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SUMMARY 
Purpose: In mammals, nine genes encode trans-membrane adenylyl cyclase (tmAC) 
isoforms that synthesize the intracellular messenger compound cAMP from ATP.  As cAMP 
is produced in virtually all types of cell, isoform-selective modulators of tmAC would have 
major research and therapeutic potential. This study investigated the effects of fungicide 
imidazoles previously shown to suppress cAMP production in various tissues on the activities 
of tmAC isoforms AC1, 2 and 9.  
Methods:  AC1, 2 or 9 stably expressed in human embryonic kidney 293 cells were 
investigated. Intact cells, as well as crude membranes were exposed to various imidazoles or 
known stimulators of tmAC and the ensuing changes in the production of cAMP analysed.  
Results: In crude membranes, the activity of AC9 in the presence of GDP-β-S was 
enhanced by miconazole with an EC50 of ~8µM, while AC1 and AC2 were inhibited with an 
IC50 of ~20µM. Clotrimazole (10-100µM) was an inhibitor of all the ACs tested. Substrate 
saturation analysis indicated that miconazole increased the Vmax of AC9 by 3-fold while 
having no effect on the Km. In intact cells, the effect of miconazole on cAMP production 
through AC9 was additive with that of isoproterenol.  The stimulation of cAMP production by 
miconazole was inhibited by Ca2+ and this could be prevented by the calcineurin blocker 
FK506.  
Conclusion: Activation of AC9 by miconazole is through a mechanism distinct from that of 
forskolin, activated G proteins or the COOH-terminal mediated autoinhibition. However, it is 
subject to the AC9 isoform-specific inhibition by Ca2+/calcineurin. Differential modulation of 
mammalian tmAC paralogues appears to be achievable by an imidazole with phenylated 
side-chains. Optimization of the lead-compound and exploration of the underlying 
mechanism(s) of action in more detail could exploit this further.  
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INTRODUCTION  
Adenosine 3'5'monophosphate (cAMP) is formed from ATP by adenylyl cyclase (AC) and is 
an important second messenger molecule that is virtually ubiquitous in mammalian cells. 
Accordingly, cAMP is involved in several vital processes in the body ranging from 
spermatogenesis to cognition.  Thus, drugs that target AC would have considerable 
therapeutic potential (Kerwin Jr, 1994, Serezani et al., 2008, Pierre et al., 2009, Seifert et al., 
2012, Raker et al., 2016, Dessauer et al., 2017).  
 
A family of nine different genes encodes trans-membrane tmAC (tmAC) in mammals.  The 
tmAC protein paralogues encoded by these genes are structurally and functionally distinct 
(Taussig and Gilman, 1995, Krupinski and Cali, 1998, Antoni, 2000, Dessauer et al., 2017). 
Between species, the sequence homology of tmAC orthologues is high, typically 80-95%, 
whereas between tmAC isoforms of the same species it is only 20-40% (Krupinski and Cali, 
1998).  This points to specified physiologic functions for tmAC isoforms, which is 
corroborated by the differential tissue distributions of the respective mRNAs and proteins 
(Defer et al., 2000, Visel et al., 2006), as well as the selective deficits of biological functions 
caused by the targeted deletion of tmAC genes, reviewed in ref (Dessauer et al., 2017).  
The catalytic core of tmACs is relatively well-preserved in all isoforms and requires the 
physical interaction of two distinct, yet structurally homologous cytoplasmic segments 
designated C1a and C2a (Fig. 1), respectively, reviewed in refs (Taussig and Gilman, 1995, 
Tesmer and Sprang, 1998).  The C1a and C2a domains are several hundreds of amino acid 
residues apart and are flanked by non-conserved cytoplasmic sequences known as C1b and 
C2b, respectively, which are highly variable between isoforms  (Taussig and Gilman, 1995, 
Krupinski and Cali, 1998). Moreover, significant sequence variation between tmAC isoforms 
can be observed in the transmembrane domains.  Heterodimers formed from recombinantly 
expressed C1a and C2a domains (Tang and Gilman, 1995, Dessauer and Gilman, 1996) or 
the entire C1 and C2 domains (Scholich et al., 1997, Haunsø et al., 2003) retain catalytic 
activity and at least some of the regulatory properties of the ACs they have been derived 
from. It is currently hypothesized that the C1a-C2a complex is stable in vivo and stimulation 
of enzyme activity by Gsα-GTP or the diterpene drug forskolin is by stabilisation of a 
catalytically active conformation of the heterodimer (Tesmer et al., 1999). Alternatively, it is 
possible that the C1a-C2a complex is not abundant in vivo and its formation is enhanced by 
Gsα or forskolin (Whisnant et al., 1996).   
 
