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Abstract 22 

Many plants exhibit circadian clock-driven leaf movements whereby the leaves are raised during the 23 

day to achieve a relatively high angle during the evening, before lowering late in the night. Such leaf 24 

movements were first recorded over 2,000 years ago but there is still much debate as to their 25 

purpose. We investigated whether such leaf movements within Arabidopsis, a ruderal rosette plant, 26 

can aid in overtopping leaves of neighboring plants. Wild type and circadian clock mutant plants were 27 

grown in an alternating grid system so that their leaves would meet as the plants grew. Experiments 28 

were performed using day lengths that matched the endogenous rhythm of either wild type or 29 

mutant. Plants grown in a day length shorter than their endogenous rhythm were consistently 30 

overtopped by plants which were in synchrony with the day night cycle, demonstrating a clear 31 

overtopping advantage resulting from circadian leaf movement rhythms. Furthermore, we found that 32 

this leaf overtopping as a result of correctly synchronized circadian leaf movements is additive to leaf 33 

overtopping due to shade avoidance. Curiously, this did not apply to plants grown in a day length 34 

longer than their endogenous period. Plants grown in a day length longer than their endogenous 35 

period were able to adapt their leaf rhythms and suffered no overtopping disadvantage. Crucially, 36 

our results show that, in a context-dependent manner, circadian clock-driven leaf movements in 37 

resonance with the external light / dark cycle can facilitate overtopping of the leaves of neighboring 38 

plants.  39 

  40 
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1. Introduction 44 

Many plants exhibit circadian clock-driven leaf movements whereby the leaves are raised during the 45 

day to achieve a high angle during the evening before lowering late in the night. Diurnal leaf 46 

movements were first observed from c.324 BCE by Androsthenes (scribe to Alexander the Great) in 47 

the tamarind tree, Tamarindus indica (Hort, 1916). In 1729, the astronomer De Mairan conducted a 48 

series of experiments in which he placed plants into continuous darkness. When he observed the 49 

leaves opening in the morning he correctly deduced that an endogenous biological timing mechanism 50 

must be in operation (De Mairan, 1729). Under constant conditions, the period of these oscillations is 51 

approximately 24 hours and forms a classical example of circadian rhythmicity, a phenomenon which 52 

regulates a wide range of processes in plants, animals and microbes including our own sleep/wake 53 

cycles (Young and Kay, 2001). Leaf movement assays have recently formed a key marker for the 54 

observation of plant circadian rhythms and have been central to the discovery of a number of the 55 

molecular components of the plant central clock mechanism (Hicks et al., 1996; Schaffer et al., 1998; 56 

Wang & Tobin, 1998), yet their ecological function remains the subject of much debate. 57 

Circadian leaf movements do not always involve the raising of leaves. Darwin observed a lowering 58 

leaves to a vertical orientation at night in beans (Darwin, 1880). He was the first to suggest a 59 

functional role for what he called the sleep movements of leaves, with his hypothesis that leaves held 60 

vertically would radiate less heat at night than horizontally held leaves and so such movements might 61 

protect plants from the effects of chilling or frost damage through the conservation of heat (Darwin, 62 

1880). Experiments, which Darwin conducted on a number of plant species including Trifolium and 63 

Oxalis, revealed that leaves forced into a horizontal position during periods of freezing temperature at 64 

night suffered more frost damage than leaves that were allowed to assume a normal vertical 65 

orientation (Darwin, 1880). However, Schwintzer (1971) suggested that Darwin’s findings were 66 

probably artefactual after observing that vertical orientation of leaves at night failed to provide 67 

adequate protection from freezing in soybeans as only small (<1
o
C) temperature differences were 68 

revealed to exist between leaves held vertically and those held horizontally. Enright (1982) replicated 69 

Schwintzer’s finding of only a small temperature difference between horizontally and vertically held 70 

leaves, but also found that, under non-freezing conditions, warmer vertically oriented leaves grew 71 

slightly more rapidly than horizontally oriented ones, indicative of a possible role for circadian leaf 72 

movements as a protective mechanism against chilling as opposed to freezing in certain plants. 73 
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However, all such experiments investigated plants showing large changes in leaf orientation from 74 

horizontal during the day to near vertical orientation of leaves at night. These changes are the result 75 

of the action of specific organs called pulvini, particularly common in legumes, which raise or lower 76 

leaves as a result of changes in turgor pressure (Koller et al., 2000).  In plants which lack pulvini leaf 77 

movements are simply the result of alternating abaxial and adaxial growth within the petiole as the 78 

leaf grows (Koller et al., 2000). Generally, this results in a much more subtle leaf movement. None-79 

the-less, this phenomenon has been demonstrated to result some frost protection in giant rosette 80 

plants such as Senecio keniodendron which inhabit tropical mountains. These plants hold their upper 81 

leaves at a very high angle during the day but raise them still further to form a closed “night-bud” 82 

during the night (Beck et al., 1982; Smith, 1974). In contrast, rosette plants such as dandelion or 83 

