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We de�ne and study �1-solutions of the Aronsson equation (AE), a second order quasi linear equation. We show that such super/
subsolutions make the Hamiltonian monotone on the trajectories of the closed loop Hamiltonian dynamics. We give a short, general 
proof that �1-solutions are absolutely minimizing functions. We discuss how �1-supersolutions of (AE) become special Lyapunov 
functions of symmetric control systems, and allow to �nd continuous feedbacks driving the system to a target in �nite time, except 
on a singular manifold. A consequence is a simple proof that the corresponding minimum time function is locally Lipschitz 
continuous away from the singular manifold, despite classical results showing that it should only be Hölder continuous unless 
appropriate conditions hold. We provide two examples for Hörmander and Grushin families of vector �elds where we construct 
�1-solutions (even classical) explicitly.

1. Introduction

In this note we want to describe a possible new, nonstandard 
way of using the Aronsson equation, a second order partial 
di�erential equation, to obtain controllability properties of 
deterministic control systems. We investigate a symmetric 
control system

where −�(��) ⊂ �(�, �), � is a nonempty and compact subset 
of a metric space. We de�ne the Hamiltonian

which is therefore nonnegative and positively one homogene-
ous in the adjoint variable, and we want to drive the system to 
a target, temporarily we say the origin. We are interested in 
the relationship of (1) with the Aronsson equation (AE)

which is a quasilinear degenerate elliptic equation. Ideally, if 
everything is smooth, when we are given a classical solution 
� of (AE) and we consider a trajectory �� of the Hamiltonian 
dynamics

which is a closed loop dynamics for the original control sys-
tem, we �nd out that (AE) can be rewritten as

�erefore �(��, ∇�(��)) is constant. �is is a very desirable 
property on the control system since it allows to use � as a 
control Lyapunov function, despite the presence of a possibly 
nonempty singular set

which possibly contains the origin. Indeed if �� is outside the 
singular set and � has a unique global minimum at the origin, 
then the trajectory of the Hamiltonian dynamics will reach 
the origin in �nite time.

In general, however, several steps of this path break down. 
From one side, (AE) does not have �2 classical solutions in 
general. Even in the case where � = �, � = �1(0) ⊂ ℝ� is the 
closed unit ball, �(�) = |�| and (AE) becomes the well known 
in�nity Laplace equation

(1)
�̇� = �(��, ��),
�0 = �� ∈ Ω,

(2)�(�, �) = max
�∈�
{−�(�, �) ⋅ �},

(3)−∇(�(�, ∇�(�))) ⋅ ��(�, ∇�(�)) = 0,

(4)�̇� = −��(��, ∇�(��)),

(5)
�
���(��, ∇�(��)) = 0.

(6)H = {� : �(�, ∇�(�)) = 0},

(7)−Δ�(�) ∇�(�) ⋅ ∇�(�) = 0
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solutions are not classical, although known regularity results, 
see Evans and Savin [1], show that they are sometimes �1,�. 
�erefore, solutions of (AE) have to be meant in some weak 
sense, as viscosity solutions. For generic viscosity solutions, 
we can �nd counterexamples to the fact that the Hamiltonian 
is constant along trajectories of the Hamiltonian dynamics, as 
we show later. For an introduction to the theory of viscosity 
solutions in optimal control, we refer the reader to the book 
by Bardi and Capuzzo-Dolcetta [2].

In this paper, we will �rst characterize when, for a given 
super or subsolution of (AE) the Hamiltonian is monotone on 
the trajectories of the Hamiltonian dynamics (e.g. satis�es the 
monotonicity property). To this end we introduce the notion 
of �1-super/subsolution and prove for them that they satisfy 
the monotonicity property of the Hamiltonian. We emphasize 
the fact that not all viscosity solutions that are �1 functions, 
are �1-solutions according to our de�nition. Moreover, as a 
side result, we also show that our �1-solutions are absolutely 
minimizing functions, i.e. local minimizers of the functional 
that computes the �∞ norm of the Hamiltonian. It is a well 
known equivalent property to being a viscosity solution of 
(AE) at least when � is coercive or possibly in some Carnot 
Caratheodory spaces, but this fact is not completely under-
stood in general. �erefore �1-solution appears to be an appro-
priate notion.

We then prove that if (AE) admits a �1-supersolution �
having a unique minimum at the origin, then our control sys-
tem can be driven to the origin in �nite time with a continuous 
feedback, starting at every initial point outside the singular 
set H. If moreover � satis�es appropriate decay in a neighbor-
hood of the origin only at points where the Hamiltonian �
stays away from zero, then we show that the corresponding 
minimum time function is locally Lipschitz continuous out-
side the singular set, despite the fact that even if the origin is 
small time locally attainable, then the minimum time function 
can only be proven to be Hölder continuous in its domain, in 
general, under appropriate conditions. �us the loss of regu-
larity of the minimum time function is only concentrated at 
points in the singular set. Finally for two explicit well known 
examples, where the system has an Hörmander type, or a 
Grushin family of vector �elds, we exhibit two explicit not yet 
known classical solutions of (AE), their gauge functions, pro-
viding examples of smooth absolute minimizers for such sys-
tems and the proof that their minimum time function is locally 
Lipschitz continuous outside the singular set. We remark the 
fact that neither in the general statement nor in the examples, 
the family of vector �elds is ever supposed to span the whole 
space at the origin; therefore, the classical su£cient attaina-
bility condition ensuring that the minimum time function is 
locally Lipschitz continuous will not be satis�ed in general. 
Indeed in the explicit examples that we illustrate in Section 4, 
the minimum time function is known to be locally only 
1/2-Hölder continuous in its domain.

