in the maintenance of master transcription factor expression, whereas we study the

induction phase. In contrast to the master transcription factors, we had separate

measurements for the total and active, phosphorylated STATs, allowing us to use,

for example, pSTAT1 as a regulator for total STAT1. The distinct measurements

of pSTATs, used as regulators, and total STATs, which are regulatees, allowed the

identification of positive feedback loops of the phosphorylated STATs on the total

STATs. No such distinction could be made for the master transcription factors,

and a variable cannot be simultaneously regulator and regulatee in linear models.

Hence models could not include auto-activation of T-bet and GATA-3.

3.2.1 The regulation of STAT expression happens on a slower
timescale than the regulation of T-bet and GATA-3

In contrast to the regulation of STAT phosphorylation by the cytokines, which is a

fast process, regulation of expression can affect the protein levels for several days

thanks to a longer protein half-live and the effect of epigenetic modifications, so

that we considered the possibility that the regulatory effects of the transcription

factors were cumulative over time. Indeed, when measuring the amount of a



60 3. Linear regression analysis

TFi

TF1

t

∫dt

TF2

t

∫dt ?
...

Model:
1
2
3
4
5
6
7
8

pSTAT1 + pSTAT4 + pSTAT6
pSTAT1 + pSTAT4
pSTAT1 + pSTAT6
pSTAT4 + pSTAT6
pSTAT1
pSTAT4
pSTAT6
Ø

Ø      
GATA-3
T-bet
GATA-3 + T-bet

A    
B
C
D

Model family: +

Figure 3.5: Possible ways of transcription factor transcription regulation. The general assumption is
that each transcription factor can contribute in a negative or positive manner to the expression of another
transcription factor, and that these contributions are cumulative over time, leading to up to 32 different
models for a transcription factor. Possible models for T-bet are A+i and B+i (i = 1...8), for GATA-3, A+i
and C+i (i = 1...8), and for all three STATs X+i (X = A...D and i = 1...8).

protein species at a certain time point, not only the acutely induced protein can be

detected, but also the proteins produced at earlier time points still present in the

cell. Furthermore, we postulated that the effect of signalling on the transcription

factor expression decreased with time, e.g., that signalling occurring on day 1

had less influence on the expression on day 4 than signalling occurring on day 4

due to protein degradation, and that the correlation between a regulatee and a

regulator would therefore be stronger when quantified at the same time point than

if the regulator was measured at an earlier time. We thus express the relationship

between a regulatee and its regulators as follow:

TFi,T =
∑
j

αj ·
T∑
t

e−λ·(T−t) · TFj,t

for T = 1...5 and all combinations of j for each i, and allowing each αj = 0; i.e., all

possible combinations of transcription factors. The factor e−λ·(T−t) is the weight of

the regulators depending on the time point t of their measurement. We thus had

16 different models for T-bet and GATA-3, and 32 for each of the STAT proteins

(Figure 3.5).

When visually analysing the data, we chose to focus our analysis on day 4, as

the Th cells had already reached a distinct phenotype by that point as judged by

master transcription factor expression. Hence we used the weighted sum of the

pSTATs as well as of T-bet and GATA-3 amounts from day 1 to 4 to explain the total

expression of the transcription factors on day 4, but still considered the similar

analysis performed on the other days which yielded similar results. Indeed, the

regression analysis was performed in the same fashion using the weighted sum

from day 1 to day n to explain the expression on day n, where n = 1, 2, 3, 4, 5; the
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Figure 3.6: Influence of λ on the weight each day. The functions e−λ·(T−t) with T = 4 and t = 1...4
describe the decrease of the weight of each transcription factor with time for different values of λ.

T-bet GATA-3 STAT1 STAT4 STAT6
λ (days−1) 0.8 1 0.4 0.2 0.4

Table 3.2: λ values of the best fits

qualitative and quantitative results (i.e., which regressors were significant as well

as their weight) of the regression analysis for the different days were compared

and found to be consistent over time. We started by estimating the best value for

λ, which represents the ‘memory’ of the regulated transcription factor for previous

influence of other transcription factors. The influence of the value of λ on the

weight given to each day is illustrated in Figure 3.6: the higher λ is, the less early

time points influence the expression at later time points; e.g., with λ = 0, all time

points have the same weight, while with λ = 1, the weight of day 1 is less than one

tenth of that of day 4 in explaining the expression of the regulatee on day 4. To

estimate λ, we used the most complex linear model of each family (always leading

to the best R2), fitted the α coefficients for increasing λ values and compared

the resulting R2. The value of λ leading to the highest R2 was used for further

analysis. We obtained the best fits to the data for all transcription factors if earlier

time points retained an influence on controlling the final expression level but with

reduced weight (Figure 3.7 and Table 3.2). Specifically, the earlier time points seem

to be more important for the STAT proteins (with λ values of 0.4, 0.2 and 0.4 for

STAT1, STAT4 and STAT6, respectively) than for the master transcription factors

(with λ values of 0.8 and 1 for T-bet and GATA-3, respectively).

The expression of the transcription factors show a ‘memory’ for previous tran-

scription factor activity as it is influenced by the expression of regulators several

days earlier. This early expression of the regulators has a more important effect

on the STATs than on the master transcription factors.
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Figure 3.7: Regulation on earlier days have less influence on transcription factor expression than
regulation directly preceding the measurement. The most complex model for each transcription factor
was fitted with different values for λ for day 4 of culture and the resulting R2 were compared.

3.2.2 T-bet expression is inhibited by GATA-3, while GATA-3 ex-
pression is repressed by pSTAT1 and pSTAT4

Master transcription factors are crucial for determining the phenotype of Th cells

after differentiation. In Chapter 2, we observed the expected up-regulation of

T-bet downstream of IFN-γ and IL-12 and of GATA-3 downstream of IL-4, but

also inter-lineage correlations as GATA-3 expression was repressed by both Th1

cytokines. However, as several transcription factors correlate positively with one

cytokine (e.g., pSTAT4, pSTAT1 and T-bet with IL-12), classical analysis of the data

could not tell on which transcription factors were responsible for the observed

effects. In order to study and quantify these interactions and systematically search

for other possible regulatory mechanisms, we proceeded to analyse the regulation

of T-bet and GATA-3 during our titration experiments using a linear regression

analysis approach. We used the weighted sums over time of the pSTATs and T-bet

or GATA-3 as explanatory variables for GATA-3 or T-bet, respectively, as well as

the values of λ determined as described in the previous section for the weighting

factors (c.f. Table 3.2 and Figures 3.5, 3.6 and 3.7). We then fitted all possible

models to the titration data and compared the results for the different models in

each family in order to find the best-fitting one. To do so, we classified the models

by R2 and AIC values, and selected the model with the lowest AIC comprising

only parameters that were significantly different from zero (Figure 3.8). As for the

pSTAT models, we ascertained that the standard model diagnostics of the selected

models were satisfactory (Supplementary Figure 7.5).
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Figure 3.8: T-bet is regulated by pSTAT1, pSTAT4 and GATA-3, while GATA-3 is only regulated by
the pSTATs. The best model is boxed and is the one with the lowest AIC, the greatest R2 and only
significant regressors. Left: models describing T-bet on day 4; right: models describing GATA-3 on day 4.

T-bet GATA-3
Day pSTAT1 pSTAT4 GATA-3 R2 pSTAT1 pSTAT4 pSTAT6 R2

1 0.98 0 0 0.8 -0.31 -0.03 0.89 0.74
2 0.92 0.18 -0.1 0.87 -0.17 -0.13 0.87 0.78
3 0.58 0.47 -0.24 0.83 -0.3 -0.21 0.87 0.84
4 0.34 0.62 -0.32 0.82 -0.35 -0.21 0.82 0.81
5 0.18 0.69 -0.34 0.81 -0.36 -0.35 0.68 0.59

Table 3.3: Best-fit parameters and R2 for T-bet and GATA-3 on each day.

The values corresponding to the best fit for each model family are shown in

Table 3.3 and represented graphically for day 4 in Figure 3.9a. The regression

models fit the data very well (R2 = 0.82 and 0.81 for T-bet and GATA-3, respectively,

on day 4). They recover the known mechanisms of T-bet up-regulation by pSTAT4

and pSTAT1, and of GATA-3 up-regulation by pSTAT6. Surprisingly, no direct

role for T-bet in GATA-3 regulation emerges: the negative regulation of GATA-3

observed downstream of IFN-χ and IL-12 is predicted to be carried out by both

pSTAT1 and pSTAT4. Moreover, T-bet is predicted to be inhibited by GATA-3 and

not by pSTAT6. In this respect it is interesting that no clear negative correlation to

IL-4 could be observed in our previous qualitative analysis, supporting an effect

mediated by GATA-3 which is regulated by more than IL-4 rather than a direct

effect of pSTAT6 which is tightly correlated to the IL-4 concentration.

The kinetic nature of the data allowed us to do a linear regression analysis for

the expression on each day in order to study the changes in regulation during the

week of differentiation. The best models were able to explain T-bet and GATA-3

expression well on all five days (R2 for T-bet 0.8 to 0.87 and for GATA-3 0.59 to 0.84,

Table 3.3). The strength of regulation of pSTAT1 and pSTAT6 on GATA-3 show

little consistent change with time, while the effect of pSTAT4 increases during

differentiation. However, when considering T-bet regulation on the different days

(Table 3.3 and Figure 3.9b), a decrease in the strength of regulation by pSTAT1 can

be observed from day 2 on, while the effect of both pSTAT4 and GATA-3 increase

until the end of the kinetics.
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Figure 3.9: Observed ways of MTF regulation. a Graphical representation of the best linear models
describing the effect of pSTAT1, pSTAT4, pSTAT6 and GATA-3 on T-bet and GATA-3 expression. Grey
arrows represent previously described interactions, green arrows hitherto undescribed mechanisms.
Numbers show the strength of regulation on day 4. b Evolution of the relative weights (absolute values)
of pSTAT1, pSTAT4 and GATA-3 regulation on T-bet during the culture.

Linear regression analysis predicts T-bet to be up-regulated by pSTAT1 and

pSTAT4, the first having a greater effect at earlier time points and the latter

at late time points. GATA-3 is predicted to have an increasing negative effect

on T-bet. On the Th2 side, GATA-3 is predicted to be positively regulated by

pSTAT6 with little change over time, and negatively regulated by both pSTAT1

and pSTAT4, the latter having an increasing effect with time.
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Figure 3.10: pSTATs have an important role in the regulation of STAT expression. The best model is
boxed and is the one with the lowest AIC, the greatest R2 and only significant regressors. Top left: models
describing STAT1 on day 4; top right: models describing STAT4 on day 4.; bottom; models describing
STAT6 on day 4.

3.2.3 Total STAT expression is strongly regulated by the pSTATs
and master transcription factors

In Chapter 2, we observed dynamical regulation of the total protein expression

of STAT1, STAT4 and STAT6 downstream of IFN-χ, IL-12 and IL-4. STAT1 and

STAT4 were positively correlated to IFN-χ and negatively to IL-12, while STAT6

was strongly induced in the presence of IL-4 and repressed by IFN-χ. Furthermore,

STAT4 expression decreased in response to IL-4 in certain conditions. As was the

case for T-bet and GATA-3, simple visual analysis of the data did not allow for

the quantification of the observed regulation, nor for the determination of the

transcription factor responsible for the observed effect. We thus proceeded to

systematically extract the regulatory network underlying total STAT expression

regulation, using the same regression analysis described above: as the most

prominent cytokine-specific active transcription factors are the pSTATs and T-

bet and GATA-3, we took them as explanatory variables for the regression models,

analogous to the models for T-bet and GATA-3 expression above, and included

a weighted sum of the regulators with the previously determined values for υ

(c.f. Table 3.2 and Figures 3.5, 3.6 and 3.7). After fitting all possible models to the

titration data, we selected the best models according to the R2 and AIC values

(Figure 3.10) and verified standard model diagnostics (Supplementary Figure 7.6).
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STAT1 STAT4
Day pSTAT1 pSTAT4 T-bet R2 pSTAT4 T-bet GATA-3 R2

1 1.1 -0.16 0 0.79 0 0 0 0
2 0.9 -0.47 0.4 0.86 0 0.35 -0.16 0.21
3 0.92 -0.6 0.38 0.8 -0.18 0.46 -0.29 0.3
4 0.88 -0.44 0.39 0.83 -0.71 0.81 -0.12 0.51
5 0.92 -0.41 0.22 0.87 -0.41 0.78 -0.18 0.43

STAT6
Day pSTAT1 pSTAT6 R2

1 0 0.73 0.52
2 0 0.76 0.57
3 -0.35 0.79 0.67
4 -0.49 0.78 0.72
5 -0.39 0.56 0.38

Table 3.4: Best-fit parameters and R2 for STAT1, STAT4 and STAT6 on each day.

We again achieved good fits to the collective data on day 4 (R2 = 0.83, 0.51 and

0.72 for STAT1, STAT4 and STAT6, respectively; Table 3.4 and Figure 3.11). The

models reveal four positive and four negative regulations of STAT expression on

day 4 (Figure 3.11). All positive interactions act within the Th1 or Th2 pathways.

By contrast, negative regulations are observed between the Th1 and Th2 pathways,

but also within the Th1 pathway. STAT1 is found to be up-regulated by both

pSTAT1 and T-bet, but repressed by the Th1 factor pSTAT4. STAT4 is regulated in

a similar fashion: its expression is increased by T-bet and repressed by pSTAT4;

in addition, it is down-regulated by GATA-3. STAT6 is induced by pSTAT6 and

down-regulated by pSTAT1.

Kinetic analysis show that the effect of pSTAT1 on STAT1 expression stays

relatively constant, while those of pSTAT4 and T-bet on STAT1 tend to increase

with time. This can also be observed when considering STAT4 regulation; the effect

of GATA-3 on the latter shows no constant change with time. The up-regulation

of GATA-3 by pSTAT6 remains similar throughout the week, while repression by

pSTAT1 only becomes significant on day 3.