Arabidopsis which inhabit more temperate regions, raising their leaves from horizontal during the day 84 

to a maximum inclination no more than 45 degrees during the night (Mayer 1966; Millenaar et al., 85 

2005). Such an occurrence would not seem likely to provide any degree of frost protection and the 86 

reason for such leaf movements is unexplained.  We propose here that the circadian leaf movements 87 

in such rosette plants could have an additional benefit as a mechanism for facilitating overtopping of 88 

neighboring plants. These plants show a ruderal strategy and are generally early colonizers of open 89 

ground in spring, quickly producing seed (Pigliucci, 2002). Competition for light amongst such species 90 

is intense and such overtopping would be an advantage in preventing shading. In order to investigate 91 

this hypothesis, we chose the model plant, Arabidopsis. As mentioned, Arabidopsis features a 92 

characteristic rhythmic leaf movement that is believed to be based upon differential growth of the 93 

petioles (Engelmann and Johnsson, 1998). A circadian rhythm controls the elongation rates of abaxial 94 

and adaxial cells in turn in order to drive the positioning of leaves (Polko et al., 2012; Rauf et al., 95 

2013). In Arabidopsis, as in other plants, leaves are raised during the day and fall again at the end of 96 

the night, a pattern of oscillation which continues following transfer to constant light (Hicks et al., 97 

1996). High resolution, automated analysis of this phenomenon using near-infrared laser scanning has 98 

additionally revealed that leaf/petiole elongation in Arabidopsis also shows a circadian regulation of 99 

leaf elongation growth, with the peak of leaf/petiole elongation occurring in the morning just as 100 

leaves are rising (Dornbusch et al., 2014), further enhancing the proposition that leaf movement 101 

rhythms may be part of an overtopping mechanism. In our assay, we set up a series of experiments 102 

where wild type plants were placed in close proximity with a range of circadian clock mutants in a 103 
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range of day lengths. We were able to show that circadian clock-driven leaf movements in resonance 104 

with the external light / dark cycle do facilitate overtopping of neighboring plants which fail to show 105 

correct timing of these movements; thus, supporting our hypothesis. Furthermore, we show that this 106 

overtopping mechanism acts additively with overtopping due to shade avoidance. 107 

  108 
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2. Materials and Methods 109 

2.1. Plant Materials and Growth Conditions 110 

The CCA1 overexpressor (CCA1ox) line o34 and ztl mutant (ado1-1), both in the Columbia ecotype, 111 

and toc1-1 in the C24 ecotype were previously described (Wang & Tobin, 1998; Strayer et al., 2000; 112 

Jarillo et al., 2001). Seeds were sprinkled onto a moist compost comprised of John Innes No 3 (ICL 113 

Levington, UK), Levington M3 (ICL Levington M3) and Perlite (Sinclair, UK) mixed in a ratio of 6:6:1. 114 

Seedlings were germinated in 16 hour light / 8 hour dark cycles. After 7 days seedlings were 115 

transplanted individually as described below and maintained in 16 hour light / 8 hour dark cycles for 116 

another 3 days before transfer to the experimental conditions.  117 

All experiments were performed at 21 
o
C. 16 hour white light / 8 hour dark cycles were generated in a 118 

growth room fitted with Osram 840 cool white fluorescent tubes (Osram, UK), providing of 150 µmol 119 

m
-2

 s
-1

 photosynthetically-active radiation (PAR) and a red: far red ratio (R:FR) of 5.1. Non-24 hour day 120 

length cycles were generated in a Fytoscope FS 80-RGBIR Mini cabinet (Photon Systems International, 121 

Brno, Czech Republic) using an equal mix of red (630 nm), green (530 nm) and blue (470 nm) LEDs, 122 

providing 150 µmol m
-2

 s
-1

 PAR and a R:FR of 5.1. White light supplemented by far red light (FR) was 123 

generated in the cabinets as described in Wang et al (2011), providing 50 µmol m
-2

 s
-1

 PAR and a R:FR 124 

of 1.0.  All light measurements were made using a StellarNet EPP2000-HR spectroradiometer. 125 

 126 

2.2. Proximity Experiments  127 

Wild-type seedlings were transplanted in an alternating grid pattern with mutant lines. A combined 128 

total of 24 wild type and mutant seedlings were planted alternately in four 6 x 4 grids with 4 cm 129 

between plants. Leaf overtopping between neighbors was recorded along both the ranks and files. For 130 

this, the number of overlaps won by each genotype was counted. An overlap was defined as a leaf 131 

covering any part of a leaf of the opposing genotype. Overlaps were counted just prior to flowering 132 

when the first bud became visible on any plant. Overlaps were counted within the final two hours of 133 

the light period. Rosette radius was measured by measuring the radius of the smallest possible circle 134 

which could be positioned so as to encompass the tips of the three longest leaves on its perimeter. 135 