Small time local attainability and regularity of the mini-
mum time function is an important subject in optimal control. 
Classical results by Petrov [3] show su£cient conditions for 
attainability at a single point by requiring that the convex hull 
of the vector �elds at the point contains the origin in its interior. 
Such result was later improved by Liverovskii [4] augmenting 

the vector �elds with the family of their Lie brackets, see also 
the paper by author [5]. More recently such results had several 
extensions in the work by Krastanov and Quincampoix [6] and 
Marigonda et al. [7–9]. Our regularity results rather go in the 
direction of those contained in two recent papers by Albano 
et al. [10, 11], where they show, by completely di�erent meth-
ods, that if a family of smooth vector �elds satis�es the 
Hörmander condition, then the set where the local Lipschitz 
continuity of the minimum time function fails is the union of 
singular trajectories, and that it is analytic except on a subset 
of null measure. Our approach is instead more direct and 
comes as a consequence of constructing Lyapunov functions 
as �1-supersolutions of the Aronsson equation. We �nally men-
tion the paper by Motta and Rampazzo [12] where the authors 
study higher order Hamiltonians obtained by adding iterated 
Lie brackets as additional vector �elds, in order to prove global 
asymptotic controllability to a target. While we do not study 
asymptotic controllability in this paper, their idea of construct-
ing a higher order Hamiltonian may be seen complementary 
to ours, using instead the equation (AE).

Equation (AE) was introduced by Aronsson [13], as the 
Euler Lagrange equation for absolute minimizers, i.e. local 
minima of �∞ functionals, typically the �∞ norm of the gra-
dient. �ere has been a lot of work in more recent years to 
develop that theory using viscosity solutions by authors like 
Jensen [14], Barron–Jensen–Wang [15], Juutinen [16], 
Crandall [17]. For the main results on the in�nity Laplace 
equation, we refer the reader to the paper [18] and the refer-
ences therein. For results for equation (AE) especially in the 
� dependent case, we also refer to the paper by the author [19] 
and the references therein, see also [20–22]. In particular, we 
mention that equation (AE) has been studied in Carnot groups 
by Bieske–Capogna [23], by Bieske [24] in the Grushin space, 
and by Wang [25] in the case of �2 and homogeneous 
Hamiltonians with a Carnot Caratheodory structure.

�e structure of the paper is as follows. In Section 2 we 
introduce the problem and give a motivating example. In 
Section 3, we introduce �1-solutions of (AE) and show for them 
some important properties: monotonicity of the Hamiltonian 
on the Hamiltonian dynamics, an equivalent de�nition and the 
fact that they are absolutely minimizing functions. In Section 4, 
we use �1-solutions of (AE) as Lyapunov functions for nonlin-
ear control systems and obtain local Lipschitz regularity of the 
minimum time function away from the singular set. In 
Section 5, we provide two new examples of explicit classical 
solutions of (AE) in two important cases of nonlinear control 
systems where the results of Section 4 apply.

�is paper appeared as preprint on ArXiv with number 
1907.07436.

2. Control Theory and the Aronsson Equation

As we mentioned in the introduction, throughout the paper 
we consider the controlled dynamical system (1) where Ω ⊂ ℝ�
is open, � is a nonempty, compact subset of some metric space, 
�⋅ ∈ �∞((0, +∞); �) and � : Ω × �→ ℝ� is a continuous func-
tion, continuously di�erentiable and uniformly Lipschitz con-
tinuous in the �rst group of variables, i.e.
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We suppose moreover that �(�, �) is convex for every � ∈ Ω
and that the system is symmetric, i.e. −�(�, �) ⊂ �(�, �) for 
all � ∈ ℝ� and de�ne the Hamiltonian

so that � ≥ 0 and �(�,−�) = �(�, �) by symmetry. Notice 
that � is at least locally Lipschitz continuous, and �(�, ⋅) is 
positively homogeneous of degree one by compactness of �. 
We will also assume that � is continuously di�erentiable on 
{(�, �) ∈ Ω × ℝ� : �(�, �) > 0}.

�e case we are mostly interested in the following sections 
is when

where ��×� is set of � ×� matrices and � = �1(0) ⊂ ℝ� is 
the closed unit ball. In this case �(�, �) = ������(�)

����.
Given a smooth function � ∈ �1(Ω) and �� ∈ Ω\H, where 

H is the singular set as in (6), we consider the Hamiltonian 
dynamics

where �� indicates the gradient of the Hamiltonian 
� = �(�, �) with respect to the group of adjoint variables �.