Linear regression analysis predicts that several self-reinforcing loops are in-

volved in the regulation of total STAT expression: pSTAT1 and pSTAT6 up-

regulating STAT1 and STAT6, respectively, and T-bet activating STAT1 and

STAT4 expression. In contrast, pSTAT4 is predicted to inhibit the expression of

both Th1-specific signal transducers STAT1 and STAT4. Mutually repressive

mechanisms described by the best-fitting models include the down-regulation

of STAT6 by pSTAT1 and of STAT4 by GATA-3.
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Figure 3.11: Observed ways of STAT regulation. Graphical representation of the best linear models
describing the effect of pSTAT1, pSTAT4, pSTAT6, T-bet and GATA-3 on STAT1, STAT4 and STAT6
expression. Grey arrows represent previously described interactions, green arrows hitherto undescribed
mechanisms. Numbers show the absolute value of strength of regulation on day 4; 0 stands for non-
significant effect.

3.3 Master transcription factors expression is predict-

ive for the cytokine recall response

We determined how cytokine signals influence transcription factor expression via

specific signal transducers, the STAT proteins. The next step was to study how

this affected the function of Th cells, which is carried out by secretion of effector

cytokines. In chapter 2, we observed similarities in the expression patterns of T-bet

and/or GATA-3 and that of IFN-γ, TNF-α, IL-2, IL-4 and IL-13, while the pattern

of IL-10 expression seemed unique. We thus studied the relationship between

master transcription factors and the cytokines produced by the differentiated

cells upon restimulation using linear regression analysis. Binding of the master

transcription factors to cytokine genes has been shown, as well as contributions of

the STAT proteins. However, in the setup used, cytokine production was measured

after strong antigen stimulus in the absence of polarising cytokines and hence

without acute STAT activation. We thus constructed linear models explaining the

fraction of cytokine producers as functions of T-bet and/or GATA-3 and omitted

pSTAT contribution. The fraction of cells expressing each cytokine could thus be

explained by a family of four linear functions of either T-bet, GATA-3, both of

them or none of them.

Fi = α1,i T-bet + α2,i GATA-3

where F is the fraction of producers of cytokine i for i = IFN-γ, IL-4, IL-13, TNF-α,

IL-2, IL-10 and allowing each αj,i = 0.

The best model among a family was selected, as described before, according

the R2, AIC values and significance of the parameters of each fit, and standard

diagnostics were checked (Supplementary Figure 7.7). We found that IFN-γ

and IL-4 were well explained as functions of only T-bet or GATA-3, respectively
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Figure 3.12: Cytokine expression can be expressed as functions of T-bet and GATA-3 expression.
FACS-sorted naive IFN-γ- and IL-4-competent CD4 T cells were activated with APCs and GP61−80 peptide
under the indicated conditions. IL-12 and IL-4 were titrated against each other. On day 5, T-bet and GATA-
3 expression were measured and the cells were restimulated with PMA and ionomycin in the presence
of brefeldin A for 3 hours before cytokines were stained intracellularly. Nonlinear functions expressing
cytokine producers as function of T-bet and/or GATA-3 were derived based on linear regression analysis
and fitted to the data.

(R2 = 0.83 and R2 = 0.71), suggesting no direct role of the adverse factor in the

regulation of their recall response by antigen alone. By contrast, IL-13 is better

accounted for by both MTFs (R2 = 0.49), correlating positively with GATA-3

and negatively with T-bet. Both TNF-α and IL-2 are explained well as negative

functions of GATA-3 (R2 = 0.79 and 0.72, respectively). Of all cytokines, the IL-10

recall response was least well explained by the expression levels of the MTFs

(R2 = 0.44). The linear fits could be further improved by empirically choosing

appropriate nonlinear functions based on the results of the linear fits, with the

exception of IL-10 (Figure 3.12). The nonlinear functions suggest cooperativity

(i.e., Hill coefficients larger than 1) for the activating and inhibiting actions of both

master transcription factors.
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The linear analysis of cytokine expression upon recall response show that

quantitative differences in T-bet and GATA-3 expression levels are highly pre-

dictive for the fraction of cytokine-expressing cells upon antigen reencounter.

The expression of the Th1 and Th2 signature cytokines IFN-γ and IL-4 were

strongly positively correlated to T-bet and GATA-3, respectively, while TNF-α

and IL-2 responded negatively to GATA-3. IL-13 was correlated positively to

GATA-3 and negatively to T-bet.

3.4 Conclusion

Linear regression analysis of time-resolved dose-response data allowed us to recon-

struct the signalling network that governs master transcription factor expression

in Th cells differentiated with mixed Th1-Th2 stimuli. Specifically, we predicted

novel functional roles for pSTAT1 as well as pSTAT4 and found numerous regulat-

ory mechanisms acting on STAT1, STAT4 and STAT6 expression, thus mediating

rewiring of the signalling pathways during differentiation. Furthermore, the

expression levels of both T-bet and GATA-3 were correlated to the amount of

phosphorylated pSTAT1, pSTAT4 and pSTAT6, which in turn were determined by

cytokine signals and total STAT expression − the latter being regulated by both the

pSTATs and the master transcription factors. Although there were positive cross-

effects at the STAT activation level (STAT1 and STAT4 phosphorylation by IL-4),

all interactions between the Th1 and the Th2 players were negative at the layer of

transcription factor regulation. The regulatory mechanisms involving only Th1

or Th2 factors were enhancing ones, except for negative pSTAT4 effects on both

STAT1 and STAT4 expression. In summary, the amount of polarising cytokines

present during differentiation determines the extent of STAT phosphorylation,

total STAT expression, and master transcription factor expression in the cells,

which in turn determines the probability of cytokine expression by a cell during an

immune response, linking primary differentiation conditions to functional output.





Chapter 4

Dynamical model

In the previous chapters, we defined the topology of the network of interactions

between the cytokines IFN-γ, IL-12 and IL-4, the downstream transcription factors

STAT1, STAT4 and STAT6, and the master transcription factors T-bet and GATA-

3, using linear regression analysis on quantitative, time-resolved dose-response

data (c.f. Figure 5.1). The network depicts positive feedback loops inside the

Th1 and Th2 modules (i.e., up-regulation of STAT1 and STAT4 by T-bet, auto-

activation of STAT1 and STAT6). Between the two modules, negative interactions

dominate. The Th1 STATs play a major role in inhibiting Th2 differentiation: both

STAT1 and STAT4 repress GATA-3 in a T-bet independent manner, and STAT1

also down-regulates STAT6. Negative regulation of the Th1 pathway by the Th2

module is mediated by GATA-3 inhibiting T-bet expression. However, positive

cross-talk in the form of STAT1 and STAT4 phosphorylation downstream of IL-4

was also observed, as well as negative feedback of STAT4 on both STAT1 and

STAT4 expression inside the Th1 pathway.

The linear regression approach was very helpful for the determination of cor-

relations between the different protein species considered, but could not explain

the kinetics of protein expression during primary differentiation. Furthermore, as

several factors correlated strongly with each other (e.g., T-bet with pSTAT1 and

pSTAT4, pSTAT1 with IFN-γ and IL-12, and pSTAT4 with IL-12) and correlation

does not inform about causality, linear modelling could not determine unambigu-

ously which of the correlated factors was responsible for a given effect (e.g., is

pSTAT1 or T-bet responsible for the up-regulation of STAT4, or does the correlation

result from another mechanism not considered?). In this chapter, we developed

a dynamical model that relies on assumptions about causal relationships. By

confronting this model, based on ordinary differential equations (ODEs), with the

time-resolved data, we will gain further insight into the topology and dynamics of

the network.



72 4. Dynamical model

4.1 The fitted dynamical model is able to reproduce

the kinetics of STAT phosphorylation as well as

STAT, T-bet and GATA-3 expression

The development of a quantitatively predictive dynamical model requires the

description of the network of interactions being modelled as well as data to

estimate the model’s parameter. The topology of the Th1/Th2 signalling network

derived from the linear regression analysis was described in Chapter 3, while

the experiments presented in Chapter 2 provide quantitative data about STAT

phosphorylation as well as STAT and master transcription factor expression. We

thus proceeded with the development, fitting and testing of a dynamical model of

Th1/Th2 cell differentiation.

The network topology described in the previous chapter was used to develop

a simple dynamical mechanistic model. The model is based on ordinary differen-

tial equations and explains the expression of T-bet, GATA-3, STAT1, STAT4 and

STAT6 as well as the phosphorylation of the STATs, taking the polarising cytokine

concentrations as inputs. To account for receptor saturation and desensitization,

the logarithms of the concentrations are used. In the model used from here on, the

cytokine concentrations are assumed to decrease with time due to consumption

and degradation according to hyperbolic tangent functions (Figure 4.1). :

[IFN-γ] = CIFN-γ · (1− tanh(t− TIFN-γ)) (4.1)

[IL-12] = CIL-12 · (1− tanh(t− TIL-12)) (4.2)

[IL-4] = CIL-4 · (1− tanh(t− TIL-4)) (4.3)

The Cs are the logarithm of the starting cytokine concentrations, t the time in days,

and the T s are the half-lives of the cytokines.

The phosphorylation of the STATs is fast (minutes) compared to the timescale

of the experiment (5 days). Therefore, we express the pSTATs as algebraic functions

of cytokine concentrations, assuming a linear relationship:

pS1 = (α1[IFN-γ] + α2[IL-12] + α3[IL-4]) · S1 (4.4)

pS4 = (α4[IL-12] + α5[IL-4]) · S4 (4.5)

pS6 = (α6[IL-4]) · S6 (4.6)

The amounts of phosphorylated STATs are represented by pS1, pS4 and pS6, while

total STAT protein expression levels are represented by S1, S4 and S6. The αs the

strength of the cytokine effects on STAT phosphorylation.
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Figure 4.1: Different possible kinetics for the cytokine concentrations. The functions (1− tanh(t−T ))
with different T values used to describe the kinetics of cytokine concentration.

The transcription factor protein expression was modelled by a system of five

ordinary differential equations, one for each protein. The pSTATs were assumed

to act in concert with antigen signalling (as differentiation does not occur in the

absence of the latter), so that an equation describing the dynamics of the antigen

stimulus was added to the system:

Ag = (1− e(−t)) · e(−l2·t) (4.7)

Ṡ1 =
BS1 + β1 · T + β2 · pS1 · Ag

1 + β3 · pS4 · Ag
− δS1 · S1 (4.8)

Ṡ4 =
BS4 + β4 · T

1 + β5 · pS4 · Ag + β6 · G
− δS4 · S4 (4.9)

Ṡ6 =
BS6 + β7 · pS6 · Ag
1 + β8 · pS1 · Ag

− δS6 · S6 (4.10)

Ṫ =
BT + β9 · pS1 · Ag + β10 · pS4 · Ag

1 + β11 · G
− δT · T (4.11)

Ġ =
BG + β12 · pS6 · Ag

1 + β13 · pS1 · Ag + β14 · pS4 · Ag
− δG · G (4.12)

S1, S4, S6, T and G represent STAT1, STAT4, STAT6, T-bet and GATA-3 protein

expression, respectively. Ag represents the antigen stimulus, which increases with

time constant 1 per day and decreases with time constant l2 (Figure 4.2). pS1,

pS4 and pS6 represent the phosphorylated forms of STAT1, STAT4 and STAT6,

respectively. Each protein is produced with a basal rate Bi and degraded with

a rate δi. In addition to that, the positive and negative regulatory mechanisms

described by the linear regression analysis are added to the production rate with

weights βj . For simplicity, we only write dynamic equations for the protein

concentrations and not the respective mRNAs; due to their short lifetime, mRNA
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Figure 4.2: Different possible kinetics for the antigen signal. The functions (1 − e(−t)) · e(−l2·t) with
different l2 values used to describe the kinetics of antigen signalling.

concentrations will rather rapidly adapt to the given stimulus and hence assume

quasi-steady states.

STAT1 STAT4 STAT6 T-bet GATA-3
B 0.21 0.24 0.21 0.01 0.11

Table 4.1: Basal production rates

The model written above is composed of an algebraic part (equations 4.1 to

4.7) and a differential part (equations 4.8 to 4.12) and includes all the connections

derived from the linear regression analysis; we assumed that all regulators acted

in an additive manner. We proceeded to fit this model to the normalised titration

data in two steps: first, we fitted the algebraic part to determine the best α and

T values to model the pSTAT intensities; the T and α parameters were estimated

using Wolfram Mathematica 10 independently of the differential equation part of

the model describing transcription factors expression. The pSTAT intensities pS1,

pS4 and pS6 were fitted to the corresponding data values from the IFN-γ, IL-12

and IL-4 titrations, taking the experimental values for the total STAT intensities S1,

S4 and S6 as inputs.

Second, we fitted the parameters of the ODE system describing transcription

factor expression with Matlab using the Data2Dynamics (D2D) framework185,186.

The basal rates Bi were fixed as to obtain the initial conditions derived from the

data (Table 4.1). Equations 4.1 to 4.6 with the previously fitted values for the α and

T parameters were used as inputs. l2, the δ and the β parameters were estimated.

Furthermore, we fitted an error model to the data constituted of an absolute error

Eabs and a relative error Erel to the ODE model.

We first considered the algebraic part of the model; the best-fit parameter

values and their confidence intervals are shown in Table 4.2. The best-fit values for

the T parameters show that cytokine degradation and consumption play a minor

role in our time scale: only the IFN-γ concentration decreases significantly before
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Figure 4.3: Cytokine degradation is slow with half-lifes around 5 days. The functions (1− tanh(t−Ti)
with the fitted values for TIFN-γ , TIL-12 and TIL-4 describe the degradation and consumption of IFN-γ, IL-12
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day 5 (Figure 4.3). The values for the α parameters are consistent with our linear

regression analysis: The greatest contributions come from the canonical cytokine

upstream from the STAT (i.e., IFN-γ for pSTAT1, IL-12 for pSTAT4 and IL-4 for

pSTAT6), with smaller additions from IL-12 and IL-4 for pSTAT1 and from IL-4 for

pSTAT4 (Table 4.2).

