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1. INTRODUCTION

The only unknown paramelter in pricing options using the Black and Scholes (1973) model is the
variance of the underlying sccurity. As Merton (1980) obscrved, for the efficienmt estimation and
management of risky investment in the market, we require an clficient estimation method for market
volatility. Ao accurale estimate would render hedging strategics more cffective in dealing with risky
investments. But the cstimated variance of the stock returns has been found to change over time, 2
phenomenon that is discussed widely in the literature.' Black and Scholes discovered the seemingly non-
stationary characteristics of the variance when they were testing their model. Again, the literature on
volatility cstimation is quitc wide spread.’ .

Cognisant of the empirical cvidence demonstrating the stochastic character ol volatility, it has
become apparent that a more general option pricing model than the Black and Scholes model applics in
reality. Such a broader model would have to rid itself of the assumption of constant volatility employed
in the standard Black and Scholes model. Subsequently, option pricin g'modcls hive been developed on
the basis that both the stock price and its variance are driven by Geomectric Brownian motions and other
processes. These stochastic volatility models were put forward by Merton (1973), Cox (1975), Cox and
Ross (1976), Merton (1976a), Rubistein (1983), Jones (1984), Ball and Torous (1985), Buticr and
Schachter (1986), Hull and White (1987), Johnson and Shanno (1987), Scott (1987), Wiggins (1987), and
Madan and Seneta (1990). However, the models of Merton (1976a), Jones (1984), and Batl and Torous
(1985) arc different from the rest even though they still take into account the fact that volatility changes
over time. They present Diffusion-Jump models, where the stochastic differential equation of the stock
price has two parts, a continuous Geometric Brownian motion, and a part comprising a discontinuous
Poisson process that captures the discrete arrival of new information in the market. Cox and Ross (1976)
present a Pure-jump process for the stock returns as opposed to a diffusion-jump process.

Madan and Seneta use a Variance Gamma model of random volatility, where the volatility is a
product of a constant variance and a random variable that has a gamma distribution. Their approach is
related to Praelz’s (1972) approach where he considers the reciprocal of the random variable as having
a gamma distribution that results in a t distribution. Rubistein’s (1983) derives a more general model than
the Black and Scholes mode] where he considers the stochastic process driving the stock price as arising

from fundamental characteristics of the firm. The models includes debt as in the case ol Geske (1979a)

! See Rosenberg (1972), Merton (1980), French and Roll (1986), Porteba and Summers (1986), Taylor
(1986), French, Schwert and Stambaugh (1987), Schwert (1989), Skinner (1989), Bailie and DeGenaro
(1990) and Schwert and Scguin (1990).

2 parkinson (1976, 1980), Boyle and Ananthanarayanan (1977), Garman and Klass (1980), Beckers
(1983), Ball and Torous (1984), Rogers and Satchell (1990).
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and further decomposcs the (irms asscts inlo risky and riskless asscts. This results in stochastic volatility
of the stock.

Hull and White, and Wiggins® models are special cases of Johnson and Shanno's modcl. In this
mwode! both the stock price returns and the variance follow Geometric Brownian motion and its variations,
and thus can be characterised by two stochastic differential equations that are corretated. Cox’s model
is a constant clasticity of variance (CEV) model. Again, his model can be derived as a special case of that
of Johnson and Shanno. Scott’s model is slightly differcnt. He assumes that the stock returas follow a
Geometric Brownian process but the instantaneous variance of the stock price fotlows an Ornstcin-
Uhlenbeck process that is mean-reverting. Butler and Schachter (1986) developed an uabiased Black and
Scholes model by taking a Taylor serics expansion of the formuta and the densily of the estimated
variance. Their model also performs betier than the standard Black and Scholes modcl.

The moain aim of this presentation is 1o propose a new time-varying volatility option pricing
model where the volatility of siock returns is a deterministic function of time-to-¢xpiration of the option,
and that functiona! form is known or the method of determining it is known. The motivation for this
modc! comes from Merton's (1973) model. Taylor (1986) also argucs for time-varying volatility. Time-
varying volatility can be estimated from the volatility implicd by the option at any time before the option
expires. The buplied volatility is quite important in the literature because it is perceived to be an
information preserving estimator of volatility. We propose that the time-varying volatility can thus be
characteriscd and approximated by a time polynomial with a known functional form, whose order is
determined by, and may be equal to, the number of options written on the underlying stock price. We
cmphasize the use of several options written on the security in order (0 make use of all the information
about the securily. Heuce the new estimalor is both time-varying in character and is based on masket
information making it information-preserving. In this analysis.we use data on the FT-SE 100 Index
Europcan options traded in the London Traded Options Market which is part ol the Loudon International
Stock Exchange.