Remark 2.1. When the Hamiltonian �(�, ∇�(�)) is 
di�erentiable, notice that for �� ∈ � such that −�(�, ��)⋅
∇�(�) = �(�, ∇�(�)) we have that

�erefore, under appropriate regularity, trajectories of (11) 
are indeed trajectories of the system (1) and moreover (11) is 
a closed loop system of (1) with feedback ��. If in particular 
�(�, �) is as in (10), then, for ������(�)

���� ̸= 0,

�erefore, in this case the feedback control is at least contin-
uous on Ω\H and the closed loop system always has a well 
de�ned local solution starting out on that set.

We want to discuss when �(��, ∇�(��)) is monotone on 
a trajectory �� of (11). If we can compute derivatives, then we 
need to discuss the sign of

�erefore, a su£cient condition is that � ∈ �2(Ω\H) is a super 
or subsolution of the following pde

(8)

������(�1, �) − �(�2, �)����� ≤ �������1 − �2����� for all �1, �2 ∈ Ω, � ∈ �.

(9)�(�, �) = max
�∈�
{−�(�, �) ⋅ �} ∈ �(Ω × ℝ�),

(10)�(�, �) = �(�)�, � : ℝ� →��×�,

(11)
�̇� = −��(��, ∇�(��)),
�0 = �� ∈ Ω,

(12)−��(�, ∇�(�)) = �(�, ��).

(13)

�(�, �) = ������(�)
����, ��(�, �) = �(�)

��(�) ��
�(�, �) ,

�� = −
��(�)∇�(�)
�(�, ∇�(�)) ∈ �1(0).

(14)

�
���(��, ∇�(��)) = ∇(�(��, ∇�(��))) ⋅ �̇�

= −∇(�(��, ∇�(��)))
⋅ ��(��, ∇�(��)).

which is named Aronsson equation in the literature. Notice 
that �(��, ∇�(��)) is actually constant if � is a classical solu-
tion of (15). �e above computation is correct only under the 
supposed regularity on � and unfortunately if such regularity 
is not satis�ed and we interpret super/subsolutions of (15) as 
viscosity solutions this is no longer true in general, as the fol-
lowing example shows. Notice that if � is not di�erentiable at 
a point (��, ∇�(��)) where �(��, ∇�(��)) = 0, then 
��(��, ∇�(��)) is multivalued, precisely the closed convex 
subgradient of the Lipschitz function �(��, ⋅) computed at 
∇�(��) and contains the origin by the symmetry of the system. 
�erefore, the dynamics (11) has at least the constant solution 
also in this case. In some statements below it will be sometimes 
more convenient to look at (AE) for �2 in order to gain reg-
ularity at points where � vanishes.

Example 2.2. In the plane, suppose that �2(�, �, ��, ��) =
(������
����
2 + �������
�����
2)/2 hence it is smooth and independent of the 

state variables. In this case (AE) becomes the well known 
in�nity Laplace equation

It is easy to check that a viscosity solution of the equation 
is �(�, �) = |�|4/3 − �����

����
4/3. �e function � ∈ �1,1/3(ℝ2)\�2(ℝ2).  

Among solutions of the Hamiltonian dynamics 
(�̇�, �̇�) = −∇�(��, ��), we can �nd the following two 
trajectories

de�ned in a neighborhood of � = 0. Clearly the Hamiltonian 
along the two trajectories is

it is strictly decreasing in the �rst case, strictly increasing in 
the second but it is never constant. �erefore, the remark that 
we made at the beginning fails in this example. In the next 
section, we are going to understand the reason.

3. Monotonicity of the Hamiltonian along the 
Hamiltonian Dynamics

�roughout this section, we consider a Hamiltonian not nec-
essarily with the structure as in (9), but satisfying the 
following:

(15)−∇(�(�, ∇�(�))) ⋅ ��(�, ∇�(�)) = 0, � ∈ Ω\H,

(16)−Δ∞�(�) = −�2�(�)∇�(�) ⋅ ∇�(�) = 0.

(17)

(�(1)� , �(1)� ) = ((1 − 89�)
3/2
, 0), (�(2)� , �(2)� ) = (0,(1 + 89�)

3/2),

(18)
�(∇�(�(1)� , �(1)� )) =

2√2
3
√1 − 89�,

�(∇�(�(2)� , �(2)� )) =
2√2
3
√1 + 89�,

(19)

� : Ω × ℝ� → ℝ is continuous and

�(�,−�) = �(�, �),
��(�, �) exists and is continuous for all

(�, �) ∈ Ω × ℝ� if �(�, �) > 0.
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�1-supersolution (resp. subsolution) of the Aronsson 
equation (15) in Ω, if setting �(�) = �(�, ∇�(�)) and 
�(�) = −��(�, ∇�(�)) we have that � is a viscosity 
subsolution (resp. supersolution) of −�(�) ⋅ ∇�(�) = 0 and a 
supersolution (resp. a subsolution) of �(�) ⋅ ∇�(�) = 0.