The requirement for heterodimerisation of C1a and C2a for catalysis in ACs raises the 
possibility that cAMP biosynthesis could be modulated in an isoform-specific manner by 
small ligands. Indeed, the details of several screens have been published, reviewed in refs. 
(Seifert et al., 2012, Dessauer et al., 2017). Overall, the compounds used target the active 
site (P-site inhibitors) or the forskolin binding-pocket formed at the interface of the C1a and 
C2b catalytic domains. More recently, a relatively selective inhibitor of AC1 that also 
stimulates the activities of AC2, 5, and 6 was reported (Brust et al., 2017).  The mechanism 
of action of this compound awaits characterization.  
 
The present study analysed the effects of variously substituted phenylated imidazoles (Fig. 
2), currently in use as anti-fungal agents, on tmAC activity. Following on from an 
investigation into the mechanisms by which ketoconazole could suppress cortisol secretion 
without inducing the hypersecretion of corticotropin (Stalla et al., 1988), these drugs were 
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found to inhibit tmAC catalytic activity in anterior pituitary, as well as S49 lymphoid cells 
(Stalla et al., 1989, Watson, 1990).  However, the compounds have not been tested on 
specified tmAC isoforms. Our focus was on AC9 (Antoni, 2016) as this isoform shows the 
lowest sequence homology with the rest of the tmACs, and thus appears to represent the 
best opportunity for selective targeting. In contrast to other tmACs, AC9 is insensitive to  
forskolin (Yan et al., 1998) and the currently known P-site inhibitors (Haunsø et al., 2003, 
Baldwin and Dessauer, 2018). In earlier work, we reported that miconazole had no 
discernible effect on cAMP production on an AC9 miniprotein (AC9_C1C2) constructed from 
the cytosolic C1 and C2 domains of the enzyme (Haunsø et al., 2003). Another imidazole, 
calmidazolium, markedly inhibited AC9_C1C2, but had a biphasic effect (stimulation at 
<5µM, inhibition at >5µM) on the holoenzyme in native membranes. As calmidazolium (Fig 2)  
is structurally related to both miconazole and clotrimazole, we investigated the possibility that 
these drugs have differential effects on AC9. Two other tmACs, AC1 and AC2, with different 
regulatory properties were used as comparators to AC9. We found that AC9 was stimulated 
3-fold by miconazole, while AC1 as well as AC2 were markedly inhibited. Moreover, the 
stimulatory effect of miconazole was subject to the AC9-specific inhibition by 
Ca2+/calcineurin.  
 
MATERIALS AND METHODS 
 
Reagents 
If not otherwise indicated, all reagents were from Sigma-Aldrich, Poole, Dorset, U.K., and of 
the highest grade available. Further sources for reagents were: calyculin A, microcystin-LR 
(Alexis Corporation, Nottingham, U.K.), miconazole, clotrimazole, ketoconazole, (ICN Labs, 
Basingstoke, Hants, U.K.), creatine phosphokinase (Boehringer Mannheim, Lewes, East 
Sussex).  
 