In the next scction we develop the time-varying volatility option pricing model using the
continuous hedging method. Section 3 will examine the time-varying volatility more closcly, bringing
out how the coefficients of the volatility polynomial are estimated. The empirical tests on the new moxlc!
are discussed in scction 4 and a comparison is made with the standard Black and Scholes model that uscs
the historical variance of logarithmic returns. Section 5 contains the results and a discussion on them. The

conclusion is in section 6 and the appendices contain mathematical derivations and tables of results.

2. OPTION PRICING MODEL WITH TIME-VARYING VOLATILITY

On the onset lct us state the assumptions under which our model obtains, which arc:



i. no transactions costs and taxcs,
ii. no penalties for short sales,
iii. the market operates continuously,
iv, the riskless rate of interest is constant
v. the stock pays no dividends during the life of the option, and

vi. the option can only be cxercised on the expiration date.

The model will basically be for pricing European type options which can only be exercised on the date
of expiration (assumption vi) and the underlying stock is dividend protected. As in the standard Black and
Scholes model only five variables determiue the price of the option namely the underlying stock price (S).
exercisc price (K), time-to-expiration (1), stock vofatility (V), and the riskiess rute of interest (r). The
only unknown parameter is the volatility (V), otherwise the rest of the parameters are known.

We perceive investors as economic agents who revise their perception of volatility and risk in the
market all the time. The revision is determined by the time-to-expiration of the option. The stochastic
volatility option models described above are consistent with a random revision of volatility, while our
proposition hinges on a delermiaistic revision of volatility and perception of market risk. The motivation
for this model is Merton’s approach, which although does not provide a functional cxpression for
volatility, it cxpresses volatility as a "time variable"(Mecrton, 1973, p.166).

In conformity with this approach, we define volatility as a "time variable” of the form
V@ =l S a, m

where t is time, T is he time-to-expiration of the option, and ¢7(1) is the instantancous variance of the
stock returns at any time t. Expression (1) implics that we obtain the volatility of the stock returns, af any
time, by integrating the igstantaneous volatility with respect to time, and value the resull over the
reroaining life of the option written on the stock. This bestows the time-varying characteristic on the
volatility estimator, determincd by the remaining life of the derivative sccurity, the option.

1t is standard to assume that the stock price is generated by a Geometric Brownian motion, the
corollary being that the stock retutns follow the stachastic differential cquation’®

dS/S = pdt + cdW(p), @)

3 Fora description of 116 type stochastic differential equations refer to Schuss (1980). The itd processes
derive from the assumplion of a continuous time stochastic process which leads to continuous pricc
changes with indcpendent increments.
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where S is the stock price, f the expected return on the stock price per unit time, o the local standard
deviation of returns, and dW(t) the derivative of a Gauss-Wiener process.

We now creale a riskless hedge portfolio continuously, comprising a stock and a European call
option, whose tixture is chosen in a particular way. The changes in the call price arise from changes in
the stock price, and so are the changes in the hedge portfolio. Because changes in the hedge portlolio are
ouly due to the stock price, the hedge portfolio is a self-[ipancing portfolio. The quantities of the stock
and the option should be continuously adjusted appropriately as the stock price changes, such that the rale
of return on the bedge portfolio is riskless.

Denole the number of shares of stock with o, and the number of options purchased as w,, and
the call price as C. Then, the value of the hedge portfolio, H, can be expressed as the stock price times
the number of shares plus the call price times the number of options purchased. That is*,

H = Sw, + Coo,, (&)

Next, we have (o find the value of the change in the hedge portfolio. This we do by taking the total

derivative of H in equation (3), yielding

dH = w,dS + © dC, )
Next we need an expression for dC. The call option price function can be expressed as C(S.K.r,t,V(T)).
Since e stock price follows a Geometric Brownian motion culminating in stochastic differential
equation (2), /t6's Lemma is employed to obtain the total differential equation of the calt option price

given by’

* Merton's (1973) hedge porifolio also contains a riskless bond as third asset. One can include it
cxplicitly as a separate asset such that the rate of return of the portfolio is zero or as in our case, exclude
it but snake surc that in cquilibrium the rate of return of the hedge portfolio is equal to that of a riskless
asset. Also see Smith (1976) for this approach.