It is worth pointing out explicitly the consequence we have 
reached by Proposition 3.1.

Corollary 3.5. Let � ∈ �1(Ω) be a �1-supersolution (resp, 
subsolution) of (11). For �� ∈ Ω\H, then there is a trajectory ��
of the Hamiltonian dynamics (11) such that �(��, ∇�(��)) is 
nondecreasing (resp. nonincreasing).

Remark 3.6. 

(i)  Notice that if � is a �1-solution of (15) and the 
Hamiltonian dynamics (11) is either strongly 
decreasing and strongly increasing, as for instance 
if it has a unique solution for a given initial condition, 
then for all trajectories �� of (11), �(��, ∇�(��)) is 
constant.

(ii)  In order to comment back to Example 2.2, notice that 
while �(�, �) = |�|4/3 − |�|4/3 is a �1 function, nev-
ertheless, as easily checked, �(�, �) = �2(∇�(�, �)) =16(|�|2/3 + |�|2/3)/9 is only a viscosity subsolution 
but not a supersolution of

while it is a viscosity solution of ∇�(�) ⋅ (−�2�(∇�(�)))
= 0. �en it turns out that the Hamiltonian is weakly 
increasing on the trajectories of the Hamiltonian 
dynamics. Indeed there is another trajectory of the 
Hamiltonian dynamics such that (�(3)(0), �(3)(0)) =
(1, 0) = (�(1)(0), �(1)(0)), namely

along which the Hamiltonian is actually constant, 
until the trajectory is well de�ned.

(iii) It is clear by Example 2.2 that while classical �2
solutions of (15) are �1-solutions, continuous or 
even �1 viscosity solutions in general are not. �e 
de�nition of �1-solution that we introduced is 
meant to preserve the monotonicity property of the 
Hamiltonian on the trajectories of the Hamiltonian 
dynamics.

(iv) Observe that if � is a �1-solution, then −� is a �1
-solution as well, since the Hamiltonian is unchanged 
and the vector �eld in the Hamiltonian dynamics 
becomes the opposite.

It may look unpleasant that De�nition 3.4 of solution of 
(15) refers to a property that is not formulated directly for the 
function �. �erefore, in the next statement we will reformu-
late the above de�nition. �e property (ED) below will give 
an equivalent de�nition of a �1-solution.

(21)−∇�(�) ⋅ (−�2�(∇�(�))) = 0,

(22)(�(3)(�), �(3)(�)) = ((1 − 89�)
3/2
,(89�)

3/2)

We will also refer to the following property:

Given � ∈ �1(Ω), the monotonicity of the Hamiltonian along 
trajectories of (11) is the object of this section. It is a conse-
quence of the following known general result.

Proposition 3.1.  Let Ω ⊂ ℝ� be an open set and � : Ω→ ℝ�
be a continuous vector �eld. �e following are equivalent:

(i)  � : Ω→ ℝ is a continuous viscosity solution of 
−�(�) ⋅ ∇�(�) ≤ 0 in Ω.

(ii)  �e system (�, �) is forward weakly increasing, i.e. 
for every �� ∈ Ω, there is a solution of the di�erential 
equation �̇� = �(��), for � ∈ [0, �), �0 = �� such that 
�(��) ≤ �(��) for 0 ≤ � ≤ �.

Moreover, the following are also equivalent

(iii)  � : Ω→ ℝ is a continuous viscosity solution of 
�(�) ⋅ ∇�(�) ≥ 0 in Ω.

(iv)  �e system (�, �) is backward weakly increasing, i.e. 
for every �� ∈ Ω, there is a solution of the di�erential 
equation �̇� = �(��), for � ∈ (−�, 0], �0 = �� such that 
�(��) ≤ �(��) for � ≤ � ≤ 0.

Corollary 3.2. Let Ω ⊂ ℝ� be an open set and � : Ω→ ℝ� be 
a continuous vector �eld. �e following are equivalent:

(i)  � : Ω→ ℝ is a continuous viscosity solution of 
−�(�) ⋅ ∇�(�) ≤ 0 and of �(�) ⋅ ∇�(�) ≥ 0 in Ω.

(ii)  �e system (�, �) is weakly increasing, i.e. for every 
�� ∈ Ω, there is a solution of the di�erential equa-
tion �̇� = �(��), for � ∈ (−�, �), �0 = �� such that 
�(��) ≤ �(��) for � ≤ �.

Remark 3.3. �e proof of the previous statement can be 
found in [26], see also [27]. When � ∈ �1 another proof can 
be found in Proposition 5.18 of [2] or can be deduced from 
the optimality principles in optimal control proved in [28], 
when � is locally Lipschitz continuous. In the case when F
is locally Lipschitz, the two di�erential inequalities in (i) of 
Corollary 3.2 turn out to be equivalent and of course there 
is also uniqueness of the trajectory of the dynamical system 
�̇ = �(�), �(0) = ��. When (ii) in the Corollary is satis�ed 
by all trajectories of the dynamical system then the system 
is said to be strongly monotone. �is occurs in particular if 
there is at most one trajectory, as when � is locally Lipschitz 
continuous. More general su£cient conditions for strong 
monotonicity can be found in [27], see also [29].