Effect on Effect of Parameter Value Lower bound Upper bound
IFN-γ Time TIFN-γ 3.45 3.17 3.72
IL-12 Time TIL-12 5.85 5.37 6.33
IL-4 Time TIL-4 5.36 5.16 5.57

pSTAT1 IFN-γ α1 0.34 0.3 0.39
pSTAT1 IL-12 α2 0.21 0.16 0.25
pSTAT1 IL-4 α3 0.22 0.17 0.26
pSTAT4 IL-12 α4 0.49 0.45 0.53
pSTAT4 IL-4 α5 0.13 0.1 0.17
pSTAT6 IL-4 α6 0.54 0.52 0.56

Table 4.2: Parameter values for the best fit of the model describing STAT phosphorylation

Having determined the values of the parameters of the algebraic part of the

model using the experimental values for the total STAT, we could input the func-

tions describing cytokine concentration and pSTAT intensity in the complete model

and estimate the parameters regulating the expression of T-bet, GATA-3, STAT1,

STAT4 and STAT6. To do so, we used only the starting cytokine concentrations

as input values and fitted STAT1, STAT4, STAT6, T-bet and GATA-3 expression to

the corresponding normalised experimental values from the kinetic titration ex-

periments. The fitting procedure was performed 300 times with different starting

values for the parameters generated by latin hypercube sampling187 to ascertain

that a global minimum was found (Supplementary Figure 4.4a); the 95% confid-

ence intervals and the identifiability of the parameters giving the best fit were
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Effect on Effect of Parameter Value Lower bound Upper bound
Antigen Time l2 0.53 0.44 0.61

Stat1 T-bet β1 1.27 1.02 1.57
Stat1 pSTAT1 β2 5.65 4.65 6.82
Stat1 pSTAT4 β3 11.8 9.88 14.06
Stat4 T-bet β4 0.27 0.14 0.42
Stat4 pSTAT4 β5 2.1 0.44 4.28
Stat4 GATA-3 β6 0.83 0.38 1.52
Stat6 pSTAT6 β7 1.51 1.21 1.86
Stat6 pSTAT1 β8 1.31 0.59 2.16
Tbx21 pSTAT1 β9 3.95 3.27 4.89
Tbx21 pSTAT4 β10 3.26 2.66 4.07
Tbx21 GATA-3 β11 6.68 4.90 9.47
Gata3 pSTAT6 β12 4.98 3.93 6.37
Gata3 pSTAT4 β13 9.58 6.09 14.58
Gata3 pSTAT1 β14 9.13 5.06 13.58
Stat1 Degradation δS1 1.56 1.41 1.73
Stat4 Degradation δS4 0.46 0.36 0.55
Stat6 Degradation δS6 0.45 0.42 0.49
Tbx21 Degradation δT 0.27 0.18 0.38
Gata3 Degradation δG 0.46 0.41 0.51

All Absolute error Eabs 0.04 0.03 0.04
All Relative error Erel 0.31 0.29 0.33

Table 4.3: Parameter values for the best fit of the model describing TF regulation

estimated using the profile likelihood188,189. The resulting best-fit parameters

and their confidence intervals are shown in Table 4.3. All fitted parameters were

uniquely defined as determined by the profile likelihood estimations (Figure 4.4b).

The model with the best-fit parameter values allowed a good reproduction of the

global titration data, as illustrated in Figure 4.5 by scatter plots of the data points

versus the model predictions.

Having obtained uniquely defined parameters by fitting the model to the data,

we evaluated the relevance of each interaction in the model based on the linear

regressions. In order to do this, we compared the results of the fit of the complete

model to the fits of all possible models lacking one specific interaction (defined

through a regulator and its target) using the AIC (Table 4.4). Leaving out any

interaction resulted in a significantly worse fit of the model to the data (∆AIC

> 2).

To determine if the dynamical model was able to reproduce the dynamical

behaviour of the system, we selected different conditions for which to compare the

model to the data visually, as the large number of conditions made inspection of

the whole dataset difficult. We simulated the phosphorylation kinetics of the three

STATs in response to IFN-γ, IL-12 and IL-4 separately (Figure 4.6). The model was

able to reproduce the dynamics of STAT phosphorylation (the total STAT values
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Figure 4.4: Fitting the model leads uniquely defined parameters. Profile likelihood estimation of the
parameter values from the differential equation part of the model.
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Figure 4.5: The data correlates to the values generated by the fitted model. The normalised data for
T-bet, GATA-3, STAT1, STAT4 and STAT6 expression from day 1 to day 5 in all conditions was plotted
against the corresponding values computed by the fitted model.

Target T-bet T-bet T-bet GATA-3 GATA-3 GATA-3
Regulator STAT1 STAT4 GATA-3 STAT1 STAT4 STAT6
∆AIC 874.4 463.7 320.7 75.4 62.4 1193.1

Target STAT1 STAT1 STAT1 STAT4 STAT4 STAT4 STAT6 STAT6
Regulator STAT1 STAT4 T-bet STAT4 T-bet GATA-3 STAT1 STAT6
∆AIC 164.7 458.1 207.7 3.5 18.3 16.1 11.4 206.9

Table 4.4: Difference in the AIC value of all possible models lacking one interaction to the complete
model

generated by the model were used for the simulation, and not the data values

used for the fitting procedure of the algebraic part of the model); the simulated

and experimental responses of all three pSTATs to the amounts of IFN-γ, IL-12

and IL-4 used in ‘classical’ Th1 and Th2 cultures (i.e., 10 ng/ml IFN-γ, 5 ng/ml

IL-12 and 10 ng/ml IL-4) are depicted in Figure 4.6a.

In addition, we chose Th1, Th2 and hybrid Th1/2 conditions and considered

transcription factor regulation from day 1 to day 5, and compared the simulated

model values to the experimental values (Figure 4.6b). The up-regulation of T-bet

and GATA-3 was accurately reproduced, although GATA-3 was overestimated in

the classical Th2 conditions. STAT1 and STAT6 dynamics could also be explained

by the model (Figure 4.6c). STAT4 was more problematic, consistently with the

low R2 values from the linear analysis.
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Figure 4.6: The model can reproduce the time courses of up-regulation of the studied factors. a
Phosphorylation of STAT1 (blue), STAT4 (green) and STAT6 (red) downstream of IFN-χ (left), IL-12
(middle) and IL-4 (right) as predicted by the model (solid lines) and as seen in the data (dots). b up-
regulation of T-bet (left) and GATA-3 (right) during differentiation under Th1 (blue), Th2 (red) and
hybrid Th1/2 (purple) conditions as predicted by the model (solid lines) and as seen in the data (dots). c
up-regulation of STAT1 (left), STAT4 (middle) and STAT6 (right) during differentiation under Th1 (blue),
Th2 (red) and hybrid Th1/2 (purple) conditions as predicted by the model (solid lines) and as seen in the
data (dots). The dots represent the normalised geometric mean indices ◦ SD, and the model curves are
shown with the error margins fitted to the data.
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A dynamical model based on the network topology derived from linear regres-

sion analysis was able to describe and quantitatively reproduce the dynamical

behaviour of its main components, in our case, pSTAT1, pSTAT4, pSTAT6, T-bet,

GATA-3, STAT1 and STAT6.
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4.2 The dynamical model reproduces a continuum of

T-bet and GATA-3 expression levels in response

to graded stimuli

Classically, mutual inhibition and auto-activation motifs as present in our model

are thought to give rise to a bistable system in steady state, which would lead to a

digital switch between high T-bet expression and high GATA-3 expression under

mixed Th1-Th2 stimuli156, or a quadristable system allowing for an intermediate

co-expressing steady state as well as a naive low expressing state (MSc dissertation,

E. Pellet). However, our experiments have shown that there is a continuum of

expression patterns of T-bet and GATA-3 in response to titrated cytokine amounts

during differentiation (cf. Figure 2.9). Therefore, we asked which kind of steady

states our parametrised model has.

To analyse the stability of our system upon differentiation in a visually intuitive

manner, we considered the phase plane of T-bet and GATA-3 expression under

quasi-steady state assumption for STAT1, STAT4 and STAT6, i.e., the assumption

that STAT amounts did not vary anymore (Ṡ1 = Ṡ4 = Ṡ1 = 0, Figure 4.7) with fixed

values for the pSTAT intensities. We thus reduced the system to two dimensions,

T-bet and GATA-3. This approach allows to study the system at steady state and

to determine the possible stable expression patterns of T-bet and GATA-3 at the

end of differentiation. Using Wolfram Mathematica 10, we computed the T-bet-

GATA-3 pairs of values at which GATA-3 remains stable by solving Ġ = 0 and

Ṫ = 0 for GATA-3 (GATA-3 nullclines, red lines), and those at which T-bet remains

stable by solving for T-bet (T-bet nullclines, blue lines). Thus, the intersection of a

T-bet and GATA-3 nullcline represents a steady state for T-bet and GATA-3. We

also computed the vector field (blue arrows), which shows if T-bet and GATA-3

expression levels are increasing or decreasing at each point of the T-bet-GATA-3

phase plane. We titrated the input Th1 stimuli IL-12 and IFN-γ versus the Th2

stimulus IL-4 and observed the changes in the T-bet-GATA-3 phase plane.

Interestingly, our model has a unique stable steady state that moves along the

axes depending on the cytokine stimuli. Thus the model shows a continuum of T-

bet-GATA-3 expression patterns in response to mixed stimuli rather than division

of the population between GATA-3 and T-bet-expressing cells depending on the

polarising stimuli, which would become manifest by two stable steady states on

the GATA-3 and T-bet axis, respectively (Figure 4.7). This was indeed what we

had previously observed experimentally on day 5 of the IL-12-IL-4 cross-titration

in IFN-γ-producing cells: a unimodal population expressing more T-bet in the

presence of higher Th1 cytokine concentrations, and more GATA-3 in the presence

of higher IL-4 concentrations (see Figure 2.9).
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Figure 4.8: The model quantitatively reproduces independent data from an IL-12-IL-4 crosstitration.
FACS-sorted naive IFN-γ- and IL-4-competent CD4 T cells were activated with APCs and GP61−80 peptide
under the indicated conditions. IL-12 and IL-4 were titrated against each other. T-bet and GATA-3
expression on day 5 as well the the values predicted by the model are shown as heat maps and dot plots.

Having determined that the dynamical model possessed only one steady state

for T-bet and GATA-3 expression, we then considered the quantitative response

of the model to graded mixed Th1-Th2 stimuli during differentiation in the form

of the expression intensity of the master transcription factors. To do so, we

simulated the results of an IL-12-IL-4 cross-titration experiment after five days of

differentiation. Under these conditions, IFN-γ is produced by the Th cells (and not

added in a controlled manner), we extrapolated the IFN-γ concentration based on

the T-bet expression on day 5 using the model for IFN-γ production described in

Chapter 3 (see Figure 3.12):

%IFN-γ+ = 0.9 · T3.2

0.06 + T3.2

Figure 4.8 shows the comparison of the experimental values of T-bet and GATA-

3 expression to the values predicted by the model with the best-fit parameters

estimated previously. Heatmaps of T-bet and GATA-3 expression show a similar

response to IL-12 and IL-4 (Figure 4.8a) between the experimental data and the

model; T-bet showed, in both cases, an increase in the presence of IL-12 and IFN-γ

and a decrease in the presence of IL-4, while the opposite was true of GATA-3. To

verify that the model was able to quantitatively reproduce the data, we computed

the correlation between the data and predicted values; the model was able to

predict the expression of T-bet and GATA-3 accurately with correlation coefficients

R2 of 0.92 for T-bet and 0.86 for GATA-3 (Figure 4.8b).
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The dynamical model developed in this study has a single, stable fixed point

considering the quasi-steady state for T-bet and GATA-3. The value of this

fixed point moves continuously along the T-bet and GATA-3 axes depending

on the input cytokine stimuli. Furthermore, the model was able to reproduce

accurately the continuum of T-bet and GATA-3 expression levels derived from

an independent IL-12-IL4 cross-titration experiment.

4.3 The novel effects of pSTAT1 and pSTAT4 are T-

bet-independent

The linear models described several novel effects of pSTAT1 and pSTAT4 on

GATA-3, STAT1, STAT4 and STAT6, which were included in the dynamical model.

Specifically, pSTAT1 was predicted to up-regulate STAT1 expression while re-

pressing STAT6 and GATA-3 expression. Moreover, pSTAT4 was predicted to

repress STAT1, STAT4 and GATA-3 expression. Although the selection of the

best-fitting models leading to those interactions was unambiguous according to

the AIC (∆AIC > 2, see Figures 3.5, 3.8 and 3.10), the next best models also fitted

the data well and often substituted one pSTAT effect for a T-bet effect, or added

a T-bet effect to the selected model. For example, the best model for GATA-3

included pSTAT1, pSTAT4 and pSTAT6 as regulators (model A1), the next best

models, according to the AIC, were models C7, in which T-bet replaced both

pSTAT1 and pSTAT4; C3, in which T-bet replaced pSTAT4; C4, in which T-bet

replaced pSTAT1 and C1, in which a T-bet effect was added to that of pSTAT1

and pSTAT4. This is due to the high correlation between pSTAT1, pSTAT4 and

T-bet. It is therefore unclear how unambiguously the linear models can distinguish

between T-bet-dependent and T-bet-independent effects.

To evaluate the importance of these effects in the dynamical model, we com-

pared models corresponding to the linear model predictions with models lacking

pSTAT1 (Figure 4.9a) or pSTAT4 (Figure 4.9b) effects on a specific target protein.

We compared the results of the IFN-γ (for pSTAT1) or IL-12 (for pSTAT4) titrations

to the predictions of the complete model (as predicted by the linear regression

analysis) and of models lacking the studied effects (e.g., repression of GATA-3 by

pSTAT1).

In all cases, the original model reproduced the data significantly better than an

incomplete model, both qualitatively and quantitatively. The absence of a pSTAT1

effect on GATA-3 and STAT6 lead to an overestimation of both factors, while the

positive correlation between STAT1 and IFN-γ was lost if pSTAT1 wasn’t allowed

to regulate its total expression, suggesting an important role for STAT1 in GATA-3,

STAT1 and STAT6 regulation (Figure 4.9a). Similarly, the absence of pSTAT4 effects
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Figure 4.9: The model predicts important novel roles for pSTAT1 and pSTAT4. a Response of GATA-3,
STAT1 and STAT6 to an IFN-χ titration in the presence of IL-12 and IL-4 as predicted by the model (solid
lines) and as seen in the data (dots) for day 4. b Response of GATA-3, STAT1 and STAT4 to an IL-12
titration in the presence of IFN-χ and IL-4 as predicted by the model (solid lines) and as seen in the data
(dots) for day 4. The black lines are predictions by the complete model and the green lines predictions by
a model without pSTAT1 (a) or pSTAT4 (b) effects on the plotted factor. The dots represent the normalised
geometric mean indices ◦ SD, and the model curves are shown with the error margins fitted to the data.

on GATA-3, STAT1 and STAT4 caused the model to predict too high values for

those factors (Figure 4.9b).

