CRELLA PG Forum 19 Feb 2014

Introduction of statistical analyses for language testing/learning research (Part 1)

Dr. Sathena Chan

Why statistics?

Statistics provide a set of tools to help us systematically **collect**, **organise**, **analyse**, **interpret** and **present** data.

Aim

- To introduce the basic concept of statistics and
 - Null hypothesis
 - Descriptive and Inferential statistics
 - Variables
 - Measurement scales
- To introduce the common statistical analyses performed in language testing / learning research
 - Testing differences
 - Correlation
 - Rater reliability and item analysis (Part 2)
 - Factor analysis (Part 2)
 - Multiple regressions (Part 2)

Research Hypothesis

Null Hypothesis

- e.g. There is **no** difference in <u>test takers' performance</u> between <u>paper-based</u> and <u>computerized-based</u> writing tests.
- e.g. There is **no** relationship between test takers' listening ability and their <u>performance on a speaking test</u>.

Alternative Hypothesis

- e.g. There is a difference in test takers' performance between paper-based and computerized-based writing tests.
- e.g. There is a relationship between test takers' listening ability and their performance on a speaking test.

Variables

 A variable can have different value. It helps us to measure the 'constructs' which we aim to investigate in the research.

Two-variable design (Bivariate)

There is **no** difference in <u>test takers' performance</u> between <u>paper-based</u> and <u>computerized-based</u> writing tests.

- dependent variable: test tasks' performance
- independent variable: test delivery mode (pp vs cb)

Measurement scales

- Nominal scale: a scale with mutually exclusive groups, e.g. test delivery mode, native language, academic discipline, etc.
- Ordinal scale: a scale with classification and rank, e.g. ranking of students in terms of test scores
- Interval scale: a scale in which differences between points on the scale are equal

Ordinal scale	Inte	rval scale
1 st student	 \rightarrow	95
2 nd student	\rightarrow	90
3 rd student		85
4 th student		80
	7	75
	7	70

Types of statistics

 Descriptive statistics: to quantitatively describe the main features of a set data

Inferential statistics: to draw conclusions
 (make inferences) from data on the basis of probability theory

Descriptive statistics

1. Measures of central tendency

- Mean
- Median
- Mode
- Frequency

Table 7: IELTS mean band scores

	IELTS (Overall)
Current study Participants (2011)	5.93
All Chinese 2010*	5.6
All Taiwanese 2010*	5.8

Table 6: Participants' IELTS scores

	IELTS (Overall)				
Bands	Freq.	Per	Total		
Danus		cent	Per cent		
4.5	0	0			
5	2	1.1			
5.5	67	39.2	79.5%		
6.0	67	39.2			
6.5	25	14.6	10.20/		
7.0	8	4.7	19.3%		
7.5	1	0.6			
8	1	0.6	1.2%		
8.5	0	0			
Total	171	100			

Descriptive statistics

2. Measures of dispersion

- Standard deviation
- Minimum/Maximum
- Distribution (normal distribution* by K-S test)
- Kurtosis/Skewness: descriptors of the shape of a probability distribution

Descriptive statistics

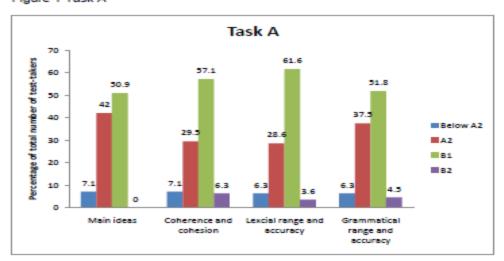

Figure 5: Participants' performance on GEPT Writing Task 1

Figure 2: GEPT advanced writing test overall band

Figure 1 Task A

Questions to ask

Try not to jump into influential statistics analysis. Asking ourselves the following questions would help us to interpret the data.

- Are the averages (means) different in the way expected from the hypothesis?
- Is the difference between the means intuitively large, given the length of the score scale?
- Are the spreads of scores of the two groups markedly different?
- Are the standard deviations large in relation to the scale, indicating massive general disagreement?
- Given the picture from the graphs and descriptive statistics, do you think the sample difference is big and clear enough to suggest a general difference?