In view of the above result, we introduce the following 
de�nition.

De�nition 3.4. Let Ω ⊂ ℝ� be open and let � : Ω × ℝ� → ℝ
satisfying (19). We say that a function � ∈ �1(Ω) is a 

(20)
�(�, ⋅) is positively � > 0 homogeneous, for all � ∈ Ω.
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by concavity of �(��). �is is a contradiction.
We prove the last statement on the fact that a �1-solution is 

a viscosity solution. �erefore for a �1-supersolution � of (15) 
let now Φ ∈ �2(Ω) be such that � −Φ has a minimum at ��. By 
(ED), for a suitable solution �� of (11) we have that �(��) − �(�)
has a minimum at � = 0 if �(�) = Φ(��), in particular 
�̇(0) = �/���(��)�=0. By (ED) and homogeneity of �(�, ⋅),

�erefore � is a viscosity supersolution of (15). �e case of 
subsolutions is similar and we skip it.  ☐

We end this section by proving another important prop-
erty of �1-solutions of (15) that in the literature was the main 
motivation to the study of (AE).

Theorem 3.9. Let Ω ⊂ ℝ� open and bounded, � satisfying 
(19), and having the structure (9). Let � ∈ �1(Ω) ∩ �(Ω) be 
a �1-solution of (15). For any function � ∈ �(Ω) such that:

in the viscosity sense, then �(�, ∇�(�)) ≤ � in Ω.

Remark 3.10. When � ⊂ ℝ� is an open set and the property 
of a function � ∈ �1(�) in �eorem (3.9) holds for all open 
subsets Ω ⊂ � then we say that � is an Absolutely minimizing 
function in � for the Hamiltonian �. �is means that � is 
a local minimizer of ‖�(⋅, ∇�(⋅))‖�∞. It is well known that 
for the in�nity Laplace equation, where we minimize the 
Lipschitz constant of �, it is equivalent to be a viscosity 
solution and an absolutely minimizing function. Such 
equivalence is also known for coercive Hamiltonians and 
for the norm of the horizontal gradient in some Carnot 
Caratheodory spaces. For more general Hamiltonians this 
equivalence is not known. Here we prove one implication at 
least for �1-solutions of (15).

Proof. Let �,� be as in the statement and we know 
that �(�, ⋅) is positively 1-homogeneous. We de�ne 
�(�) = �(�, ∇�(�)) ≥ 0 and look at solutions �� of the 
Hamiltonian dynamics (11). If �(��) = 0, then clearly 
�(��) ≤ � and we have nothing le¯ to show. If otherwise 
�(��) > 0 since � is a �1-solution of (15), we already know 
that we can construct a solution of (11) starting out at �� ∈ Ω
such that �(��) is nondecreasing for � ≥ 0 and nonincreasing 
for � ≤ 0 (by a concatenation of two trajectories of (11) with 
monotone Hamiltonian). Since Ω is bounded, then the 
curve �� will not stay inde�nitely in Ω because as we already 
observed

(28)

0 ≤ −�̈(0) = ���∇Φ(��) ⋅ ��(��, Φ(��))
������=0

= � ����(��, ∇Φ(��))
���������=0

= −�∇(�(��, ∇Φ(��))) ⋅ ��(��, ∇Φ(��)).

(29)
�(�, ∇�(�)) ≤ � ∈ ℝ, � ∈ Ω,
�(�) = �(�), � ∈ �Ω,

(30)

�(��) − �(��) ≤ −∫
�

0
�(��)�� ≤ −��(��), for � ≥ 0

Proposition 3.7. Let � ∈ �1(Ω) and � satisfying (19), (20). 
�e following two statements are equivalent:

(ED) for all �� ∈ Ω\H, there is a trajectory �� of the 
Hamiltonian dynamics (11), such that if 
� ∈ �2([0, �)) ∪ �2([(−�, 0 ]) is a test function and �(��) − �(�)
has a minimum (respectively maximum) at 0 and 
�̇(0) = (�/��)�(��)�=0, then we have that

(i)  � is a �1-supersolution (resp. subsolution) of (15).
In particular, if � is �1 at {(�, �) : �(�, �) ̸= 0}, a �1-super-
solution (resp. subsolution) is a viscosity supersolution (resp. 
subsolution) of (15).

Remark 3.8. In the statement of (ED), when the Hamiltonian 
vector �eld �(�) = −��(�, ∇�(�)) is locally Lipschitz 
continuous, we may restrict the test functions to � ∈ �2(−�, �).

Proof. We only prove the statement for supersolutions, the 
other case being similar. Let � ∈ �1(Ω).