Having established that pSTAT1 and pSTAT4 had important effects on GATA-3,

STAT1, STAT4 and STAT6 in our model, we went to test experimentally if those

effects were indeed carried out by the predicted factor, i.e., present in a T-bet-

independent manner. We first considered the role of T-bet in effects downstream

of IFN-χ predicted to be mediated by pSTAT1. To do so, we performed IFN-

χ titrations in Tbx21-/- and T-bet-competent cells and compared the responses

of GATA-3, STAT6 and STAT1 to IFN-χ (Figure 4.10). Repression of GATA-3

and STAT6 through IFN-χ was fully retained in Tbx21-/- cells and hence T-bet-

independent. STAT1 expression also remained IFN-χ-sensitive in the absence of

T-bet, indicating direct transcriptional auto-activation of STAT1. Interestingly, even

though we found T-bet to have a positive effect on STAT1, cells without T-bet had

overall higher STAT1 expression, possibly as an adaptive response to the absence

of T-bet. Thus, the novel effects of IFN-χ on both Th1 and Th2 differentiation

pathways were T-bet-independent and likely mediated directly by pSTAT1.

Next we considered the predicted pSTAT4 effects downstream of IL-12, again

by using Tbx21-/- cells to assess the role of T-bet, but additionally using Stat4-/-

cells ≻ as IL-12 can signal via STAT4 and STAT1. This allowed to test wether the

observed effect downstream of IL-12 was indeed pSTAT4-mediated (Figure 4.11) or
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Figure 4.11: The observed regulatory effects downstream of IL-12 are T-bet-independent. FACS-sorted
WT, Tbx21-/- and Stat4-/- naive CD4 T cells were activated with APCs and GP61−80 peptide under the
indicated conditions. IL-12 was titrated, and transcription factor expression levels were measured on day
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depended on T-bet or the activation of STAT1 by IL-12. The repression of GATA-3

by IL-12 was independent of T-bet and STAT1 but strongly dependent on STAT4.

Similarly, STAT1 repression by IL-12 did not require T-bet; in addition to that, in

the absence of STAT4, the STAT1 levels were somewhat lower than in WT cells

and unresponsive to IL-12. Finally, the expression of STAT4 depended strongly

on T-bet: The STAT4 levels were nearly zero in the absence of the latter. Given

this positive effect of T-bet, the observed decrease of STAT4 levels with the IL-12

dose in T-bet-competent cells might be attributed to an inhibitory effect of STAT4

on its own expression rather than a negative T-bet effect. Together these findings

indicate that STAT4 mediates the repression of both Th1 and Th2 differentiation

pathways in a T-bet-independent manner.
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The dynamical model was able to explain the emergence of a continuum of

mixed Th1-Th2 phenotypes in response to ambiguous polarising signals while

reproducing the up-regulation dynamics of the main transcription factors.

Furthermore, it predicted important, T-bet-independent roles for both pSTAT1

and pSTAT4, which we were able to confirm experimentally.

4.4 Conclusion

A simple dynamical model based on the network topology derived from linear re-

gression analysis was developed, including all interactions predicted by the linear

models in the form of ordinary differential equation for the total protein expression

and linear combinations of cytokine concentration for STAT phosphorylation. The

parameters of the model were estimated by fitting the latter to the titration data,

resulting in all parameters being uniquely defined. The fitted model was able to re-

produce the kinetics of up-regulation of the STATs, T-bet and GATA-3 as well as of

phosphorylation of the STATs in response to IFN-γ, IL-12 and IL-4. Furthermore, it

could replicate independent T-bet and GATA-3 protein expression data generated

during an IL-12-IL-4 cross-titration. Phase plane analysis of the model for T-bet

and GATA-3 at quasi-steady-state showed a single stable steady state, predicting

a continuum of T-bet-GATA-3 co-expression patterns at the single-cell level in

opposition to splitted T-bet- or GATA-3-expressing populations, as was observed

experimentally. Finally, the model described important, T-bet independent effects

of pSTAT1 and pSTAT4 on STAT1, STAT6 and GATA-3 as well as STAT1, STAT4

and GATA-3, respectively, which were confirmed experimentally using Tbx21-/-

and Stat4-/- cells.





Chapter 5

Discussion

In nearly three decades of history of Th cell research, many molecular interactions

that govern the functional phenotypes have been defined in great detail. Nev-

ertheless, a surprising finding of a continuum of hybrid Th1/Th2 states83,84,82,

with hybrid cells being maintained stably in memory phase70,82 has recently been

made. Here we have developed a systematic approach for the reconstruction

of regulatory networks that integrates multiple cytokine stimuli and applied it

to Th cell differentiation, more specifically to Th1, Th2 and hybrid Th1/2 cell

differentiation. Without investing prior knowledge about the interactions between

the known key players in Th1 and Th2 differentiation, we recovered all previously

well-documented regulatory interactions and uncovered numerous novel ones.

We were able to develop a dynamical model of Th1-Th2 cell differentiation based

on those findings that accounts for continuous levels of T-bet and GATA-3 co-

expression. Here, we will summarise our findings and discuss their significance

and importance for cellular differentiation and plasticity.

5.1 Summary of the Th1-Th2 signalling network

Using linear regression analysis on time-resolved dose-response data, we were

able to infer the signalling network leading to hybrid Th1/2 cell differentiation.

The network described in this work is summarised in Figure 5.1. Figure 5.1a

shows the relationships between cytokines, transcription factor activation and

transcription factor expression; Figure 5.1b recapitulates the strength of the effects

on gene expression, and finally, Figure 5.1c outlines the principal ways of cytokine

production regulation. This network has implications for the understanding of

hybrid differentiation and the existence of a continuum between Th1 and Th2

phenotypes. We classified the interactions detected by our analysis into three

types: auto-activating, mutually inhibiting and dampening interactions. While
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Figure 5.1: The results from the regression analysis were used to design a complete model of Th1/Th2
differentiation from the cytokine level to the MTF level and back to the cytokines. a Graphical rep-
resentation of the cytokine-STAT-MTF interactions. b Numerical summary of the interactions between
transcription factors on day 4 of culture. c Model of cytokine production regulation during recall response.

most of the mechanisms uncovered during the linear analysis were described

in previous publications, showing that the method used to reconstruct the gene

network is efficient, several novel interactions were also predicted (novel meaning

here that it has not yet been described in murine Th cells). Below is a list of all

interactions, their type as well as the references to previous publications.

Auto-activating interactions occur when one member of a pathway induces or

up-regulates a member of the same pathway. These mechanisms may help

maintain the acquired phenotype after differentiation and counteract mutual

inhibitory mechanisms in the presence of adverse stimuli. The following

interactions are auto-activating in our network:

In the Th1-pathway:

• The phosphorylation of STAT1 downstream of IFN-γ 171,172

• The phosphorylation of STAT4 downstream of IL-12173,174

• The phosphorylation of STAT1 downstream of IL-12190

• The up-regulation of T-bet by pSTAT194,191,96

• The up-regulation of T-bet by pSTAT4191,96

• The up-regulation of STAT1 by T-bet (novel)

• The up-regulation of STAT4 by T-bet (novel)

• The up-regulation of STAT1 by pSTAT1 (novel)
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• The up-regulation of IFN-γ by T-bet46

In the Th2-pathway:

• The phosphorylation of STAT6 downstream of IL-4175,176

• The up-regulation of GATA-3 by pSTAT6192

• The up-regulation of STAT6 by pSTAT6 (novel)

• The up-regulation of IL-4 by GATA-348

Mutually inhibiting interactions between the Th1 and the Th2 modules occur

when one member of a pathway represses a member of the other pathway.

Mutually inhibiting mechanisms limit the effects of signalling from the ad-

verse pathway and insure that hybrid cells do not cumulate full Th1 and Th2

functions, but display reduced Th1 and Th2 functions. They are respons-

ible for the balance between Th1-like and Th2-like phenotypic properties in

hybrid cells. Those mechanisms include the following interactions in our

system:

From the Th1-pathway to the Th2-pathway:

• The down-regulation of GATA-3 by pSTAT1 (novel)

• The down-regulation of GATA-3 by pSTAT4 (novel, although a negat-

ive correlation between IL-12 and GATA-3 was shown122, the roles of

STAT4 and T-bet were not studied)

• The down-regulation of STAT6 by pSTAT1 (novel)

From the Th2-pathway to the Th1 pathway:

• The down-regulation of T-bet by GATA-3 (novel)

• The down-regulation of STAT4 by GATA-3122,121

Dampening interactions occur when one member of a pathway down-regulates

or represses a member of the same pathway, or up-regulates a member of

the other pathway. Those mechanisms might support the development of

hybrid cells by putting a break on one pathway to allow adverse signalling

to act and also prevent over-activation of the cells in continued presence of

cytokine signals. In our network, they include:

In the Th1-pathway:

• The down-regulation of STAT1 by pSTAT4 (novel)

• The down-regulation of STAT4 by pSTAT4 (novel)

In the Th2-pathway:
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• The phosphorylation of STAT1 downstream of IL-4 (novel, described in

human colorectal cell lines193, in CD8 T cells194 and in Th2, but not Th1

cells195)

• The phosphorylation of STAT4 downstream of IL-4 (novel, described in

NK cells196)

Interestingly, an important part of the mutual inhibition was mediated by the

STATs and not the master transcription factors themselves. Indeed, while GATA-3

repressed T-bet and STAT4, the repression of the Th2-pathway was carried out

by pSTAT1 and pSTAT4 and was thus transient, as the STATs do not remain

phosphorylated long after removal of the stimuli (e.g., half-life of pSTAT1 < 2h197).

While a negative effect of IL-12 signalling on GATA-3 expression was described122,

this predates the discovery of T-bet as a Th1 master transcription factor, and thus

did not directly imply STAT4, as our work now clarified. The predominant role of

phosphorylated STAT protein over master transcription factors in regulating the

expression of the key Th1 and Th2 proteins explains how a continuum of graded T-

bet and GATA-3 expression is possible: while direct inhibition and auto-activation

of T-bet and GATA-3 would result in a system having at most four possible stable

expression patterns (corresponding to the naive, Th1, Th2 and hybrid phenotype),

the transient nature of the STAT signals makes them rheostats in the Th1/Th2

system by changing the position of the single stable steady state in function of the

cytokine inputs. This helps explain how a continuum of intermediate phenotypes

can emerge in the presence of mutual repression.

5.2 STAT activation

STAT signalling is not only essential to the immune system, but is involved in

several developmental processes and oncogenesis (e.g., STAT1 plays a role in

mammary gland development198 and gliomas199). Over 40 different factors can

activate STAT signalling pathways, thus regulating processes such as apoptosis,

differentiation and proliferation200. The study of quantitative STAT regulation in

response to different cytokines is thus not only relevant to the Th cell differenti-

ation pathways considered in this study. The analysis of STAT phosphorylation

downstream of the studied cytokines led to several interesting observations: the

long maintenance of STAT phosphorylation during a cell differentiation process,

the presence of several cross-activations outside the canonical pathways and even

between the Th1 and Th2 pathways, and the absence of negative effects directly

correlating to specific cytokine signals.
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The kinetics of STAT phosphorylation allow for a rewiring of the signalling

network

We observed that, although transient, STAT phosphorylation was long-lasting in

physiological conditions, in contrast to the prevailing paradigm in signal trans-

duction research studying short-term signalling dynamics (over at most a few

hours199). As phosphorylation and de-phosphorylation of STAT molecules are

fast processes and thus pSTATs have short half-lives (e.g., half-life of pSTAT1 <

2h in Daudi B lymphoblastoid cells197), this is very likely the result of continu-

ous phosphorylation in the presence of cytokines. The setup we used for Th cell

differentiation included the incubation of naive cells directly after their ex vivo

isolation until the end of the experiment five days later. Under such conditions,

the peak of STAT1, STAT4 and STAT6 phosphorylation downstream of IFN-γ,

IL-12 and IL-4, respectively, could be observed between day 3 and day 4. Fur-

thermore, phosphorylation was unimodal among the cell population during the

whole differentiation week, indicating that all cells were actively transducing

the cytokine signals during that time. This prolonged phosphorylation period

could be relevant for several aspects of Th cell differentiation: it could allow a

cell to respond differentially to a short cytokine exposure than to a prolonged

exposure, minimising unwanted differentiation or activation of the immune cells

(e.g., growth inhibition by pSTAT1201); it could also allow the active STATs to

act as transcription factors for longer periods, thus fine-tuning the regulation of

their target genes, specifically the Stat genes themselves, leading to rewiring of

the signalling network already during differentiation and modulating the cellular

response.

The starting and ending time points of STAT activation seemed to be controlled

by several factors, including cytokine availability and cytokine receptor expression.

Indeed, regulation of cytokine receptors takes place during differentiation (Sup-

plemental Figure 7.2). The β2 chain of the IL-12 receptor has a very low expression

in naive cells, is up-regulated by IFN-γ signalling and repressed by IL-4 sig-

nalling202,122,123 (Supplemental Figure 7.2a). We found IL12Rβ2 to be up-regulated

strongly in the presence of IFN-γ between day 1 and day 3; which correlates with

the intensity of STAT4 phosphorylation downstream of IL-12: STAT4 activation

peaks at a later time than STAT1 and STAT6 activation. The IFN-γ receptor α

chain is down-regulated during Th1 differentiation203,204, which could explain the

absence of STAT1 phosphorylation in Th1 cells at the end of differentiation, when

both pSTAT4 and pSTAT6 can be observed. Furthermore, as an important role for

STAT1 signalling during Th1 differentiation is the up-regulation of components

of the IL-12 signalling pathway, strong STAT1 signalling is not needed anymore

for Th1 differentiation once Th cells are fully IL-12 responsive. As STAT1 has

been shown to exert growth inhibition downstream of IFN-γ 201, limiting STAT1
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phosphorylation could be crucial for obtaining an effective immune response. The

α chain of the IL-4 receptor is strongly up-regulated in the presence of IL-4205

(Supplemental Figure 7.2b), making GATA-3-expressing cells more responsive

to subsequent IL-4 signals than their Th1 counterparts and thus contributing to

the maintenance of GATA-3 expression. These facts are consistent with STAT

regulation by pSTATs and participate in the rewiring of the signalling network, as

will be discussed in more details below.