Assay of adenylyl cyclase 
HEK293 cells stably overexpressing mouse (Antoni et al., 1998a) or human AC 9 (Paterson 
et al., 2000), human AC9 truncated at start of the C2b domain (AC9_Y1242, (Pálvölgyi et al., 
2018)) rat AC2 (Feinstein et al., 1991), or bovine AC1 (Krupinski et al., 1989) were produced 
and propagated as described previously (Antoni et al., 1998a). The cells were used between 
5 to 25 passages.  Current evidence indicates, that species differences within mammalian 
tmAC isoforms are relatively minor. Thus, the salient regulatory properties of the respective 
isoforms are likely to be conserved across species (Taussig and Gilman, 1995, Krupinski and 
Cali, 1998, Dessauer et al., 2017).   For the preparation of crude membranes, the cells were 
detached from the culture vessels in Mg2+ and Ca2+ free Hank's balanced salt solution 
containing 0.1% Na2EDTA pH 7.4 and pelleted by centrifugation at 200 x g for 10 min at 
20°C.  The cell pellets were homogenized by 3 freeze-thaw cycles and trituration (2x107 
cells/ml) in Tris-HCl 50mM, KCl 150mM, leupeptin 5µg/ml, pepstatin-A 1µg/ml, EGTA 1mM, 
Trasylol ™(Bayer) 15µl/ml, calyculin A 50nM, microcystin-LR 1µM, staurosporine 3µM, 
MgCl2 1mM, pH7.4 and crude membranes were prepared as previously described (Antoni et 
al., 1998a). The membrane pellet was washed twice with 4mM EGTA to deplete endogenous 
calmodulin and AC activity was determined as previously reported (Antoni et al., 1998a).  
The AC reaction mixture contained 100µM GDP-ß-S, which was included to block any effects 
of free G-protein α-subunits. Under these conditions the cyclase reaction was linear for at 
least 20 min.  Protein content of the membrane samples was determined by the Coomassie 
blue method (Bradford, 1976). 
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cAMP accumulation in intact cells.   
HEK293 cells that stably overexpress tmACs at levels ~20-fold above normal cellular 
concentration were maintained as previously described (Antoni et al., 1998a, Pálvölgyi et al., 
2018). For the measurement of cAMP accumulation the cells were plated in growth medium 
in 24-well tissue culture trays.  After 72-96h the medium was changed to Ham’s F12 medium 
supplemented with Insulin-transferrin-sodium selenite media supplement (Sigma, I 1884) 
1ml/L for 24h.  Subsequently, the medium was exchanged to Ham’s F12 containing 25mM 
HEPES pH7.4, 0.3 mM Na2EGTA, 1µM thapsigargin, and 10µM ryanodine, in order to 
deplete intracellular pools of Ca2+. Conditions of Ca2+ depletion were used because imidazole 
anti-fungal agents reportedly alter Ca2+-handling in several cell types (Sargeant et al., 1994), 
which may have a secondary influence on the activity of ACs (see (Willoughby and Cooper, 
2007) for review). Modulators of calcineurin were also introduced at this time and the cells 
were incubated for 20 min at 37°C.  After 20 min, Ca2+ was applied in some cultures to reach 
2.5mM extracellularly.  After further 5 min of incubation inhibitors of cyclic nucleotide 
phosphodiesterase (PDE) were added : 1mM IBMX and 0.1 mM rolipram. The incubation 
was carried on for 10 min and stopped by the addition of HCl to 0.1 mM final concentration. 
In experiments with isoproterenol, the agonist was added after the 10 minutes of incubation 
with the PDE blockers, and the incubation was continued for a further 10min. The level of 
cAMP in the wells was determined as for membrane assays. 
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RESULTS  
  
Expression of ACs in HEK293 cells 
The AC activity in membranes prepared from AC1, AC2, or AC9 transfected cell lines was 
between 15-50 pmol cAMP /mg protein/min, whereas that of cells transfected with pcDNA3 
skeleton vector alone was 1.3-2.9 pmol cAMP/mg protein/min. Thus, close to 90% of the 
tmAC activity in these crude membrane preparations is attributable to the transfected tmAC 
isoform, which correlated reasonably well with a previous estimate that AC9 protein was 
expressed at approximately 20x-fold higher than the physiologic level in stably transfected 
HEK293 cells (Antoni et al., 1998a).  
 