Inferential statistics

 Statistical significance: to show the that a result is not due to just chance alone

 If a p-value was found to be less than 0.05, the result would be considered statistically significant

significant.

1. Testing differences

Two variables (comparing two means)

- t-test: to determine if two sets of data are significantly different from each other
 - Independent samples (e.g. test results of Group A and Group B)
 - Paired Samples (e.g. Group A's results on Test A and Test B)

Table 3.12 Comparisons of the proficiency of the participants who did Test Task A and Test Task B

	-		Participa did only B (n	Test Task	
	Mean	Std Dev	Mean	Std Dev	Independent samples
					t-test
IELTS Reading	5.91	0.481	5.73	0.601	t(275)=1.901,
					p=0.060 (n.s.)
IELTS Writing	5.59	0.534	5.58	0.513	t(270)=1.177,
					p=0.860 (n.s.)

 Mann-Whitney U test: is used on data with non-normal distribution (the non-parametric version of t-test)

1. Testing differences

Multiple variables (comparing different means)

- ANOVA (ANalysis Of VAriance between groups)
 (MANOVA is the non-parametric option)
- Example: Do the use of different reading strategies, namely guessing, dictionary and glossary, lead to different levels of performance on a reading test?
- Prerequisite tests: normality test and homogeneity of variance

ANOVA

Readingscores

	Sum of Squares	df	Mean Square	F	Sig.
Between	10.533	2	5.267	4.938	.027
Groups					
Within Groups	12.800	12	1.067		
Total	23.333	14			

The result shows that there was a significant difference in the mean scores of the three groups of students. However, the Sig value does not tell us which groups' mean scores are different. We have to perform **post hoc tests** to find out where the differences are.

Multiple Comparisons

Reading scores

Tukey HSD

Tukey 113D							
		Mean			95% Confidence Interval		
(I)		Difference (I-			Lower	Upper	
Conditon	(J) Conditon	J)	Std. Error	Sig.	Bound	Bound	
guessing	dictionary	.60000	.65320	.639	-1.1426	2.3426	
	glossary	2.00000*	.65320	.025	.2574	3.7426	
dictionary	guessing	60000	.65320	.639	-2.3426	1.1426	
	glossary	1.40000	.65320	.123	3426	3.1426	
glossary	guessing	-2.00000*	.65320	.025	-3.7426	2574	
	dictionary	-1.40000	.65320	.123	-3.1426	.3426	

 $^{^{\}ast}.$ The mean difference is significant at the 0.05 level.

2. Correlation

- •Pearson correlation coefficient (Pearson's *r*): to measure the linear <u>correlation</u> between two variables
 - —Pearson's r is a value between +1 and −1 (1 is total positive correlation, 0 is no correlation, and −1 is total negative correlation)
- •Spearman correlation: for non parametric data

2. Correlation

 For example: Is there any relationship between test takers' performance on a writing test and their reallife writing performance?

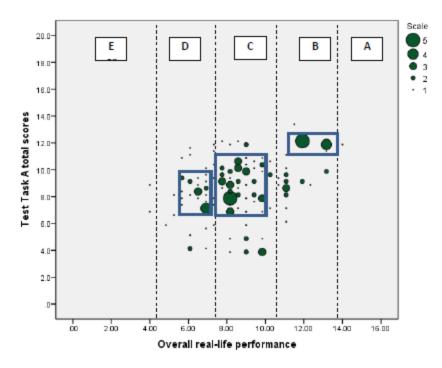


Figure 6.6 Relationships between Test Task A and real-life performance

Useful books to read

- Bachman, L. F. (2004). *Statistical analyses for language assessment*. Cambridge: Cambridge University Press.
- Mayers, A. (2013). *Introduction to statistics* and SPSS in psychology. Harlow: Pearson.
- Tabachnick, B. G., & Fiedell, L. S. (2001). Using multivariate statistics (4th edition). MA: Allyn & Bacon.

Thank you!