Non-canonical effects on STAT phosphorylation are positive and can favour

the opposite pathway

As mentioned above, several non-canonical inductions of STAT phosphorylation

by cytokines were visible in our data: the activation of STAT1 downstream of

IL-12190, and the activation of STAT1 and STAT4 downstream of IL-4. According

to our model, IFN-γ was responsible for the activation of STAT1 during the first

two days of differentiation, while IL-12’s (lesser) effect was most visible on days 3

and 4. Thus, IFN-γ and IL-12 could be acting additively to achieve the required

amount and duration of STAT1 activation for differentiation in the Th1 direction,

potentially minimising the inhibitory effect of STAT1 on cell proliferation. The

effect of IL-4 was more surprising, as its canonical pathway through STAT6 induces

Th2 differentiation. The activation of Th1-factors could be useful for permitting

more plasticity and favouring hybrid phenotypes, or leading to the regulation of

STAT1 and STAT4 target genes that are not Th1-specific; it is unclear which form of

dimers are formed by STAT1 and STAT4 downstream of IL-4, so the target genes of

IL-4-induced pSTAT1 could be different from those of the IFN-γ induced pSTAT1.

The linear regression analysis revealed no direct negative effects of any cy-

tokine on the phosphorylation of any STAT. Although a reduction in pSTAT4 levels

could be observed at day 4 of culture in the presence of IL-4, this is most likely ex-

plained by the GATA-3-mediated repression of STAT4 after GATA-3 up-regulation

downstream of IL-4. Even though suppressors of cytokine signalling (SOCS)179,180

protein have been implicated in the repression of the IFN-γ 206, IL-12207 and IL-4208

pathways, the absence of negative effects on STAT phosphorylation in this study

study suggests that SOCS proteins play no cytokine-specific role in primary in

vitro differentiation, or that their negative effects are generally masked by the

STAT-activating cytokine effects. SOCS protein could act by regulating general

STAT phosphorylation independently of the cytokine stimuli received by the cells.
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5.3 Transcription factor regulation

Master transcription factors such as T-bet and GATA-3 are defined by the fact that

they are necessary and sufficient for programming a specific cell fate69. This sim-

plified paradigm also considers that a master transcription factor is only expressed

in cells having the corresponding cell fate; however, more and more cases of stable

co-expression of so-called ‘master transcription factors’ have been described in

differentiated Th cell (e.g., FoxP3 and Bcl-6209, T-bet and GATA-370 or GATA-3

and FoxP3210). Furthermore, the discovery of new Th cell lineages relying on

STAT signalling40 and the study of STAT binding and the resulting epigenetic

modifications211 has led to a re-evaluation of the importance and roles of STAT

transcription factors for Th cell differentiation. Those facts motivated our detailed

analysis of the response of T-bet, GATA-3 and STAT protein dose-response to

polarising cytokines.

This study analysed in detail the expression of five transcription factors crucial

for Th1 and Th2 cell differentiation: T-bet, GATA-3, STAT1, STAT4 and STAT6.

As master transcription factors, T-bet and GATA-3 are responsible for regulating

many effector proteins in Th1 and Th2 cells. Although many aspects of their regu-

lation have been studied, we focused on the mechanisms allowing the emergence

of mixed Th1-Th2 phenotypes. We discovered that the expression levels of the

STAT proteins are also dynamically regulated by the phosphorylated STATs them-

selves and GATA-3. The regulation of STAT proteins during differentiation partly

mediated the rewiring of the signalling pathways, thus modulating the response

of the cells to cytokines during a secondary antigen encounter and during primary

differentiation, as STAT phosphorylation was found to be long-lasting und could

thus be influenced by rewiring during the late phase of differentiation. The effect

of TCR-induced transcription factors on T-bet and GATA-3 was also looked into,

as high antigen concentrations has been reported to lead to Th1 differentiation and

low concentrations to Th2 development133,134,135,136. STAT5 downstream of IL-2

co-operate with GATA-3 to induce IL-4 in Th2 cells108,112,113, but was not found to

be differentially expressed in this study (data not shown).

Several other transcription factors that have not been considered here have

been implicated in Th1 and Th2 differentiation. Eomes97, Runx398,97, Hlx99 and

Ets transcription factors100,101 co-operate with T-bet to induce IFN-γ expression,

while Onecut2 might form a positive feedback loop on T-bet expression102. In

the Th2 pathway, c-Maf and junB are involved in IL-4 regulation212,114,116. Dec2 is

induced by GATA-3 and in turn induces IL-4, IL-5 and IL-3 expression119,47,123. T

cell factor 1 was shown to up-regulate GATA-3 and repress IFN-γ downstream of

TCR signalling59. The latter negative regulation was also carried out by c-Maf114.

Furthermore, Ikaros silences T-bet and IFN-γ in Th2 cells125,126. These transcrip-
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tion factors would be good candidates for further analysis using dose-response

experiments and linear regression; however, the mostly high coefficients of de-

termination obtained with the transcription factor considered here suggest that

other factors play a minor role in the determination of the quantitative response

during primary differentiation. This observation is in line with the fact that ectopic

expression of T-bet or GATA-3 alone, but not of the other transcription factors in

isolation, drives the expression of Th1 or Th2 cytokines, respectively.

Antigen concentration does not bias Th cell differentiation when Il12-/-Ifng-/-

APCs are used

Our data showed no specific correlation between antigen concentration and Th1

or Th2 differentiation, but a general higher protein expression with higher antigen

doses. However, a correlation between lineage decision and strength of antigen

stimulus has been shown previously133,134,135,136. One study136 attributed the

correlation between antigen dose and Th1 differentiation to the up-regulation of

CD40L on the Th cells, leading to IL-12 production by the dendritic cells used as

APCs; as the APCs used in this study were IL-12-deficient, this effect could not

be observed here. Other work133,134 linked this effect to the abrogation of early

IL-2-induced IL-4 production by the Th cells. Another study135 stated that this bias

was unlikely to be due to autocrine IL-4 signalling. However, the mouse strain

used (transgenic mice with a TCR specific for the carboxy terminus of pigeon

cytochrome c on the B10.a background) was different than the one used in this

study (transgenic mice with a TCR specific for the GP61−80 petide on the C57BL/6

background), possibly changing the balance of Th1/Th2 cytokines produced upon

primary stimulation. Indeed, no other work analysed the response to titrated

antigenic peptide in LCMV-specific Th cells. The discrepancy between our data

and the published data led us not to consider the dose of antigen triggering TCR

signalling any further in this work. A detailed study of the dose-response of signal

transcription downstream of the TCR is beyond the frame of this study; it could,

however, help infer the mechanisms involved and explain the differences between

the experiments shown here and previously published observations.

Phosphorylated STATs play a central role in transcription factor regulation dur-

ing Th1-Th2 cell differentiation

In general, STAT proteins are known to activate the expression of their target genes,

often lineage-defining ones, as is the case with pSTAT1 and pSTAT4 inducing T-bet

and pSTAT6 inducing GATA-3; only few direct transcriptional repressive mech-

anisms have been documented213,214 until evidence of the induction of repressive

epigenetic modifications by the STATs has been published150. We found evidence
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of several negative regulations by the pSTATs (i.e., the repression of GATA-3 and

STAT6 by pSTAT1 and of STAT1, STAT4 and GATA-3 by pSTAT4) and novel posit-

ive regulations. Different mechanisms have been proposed for gene regulation by

the STATs, including direct initiation of gene regulation and creation of epigenetic

patterns around their binding sites211. STAT-dependent permissive epigenetic

patterns include high levels of H3K4me3, high levels of H3K36me3 and low levels

of H3K27me3. In contrast, repressive patterns include high levels of H3K27me3

and low levels of H3K36me3150. In agreement with our findings of repressive ac-

tions of pSTAT4, STAT4 binding to the Stat4, Gata3 and Stat1 genes was shown150.

Although the epigenetic patterns around the binding sites could not be identified

as clearly permissive or repressive, the expression of STAT1 and GATA-3 were

increased in STAT4-deficient Th1 cells compared to wild-type (by a factor of about

1.5 for STAT1 and 5.9 for GATA-3150), consistent with our own observation in

differentiating Stat4-/- cells. No ChIP-Seq data is available for STAT1 binding

in murine Th cells. Information about the binding of STAT1 to the Gata3 and

Stat6 genes as well as comparisons of their expression levels in differentiating

Stat1-/- T helper cells would be helpful in testing the predictions of our models on

these points. A study of STAT1 DNA-binding activity and induction of epigenetic

modifications would be of high relevance, as the central role of IFN-γ-controlled

(and also IL-12-controlled) STAT1 in transcription factor expression regulation

seems to have been hitherto underappreciated. STAT1 not only acts as an inducer

of T-bet, but also auto-activates and potentiates STAT4 signalling as discussed in

the previous section and further supports Th1 differentiation by repressing both

STAT6 and GATA-3.

An unresolved question is to what extent the intricate activations and inhibi-

tions described here are T cell specific. For example, auto-activation of STAT1 and

auto-inhibition of STAT4 might serve specific functions in determining Th cell fate,

but might not be relevant in other cell types. T cell specificity might be achieved

by enhancers that are selectively active in T cells.

The timescale of T-bet and GATA-3 regulation is shorter than that of STAT

regulation

The main assumption we made for the linear regression analysis was that the

effects of the pSTATs on transcription factor expression were cumulative over time,

and that each transcription factor could have a different ‘memory’ for binding of

pSTATs in the past. This assumption is based on several facts: first, contrary to

phosphorylation or de-phosphorylation, which happen in a timescale of minutes

to hours197, protein half-lives are in a timescale of hours to days, meaning that

the protein produced following the binding of a transcription factor could still

be present in the cell for days once the regulator is not bound anymore. Second,
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transcription factors are known to induce epigenetic modifications that modulate

the expression level of their targets durably.

During our evaluation of the parameter quantifying memory in the linear

models, we found that T-bet and GATA-3 were relatively little influenced by past

binding of their regulators in comparison to STAT proteins. These differences

could be due to differences in protein half-life (e.g., GATA-3 has a half-life of

about 1 hour215, whereas STAT1’s half-life is about 16 to 20 hours216) or/and to

a different type of regulation: an acute regulation of transcription would have

shorter-lasting effects than the induction of epigenetic changes at the target gene’s

locus. This difference in transcription factor binding ‘memory’ suggests that

GATA-3 and T-bet expression stays plastic during differentiation, and thus can

react faster to changes in the signalling environment, whereas STAT expression

is more stable. A global mapping of H3K4me3 and H3K27me3 showed that,

while cytokine genes show a pattern consistent with terminal commitment in

differentiated cell, exhibiting permissive marks for the cells of the corresponding

lineage and repressive marks for the others, master transcription factor genes are

in a bivalent poised state, i.e., exhibit both repressive and permissive marks149.

That bivalent state seems to allow a greater expression flexibility217. Similarly, the

epigenetic patterns on the STAT loci were undetermined; a systematic analysis of

the epigenetic changes at the STAT and master transcription factor loci following

stimulation with different cytokine doses and combinations could help unravel the

mechanisms implicated in the fast versus slow regulation of master transcription

factors versus STATs.

We used only one memory parameter per linear model, i.e., the effects of all

regulators on a specific target decrease with time at the same rate. This is an

assumption we made for simplicity’s sake as the models were fitting the data well.

However, more accurate models would have a different memory parameter for

each regulator, as there is no biological reason suggesting that all transcription

factors act in a similar manner on a common target; on the contrary, not only are

there repressors and activators, but some transcription factors act on the epigenetic

level, other activate or repress transcription more directly while some recruit other

transcription factors to the loci they bind to. Thus, a more detailed computational

analysis could help further unravel the mechanisms at work.

Synergistic effects of cytokines

In addition to the direct effects of the pSTATs on the expression of T-bet and

GATA-3 the linear analysis described, we observed complex effects when visually

analysing the data: IFN-γ seemed to potentiate the effects of IL-12; in addition to

that, IL-4 diminished the effect of IL-12 on T-bet: in its presence, IL-12 was not

sufficient for optimal T-bet expression anymore82. Those effects were not directly
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described by the equations describing T-bet or GATA-3 expression, neither in the

linear models, nor in the dynamical model as only additive effects of the pSTATs

were included. However, those observations cannot only be explained by potential

direct synergetic effects of the pSTATs on their targets T-bet and GATA-3, but also

by indirect effects through the regulation of signalling pathway components seen

in this study and other published work. In the case of IFN-γ and IL-12 augmenting

each other’s effects on T-bet and GATA-3, it could be mediated by T-bet itself:

both pSTAT1 and pSTAT4 increase T-bet expression, which in turn up-regulates

STAT1 and STAT4. Furthermore, the IL-12Rβ2 chain is up-regulated by IFN-γ

and repressed by IL-4202,122,123, thus modulating the sensitivity of the cells to IL-12.

An analogous mechanism could be in place to explain the effect of pSTAT6 on

the up-regulation of T-bet: GATA-3 is up-regulated by pSTAT6, and was found

to down-regulate both STAT4 and T-bet in this work. This could be why STAT1

activation by IFN-γ is necessary to obtain a unimodal T-bet up-regulation in hybrid

Th1/2 cells82.