Effects of imidazoles and other compounds on AC9 in crude membranes  
Miconazole and econazole stimulated cAMP formation by AC9 with apparent EC50 values of  
8 and  10 µM, respectively (Fig. 3).  Ketoconazole caused no significant change of activity 
while clotrimazole was inhibitory, the maximal effect was 50% inhibition at 100µM. (Fig. 3).  
Imidazole (3-100µM) had no effect (not shown). Forskolin (10µM) produced an approximately 
2-fold stimulation, and its effect was additive with that of a maximally effective concentration 
of miconazole (Fig 4A). Kinetic analysis of cAMP formation indicated that miconazole (30µM) 
increased the Vmax of AC9 while the Km for ATP remained unchanged (Fig 4B) (Km [µM] 
vehicle: 176±33, miconazole 181±21; Vmax [pmol/mg prot/min] vehicle: 55±11, miconazole: 
162±43 means±S.D., n=3, P<0.01 for Vmax  by Student's t-test).    
 
A blocker of calmodulin, J8 (MacNeil et al., 1988) had no significant effect on the activity of 
AC9 in membrane preparations or intact cells (Supplementary Fig 1).  Moreover, the 
amphiphilic ligands trifluoperazine and 48/80, which influence the activity of numerous 
enzymes (Husebye and Flatmark, 1988), were without effect on AC9 in membranes at 
100µM (Supplementary Fig 1). 
 
 
 
Evidence for tmAC isoform selectivity of imidazoles in crude membranes 
Miconazole inhibited cAMP synthesis by AC2 to 30% of control with an IC50 around 10µM 
(Fig 5A). Both clotrimazole and miconazole inhibited the activity of AC1 to 15 and 25% of the 
vehicle treated control, respectively (Fig 5B).  
 
Effect of imidazoles in intact cells 
Application of imidazoles to intact HEK293 cells expressing human AC9 gave results 
consonant with the studies in membranes: miconazole stimulated cAMP production, (EC50 
was not determined as the plateau of the concentration-response curve for miconazole was 
not reached at 100µM) while clotrimazole was inhibitory (IC50 = 26µM) (Fig 6A). Fluconazole 
(100µM) was without effect (not shown).  
 
A salient regulatory property of AC9 is its inhibition by Ca2+ involving a calcineurin-dependent 
process (Paterson et al., 1995, Paterson et al., 2000, Antoni, 2016). Miconazole-stimulated 
cAMP formation by AC9 was significantly reduced upon the introduction of 2.5 mM Ca2+ to 
the incubation medium (Fig 6B). The inhibitory effect was blocked by the calcineurin inhibitor 
FK506 (3 and10 µM) (Fig. 6B). L685,818 (50µM), an inactive FK506 analogue with respect to 
the inhibition of calcineurin, but a blocker of the prolylisomerase activity of FK-binding 
proteins (Dumont et al., 1992) had no effect .   
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We have previously shown that the C2b domain exerts a marked auto-inhibitory effect on the 
activation of AC9 by Gs-coupled receptors (Pálvölgyi et al., 2018), and therefore examined 
the possibility that miconazole stimulated AC9 by relieving this auto-inhibition. The effects of 
miconazole on full-length AC9 and AC9-Y1242, a COOH-terminally truncated human AC9 
that lacks the C2b domain (Pálvölgyi et al., 2018), were identical. Thus, miconazole also 
activates AC9 in the absence of the auto-inhibitory domain (Fig 7A). As HEK293 cells 
express endogenous β2-adrenergic receptors (Rosethorne et al., 2010), the interaction 
between the beta agonist compound isoproterenol and miconazole was analysed. This was 
restricted to AC9_Y1242, because full-length AC9 is practically unresponsive to Gs-coupled 
receptors in HEK 293 cells (Pálvölgyi et al., 2018). As shown in Fig 7B, the effects of 
miconazole and a maximally effective concentration of isoproterenol (300 nM) on the 
production of cAMP in cells expressing AC9_Y1242 were additive (Two-way ANOVA, 
Interaction : F (3, 24) 0.31, P=0.82, Miconazole concentration effect : F (3,24) 206, 
P<0.0001, Isoproterenol effect : F (1,24) 170, P<0.001). 
   