Suppose �rst that (ED) holds true. Let �(�) = �(�, ∇�(�))
and Φ ∈ �1(Ω) such that � −Φ has a maximum at ��, 
�(��) = Φ(��). �erefore if �� is a solution of the Hamiltonian 
dynamics (11) that satis�es (ED), we have that, by homoge-
neity of �(�, ⋅) and for �(�) = −��(�, ∇�(�)),

�us integrating for small � > 0 we get

and thus �(��) − �(�) has a minimum at � = 0 on [0, �) for �
small and �̇(0) = −�Φ(�0) = (�/��)�(��)

�����=0. If instead � −Φ
had a minimum at ��, then integrating on (�, 0) for � < 0  
small enough, we would still obtain the same as in (25). By 
(ED), from (25) we get in both cases

where �(�) = −��(�, ∇�(�)). �erefore we conclude that � 
is a viscosity subsolution of −∇� ⋅ � ≤ 0 (or a supersolution 
of ∇� ⋅ � ≥ 0 when � − � has a minimum st ��). Finally by 
de�nition, � is a �1-supersolution of (15).

Suppose now that � is a �1-supersolution of (15). �en by 
Proposition 3.1, for all �� ∈ Ω\H, we can �nd a trajectory �� of 
the dynamics (11) such that ��(��) = −(�/��)�(��) is nonde-
creasing. �erefore, �(��) is a concave function of �. Let 
� ∈ �2((−�, 0]) ∪ �2([0, �)) be such that �(��) − �(�) has a 
minimum at � = 0, �(��) = �(0) and (�/��)�(��)|�=0 = �̇(0). 
If we had �̈(0) > 0  then � would be strictly convex in its 
domain. �erefore, for � ̸= 0 small enough, and in the domain 
of �,

(23)−�̈(0) ≥ 0 (resp. ≤ 0).

(24)

�Φ(��) ≥ ��(��) = ��(��, ∇�(��)) = −∇�(��) ⋅ �(��)

= − ����(��).

(25)�(�) := �(��) − �∫
�

0
Φ(��) �� ≤ �(��),

(26)0 ≥ �̈(0) = −� ���Φ(��)
���������=0
= −�∇Φ(��) ⋅ �(��),

(27)
�(��) ≥ �(�) > �(0) + �̇(0)� = �(��) +

�
���(��)

���������=0
� ≥ �(��),
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with � : ℝ� → [0,+∞) continuous and such that �(�) = 0 if 
and only if � ∈ T . �e case T = {0} is already quite interesting 
for the theory.

Here we will apply the results of the previous section and 
consider Lyapunov functions built as follows. We analyse the 
existence of � ∈ �1(Ω\(T ∩H)) ∩ �(Ω\T) such that � is a �1
-supersolution of (AE), i.e. satis�es

Remark 4.1. To study (40) in the case when � is as in (9) 
and � as in (10), it is sometimes more convenient to write it 
for the Hamiltonian squared, �2(�, ∇�(�)) = |∇�(�)�(�)|2.  
�us

where we indicated

��, � = 1, . . . , � are the columns of �, and �∗ = (� + ��)/2. 
�erefore, a special su£cient condition for � to satisfy (40) is 
that �∗ is negative semide�nite, which means that � is �-con-
cave with respect to the family of vector �elds ��, in the sense 
of Bardi-Dragoni [30]. We recall that the matrix � also appears 
in [31] to study second order controllability conditions for 
symmetric control systems.

De�ne the minimum time function for system (1) as

where ��(�) = inf{� ≥ 0 : �� ∈ T, �� solution of(1.1)} ≤ +∞. We 
prove the following result, recall that H = {� : �(�, ∇�(�)) = 0} 
is the singular set.

Proposition 4.2. Let Ω ⊂ ℝ� be open and T ⊂ Ω a 
closed target. Let � have the structure (9). Assume that � ∈ �(Ω\T) ∩ �1(Ω\(T ∩H)) is nonnegative and a 
�1-solution of (40) in Ω\(T ∩H) and that �(�) = 0 for � ∈ T ,  
�(�) =� for � ∈ �Ω and �(�) ∈ (0,�) for � ∈ Ω\T  and 
some � > 0. For any �� ∈ Ω\(T ∪H) there exists a solution of 
the closed loop system (11) such that

(i)  �(��, ∇�(��)) is a nondecreasing function of �;
(ii)  �(��) is a strictly decreasing function of �;
(iii)  �e trajectory (��)�≥0 reaches the target in �nite time 

and the minimum time function for system (1) satis�es 
the estimate

Proof. �e thesis (i) follows from the results of the previous 
section since � is a supersolution of (AE). Let �� be a point 

(40)
−∇(�(�, ∇�(�))) ⋅ ��(�, ∇�(�)) ≥ 0 � ∈ Ω\(T ∩H).