STAT regulation showed similar effects of cytokine combinations as master

transcription factor expression. The fact that IL-12 does not seem to down-regulate

STAT1 in the absence of IFN-γ could be explained by the fact that IFN-γ is needed

to up-regulate STAT1, which is expressed only at a basal level in the absence of

the latter, and thus cannot be further down-regulated by pSTAT4 downstream of

IL-12, or by the fact that IFN-γ is needed to achieve IL-12 responsiveness96. The

latter could also explain the enhanced repression of STAT4 downstream of IL-12

in the presence of IFN-γ. The reduced effect of IFN-γ on STAT1 in the presence of

IL-12 could be linked to the down-regulation of the IFNgRα chain during IL-12-

favoured Th1 differentiation203,204. The down-regulation of STAT4 in response to

IL-4 is, according to our model, GATA-3-mediated and weak compared to other

effects on STAT4, and could thus be masked by the up-regulation in response to

IFN-γ.

Network rewiring occurs during primary differentiation

We discussed earlier how the kinetics of STAT phosphorylation are controlled,

mainly through regulation of total STAT and cytokine receptor expression. These

regulations act in a cumulative manner and contribute to the rewiring of the sig-

nalling network. Network rewiring is the process that makes the topology of a

network dynamic, allowing for sequential effects to lead to a correct final differ-

entiated state. It has been shown to be of importance in several developmental

processes218 and is relevant to cancer biology and treatment219.

Our data and earlier publication show evidence of extensive network rewiring

during Th cell differentiation. One clear example of rewiring in the settings used

in this work is the IFN-γ pathway: naive Th cells are IFN-γ responsive, as can
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be seen by a fast phosphorylation of STAT1 in presence of IFN-γ. During Th1

differentiation, The IFN-γ receptor is down-regulated203,204 and no pSTAT1 can be

detected in Th1 cells on day 5 of culture, in contrast to pSTAT4 and pSTAT6 that are

still present. Similar mechanisms can be observed in other parts of the Th network;

indeed, as STAT4 is up-regulated by T-bet and STAT1, so is the IL-12 receptor96,

increasing the potential of IL-12 signalling; the lower levels of IL-4 receptor in

Th1 cells are mirrored by the down-regulation of STAT6 by pSTAT1. The effect of

the down-regulation of the IFN-γ receptor in Th1 cells203,204 could be augmented

by the repression of STAT1 by pSTAT4. Thus, by regulating the expression of

total STAT proteins and cytokine receptors, the potential of the cell to receive

a signal is modified, which can help stabilise an acquired phenotype, prevent

over-activation of a specific pathway, and regulate the plasticity of the cells220. In

addition to that, cytokines influence cell proliferation (Supplementary Figure 7.9),

which emphasises the need for a fine-tuned control of cytokine responsiveness.

Finally, rewiring of the network during differentiation allow the cells to respond

differentially to a specific stimulus depending on their environment and could be

crucial for permitting graded T-bet and GATA-3 expression. In this context, the

rewiring of the network during primary differentiation by long activated STATs

could be primordial.

Direct auto-activation of T-bet and GATA-3 does not significantly improve the

model’s predictions

Auto-activation is an important motif in cell differentiation and lineage decision,

as both direct and indirect auto-activating mechanisms of lineage-specific factors

can help maintain the cell phenotype. GATA-3 has been shown to trans-activate its

own gene117,118, and while a similar mechanism has been proposed for T-bet, only

an indirect loop has been published102. Despite these facts, both our linear analysis

and dynamical models lack auto-activatory loops. Regulatory loops cannot be

described by linear models, so that the topology resulting from our regression

analysis could not include them; however, based on the literature, we still tested

dynamical models including auto-activatory effects. Surprisingly, the addition

of auto-activatory terms for T-bet and GATA-3 did not improve the model fit,

suggesting that auto-activation does not play a significant role in the settings

under which T-bet and GATA-3 were studied in this work. As we studied the

system under external stimulation (i.e., cytokine signals), it could be that those

responses are much stronger than auto-activation and thus mask the contribution

of the latter. Auto-activation would then become important in the resting cells,

once no differentiating cytokine signals are present anymore.
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5.4 Cytokine recall responses are predicted well by T-

bet and GATA-3 levels

Cytokines are the main effector molecules produced by Th cells and their regula-

tion has been extensively studied. Here, we focused on the response to gradual

and mixed Th1-Th2 stimuli, and used the percentage of cytokine producers after

TCR re-stimulation in differentiated cells as a quantitative measure of cell function

(as cytokine expression is stochastic even in otherwise unimodal T cell popula-

tions221). Cytokine production can be regulated at the epigenetic level as well

as by direct activation of transcription by several transcription factors; here, we

summarise some of the regulatory mechanisms relevant for this study modulating

the expression of IFN-γ, IL-2, TNF-α, IL-4, IL-13 and IL-10.

The expression of IFN-γ is up-regulated by T-bet46, STAT495,222, Hlx223, Runx398,

Eomes97 and members of the Ets family100,101. In contrast, GATA-3 represses IFN-

γ expression by inducing repressing histone marks124,123 and by repressing the

Runx3-Eomes-induced up-regulation of IFN-γ expression97. However, linear re-

gression analysis found that T-bet alone was a good predictor of the frequency of

IFN-γ expressing cells (in agreement with a detailed study of IFN-γ expression

in Th1 cells224), suggesting that T-bet is the limiting factor among the positive

regulators of IFN-γ and that direct negative effects of GATA-3 are negligible in our

setup. Alternatively, the per cell amount of IFN-γ, as opposed to the percent of

producers, could be regulated by other transcription factors than T-bet, although it

was shown that T-bet was also a good predictor of the per-cell amount of IFN-γ 224.

IL-2 production is strongly up-regulated by transcription factors downstream

of the TCR such as NFATs, OCT-1 and the NF-κB family members p65 (RelA) and

c-Rel225. T-bet has been shown to form heterodimers with RelA, thus preventing

the up-regulation of IL-2 by the latter226; furthermore, Ikaros, a Th2 protein,

was shown to repress IL-2 by maintaining hypoacetylated histones227. However,

linear regression analysis predicted that IL-2 was negatively regulated by GATA-3

and not T-bet, although GATA-3 was not found to bind the IL-2 locus123. The

effect is unlikely to be mediated by STAT6, as pSTAT6 was not found at the IL-2

locus either150. These results suggest that, in this particular setting, IL-2 could be

negatively regulated by a GATA-3 controlled factor, or by GATA-3 itself, perhaps

via a distal enhancer causing the lack of binding detection in the ChIP-experiments.

TNF-α production is highly regulated in a post-transcriptional manner228.

The p38-MAPK pathway downstream of LPS positively regulates the stability

of TNF-α mRNA229, while IL-10 negatively interferes with TNF-α production230.

IFN-γ is linked to TNF-α up-regulation231. Absence of IL-4 has been associated

with an increase in TNF-α in some settings232; furthermore, a decrease in TNF-α

was linked with GATA-3 over-expression233. Linear regression analysis allowed
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to accurately predict TNF-α expression based on GATA-3 expression; while the

mechanism underlying this correlation is unclear, the finding is coherent with

general knowledge about TNF-α expression being higher in Th1 cells than in Th2

cells.

Although IL-10 has originally been described as a Th2 cytokine234, it is ex-

pressed by Th1 cells in several conditions235,236. Several proteins implicated in

Th1 and Th2 differentiation have been shown to play a role in IL-10 regulation.

The transcription factor c-Maf is essential for IL-10 expression237; Lck, a tyrosine

kinase, has been associated with the up-regulation of IL-10 in Th1 cells238; STAT3

downstream of IL-12-family cytokines has been implicated in positive IL-10 reg-

ulation239. TGF-β and ICOS are also linked to IL-10 expression240,241. As IL-10

expression could not be predicted accurately by T-bet/and or GATA-3, it is prob-

able that its expression is mainly regulated by other transcription factors.

5.5 Limitations of the computational methods

We used linear regression analysis on protein data from multiple stimuli titration

experiments to compute a network of Th1 and Th2 signalling. Linear regression is

a robust, unbiased method, and allowed us to reconstruct the known signalling net-

work implicated in Th1 and Th2 cell differentiation as well as to discover hitherto

undescribed mechanisms. However, it has some limitations, the main one being

that this method does not consider causality, which also includes direct versus

indirect interactions. Direct interactions can only partially be distinguished from

indirect interactions because some factors strongly correlate (e.g., STAT1/STAT4

and T-bet, STAT6 and GATA-3). An experimental approach is necessary to clarify

which of two correlating factors is responsible for the observed effect. Linear

models describe correlations between factors and contain no information about

causality; regulatees and regulators can exchange places without influencing the

results of the modelling. Here, we benefitted from being able to assign regulators

and regulatees and considered a hierarchy of such regulator-regulatee groups. We

used the results of the linear regression analysis as a guide for experiments that

established wether STAT effects were direct or mediated by T-bet.

Furthermore, linear regression can only describe signalling going one way,

and not discover loops. However, if the active form of a transcription factor can

be distinguished from the total protein, as is the case with STAT proteins, auto-

activation can be discovered. The linear approach took each time point separately

in consideration, thus not explaining any of the dynamics of the networks.

To complement the linear regression approach, we built a dynamical model

based on ordinary differential equations. The structure of such a model directly im-

plies causality between factors and makes mechanistic assumptions. Furthermore,
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a single model is used to describe all factors at all time points, thus reproducing

the dynamics and all interactions of the studied system at once. The model we

describe here is able to reproduce the general behaviour of the system and in-

dependent data as well as the principal dynamics, thus validating the network

topology, there are some remaining discrepancies. Both T-bet and GATA-3 are

somewhat over-estimated at late time points; the peak of STAT4 expression present

in the data at day 3 is not visible in the model, and STAT6 up-regulation starts

too early. The model we used in this work is kept very simple, as each protein is

described by a single rate equation for its production. Detailed dynamical models

would describe the production of a functional transcription factor through several

equations corresponding, for example, to mRNA transcription, mRNA maturation,

nuclear export of mRNA, translation to protein, protein modifications and nuclear

import of the protein. Thus, our model summarises transcription, translation

and eventual post-translational modifications in a single equation, which may

partly explain why the kinetics of up-regulation are not reproduced accurately

by the model. Furthermore, we postulated that STAT phosphorylation could be

described as a linear process depending only on extrapolated cytokine availability.

Although the time courses of STAT phosphorylation are reproduced accurately

by the model, it should be kept in mind that cytokine concentrations were not

measured during the cultures and are thus inferred values based on assumed

kinetics for their degradation and consumption. A more detailed and accurate

way to model STAT phosphorylation would include receptor availability as well

as cytokine concentrations and could be modelled by differential equations.

Another simplification used in this work is the form chosen to model the

contribution of each of the transcription factors to the protein production rate.

Usually, Hill functions are used to model the probability of a regulator binding the

target genes; we decided to simply use the amount of transcription factor. Further-

more, with the exception of the pSTATs cooperating with the antigen signalling

to modulate the production of their target, all positive regulatory mechanisms

are considered independent, thus, the total production rate is the addition of the

basal rate to all positive regulations divided by the sum of all negative regulations.

However, synergistic actions of several transcription factors could take place.

5.6 Outlook

In this work, we developed a method for the inference of a gene network down-

stream of external stimuli and applied it to Th cell differentiation. The method and

the insights gained into the analysed network open the way for further research

using our approach into different biological systems as well as deeper analysis of

the Th1 and Th2 responses to mixed informative cytokine stimuli.
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This work left several open questions concerning Th1 and Th1 differentiation

under mixed stimuli. Our analysis of STAT phosphorylation suggested that the

strength and duration of downstream signalling strongly depended on cytokine

and cytokine receptor availability; thus, it would be interesting to combine the

approach used here with time-resolved measurements of both cytokine concen-

tration and cytokine receptor expression to gain more insight into the rewiring

mechanisms allowing the emergence of hybrid cells and Th cell plasticity. Further-

more, the linear analysis revealed strong correlations between, on the Th1 side,

T-bet and pSTAT1 as well as pSTAT4 and, on the Th2 side, GATA-3 and pSTAT6.

Although the choice of linear model based on R2 and AIC values gave clear results

as to which, between pSTAT and master transcription factor, was modulating the

expression of the target protein, an alternative model substituting one for the other

also often gave good results. We clarified this point for the Th1-pathway by using

Tbx21-/- and Stat4-/- cells, thus determining with certainty if the effects observed

downstream of IL-12 and IFN-γ were mediated by T-bet or more direct effect of the

pSTATs, but the question remains open for GATA-3 and pSTAT6. Thus, it would

be informative to perform an IL-4 titration in Gata3-/- Th cells to see which of the

interactions presented here and GATA-3-independent.

Previous work on hybrid Th1/Th2 cells showed that the hybrid phenotype is

stable in the memory phase, i.e., in the absence of external instructive signals, as

the Th1 and Th2 phenotypes are. However, the stability of the different expression

levels of T-bet and GATA-3 as well as of the components of the signalling pathways

in this memory phase has not been studied. In order to determine if resting

memory cells still display gradual master transcription factor levels and a gradual

response to a secondary activation, cells differentiated with different amounts of

cytokines should be transferred into naive recipient mice and their MTF levels

quantified in the resting cells. Indeed, even though the dynamical model presented

here predicts a continuum of expression levels, it represents the response of the

cells to instructive cytokines, and not their memory phenotype in the absence of

external cues; such models that include auto-activation and mutual repression of

T-bet and GATA-3 typically display only up to four steady states after removal

of cytokine signals: a naive state with low T-bet and GATA-3 expression, a Th1

state with high T-bet and low GATA-3, a Th2 state with high GATA-3 and low

T-bet and finally a hybrid state with intermediate T-bet and GATA-3 expression.

To understand how the cells quantitatively remember their activation history or

respond to different amounts and combinations of cytokines during secondary

activation would be helpful to comprehend the immune response after vaccination,

secondary infections or recurring activation of specific cells, as is the case in

allergies and autoimmune diseases.
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An interesting point that was not further studied in this work is the ‘memory’

of transcription factor for the previous binding of their regulators. During the

linear regression analysis, we used a parameter λ to quantify how long a target

transcription factor was influenced by its regulator. However, we used only one

value for each regulated target and applied it to all its regulators, an assumption

that is not justified by biological facts, even if it allowed us to find good fitting

models. Indeed, as mentioned above, λ summarises several mechanisms: protein

half-life is reflected in the λ value, but also long-lasting epigenetic changes at the

gene locus as well as modulation of acute transcription. Thus, the use of a different

parameter for each regulator could be informative as to the mechanism used by a

transcription factor to modulate transcription.