Each experiment was repeated between two and four times. 136 
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 138 

2.3. Analysis of leaf movement rhythms 139 

Time lapse photography was used to record leaf angles of two-week old seedlings. Digital images 140 

were collected at 2 hour intervals for three days using TeckNet C016 USB HD 720P webcams and 141 

boroo WebCam2 software (Lumai HB, Sweden) or iSpy software (iSpyConnect, Australia). Cameras 142 

were placed at soil level. Leaf angle between the horizontal and a line from the leaf tip to the petiole 143 

origin was measured using Image-J (NIH, USA). All angles were adjusted to account for azimuth by 144 

applying a multiplier based on measurement of the angle subtended on the image by the known right 145 

angle between the zenith and horizontal soil surface at the same azimuth as the leaf. Image capture 146 

commenced at 7 days after transfer to experimental conditions. Leaf tip position for a sample of 147 

between 6 and 10 leaves was recorded for 3 days for each genotype. 148 

 149 

3. Results 150 

In order to examine whether circadian leaf movements enhance overtopping of the leaves of 151 

neighboring plants, we placed wild type plants in direct proximity with a range of circadian clock 152 

mutants in a range of light / dark cycles corresponding to the endogenous period lengths of either the 153 

wild type or mutant lines. Plants were grown in an alternating grid arrangement so that opposing 154 

genotypes came into direct physical contact. The outcome was measured in terms of leaf overtopping 155 

events whereby the leaf of one genotype overtopped any part of a leaf of an opposing genotype along 156 

the ranks and files of the grid. 157 

 158 

3.1. Interaction between wild type and a long period mutant 159 

In our initial experiments, wild type plants were grown in direct proximity to the long period ztl long 160 

period mutant, which displays a 27 hour period (Somers et al., 2000). In light-dark cycles of 16 hours 161 

light / 8 hours dark, resonating with the wild type period length of 24 hours, leaves of wild type plants 162 

overtopped those of ztl in over 71% of cases on average (Fig. 1A) (p value, chi squared test, 7.38 x 10
-8

 163 

for a null hypothesis of no significant difference). Examination of leaf angles over a three day period 164 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

8 
 

revealed that the leaf movement rhythms of both wild type and ztl showed a repeating 24 hour 165 

pattern. This is indicative of the action of light in entrainment of the normally long period ztl line to 166 

the external light / dark cycle.  However, ztl leaf movement rhythms showed a consistent difference in 167 

phase relative to those of wild type seedlings suggesting an imperfect entrainment (Fig. 1B). 168 

Calculation of the mean phase of peak hyponasty, expressed as the time after dawn, revealed that 169 

wild type showed a mean peak phase at 12.22 h, while ztl showed a mean peak phase at 13.73 h (Fig. 170 

2) (p value, heteroscedastic T-test, 0.018). 171 

In light-dark cycles of 18 hours light / 9 hours dark, resonating with the ztl period length of 27 hours, 172 

we observed that wild type and ztl fared equally well with respect to leaf overlaps despite the lack of 173 

resonance between the external light / dark cycle and the endogenous period of wild type seedlings 174 

(Fig. 3A). As in 24 hour days, leaf movement rhythms of both genotypes were able to entrain to the 175 

light / dark cycle but, crucially, wild type seedlings were able to entrain almost perfectly to the longer, 176 

driven period, showing no significant difference in peak times from those of ztl (Fig. 2, 3B). Mean 177 

phase of peak hyponasty in this non 24-hour day was corrected to represent the proportion of a 178 

standard 24 hour day / night cycle at which the peaks occurred. This allows direct comparison with 179 

peak times of these genotypes in the 24 hour days and 27 hour days which revealed that both 180 

genotypes showed a relatively earlier peak leaf angle with respect to the total duration of the day 181 

when grown in 27 hour days.   182 

  183 

3.2. Interaction between wild type and a short period mutant  184 

Wild type seedlings were then grown in direct proximity to a short period mutant, toc1, which 185 

displays an endogenous period of 21 hours (Strayer et al., 2000). When wild type seedlings were 186 

placed alongside toc1 in 21 hour days of 14 hours light / 7 hour dark cycles, we observed that toc1 187 

showed a greater percentage of overlaps won than wild type (62% vs 38%; p value, chi squared test, 188 