(41)

− ∇(�2(�, ∇�(�)) ⋅ (�2)�(�, ∇�(�))
= −4 ��(∇��(�)) �(∇�(�)�(�)) ⋅ (�(�)�(∇�(�)�(�)))
= −4�∗ �(∇�(�)�(�)) ⋅ �(∇�(�)�(�)),

(42)
�(�) = ��(�)��(∇��(�)) = ��(�)�2�(�)�(�)
+ (�����(�) ⋅ ∇�(�))�,�=1,...,�,

(43)�(�) = inf
�∈�∞(0,+∞)

��(�),

(44)�(��) ≤
�(��)

�(��, ∇�(��))
.

and

Hence �� will hit �Ω forward and backward in �nite time. Let 
�1 < 0 < �2 be such that ��1 , ��2 ∈ �Ω and �� ∈ Ω for � ∈ (�1, �2). 
�erefore,

and then

Now we use the di�erential inequality (29) in the viscosity 
sense and the lower optimality principle in control theory as 
in [28] for subsolutions of the Hamilton-Jacobi equation. 
�erefore, since �� is a trajectory of the control system (1) we 
have that for all � > 0 and �1 + � < � < �2, as �� ∈ Ω for 
� ∈ [�1 + �, �],

By letting �→ �2− and �→ 0+ we conclude, by continuity of 
� at the boundary of Ω and (33),

which is what we want.  ☐

Remark 3.11. Notice that in (32) equalities hold if � is 
constant on a given trajectory of (11) and we obtain that

and then

which is an implicit representation formula for � through its 
boundary values, since the points ��1 , ��2 depend on the 
Hamiltonian dynamics (11) and � itself.

4. Lyapunov Functions and (AE)

In this section, we go back to the structure (9) for � and want 
to discuss the classical idea of control Lyapunov function. Let 
T ⊂ ℝ� be a closed target set, we want to �nd � : ℝ� → [0,+∞)
at least lower semicontinuous and such that: �(�) = 0 if and 
only if � ∈ T  and such that for all � ∈ ℝ�\T  there exists a 
control � ∈ �∞(0,+∞) and �� ≤ +∞ such that the correspond-
ing trajectory of (1) satis�es:

Classical necessary and su£cient conditions lead to look for 
strict supersolutions of the Hamilton-Jacobi equation, namely 
to �nd � such that

(31)�(��) − �(��) ≥ −��(��), for � ≤ 0.

(32)�(��2) + �2�(��) ≤ �(��) ≤ �(��1) + �1�(��)

(33)
�(��1) −�(��2) = �(��1) − �(��2) ≥ (�2 − �1)�(��).

(34)�(��1+�) ≤ �(� − �1 − �) +�(��).

(35)�(��)(�2 − �1) ≤�(��1) −�(��2) ≤ �(�2 − �1),

(36)
�(��) − �(��1)
�1

=
�(��) − �(��2)
�2

(37)�(��) = �2�2 − �1�(��1) −
�1
�2 − �1
�(��2),

(38)�(��) is nonincreasing and �(��) → 0, as �→ ��.

(39)�(�, ∇�(�)) ≥ �(�),
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As �→ 0+, the result follows.  ☐
�e extra estimate (48) is crucial in the sought regularity 

of the minimum time function, but contrary to the existing 
literature is only asked in a possibly proper subset of a neigh-
borhood of the target. We will show in the examples of the 
next section how it may follow from (AE) as well. In order to 
achieve small time local attainability of the target, one needs 
in addition that the system can evade from H.

Corollary 4.4. In addition to the assumptions of �eorem 4.3 
suppose that H is a manifold of codimension at least one and 
that for all �� ∈ H ∩ (Ω\T) we have �(��, �) ⊂ ���(H), the 
tangent space of H at ��. �en for any �� ∈ Ω\T  we can reach 
the target in �nite time.

Proof. By following the vector �eld �(��, �) ∉ ���(H), we 
immediately exit the singular set and then reach the target in 
�nite time by Proposition 4.2. ☐

5. Some Smooth Explicit Solutions of the 
Aronsson Equation

In this section, we show two examples of well known nonlinear 
systems where we can �nd an explicit smooth solution of (AE) 
and then apply �eorem 4.3 to obtain local Lipschitz regularity 
of the minimum time function. Our system will be in the form 
(9), (10) and T = {0}.

5.1. Hörmander-Like Vector Fields. We consider the case 
where � = (�ℎ, �v) ∈ ℝ�+1 and

where �� is the � ×� identity matrix and � is not singular, 
�� = −� = �−1 is also � ×�. In particular � is an even number 
and ������ℎ

���� =
�����ℎ
����. It is known that the corresponding symmetric 

control system is globally controllable to the origin and that 
its minimum time function is locally 1/2-Hölder continuous. 
We want to prove higher regularity except on its singular set.