Although we used flow cytometry as a measurement tool, as it is well estab-

lished in the T cell system, this time-resolved approach to study dose-responses

could easily be generalised to other systems and other quantification methods.

Indeed, as long as the input signals are well determined and the targets quantifi-

able (RNA expression by RT-PCR, microarrays or sequencing, protein amounts

by flow cytometry, ELISA or western blot), dose-responses can be studied and

linear correlations inferred. As such, the method used here could be useful in

reconstructing signalling networks from different fields of biology. Detailed prior

knowledge about the main network components and the hierarchy between regu-

latees and regulators as we had is helpful, but not necessary to gain information

about the network; general gene annotation would be enough the determine the

general hierarchy of a system based on gene function. Thus, the method described

in this work could be easily generalised and used at a larger scale; the questions

we addressed allowed us to focus on a few key factors and keep the models, both

linear and dynamical, simple. Indeed, the dynamical model presented here is

a simple one; it could, however, be used as a basis for a more detailed model

of Th1 and Th2 differentiation, for example by using more complex functions to

model the production rates or by including more factors (e.g., cytokine receptors).

Furthermore, such a model could be adapted to include other Th differentiation

pathways, like the Th17 or Treg lineages.

5.7 Conclusion

The experimental approach used in this work to study the Th1-Th2 signalling

network is straight-forward and focuses mainly on two aspects: the dynamics of

up-regulation of the known main players in the network, and the dose-response

of these same factors to instructive stimuli. These aspects are studied on multiple

levels: signal transduction downstream of instructive stimuli, expression of tran-

scription factors, and finally, expression of effector cytokines as a read-out for cell
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function. Basing our study on established knowledge about Th1-Th1 cell differen-

tiation that Th1 versus Th2 cells arise when T-bet versus GATA-3 are up-regulated

via IFN-γ/STAT1 and IL-12/STAT4 versus IL-4/STAT6 signalling, leading to Th1-

versus Th2 effector cytokine expression, we designed an in vitro differentiation

protocol allowing us to quantify the main players in Th1-Th2 differentiation in

response to the aforementioned cytokines in a time-resolved manner. Specifically,

the polarising cytokines IFN-γ, IL-12 and IL-4 were titrated in different combin-

ations, signal transduction was quantified daily by measuring the amounts of

phosphorylated STAT1, STAT4 and STAT6 downstream of the cytokines by flow

cytometry, and then their target transcription factors T-bet and GATA-3, as well

as the total STAT1, STAT4 and STAT6 amounts were likewise quantified daily

by flow cytometry. Our functional read-out was the amount of cytokine (i.e.,

IFN-γ, TNF-α, IL-2, IL-4, IL-13 and IL-10) expressed upon antigen restimulation

after differentiation. Linear regression analysis allowed us to infer the regulatory

network underlying Th1, Th2 and hybrid Th1/2 cell differentiation in an unbiased

manner by selecting the significant relationships between all the analysed factors.

This method is potentially applicable to all systems where the dose-responses of

known players to external stimuli can be quantified.

Experiments showed that cells receiving distinct cytokine signals during dif-

ferentiation showed phenotypic characteristics corresponding to all the signals

received at the three layers studied: STAT phosphorylation, STAT and master

transcription factor expression and signature cytokine expression. The network

resulting from this analysis showed that the signals from distinct cytokines were

processed independently of each other; indeed, both linear regression analysis and

dynamic modelling were able to explain the expression of master transcription

factors and STAT proteins by additive effects of the upstream cytokines; although

synergistic effects were suggested by the visual analysis, most of them could be

explained by independent effect on members of the signalling pathways. Thus,

signal integration during differentiation is mediated by network rewiring and not

by complex interactions between the transcription factors.

Furthermore,the network predicted several mutually repressive mechanisms

between the Th1 and the Th2 pathways: the Th1 master transcription factor T-

bet was repressed directly by GATA-3, whereas GATA-3 was down-regulated by

pSTAT1 and pSTAT4 downstream of the Th1 cytokines IFN-γ and IL-12. Interac-

tions between pathways was not limited to the expression of master transcription

factor, but could also be observed at the level of STAT expression, in the form of

STAT1 repressing STAT6 and GATA-3 repressing STAT4, and phosphorylation as

IL-4 induce the activation of STAT1 and STAT4 additionally to STAT6. Interest-

ingly, the nature of those mutually repressive interactions led to a continuum of

expression levels and not to a digital switch between distinct states.
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Finally, we found that the expression of most effector cytokines was governed

by T-bet and GATA-3, as their expression levels were good predictors for the frac-

tion of cytokine expressing cells. Thus, cytokine amounts during differentiation

determine the amplitude of the functional response upon secondary TCR stimula-

tion, and the presence of a continuum of reachable T-bet-GATA-3 co-expression

levels allows for fine-tuning of the type-1 and type-2 immune responses induced

by a specific pathogen.





Chapter 6

Materials and methods

6.1 Experimental materials and methods

6.1.1 Differentiation of murine Th cells

Mice

LCMV-TCRtg (SMARTA1)242 mice expressing a TCR specific for the LCMV epitope

GP61−80 on C57BL/6 background were used as organ donors for the isolation

of splenocytes and lymph node cells to obtain Th cells. When indicated, TCRtg

mice were crossed with Ifng-/- mice243, Il4-/- mice244, Tbx21-/- mice245 or Stat4-/-

mice246. Il12p40-/-247 x Ifng-/- mice with a wild-type TCR were used as organ

donors for the isolation of splenocytes to obtain APCs. All mice were all on

C57BL/6 background. Mice were bred under specific pathogen-free conditions

at the Charité, Berlin or at the Federal Institute for Risk Assessment (BfR), Berlin.

All animal experiments were performed in accordance with the German law for

animal protection with permission from the local veterinary offices.

Isolation of naive Th cells

Spleens and lymph nodes of 6-8 weeks old SMARTA1 mice were mechanically dis-

rupted to obtain single-cell suspensions. Erythrocytes were lysed by a 3-minutes

incubation in erythrocyte lysis buffer (10 mM KHCO3, 155 mM NH4Cl, 0.1 mM

EDTA, pH 7.5). Naive Th cells were then enriched by depleting CD8+ cells, macro-

phages, B cells, NK cells, dendritic cells, granulocytes, Treg cells and acute effector

Th cells using magnetic-activated cell sorting; cells were first incubated for 10

minutes on ice with biotin-conjugated antibodies (BD biosciences) specific to CD8a

(53-6.7), CD11b (M1/70), CD19 (1D3),NK1.1 (PK136) CD11c (HL3), Gr-1 (RB6-

8C5), CD25 (7D4) and CXCR3 (CXCR3-173), respectively, then with anti-biotin

microbeads (Miltenyi Biotec) for 10 minutes at 4◦C. Cells were then separated
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using LS columns (Miltenyi Biotec). Enriched naive CD4+ T cells were stained

with PE-Cy7-conjugated anti-CD4 (RM4-5), Pacific Blue-conjugated anti-CD44 PE-

Cy7, FITC-conjugated anti-CD62L (MEL-14) and PerCP-conjugated Streptavidin

(all from BD biosciences) before Streptavidin-negative CD4+CD62LhiCD44lowere

sorted using a FACS Aria II (Becton Dickinson) to a purity >99%.

Isolation of APCs

Spleens and mesenteric lymph nodes of Il12p40-/-247 x Ifng-/- mice were mechan-

ically disrupted to obtain single-cell suspensions. Erythrocytes were lysed by a

3-minutes incubation in erythrocyte lysis buffer (10 mM KHCO3, 155 mM NH4Cl,

0.1 mM EDTA, pH 7.5). T cells were then sorted out from the APC fraction us-

ing LS columns or an autoMACS separator (both from Miltenyi Biotec) after a

10-minutes incubation on ice with biotin-conjugated anti-Thy1.2 (53-2.1, BD bios-

ciences) followed by a 10-minutes incubation at 4◦C with anti-biotin microbeads

(Miltenyi Biotec).

T Cell Activation and Differentiation

Naive CD4+CD62LhiCD44loCD25-CXCR3- Th cells were cultured in RPMI 1640

+GlutaMax-I supplemented with 10% (v/v) FCS (Gibco), penicillin (100 U/ml;

Gibco), streptomycin (100 µg/ml; Gibco), and β-mercaptoethanol (50 ng/ml;

Sigma). Cultures were prepared in the presence of Il12p40-/-xIfng-/- or wild-type

APCs, 0.5 mg/ml LCMV-GP61−80, (R. Volkmer, Institute for Med. Immunology,

Charité) and 5 ng/ml IL-2 (R&D Systems).

For Th1 differentiation, 10 ng/ml IFN-γ, 5 ng/ml IL-12 (R&D Systems) and 10

µg/ml anti-IL-4 (11B11) were added, unless specified otherwise. For Th2 differ-

entiation, 10 ng/ml IL-4 (R&D Systems) and 10 µg/ml anti-IFN-γ (AN18.17.24)

were added. Hybrid Th1/2 cells were cultured with 10 ng/ml IFN-γ, 5 ng/ml

IL-12 and 10 ng/ml IL-4. For some experiments, cells were cultured under neutral

conditions with 10 µg anti-IL-12 (C17.8), 10 µg anti-IFN-γ and 10 µg anti-IL-4. Cell

cultures were split on d2 or d3 and analysed until d5.

6.1.2 Flow Cytometry

Samples were acquired on a FACS Canto II (Becton Dickinson) and analysed with

FlowJo (TreeStar). Dead cells and doublets were excluded by a combination of for-

ward scatter height and width gating and a LIVE/DEAD fixable dye (Invitrogen).

If not specified otherwise, cells were stained for 15 minutes at 4◦C in a volume

of 50 µ in the presence of 10 µg/ml anti-FcγRII/III (2.4G2, ATCC) and 2.5 µg/ml

purified Rat IgG (Jackson Immunoresearch) and washed with an excess volume.
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Intracellular cytokine staining

For intracellular analysis of cytokines, cells were restimulated on d5 with PMA (5

ng/ml) and ionomycin (500 ng/ml) for 4 h with addition of brefeldin A (5 mg/ml;

all from Sigma-Aldrich) after 30 min. Following restimulation, cells were stained

with a LIVE/DEAD fixable dye (Invitrogen) and fixed in 2% formaldehyde (Merck).

Intracellular staining was performed in PBS/0.2% BSA containing 0.05% saponin

(Sigma-Aldrich) for permeabilization. Samples were stained with antibodies

(eBioscience) specific to CD4 (GK1.5), IFN-γ (XMG1.2), IL-4 (11B11), IL-10 (JES5-

16E3), IL-13 (38213.11, eBio13A), TNF-a (MP6-XT22) and IL-2 (JES6-5H4).

STAT staining

STAT protein amounts and phosphorylation of STAT proteins were analysed using

BD Phosflow buffers according to the manufacturer’s instructions (BD Bioscience).

Cells were fixed with prewarmed 1x BD Phosflow Lyse/Fix Buffer for 10 min

at 37◦C. Cells were permeabilized with ice-cold BD Phosflow Perm Buffer III

for 30 min on ice. Then, cells were stained for 30 min with anti-CD4 and either

PE-conjugated anti-pSTAT1 (4a) and Alexa-647-conjugated anti-STAT1 (1/Stat1)

or PE-conjugated anti-pSTAT6 (pY641) and Alexa-647-conjugated anti-STAT6

(23/STAT6) or PE-conjugated anti-pSTAT4 (38/p-Stat4; all from BD Biosciences)

and polyclonal rabbit anti-STAT4 (Zymed). Secondary antibody (Cy5-conjugated

donkey anti-rabbit; Jackson Immunoresearch) was added at a final concentration

of 0.2 mg/ml. Cells were washed and analysed by FACS. Geometric mean indices

were calculated by dividing the geometric mean of the analysed population by the

geometric mean of the respective isotype control-stained cells.

T-bet and GATA-3 staining

T-bet and GATA-3 protein amounts were analysed using FoxP3 staining buffer

set (eBioscience) according to the manufacturer’s instructions. Briefly, cells were

stained with anti-CD4 (GK1.5) and a LIVE/DEAD fixable dye (Invitrogen), fol-

lowed by fixation with 1x Fixation/Permeabilization buffer and intracellular stain-

ing with Pacific Blue-conjugated anti-T-bet (4B10) and Alexa-647-conjugated anti-

GATA-3 (TWAJ, both from eBioscience) in 1x Permeabilization buffer. Cells were

washed in 1x Permeabilization buffer and analysed by FACS. For T-bet/pSTAT4

and GATA-3/pSTAT6 co-stainings, the STAT staining protocol was used. Geomet-

ric mean indices were calculated by dividing the geometric mean of stained cells

by the geometric mean of the respective isotype control-stained cells.
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6.1.3 RNA

mRNA from Th cell differentiation kinetics was purified using the NucleoSpin

RNA II Kit (Macherey-Nagel) according to the manufacturers instructions. Illu-

mina mouse WG-6 gene arrays were prepared, and gene expression was analysed.

Differential gene expression was analysed using the EDGE software package248.

6.2 Computational methods

6.2.1 Data processing

The data was obtained by flow cytometry using the DIVA software (BD bios-

ciences), and the geometric mean of each population was computed with FlowJo

(Treestar) after appropriate gating. It was then processed the following way as

described below.

Cytokine concentrations

The concentrations [C]cyto of IFN-γ, IL-12 and IL-4 used for each condition i were

transformed the following way before fitting the linear regression models to the

relative pSTAT values:

Ci
cyto =

⎧⎪⎨⎪⎩
log10

(
([C]i+1

cyto )2

[C]i+2
cyto

)
if [C]icyto = 0,

log10([C]icyto) else.

This transformation approximates the 0 concentration by the next smallest

titration step. Furthermore, the [C]icyto were normalised to be between 0 and 1 by

dividing them by their minimal value before the log transformation, and again by

their maximal value after it.