0.017 for a null hypothesis of no significant difference) (Fig. 4A). Once again, seedlings of the 189 

genotype adapting to a day length shorter than its endogenous period, showed an inability to 190 

properly entrain their leaf movements to these conditions. In this case, the wild-type seedlings 191 

adapted well to a 21 hour day whereas previously this same behavior was exhibited when the long 192 

period ztl mutant which had adapted well to a 24 hour day. Both wild type and toc1 seedlings showed 193 
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an apparent 21 hour repeating pattern length of leaf movement but wild type seedlings showed a 194 

delayed phase (Fig. 4B). For phase analysis in these 21 hour days, mean phase of leaf position was, 195 

again, corrected to represent the proportion of a standard 24 hour day / night cycle at which the 196 

peaks occurred. In this case mean trough phase was plotted as peak phase for some seedlings 197 

occurred at or beyond dusk. With leaf position beyond dusk being obscured due to absence of light 198 

beyond dusk, it was not possible to be certain of the exact peak phase for such seedlings. In this case, 199 

trough phase was plotted rather than peak phase as peak time was not always clear for every 200 

seedlings due to the peak being on the border of dusk, particularly for wild type seedlings. Mean 201 

trough phase for toc1 seedlings occurred at 6.53 h after dawn, while mean trough phase for wild type 202 

seedlings occurred at 8.09 h (Fig. 5) (p value, heteroscedastic T-test, 0.011). As previously, mean 203 

phase of peak hyponasty in this non 24-hour day was corrected to represent the proportion of a 204 

standard 24 hour day / night cycle at which the peaks occurred. 205 

When wild type and toc1 seedlings were grown alongside each other in 24 hour day lengths of 16 206 

hours light / 8 hour dark cycles, both genotypes fared equally well in terms of overtopping (Fig. 6A). 207 

Similarly, there was no significant difference in phase of leaf movement rhythms between the two 208 

genotypes (Fig. 5, 6B), indicating that toc1 had entrained well to the longer 24 hour day length. As 209 

with the ztl experiments, experiments with wild type and toc1 seedlings suggest that seedlings of 210 

Arabidopsis are better able to adapt and entrain to a day length longer than their endogenous period 211 

than they are to adapt to a day length that is shorter. In addition, direct comparison with peak times 212 

of these genotypes in the 24 hour days and 21 hour days revealed that both genotypes, once again, 213 

showed a relatively earlier peak leaf angle with respect to the total duration of the day in the longer 214 

of the two day lengths. 215 

 216 

3.3. Interaction between wild type and an arrhythmic mutant 217 

We then placed wild type plants in direct proximity to a well-characterized line overexpressing the 218 

CIRCADIAN CLOCK ASSOCIATED1 gene (CCA1ox) that is part of the central clock loop (Hsu and 219 

Harmer). The CCA1ox line lacks any circadian clock-driven leaf movements (Wang et al., 1998). To our 220 

surprise, in 24 hour days of 16 hours light / 8 hours dark, the CCA1ox line showed significantly more 221 

overtopping of the opposing genotype than the wild type did (66% of overlaps won by CCA1ox vs 34% 222 
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won by wild type) (p value, chi squared test, 0.003 for a null hypothesis of no significant difference) 223 

(Fig. 7A). Analysis of leaf tip traces in these conditions showed that CCA1ox showed a constitutive 224 

extreme hyponasty (Fig. 7B), a feature shared with the only other unconditionally arrhythmic 225 

circadian clock mutant, the LATE ELONGATED HYPOCOTYL overexpressor, lhy-1 (Schaffer, 1997). Such 226 

extreme hyponasty may account for the observed overtopping of wild type seedlings. CCA1-ox did, 227 

however, show a minor environmentally-driven, non-anticipatory oscillation in leaf movement in 228 

these light / dark cycles with leaf angle showing a slight fall during the light period and a slight rise 229 

during the dark period (Fig. 7B) (leaf position begins each day slightly higher than it ended the 230 

previous day).  231 

 232 

3.4. Interaction in white light supplemented by far red 233 

Thus far, our interaction experiments were carried out in white light lacking any significant amounts 234 

of far red light (R:FR 5.1). Such conditions would greatly reduce the potential for the shade avoidance 235 

response that would normally form an additional part of interactions between neighboring plants in 236 

the wild. In natural light, depletion of red but not far red wavelengths in light reflected from 237 

neighboring plants results in a decreased R:FR and causes increased hyponasty as well as leaf and 238 

petiole elongation (Roig-Villanova and Martínez-García 2016) which might alter the importance of leaf 239 

movement as an overtopping strategy. In order to examine whether leaf movement rhythms also 240 

confer an overtopping advantage under more natural environmental conditions, we repeated the 24 241 

hour day interaction experiments involving the ztl and toc1 mutants in white light supplemented with 242 

far red light, giving an R:FR of 1.0, similar to that of sunlight. Under these conditions, interaction 243 

between wild type and long period ztl mutant seedlings, again, resulted in a significant advantage to 244 

wild type seedlings in terms of overtopping events. In light-dark cycles of 16 hours light / 8 hours dark,  245 

leaves of wild type plants overtopped those of ztl in over 69% of cases on average (Fig. 8A) (p value, 246 

chi squared test, 1.55 x 10
-7

 for a null hypothesis of no significant difference). Analysis of leaf angle in 247 

these seedlings revealed that, at all time points tested, leaf angle was considerably greater under 248 

these conditions than in white light for both genotypes indicative of a marked shade avoidance 249 