DISCUSSION 
The results presented here show that AC9 is directly stimulated by miconazole. Moreover, 
miconazole inhibited AC1 and AC2 thus indicating a potential for the differential modulation 
of tm-ACs by phenylated imidazoles. 
 
It has been previously reported that anti-fungal imidazoles markedly inhibit cAMP formation 
in anterior pituitary cells (Stalla et al., 1989) as well as the S49 lymphoma cell line (Stalla et 
al., 1989, Watson, 1990). Both studies found that forskolin-stimulated cAMP production was 
drastically inhibited by miconazole. Importantly, AC9 is largely insensitive to forskolin (Yan et 
al., 1998). However, as both S49 and adenohypophysial cells contain multiple isoforms of 
tmAC, any selective actions of imidazoles may have been masked. The present study 
analysed stably transfected cell lines where  ~90% of the production of cAMP is attributable 
to a specified tmAC, and hence the differences in the actions of imidazoles could be 
resolved.  
 
Surprisingly, miconazole and its close structural analogue econazole stimulated the activity of 
AC9. In the case of the former, the Vmax of the reaction was enhanced close to 3-fold, the Km 
for Mg-ATP was unchanged. This observation indicates that the action of miconazole is 
distinct from that of forskolin, which generally increases the Km for ATP (Dessauer and 
Gilman, 1996). Forskolin does not stimulate AC9 (Yan et al., 1998), furthermore, miconazole 
failed to stimulate cAMP production by the fused catalytic domains (AC9_C1C2) of AC9 
(Haunsø et al., 2003), whereas it is well established that the target of forskolin is within these 
domains (Tang and Gilman, 1995, Tesmer and Sprang, 1998). Thus, it seems reasonable to 
conclude that miconazole stimulates AC9 via a mechanism distinct from that of forskolin on 
other tmACs (Tang and Gilman, 1995, Yan et al., 1998). With respect Gsα, which is a 
physiologic stimulator of tmACs, the studies in membranes were carried out in the presence 
of GDP-ß-S thus minimizing the contribution of G proteins. Furthermore, as AC9 is 
insensitive to inhibition by Gi (Baldwin and Dessauer, 2018), (Kleuss, Simpson and Antoni, 
unpublished data) an effect of miconazole on Gi also seems unlikely.  Finally, in intact cells 
the effects of maximal beta-adrenergic receptor activation and miconazole on cAMP 
production were additive. Taken together, these findings also argue against a shared 
mechanism of action between G proteins and miconazole to stimulate AC9. Whether or not 
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the inhibition of AC9 by clotrimazole involves the same allosteric pathway as the effect of 
miconazole, remains to be explored. 
 
We have not analysed the inhibition of AC1 and 2 or other AC paralogues by miconazole in 
further detail. As AC isoforms other than AC9 are all stimulated by forskolin, the results on 
AC1 and AC2 reported here are consonant with the previous findings of Stalla et al. and 
Watson (Stalla et al., 1989, Watson, 1990).  It is of note, that inhibition of enzymatic activity 
by high concentrations (>10µM) of hydrophobic imidazoles in aqueous solution may be non-
specific.  Under these conditions, drugs may form colloidal aggregates that tend to cause 
protein unfolding, leading to a loss of biological function (Coan et al., 2009).   
 