We consider the two functions

and want to show that � is a solution of (AE) for �2 in ℝ�+1\{0}.  
� is a so called gauge function for the family of vector �elds. 
We easily check that, a¯er denoting �(�) = �(�) ��(�),

Notice in particular that �(�, ∇�(�)) = 0 if and only if �ℎ = 0
and thus the singular set {� : �(�, ∇�(�)) = 0} contains the 

(51)�(�) = ( ���(��ℎ) ),

(52)�(�) = �����ℎ
����
4 + 4�2

v
, �(�) = (�(�))1/4,

(53)

∇�(�) = (4�����ℎ
����
2�ℎ, 8�v),

�(�) �∇�(�) = ( 4
�����ℎ
����
2�ℎ + 8�v��ℎ
8�

v

�����ℎ
����
2 ),

�2(�, ∇�(�)) = |∇�(�)�(�)|2

= �(�) �∇�(�)⋅�∇�(�) = 16�����ℎ
����
2�(�),

�(�, ∇�(�)) =
�����ℎ
����
�(�) .

where �(��, ∇�(��)) > 0. By homogeneity of the 
Hamiltonian we get, for � ≥ 0

and (ii) follows. Integrating now the last inequality we obtain

and thus the solution of (11) reaches the target before time

�erefore (44) follows by de�nition. ☐
�e estimate (44) can be used to obtain local regularity of 

the minimum time function. �e proof of regularity now follows 
a more standard path although under weaker assumptions than 
usual literature and will allow us to obtain a new regularity result. 
We emphasize that nothing in the next statement is assumed on 
the structure of the vectogram �(�, �) when � ∈ T . In particular 
the target need not be even small time locally attainable.

Theorem 4.3. Let Ω ⊂ ℝ� be open and T ⊂ Ω a closed target. 
Assume that � ∈ �( ̄Ω\T) ∩ �1(Ω\(T ∩H)) is nonnegative 
and �1-solution of (40) in Ω\(T ∩H) and that �(�) = 0 for 
� ∈ T , �(�) =� for � ∈ �Ω and �(�) ∈ (0,�) for � ∈ Ω\T
and some � > 0. Let �(�) = ����(�, T) be the distance function 
from the target. Suppose that � satis�es the following: for all 
� > 0 there are �, � > 0 such that

�en the minimum time function � for system (1) to reach 
the target is �nite and locally Lipschitz continuous in 
Ω\(T ∪H).

Proof. Let �� ∈ Ω, �� ∉ (T ∪H) and �, � > 0 be such that 
�(�, ∇�(�)) ≥ �, for all � ∈ ��(��). �e parameter � will be 
small enough to be decided later. We apply the assumption 
(48) and �nd �, � > 0 accordingly. �e fact that � is �nite in 
��(��), for � su£ciently small, follows from Proposition 4.2.

Take �1, �2 ∈ ��(��) and suppose that �1� , �2� are the trajec-
tories solutions of (1) corresponding to the initial conditions 
�0 = �1, �2 respectively. To �x the ideas we may suppose that �(�2) ≤ �(�1) < +∞ and for any � ∈ (0, 1] we choose a con-
trol �� and time �2 = ��2(��) ≤ �(�2) + � such that �(��2) = 0.  
Note that by (44), �2 ≤ (�(�2)/�) + � ≤��, for all �2 ∈ ��(��).  
Moreover, by the Gronwall inequality for system (1) and since 
�(�2�2) = 0,

and the right hand side is smaller than � if � is small enough. 
Now we can estimate, by the dynamic programming principle 
and by (44), (48),

(45)
0 < �(��, ∇�(��)) ≤ �(��, ∇�(��))

= ∇�(��) ⋅ ��(��, ∇�(��)) = −
�
���(��),

(46)0 ≤ �(��) ≤ �(��) −�(��, ∇�(��))�,

(47)̄� = �(��)
�(��, ∇�(��))

.

(48)�(�) ≤ � �(�), if �(�, ∇�(�)) ≥ �, �(�) < �.

(49)�(�1�2) ≤ ������1�2 − �2�2 ����� ≤ ������1 − �2��������2 ≤ ������1 − �2���������

(50)
0 ≤ �(�1) − �(�2) ≤ (�2 + �(�1�2)) − �2 + � ≤ �(�

1
�2)�

+ � ≤ ���(�1�2) + � ≤ ��
���

� ������1 − �2����� + �.
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and again we have, for � > 0,

Finally, if � ̸= 0,

�erefore � is a solution of (AE) for Hamiltonian �2 and 
hence the system (1) is controllable in �nite time to the origin 
from {� : �(�, ∇�(�)) > 0} and we prove the following result.

Proposition 5.2. Consider the symmetric control system (57) 
where � is given in (58). �en the gauge function (52) is a solution 
of (AE) for �2 in ℝ�+1\{0}, it is an absolutely minimizing 
function for the corresponding �∞ norm of the subelliptic 
gradient and the minimum time function to reach the origin is 
locally Lipschitz continuous in {� = (�ℎ, �v) ∈ ℝ�+1 : �ℎ ̸= 0}.

6. Conclusions

We introduced �1-solutions of the Aronsson equation in 
order to preserve the monotonicity of the Hamiltonian on 
the trajectories of the Hamiltonian dynamics. We proved that 
�1-solutions are absolute minimisers of the Hamiltonian and 
a subclass of viscosity solutions of (AE). We also discussed 
the fact that �1-solutions of (AE) are a good class of Lyapunov 
functions to prove that a nonlinear symmetric system is con-
trollable to the target with a continuous feedback outside a 
singular set and that the minimum time function is locally 
Lipschitz continuous on that domain. We have provided new 
examples of smooth explicit solutions of (AE) for Heisenberg 
and Grushin systems to implement the results.
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