S 115" s Lemma for a function f(x(1).1) is given by

df(x(),t) = (@ 0)/Fx)dx + (X /At + (1/2)H (@ Tx )X
The formula corrects the classical chain rule
AE(x(1).1) = (OM(x,1)/0x)dx + (IM(x )/},

by the additional tenu

(1/2)0* (D I(x 1)/ox2)dt.
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dC = (AC/ISHS + (IC/INdL + (172X CloSHo?S 1. (5)

Al the terms in the expression for dC are deternrinistic except the stochastic term dS. Substituting for dC

in equation (4) yields
dH = 0 dS + 0 (HC/ISHS + (AC/N + (1/2)0FC/aSH S ). )
To ensure that the returnt on the hedge porttolio is riskless, we choose the portfutio such that we
have a long position on one share of stock and a short position of (3C/AS)" calls.®
Then, the ratio of the number of shires per unit number of cals must equat the number of ¢alls held short.
Then, we have

wjo, = -9C/Is. M

We can also derive expression (7) Irom saying that the change i the value of the hedge in equation (4)

should be equal to zero. That is,
W, 4S + 0 (AC/IS)IS =0, (%)
from which condition (7) follows directly.
Since the investor holds one share only, meaning that = 1, the number of options held are, o,
= -1/(dC/AS). Under these conditions the change in the value of the hedge in cquation (6) becomes

dH = - (IC/ASY((AC/N) + (1/2)(3°C/SHE Syt 9

tn equilibrium the scturn on the hedge portfolio must equal that of the riskiess asset, such that

Notice that dx is defined by the stochastic differential equation
dx/x = pdt + gdW(t)
where W is a Gauss-Weiner process. Retfer 10 Schuss (1980) for a general discussion.

¢ This method is similar to thit proposed by Smith (1976). Merton’s (1973) approach on p.164-165
is rather long winded.



dH/H = rdt, )

where r is the riskless rate and dH/H is the retum on the hedge portfolio. Substituting cquations (3) and
(9) into equation (10) and rcarranging we obtain the partial differential cquation for the call price given
by

(1/2)3°C/08*)0’S? +1SAC/S + 9C/dt - rC =0, at

subject to the boundary condition that the terminal value of the option price must be cqual 1o the

maximum of cither the di{ference between the stock price and the exercise price of zero. That is,
(12) C(S(1).K.r.0,V(1)) = Max(0, S(t) - K),
where S(z) denotes the stock price at the expiration date.
To solve cquation (11) subject to (12) we use the Feynman-Kac Formula as suggested by Dullic

(1988a, 1988b). For completencss we shall state the formula and here we arc guided by Oksendal (1985).

‘Theorem 1 (Feynman-Kac Formula): Consider a function

Y(xt) = E, fexp(-lar(X )ds g(X:)]. (13

where E is an expectation operater, r(X) is bounded and continuous, and X solves the equation, dXIX =

ude + odW. Then

aYior-LY +rY=0,0<tST, (14)
where L is the operaror

WA Hax + (112)0°9(.F 1L (i)
Proof: For the proof sce Oksendal (1985), pages 95-96.

The Feynman-Kac Formula is a generalisation of the Kolmogorov backward equation and is closcly




related to Dynkin's Formula (sce Oksendal (1985), pages 91-96).

In equation (13) the term L,Tr(X,_)ds is the discount factor which in our case is rt and ris a
coustant. Also, in our case X = S, the security price, and g(Xy) = max (0, (S(1) - K), the value of the calt
option at cxpiration. The variable Y = C(SK,r,7,V(1)), the value of the option at any time before

expiration. Therefore, the value of the call option, which solves equation (11) subject to (12) is given by
C(S.Kr.1, V(1)) = E{exp(-rvymax(0, S(t) - K), V(7)}. (16)
where E is the risk-adjusted expectation.” Equation (16) gives the option price as a martingale with
respect to some risk-adjusted probability. This is consistent with Harrison and Kreps® (1979) pricing of
securities by the no-arbitrage argument and is also consistent with the cfficicnt market hypothesis. To
solve equation (16) we shall draw from the Cox and Ross (1976) risk-neutral approach, and the derivation
of the solution is given in appendix 2AB.1. The solution is the option model with lime-varying volatility
of the form*
C(S. K1, 1.V(x)) = SP(d,) - Kexp(-ripd(d,), an
where
d, = (n(S/K) + 1T + (Y2VENAV(D),

dy=d, -VV(@),

V() = [, (0L,

7 This solution to the option price is in conformity with the Cox, Ingersoil. and Ross (1985b) gencral
intertemporai equilibrium model of asset prices in Lemma 4. The solution is also similar 10 that of Mcrton
(1973), equation (38), page 166.

¥ Merton (1973) employs the Fourier transformation approach to solve thc modct and he expresses it
in terms of the error complement function. Bowever, he solves the model for the case where r=0,6° =
1, and K = 1. Under normal conditions his model for the option price could be rewritten as,
C(S K.1,1.V(1)) = Serfc(h,) - Kexp(-rtjerf(hy), where b, = -(In(S/K) + £t + 0.5V(E)NV(I). and h, = -
(In(S/K) + rt - 0.5V())NV(D), and erfc(.) is the crror complement function of the form, erfe(h) = i -
QHm* exp(-u®)du, and V(1) = [F 6*(1) d1. (See Merton (1973), page 167). The model is similar 1o our
time-varying volatility option pricing model.
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and @) is a standard nomal distribution of the form M(d;) = I l/\/2n)cxp(-u’/2)du, with mcan zero and
unit variance. Assuming that ¢*(t) = ¢” for alt 1, meaning that V(t) = 61, we obtain the standard Black
and Scholes model, which is in [act a special case of the new maodel (17).