response (Fig. 8B). Nonetheless, diurnal leaf movement rhythms were still clearly visible in both wild 250 

type and ztl mutant seedlings, demonstrating that the shade avoidance response did not obviate the 251 

leaf movement rhythm. As in white light, leaf movement rhythms of both wild type and ztl showed a 252 
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24 hour pattern but with ztl leaf movement rhythms showing a consistent difference in phase relative 253 

to those of wild type seedlings (Fig. 8B). Calculation of the mean phase of peak hyponasty revealed 254 

that wild type showed a mean peak phase at 12.08 after dawn, while ztl showed a mean peak phase 255 

at 14.58 h after dawn (Fig. 9A) (p value, heteroscedastic T-test, 1.20 x 10
-7

). Thus, in light with a R:FR 256 

equivalent to sunlight, ztl seedlings also showed an inability to properly entrain their leaf movements 257 

to a day length shorter than their endogenous period and showed a reduced percentage of leaf 258 

overlaps compared to wild type. 259 

Interaction between wild type and short period toc1 seedlings in 16 hours light / 8 hours dark cycles 260 

using light with an R:FR of 1.0 resulted in no significant difference in the percentage of successful leaf 261 

overlaps between the two genotypes (Fig. 10A). Thus, as in white light, no disadvantage was 262 

conferred to a genotype with the shorter period length than the environmental light / dark cycles. 263 

Again, however, clear leaf movement rhythms continued in both genotypes and, as in white light, 264 

both genotypes showed no significant difference in phase and period of leaf movement rhythms (Fig. 265 

9B, 10B) indicating that toc1 had entrained well to the longer 24 hour day length. As with the ztl 266 

experiment, however, leaf angle was greater at all time points in white light supplemented with far 267 

red than in white light alone.  268 

Thus, our experiments carried out in conditions allowing shade avoidance revealed that leaf 269 

movement rhythms continue as in white light, albeit with a greater leaf angle.  Our results in these 270 

experiments also corroborate the findings in white light that seedlings of Arabidopsis are better able 271 

to adapt and entrain to a day length longer than their endogenous period than they are to adapt to a 272 

day length that is shorter. Crucially, as in white light, the inability to appropriately entrain leaf 273 

movement rhythms to the environmental light / dark cycles was associated with a disadvantage in 274 

terms of leaf overtopping.  275 

 276 

4. Discussion 277 

Darwin initiated research into the functional role of circadian clock-driven leaf movements over a 278 

century ago (Darwin, 1880) and this role has subsequently been the subject of much speculation. 279 

Here we illustrate a potential role for these movements in Arabidopsis as a mechanism of competition 280 
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for light. In the conditions of our study, we observed that circadian resonance of these leaf 281 

movements can contribute to overtopping of the leaves of neighboring plants.  282 

When plants were grown in a day length matching their own circadian period, their leaves 283 

consistently overtopped those of a longer period mutant line. Wild type plants overtopped the long 284 

period ztl mutant, in a 24-hour day. Similarly, the short period toc1 mutant overtopped wild type in a 285 

21-hour day, indicating that when environmental conditions were altered to suit these mutant 286 

genotypes an overtopping advantage was conferred upon them. Crucially, plants of these “longer 287 

period lines” showed a delayed phase of leaf movements in these conditions. We propose that the 288 

correct timing of leaf movement ensures that leaves begin rising shortly after the commencement 289 

elongation growth which is known to be triggered by light at dawn (Dornbusch et al., 2014). A delay in 290 

raising leaves would mean that these leaves may be overtopped by the leaves of other plants.  291 

The failure of “longer period lines” to sufficiently advance their rhythmic leaf movement as part of 292 

entrainment to a shorter day length is consistent with the observations of Dornbusch et al. (2014) 293 

who noted that an early dawn caused no advance in the leaf movement rhythm in wild type seedlings. 294 

Significantly, though, the commencement of elongation growth did advance under these early dawn 295 

conditions so as to begin at the new time of dawn (Dornbusch et al., 2014). Thus, the overtopping 296 

effect that we observed would likely have a two-fold cause: in the “longer period lines”, elongation 297 

growth would begin much earlier than leaf elevation and these leaves would be growing under 298 

“control line” leaves at the same time as “control line” leaves would be growing over “longer period 299 

line” leaves. 300 

Conversely, no overtopping advantage was observed when plants grown in their own day length were 301 

competed against shorter period lines. The ztl mutant fared equally with wild type when grown in 27-302 

hour days, while wild type fared equally with the toc1-1 mutant line when grown in 24-hour days. 303 

Here, we found that these “shorter period lines” were able to adapt to a day length longer than their 304 

own endogenous period in terms of leaf movement. This is, again, consistent with the observations of 305 