Transcription factors

For each transcription factor (TF, i.e., T-bet. GATA-3, STAT1, STAT4, STAT6,

pSTAT1, pSTAT4 and pSTAT6) staining of condition i, the geometric mean (GM) of

the population was divided by the geometric mean of the corresponding isotope

control to correct for differences in cell size and autofluorescence, obtaining the

geometric mean index (GMI):

GMIiTF =
GMi

TF

GMi
iso

For each experiment e and transcription factor, this GMI value was further di-

vided by the maximal GMI value for the same TF in the experiment x to correct for
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differences in staining intensities and cytometer sensibility between independent

experiments:

GMIiTF, e =
GMIiTF, e

max
(
GMITF, e

)
For the analysis of the cytokine effects on the STAT phosphorylation, we

computed the relative GMI (rGMI) of each pSTAT (pSTAT1, pSTAT4 and pSTAT6)

by dividing the GMI of the pSTAT staining by the GMI of the corresponding total

STAT staining after removing the baseline of pSTAT expression:

rGMIipSTAT, x =
GMIipSTAT, x − min

(
GMIpSTAT, x

)
GMIiSTAT, x

Furthermore, in order to be able to compare the weights of the regressors of

the linear models, the data for each protein used as an explanatory variable in

the linear modelling was further normalised to have a mean of 0 and a standard

deviation of 1:

GMIiTF =
GMIiTF − mean

(
GMITF

)
stdev(GMITF)

6.2.2 Linear regression models

The linear modelling was done with Wolfram Mathematica 10. The LinearModelFit

function was used to fit the parameters to the data as well as to compute R2,

Akaike’s Information Criterion (AIC), the statistical significance of the parameters,

their confidence intervals, the residuals and Cook’s distance. Unless specified

otherwise, the models were fitted to the data generated by the IFN-γ, IL-12 and

IL-4 titrations performed in the presence and absence of the other cytokines with

Ifng-/- (IFN-γ and IL-12 titrations) or Il4-/- (IL-4 titrations) cells.

The linear regression models were compared using several statistics. The

coefficient of determination

R2 = 1− SSt

SSr

where SSt is the total sum of squares and SSr the residual sum of squares, informs

about the goodness of fit. The Akaike information criterion, in the case of linear

regression models,

AIC = 2k + n ln (SSr)

where k is the number of parameters and n the sample size penalises the com-

plexity of the model while rewarding goodness of fit, and the significance of the

parameters according to the F -statistic in ANOVA calculations182.
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pSTATs as functions of cytokine concentrations

The family of linear models explaining the pSTAT values in condition i as functions

of the cytokine concentrations was build as follows:

rGMIix = αx,0 +
3∑

j=1

αx,j · Ci
j

where x = {pSTAT1, pSTAT4, pSTAT6} and j = {IFN-γ, IL-12, IL-4}. For each

pSTAT on each day, seven models with different explanatory variables were fitted

to the relative pSTAT values: IFN-γ only, IL-12 only, IL-4 only, IFN-γ and IL-12,

IFN-γ and IL-4, IL-12 and IL-4 or all three cytokines were used as explanatory

variables. The models were compared using the R2, the AIC and the significance

of the parameters. The best model was the one having the lowest AICs and only

significant parameters.

Master transcription factors as functions of pSTATs and each other

The family of linear models explaining the expression of the transcription factors

T-bet and GATA-3 was built similarly to the previous family, but weighted sums

over time until day T of the active transcription factors (pSTAT1, pSTAT4, pSTAT6

and GATA-3 or T-bet, respectively) were used as explanatory variables for T-bet

and GATA-3 in each condition i on day T . The transcription factor modelled could

not be included in the explanatory variables due to the nature of linear regression

analysis.

GMIix(T ) = αx,0 +

5∑
j ̸=i,j=1

(
αx,j ·

T∑
t=1

e−λx·(T−t)GMIij(t)
)

where x = {T-bet, GATA-3}, j =

⎧⎨⎩{GATA-3, pSTAT1, pSTAT4, pSTAT6} x = T-bet,

{T-bet, pSTAT1, pSTAT4, pSTAT6} x = GATA-3
and T = {1, 2, 3, 4, 5}. Similarly to the method used with the models explaining

STAT phosphorylation, fifteen models with all possible combinations of the four

explanatory variables were fitted to the GMIs of T-bet and GATA-3 independently

for each day. λ was determined first by comparing the R2 of the fitted model

including all explanatory variables for increasing λ values and choosing the λ

value leading to the highest R2. The models with fixed λ values were then fitted

again and compared using the AIC, R2 and the significance of the parameters. The

best model was the one having the lowest AIC and only significant parameters.
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STATs as functions of activated transcription factors

The family of linear models explaining the expression of the three STAT transcrip-

tion factors was build like the one explaining T-bet and GATA-3 expression, using

the sums over time until day T of the active transcription factors (T-bet, GATA-3,

pSTAT1, pSTAT4, pSTAT6) as explanatory variables for total STAT expression on

day T in each condition i.

GMIix(T ) = αx,0 +
5∑

j=1

(
αx,j ·

T∑
t=1

e−λx·(T−t)GMIij(t)
)

where T = {1, 2, 3, 4, 5}, x ={STAT1, STAT4, STAT6} and j ={T-bet, GATA-3,

pSTAT1, pSTAT4, pSTAT6}. Again, thirty-one models with all possible combina-

tions of the five explanatory variables were fitted to the GMIs of STAT1, STAT4 or

STAT6 independently for each day. λ was determined first by comparing the R2 of

the fitted model including all explanatory variables for increasing λ values and

choosing the λ value leading to the highest R2. The models with fixed λ values

were then fitted again and compared using the AIC, R2 and the significance of

the parameters. The best model was the one having the lowest AIC and only

significant parameters.

Cytokine producers as functions of T-bet and GATA-3

The percentage of cytokine producers during the recall response after five days of

differentiation was expressed as a function of the T-bet and GATA-3 GMIs on day

5 before TCR restimulation in each condition i. Linear functions were fitted to the

flow cytometry data of cytokine expression:

Pi
x = αx,0 +

2∑
j=1

αx,i · GMIij

where P is the percentage of cytokine producers, x ={IFN-γ, IL-13, IL-4, TNF-α,

IL-2, IL-10}, and j ={T-bet, GATA-3}. Three different models were fitted for

each cytokine to the data of the IL-12/IL-4 cross-titration performed in wild-type

cells, taking both T-bet and GATA-3, only T-bet or only GATA-3 as explanatory

variables. The models were compared using the AIC, R2 and the significance of

the parameters. The best model was the one having the lowest AIC and only

significant parameters. These linear models were used as a basis to empirically

find better-fitting non-linear models using the NonLinearModelFit function.

The standardized residuals were examined for each model, as well as Cook’s

distance, both provided by the LinearModelFit function. Three data points were
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excluded after analysis of Cook’s distance because of biologically aberrant STAT4

or STAT1 GMI due to abnormally low isotope control stainings.

6.2.3 ODE model

Based on the network topology derived from the linear models, a system of or-

dinary differential equations was designed to describe the data. This system

was implemented in MATLAB (MathWorks) using the Data2Dynamics environ-

ment185,186.

Model development

The model used describes the phosphorylation of the STATs in response to po-

larising cytokines as well as the expression of transcriptions factors in function

of active transcription factors. The first part of the model is not ODE-based and

describes the kinetics of cytokine concentrations and the phosphorylation of the

STATs:

[IFN-γ] = CIFN-γ · (1− tanh(t− TIFN-γ))

[IL-12] = CIL-12 · (1− tanh(t− TIL-12))

[IL-4] = CIL-4 · (1− tanh(t− TIL-4))

pS1 = (α1[IFN-γ] + α2[IL-12] + α3[IL-4]) · S1

pS4 = (α4[IL-12] + α5[IL-4]) · S4

pS6 = (α5[IL-4]) · S6

Where Cs are the logarithm of the cytokine concentrations, t the time in days,

the T s the half-lives of the cytokine concentrations, and the αs the strength of

the cytokine effects on STAT phosphorylation. The T and α parameters were

fitted to the pSTAT intensities from the IFN-γ, IL-12 and IL-4 titrations, taking the

experimental values of the total STAT intensities as inputs.

The transcription factor expression was modeled by a system of five ordinary

differential equations, one for each protein. The pSTATs were assumed to act in

concert with antigen signalling, so that a linear equation describing the antigen
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stimulus was added to the system:

Ag = (1− e(−t)) · e(−l2·t)

Ṡ1 =
BS1 + β1 · T + β2 · pS1 · Ag

1 + β3 · pS4 · Ag
− δS1 · S1

Ṡ4 =
BS4 + β4 · T

1 + β5 · pS4 · Ag + β6 · G
− δS4 · S4

Ṡ6 =
BS6 + β7 · pS6 · Ag
1 + β8 · pS1 · Ag

− δS6 · S6

Ṫ =
BT + β9 · pS1 · Ag + β10 · pS4 · Ag

1 + β11 · G
− δT · T

Ġ =
BG + β12 · pS6 · Ag

1 + β13 · pS1 · Ag + β14 · pS4 · Ag
− δG · G

S1, S4, S6, T and G represent STAT1, STAT4, STAT6, T-bet and GATA-3 protein

expression, respectively. Ag represents the antigen stimulus, which increases with

time constant 1 and decreases with time constant l2 (Figure 4.2). pS1, pS4 and pS6

represent the phosphorylated forms of SATA1, STAT4 and STAT6, respectively.

Each protein is produced with a basal rate Bi and degraded with a rate δi. In

addition to that, the positive and negative regulatory mechanisms described by

the linear regression analysis are added to the production rate with weights βi.

This model describes the positive effects of pSTAT1 on STAT1 and T-bet expres-

sion as well as its negative effects on GATA-3 and STAT6, the negative effects of

pSTAT4 on STAT1, STAT4 and GATA-3 and its positive effect on T-bet, the positive

effects of pSTAT6 on itself and GATA-3. Described are also the positive effects of

T-bet on STAT1 and STAT4 and the negative effects of GATA-3 on STAT4 and T-bet.

All 19 β parameters were fitted to the whole data of T-bet, GATA-3, STAT1, STAT4

and STAT6 expression from day to day 5 using only the cytokine concentrations

as input data.

Model fitting and testing

The model was fitted in two steps; first, the algebraic part of the model describing

STAT phosphorylation was fitted to the pSTAT data with the initial cytokine

concentrations and STAT values as inputs; then, using the best-fit parameters from

the first step, the non-linear part was fitted to the whole dataset using only the

initial cytokine concentrations as inputs.

The first part of the model was fitted with Wolfram Mathematica 10. The

NonLinearModelFit function was used to fit the parameters to the data as well as

to compute their confidence intervals. The ODE model was fitted and analysed
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using the Data2Dynamics software185,186. The parameter estimation procedure

was done with the lsqnonlin algorithm, a deterministic optimisation algorithm.

The confidence intervals and identifiability of the parameters were inferred by

calculating the profile likelihood188,189. Latin Hypercube Sampling187 of the initial

parameter values was used to verify that a global minimum was found. Alternative

models lacking a specific interaction were similarly fitted to the same data.

The accuracy of the model was tested by predicting the T-bet and GATA-3

values from the IL-12/IL-4 cross-titration experiment (which were not used for

the fit) consisting of 49 conditions on day 5 of culture using MATLAB and the best-

fit parameters. As only endogenous IFN-γ was present during this culture, the

concentration of this cytokine was approximated using the percent of producers

during the recall response, postulating that it was proportional to the production

during differentiation and that the highest production was sufficient to reach

saturation (i.e., Ci
IFN-γ =

Pi
IFN-γ

max(PIFN-γ)
). Using the values for the β parameters found

by fitting to the other dataset, the known IL-12 and IL-4 concentrations and the

extrapolated IFN-γ concentrations, the model was able to reproduce the levels of

T-bet and GATA-3 expression from the experimental data.

Different models were compared using the Akaike information criterion

AIC = 2k − 2 ln (L̂)

where L̂ is the maximum likelihood estimator computed with the D2D framework.
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Figure 7.1: List of all the different culture conditions used during primary differentiation in the
main titration experiments. The cytokines IFN-γ, IL-12 and IL-4 were titrated during differentiation of
appropriate cytokine-deficient naive Th cells in presence or absence of one or both other cytokines.
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Figure 7.2: Kinetic RNA data of cytokine receptors during differentiation of naive wild-type Th cells.
RNA from wild-type Th1, Th2 and Hybrid Th1/2 cells was extracted and quantified by microarrays in a
kinetic manner during primary differentiation.

a b

Th1
Th2
Th1/2Hybrid

1 2 3 4 5
0

1000

2000

3000

4000

Day
1 2 3 4 5

0

5000

10000

15000

Day

Tbx21 Gata3

c d

Th1
Th2
Th1/2Hybrid

1 2 3 4 5
0

2000

4000

6000

8000

10000

Day

Stat1

0

2000

4000

6000

8000

10000 Stat4

1 2 3 4 5
Day

Figure 7.3: Kinetic RNA data of transcription factors during differentiation of naive wild-type Th
cells. RNA from wild-type Th1, Th2 and Hybrid Th1/2 cells was extracted and quantified by microarrays
in a kinetic manner during primary differentiation.
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Figure 7.4: Diagnostics of the linear models for STAT phosphorylation. a Cook’s distance for each data
point. b Normal probability plots. c Residual for each data point.
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Figure 7.5: Diagnostics of the linear models for master transcription factor expression. a Cook’s
distance for each data point. b Normal probability plots. c Residual for each data point.
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Figure 7.6: Diagnostics of the linear models for STAT expression. a Cook’s distance for each data point.
b Normal probability plots. c Residual for each data point.
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Figure 7.7: Diagnostics of the linear models for cytokine expression. a Cook’s distance for each data
point. b Normal probability plots. c Residual for each data point.
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300 �ts in total, 193 converged

run index (sorted by likelihood)
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Figure 7.8: Fits of the dynamical models converged to a global minimum. The dynamical model was
fitted 300 times with different initial values determined by Latin Hypercube Sampling and the resulting
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I thank the whole group of Max Löhning for a nice work environment, espe-

cially Michael Peine for his great supervision that started during my master’s

thesis, his help with the design, realisation and analysis of the experiments, as well

as Caroline Peine for her scientific and practical advices and her experimental help,

and for all the fun times during those years, especially Anja Fröhlich, Michael
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