Taken together with previous work (Haunsø et al., 2003), the present findings indicate that 
miconazole targets the transmembrane domains to stimulate AC9.  The transmembrane 
domains show considerable sequence variation between tmAC isoforms, and AC9 is the 
enzyme having the lowest level of sequence homology with the rest of the tmAC paralogues. 
Indeed, others have reported that the exchange of the trans-membrane domains of AC5 with 
that of AC7 led to a dramatic reduction of enzymatic activity (Seebacher et al., 2001).  
Moreover, chimeras between 6-transmembrane domain (6TM) receptors and tmAC catalytic 
domains show transduction of the activation of the 6TM by an extracellular ligand to tmAC 
(Beltz et al., 2016). Thus, the idea that the trans-membrane domains make a significant 
isoform specific contribution to tmAC catalytic activity is not unprecedented, but minimally 
explored experimentally (Bassler et al., 2018).  Drugs that modulate the functional activity of 
other integral membrane proteins by interacting with their trans-membrane domains are well 
known (Kratochwil et al., 2011, Nury et al., 2011, Miller et al., 2017).  
 
A further important feature of the miconazole stimulation of AC9 was that the inhibition by 
Ca2+/calcineurin (Antoni et al., 1995, Antoni et al., 1998b) was preserved.  This indicates that 
miconazole did not interfere with a salient feature of the isoform-specific physiological control 
of AC9.  Tests of the specificity of the effects of imidazoles on ACs were carried out using 
other drugs that influence a wide range of enzymes (Husebye and Flatmark, 1988). Neither 
trifluoperazine nor compound 48/80 had sizeable effects on membrane AC9 activity under 
the conditions of the assay.   
 
In summary, miconazole enhanced the activity of AC9 through a novel mechanism by 
apparently targeting the transmembrane domain(s) of the enzyme. The recent advances in 
structural analysis by cryo-electronmicroscopy technology (Renaud et al., 2018) should 
facilitate the understanding of the molecular mechanisms underlying the effects of imidazoles 
on tmACs and may lead to the development of novel pharmacons targeting this important 
family of  proteins.  
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LEGENDS TO THE FIGURES  
 
Figure 1 
Schematic representation of the structure of mammalian tmACs, following nomenclature 
suggested by Taussig and Gilman (Taussig and Gilman, 1995).  Note the single polypeptide 
chain with six transmembrane segments resembling an ABC transporter protein. The C1a 
and C2b domains come in physical contact to form the catalytic core.  The NH2-terminal, the 
transmembrane, as well as the C1b and C2b domains are highly variable between tmAC 
paralogues.  
 
Figure 2 
Chemical structures of the imidazole compounds used in this study.  
 
Figure 3 
The effect of imidazoles on the activity of mouse AC9 in HEK293 cell membranes.  Data are 
means ± S.D. n=4/group, expressed as percentage of cAMP levels in the presence of vehicle 
(dimethylsulfoxide at 0.7% v/v final concentration), representative of two identical 
experiments. * P<0.05, ** <0.01, *** <0.001 **** <0.0001 vs. the vehicle treated control 
group, one-way ANOVA followed by Dunnett’s test for multiple comparisons. 
 
Figure 4  
Characterisation of the effect of miconazole on mouse AC9 in HEK293 cell membranes: (A) 
Additive effects of forskolin (10µM) and miconazole (30µM) on tmAC enzymatic activity.  2-
ANOVA showed significant effects of both compounds and no interaction. Two-way ANOVA 
gave no significant interaction, effect of forskolin, F (1, 12) = 34.13, P<0.0001, miconazole F (1, 12) 
= 258.1 P<0.0001. Data are means ± S.D., n=4/group, representatives of 2  identical 
experiments.  B) Miconazole (30µM) increased the Vmax of cAMP formation by approximately 
3-fold, while the Km appeared unaltered. (Km [µM] vehicle: 176±33 miconazole 181±21; Vmax 
[pmol/mg prot/min] vehicle: 55±11 and miconazole: 162±43 means ± S.D., n=3, P<0.01 for 
Vmax  by Student's t-test). 
 