Dornbusch et al. (2014) who noted that a late dawn did cause a delay in leaf movement rhythm so 306 

that both leaf movement and elongation growth remained well matched. 307 

Another interesting observation was the occurrence of an earlier relative time of peak hyponasty in 308 

longer day lengths. In 24 hour days versus 27 hour days (Fig. 2) or 21 hour days versus 24 hour days 309 
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(Fig. 5), all genotypes showed a relatively earlier peak leaf angle with respect to the total duration of 310 

the day when grown in the longer day length. This difference is more than can be accounted for by a 311 

simple determination of phase by dawn. Instead it appears that the preceding dusk may also play a 312 

significant role in determining the phase exhibited in the following day. 313 

Our study deals only with a mechanism for overtopping. A correctly-synchronized circadian clock 314 

confers numerous such distinct advantages including correct starch usage patterns in plants (Graf et 315 

al., 2010) and correct time of flowering (Song et al., 2015). However, several, more comprehensive 316 

studies have already shown global fitness advantages. Yerushalmi et al. (2011) demonstrated that 317 

evolutionary selection always favored lines whose circadian period resonated with the external 318 

environment. Michael et al (2003) observed a latitudinal cline in the period of the Arabidopsis 319 

circadian clock, suggesting that the clock plays a key role in adaptation to the local day / night cycle 320 

(Michel et al., 2003). Dodd et al. (2005) also observed fitness advantages in monoculture experiments 321 

where endogenous period resonated with the external light / dark cycle. However, consistent with 322 

our observations, Dodd et al. (2005) noted that, in competition experiments between long period and 323 

short period mutants, while a period length longer than that of the ambient light/dark cycle was 324 

always disadvantageous in terms of the key traits of rosette diameter, fresh weight and dry weight, a 325 

period length shorter than that of the ambient light/dark cycle was not always disadvantageous in 326 

these respects. It is possible that overtopping of competitors’ leaves may at least partly be 327 

responsible for these experimental outcomes. 328 

Surprisingly, the arrhythmic CCA1ox line gained an overtopping advantage over wild type plants in 24 329 

hour light / dark cycles. It might be expected that the absence of leaf movements would be a 330 

significant disadvantage in terms of overtopping. However, our assays demonstrated a consistently 331 

high leaf angle in the arrhythmic line. Such a constitutive hyponasty would, no doubt, give a 332 

considerable advantage in overtopping neighbors. The fact that such extreme hyponasty has not 333 

evolved in wild type lines as an even better competitive strategy indicates that there must also be 334 

considerable negative trade-offs associated with it. It is likely that a constitutively high elevation angle 335 

will reduce light capture due to a reduced angle of incidence to the sun. These negative trade-offs 336 

may, indeed, be part of the reason why CCA1ox plants show reduced net carbon fixation and, 337 

ultimately, reduced aerial biomass when grown in monoculture in these same conditions (Dodd et al., 338 

2005). However, this issue does raise the issue of the wider implications of leaf movements. There 339 
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may be other positive or negative effects on light capture for example which we do not examine here. 340 

We merely examine one aspect here, overtopping advantage, which will likely be part of a much 341 

larger balanced equation of positive and negative impacts in the real environment in the ultimate 342 

determinant of fitness. 343 

Increased net carbon fixation and aerial biomass resulting from a light / dark cycle which resonates 344 

with endogenous period (Dodd et al., 2005) will consistently have applied in our interaction studies. 345 

However, overtopping only favored plants grown in a day length matching their own circadian period, 346 

when they competed against a longer period line, not when they competed against a shorter period 347 

line. This suggests that increased biomass is not a major contributor to the overtopping metric in our 348 

observations as it did not simply always give overtopping advantage to the line with endogenous 349 

period matching the external day length as occurs for biomass advantage (Dodd et al 2005). In our 350 

experiments involving ztl or toc1, where we were competing lines of different period length against 351 

each other, no significant differences in leaf length were observed between each pair of competing 352 

genotypes (Table S1), nor were there any clear differences maximum and minimum leaf angles 353 

different between these competing lines. Thus, our assay using an ordered grid, where competing 354 

leaves meet tip to tip, leaf size / morphology advantages were not a factor. In theory, though, a 355 

correctly timed leaf elevation could overtop another leaf irrespective of size differences. Indeed, it 356 

could be equally beneficial in interspecific competition and in intraspecific competition. A larger leaf 357 

moving through the same arc will generally be expected to have an advantage if the larger leaf were 358 

to meet a smaller leaf tip-to-tip. In this case, the height moved at the tip of the larger leaf would be 359 

greater. However, for a smaller leaf an advantage could still be gained through correctly timed leaf 360 

movement if its tip were to meet the larger leaf at a point further in towards the stem of the larger 361 

leaf. Such a phenomenon would be fairly common in a natural environment where competing plants 362 

are arranged randomly rather than in an ordered grid. 363 

Another aspect of the controlled environment nature of our study is the fact that our experimental 364 

grid had an edge. Edge effects have been observed in a number of ecological situations and can result 365 

in competitive advantages not being equally realized by all populations at the edge of a habitat. We 366 

did not expect wild type and period length mutants to be differentially affected at the outer edge of 367 

the grid versus the middle of the grid and, indeed, a calculation of overlaps for plants at the outer 368 

edge versus the middle showed no difference in percentage competition won by each genotype 369 
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among plants at the edge of the grid. For example, wild type versus toc1 in 24 hour days wild type 370 

leaves won 50.5% of interactions, toc1 49.5% at the edges of the grid, almost identical to the pattern 371 

seen for the grids as a whole in this assay. 372 

Our study also shows that this overtopping mechanism is additive with respect to the increased 373 

hyponasty-based overtopping mechanism observed as a result of shade avoidance. Leaf movement 374 

rhythms were still clearly observed in light with an R:FR of 1, which allows shade avoidance. Despite 375 

increased hyponasty in all lines in the interaction experiments carried out in these conditions, 376 

possession of long period relative to the environmental light / dark cycle was associated with a 377 

reduced ability to overtop the leaves of neighbors with a better-adapted diurnal leaf movement 378 

rhythm.    379 

Finally, although leaf overtopping was measured at a single time point, we observed that this 380 

represents a fixed rather than changing outcome. The result of such interaction between two leaves is 381 

determined over a relatively short period of time, early in the interaction as the two interacting leaves 382 

meet. Beyond a certain point in the interaction, continued outward growth of the two interacting 383 

leaves means that the final leaf position, on top or below, remains established, despite subsequent 384 

leaf movements. Beyond that point leaf movements were insufficient to disrupt an established 385 

overtopping outcome. This phenomenon is illustrated by the interaction shown in Supporting 386 

Information Fig. S1.     387 

These results demonstrate for the first time the existence of a potential overtopping advantage 388 

associated with circadian clock-driven leaf movements. We present this as single clock regulated 389 

mechanistic feature which may contribute to competition alongside other clock controlled processes 390 

in plants such as regulation of diurnal starch usage patterns (Graf et al., 2010) and regulation of 391 

flowering time (Song et al., 2015). We are keen to stress that this is quite distinct from a fitness 392 

advantage such as that shown by Dodd et al. (2005). This overtopping advantage acts additively with 393 

the overtopping advantage conferred by shade avoidance. Indeed, overtopping due to shade induced 394 

hyponasty is, similarly, just one aspect of a wider phenomenon. It was many years after the initial 395 

discovery of shade avoidance as a mechanism for overtopping of neighbors in competition for light 396 

that an extensive analysis of the shade avoidance syndrome demonstrated that it does confer a 397 

genuine fitness advantage in a natural environment (Schmidt 1997). Full demonstration of a concrete 398 

fitness advantage for leaf movement as a mechanism of competition would require similar extensive 399 
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additional experimentation in natural conditions, measuring an output such as biomass or seed yield 400 

and such a study is beyond the scope of this work. However, what we do show is that circadian 401 

resonance of these leaf movements can confer a direct advantage in overtopping neighboring plants 402 

in a competitive environment. We, therefore, add an additional possibility to those proposed by 403 

Darwin in order to explain circadian leaf movements. We propose that these leaf movements may 404 

form a mechanism that confers advantages to ground-level, rosette plants in competition for light.   405 

 406 

 407 

 408 
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Figure Legends 

 

Fig. 1. Wild type seedlings overtop long period mutant seedlings in 24 hour days. (A) Percentage of 

overlaps won by wild type (WT) and ztl mutant seedlings of Arabidopsis in direct competition in 24 

hour days of 16 hours light / 8 hours dark. Bars show mean percentage of overlaps won by each 

genotype + 1SE for four replicate grids of seedlings. (B) Leaf angle measurements in wild type (WT) 

and ztl mutant seedlings gown in 24 hour days. Graphs show mean leaf angle for between 6 and 10 

leaves + 1SE. Black bars represent dark periods. 

 

Fig. 2. Phase of maximum leaf angle in wild type (WT) and long period mutant seedlings of 

Arabidopsis. Phase of maximum leaf angle in WT and ztl mutant seedlings in either 24 hour days of 16 

hours light / 8 hours dark or in 27 hour days of 18 hours light / 9 hours dark. Graphs show mean peak 

phase represented as hours after dawn for individual daily peaks of leaf angle of between 6 and 10 

leaves + 1SE. Mean phase of peak hyponasty in 27 hour days was corrected to represent the 

proportion of a standard 24 hour day / night cycle at which the peaks occurred. Asterisk represents a 

significant difference, p=0.018, based on a heteroscedastic t-test.  

 

Fig. 3. Wild type and long period mutant seedlings compete equally in 27 hour days. (A) Percentage of 

overlaps won by wild type (WT) and ztl mutant seedlings of Arabidopsis in direct competition in 27 

hour days of 18 hours light / 9 hours dark. Bars show mean percentage of overlaps won by each 

genotype + 1SE for four replicate grids of seedlings. (B) Leaf angle measurements in wild type (WT) 

and ztl mutant seedlings gown in 27 hour day conditions. Graphs show mean leaf angle for between 6 

and 10 leaves + 1SE. Black bars represent dark periods. 