Figure 5 
Isoform selective action of imidazoles on tmAC activity in membranes prepared from cells 
overexpressing A) mouse AC9 and rat AC2. Note stimulation of AC9 by miconazole and 
inhibition of AC2. B) bovine AC1. Data are means ± S.D., n=4/group, representatives of four 
identical experiments. ** P<0.01, **** <0.0001 vs. the vehicle treated control group, one-way 
ANOVA followed by Dunnett’s test for multiple comparisons. 
 
Figure 6   
The effects of imidazoles on cAMP accumulation by intact HEK293 cells overexpressing 
human AC9. (A) Concentration-dependent stimulation and inhibition by miconazole and 
clotrimazole, respectively. * P<0.05, ** <0.01, *** <0.001 **** <0.0001 vs. the vehicle treated 
control group, one-way ANOVA followed by Dunnett’s test for multiple comparisons. 
(B) Miconazole (30µM) induced cAMP accumulation was inhibited by Ca2+ (2.5mM) applied 
in the medium, and this effect was blocked by the calcineurin inhibitor compound FK506, but 
not by L685,818 an analogue of FK506 devoid of calcineurin inhibitory activity (Dumont et al., 
1992).  Two-way ANOVA showed significant interaction between the effects of Ca2+ and the 
calcineurin inhibitors F (3, 24) = 5.911, P = 0.0036. ** P<0.01 when compared with the 
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respective Ca2+-free group, Sidak’s post-hoc multiple comparisons test. All studies were 
carried out in the presence of 1 mM IBMX and 0.1 mM rolipram. Data are means±S.D., 
n=4/group, representatives of 4  (A) and 2 (B) identical experiments.  
 
Figure 7   
The effects of miconazole and isoproterenol to stimulate cAMP production by AC9 are 
additive. A) Comparison of the effect of miconazole on cAMP production by HEK 293 cells 
stably expressing human AC9 or AC9_Y1242. ** P<0.01 **** <0.0001 vs. the vehicle treated 
control group, one-way ANOVA followed by Dunnett’s test for multiple comparisons.  B) 
Effect of miconazole on cAMP production by HEK 293 cells expressing  AC9_Y1242 in the 
presence of vehicle (triangles ) or 300 nM isoproterenol (squares).  AC9 was not tested as it 
barely responds to isoproterenol (Pálvölgyi et al., 2018). Two-way ANOVA gave no 
interaction, the effects of miconazole (F (3, 24) = 205.6, P < 0.0001 ) and  isoproterenol (F 
(1, 24) = 170.0, P < 0.0001) were statistically significant.  All studies were carried out in the 
presence of 1 mM IBMX and 0.1 mM rolipram. Data are means ± S.D., n=4/group.  
Representative of 2 independent experiments.  
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SUPPLEMENTARY DATA 
 
Simpson et al.,  Direct stimulation of adenylyl cyclase 9 by the fungicide imidazole miconazole. 
 

 
 
 
 
Suppl Fig 1.  The effect of J8, trifluoperazine and 48/80 (a mixture of low-molecular weight 
polymers having a degree of polymerization between 3 to 6) on cAMP production in crude 
membranes prepared from HEK 293 cells stably overexpressing mouse AC9. Assays were 
carried out in the presence of 100 µM GDP-b-S to minimize the effects of G proteins. One-
way ANOVA for J-8  F (3, 12) = 3.369, P = 0.0548 ; trifluoperazine: F (3, 12) = 2.660, P = 
0.0956 ; Compound 48/80 F (3, 16) = 2.525, P = 0.0944 
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