 

Fig. 4. Short period mutant seedlings overtop wild type seedlings in 21 hour days. (A) Percentage of 

overlaps won by wild type (WT) and toc1 mutant seedlings of Arabidopsis in direct competition in 21 

hour days of 14 hours light / 7 hours dark. Bars show mean percentage of overlaps won by each 

genotype + 1SE for four replicate grids of seedlings. (B) Leaf angle measurements in wild type (WT) 
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and toc1 mutant seedlings gown in 21 hour days conditions. Graphs show mean leaf angle for 

between 6 and 10 leaves + 1SE. Black bars represent dark periods. 

 

Fig. 5. Phase of minimum leaf angle in wild type (WT) and short period mutant seedlings of 

Arabidopsis. Phase of minimum leaf angle in WT and toc1 mutant seedlings of Arabidopsis in either 21 

hour days of 14 hours light / 7 hours dark or in 24 hour days of 16 hours light / 8 hours dark. Graphs 

show mean trough phase for individual daily troughs of leaf angle of between 6 and 10 leaves + 1SE. 

Mean phase of peak hyponasty in 21 hour days was corrected to represent the proportion of a 

standard 24 hour day / night cycle at which the peaks occurred. Asterisk represents a significant 

difference, p=0.011, based on a heteroscedastic t-test.  

 

Fig. 6. Wild type and short period mutant seedlings compete equally in 24 hour days. (A) Percentage 

of overlaps won by wild type (WT) and toc1 mutant seedlings of Arabidopsis in direct competition in 

24 hour days of 16 hours light / 8 hours dark. Bars show mean percentage of overlaps won by each 

genotype + 1SE for four replicate grids of seedling. (B) Leaf angle measurements in wild type (WT) and 

toc1 mutant seedlings gown in 24 hour day conditions. Graphs show mean leaf angle for between 6 

and 10 leaves + 1SE. Black bars represent dark periods. 

 

Fig. 7. Arrhythmic mutant seedlings showing constitutive hyponasty overtop wild type seedlings. (A) 

Percentage of overlaps won by wild type (WT) and CCA1 overexpressing (CCA1ox) seedlings of 

Arabidopsis in direct competition in 24 hour days of 16 hours light / 8 hours dark. Bars show mean 

percentage of overlaps won by each genotype + 1SE for four replicate grids of seedlings. (B) Leaf angle 

measurements in wild type (WT) and CCA1ox seedlings gown in the same 24 hour day conditions. 

Graphs show mean leaf angle for between 6 and 10 leaves + 1SE. Black bars represent dark periods. 

 

Fig. 8. Wild type seedlings overtop long period mutant seedlings when seedlings are exhibiting shade 

avoidance responses. (A) Percentage of overlaps won by wild type (WT) and ztl mutant seedlings of 

Arabidopsis in direct competition in white light supplemented by far red light to give an R:FR of 1.0. 
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Seedlings were grown in 24 hour days of 16 hours light / 8 hours dark. Bars show mean percentage of 

overlaps won by each genotype + 1SE for four replicate grids of seedlings. (B) Leaf angle 

measurements in wild type (WT) versus ztl mutant seedlings grown in the same 16 / 8 days with R:FR 

of 1.0.  Graphs show mean leaf angle for between 6 and 12 leaves + 1SE. Black bars represent dark 

periods. 

 

Fig. 9. Phase of maximum/minimum leaf angle in wild type and period length mutant seedlings 

exhibiting shade avoidance responses. Arabidopsis seedlings were grown in white light supplemented 

by far red light to give an R:FR of 1.0, in 24 hour days of 16 hours light / 8 hours dark. (A) Phase of 

maximum leaf angle in wild type (WT) versus ztl mutant seedlings (B) Phase of minimum leaf angle in 

wild type (WT) versus toc1 mutant seedlings. Graphs show mean peak phase for individual daily peaks 

of leaf angle of between 6 and 12 leaves + 1SE. Asterisk represents a significant difference, p=1.20 x 

10
-7

, based on a heteroscedastic t-test. 

 

Fig. 10. Wild type and short period mutant seedlings exhibiting shade avoidance responses compete 

equally in 24 hour days. (A) Percentage of overlaps won by wild type (WT) and toc1 mutant seedlings 

of Arabidopsis in direct competition in white light supplemented by far red light to give an R:FR of 1.0. 

Seedlings were grown in 24 hour days of 16 hours light / 8 hours dark. Bars show mean percentage of 

overlaps won by each genotype + 1SE for four replicate grids of seedlings. (B) Leaf angle 

measurements in wild type (WT) versus toc1 mutant seedlings grown in the same 16 / 8 days with 

R:FR of 1.0. Graphs show mean leaf angle for between 6 and 12 leaves + 1SE. Black bars represent 

dark periods. 
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