Alternatively, the solution for the option pricing model could be derived using the Cameron-
Martin-Girsanov Theorem (sce Oksendal (1985), pages 115-119). This thcoren: involves an explicit
transformation of dilfusions with a drift (it in equation (2)) (o diffusions without a drift. Subscquently,
we can transform the probability raeasures. The derivation of the option model using the Cameron-
Martin-Girsanov Theorent is in appendix ~ B.2.

The time-varying volatility option pricing model still has tobe integrated over the functional form
of the volatility, V(7). Now, suppose there are N options written on the stock, each with adiflerent expiry
date but with the same strike price, and k strike prices, yiclding Nxk options. Since the volatility changes
with time-to-expiration, the implied volatility of the underlying stock, implicd by each observed option
price. is different for each of the Nxk options. We can thus estimate the average implied volatility (or each
time-10-cxpiration by summing the volatititics accross different strike prices and dividing by the number

of strike prices. Then, the average implied volutility (cf) lor cach time-to-cxpiration is given by

K .
o =(1/k) _zlof. (%)
1=

where @, is the implied volatility for cach time-to-expiration (t) and each strike price (K). and j denotes
each average implied volatility. Then, V() can be thought of as the expression of average inmiplied
volatility, implicd by different options with varying expiry daies.

Now, the question is what functional form docs the polynomial o (1) take? We suggest that the
volatility o°(1), which here is thought of as an implicd volatility, that can be approximated by an (N-1)th-

order polynomial function of time (). That is.
) =0y + 0l + o+ ™Y, 20, (19)

and more generally expressed as

N-1
(=X la‘u"' o, #0, Q)
=

where 1 is lime, & is the coclficient, and i denotes each option. To derive V(1) wc integraic the
polynomial (20) with respect to lime, 1, and value the result over the remaining life of the option, T. That

is,



N-1
VO =l ( .Zlu,l"') d. =0,
=
=0 + 0T+ {@,2)T + (03T + ... + (o/N)T™, @n

which in general can be expressed as

N
V()= i!‘__:oli.t‘. 2)

where B, = o/, which gives us the functional form of the lime-varying volatility estimator. In simple
terms, onc has to estimate the coclficients, o, and then for cach option substitute its time-1o-expirition
i equation (22) and evaluate the polynomial. Having obtained the expression for the volatitity the time-

varying volatility option pricing model can be rewritten as,
C(S.K,T, V(1) = Sd(d,) - Kexp(-rid(d,), )

where

dy = (I(S/K) + rt + (2VENNV(R),

d,=d,-VV(r),

N
V(t) = v,
@ i{:oll.

and @) is a standard normal distribution defined as before in equation (17). ln the polynomial V(1) we
shall assumc that the constant, f, = 0. This is because at cxpiration, 1= 0, and the implied vo'afility is
indeterminate. Since V(1) can be viewed as an asca under the curve of the function, 6°(1), from 0 1o point
<, the area at expiration should be zero. Hence the assumption that, B, = 0. Now that the model is
completcly solved we necd (o discuss how (o estimate the coefficicnts, B, of the volatility polynomial,

V(1), and the next scction is devoted 10 that.

3, ESTIMATING THE TIME-VARYING VOLATILITY
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in arder to calculate option prices using the time-varying volatility oplion model (23) we need
to calculate the coefficients of the volatility potynomial, V(). If the dita gencrating process of security
prices is governed by a Geometric Brownian motion and investors price oplions according to the Black
and Scholes model, we can abtain the volatility of the returns of the stock price, implicd by the obscrved
actual oplion price. In the lileralure it has been argued that the at-the-moncy options yicld the most
accurate implicd volatility estimates, because they are perceived 10 contain accurate market information
of each stock price.

We stated carlier that we want our volatility estimator (o be both time-varying and information-
preserving. In this respect we shall make use of the implied volatifities 10 estimate, V(). Jarrow and
Wiggins (1989) have argued that the implied volatility is quite robust under conditions where the Black
and Scholes assumptions have been violated. For instance, if stock prices follow an arbitrary process,
Rudd and Jarrow (1982) using Edgeworth serics expansion, demonstrated that i Black and Scholes modet
could stifl be obtained for certain classes of stock price distribulions, but the volatifity nceds to be
adjusted. The implicit volitility could be used as an estimaie of this adjusted volatility.

When interest rates are stochastic rather than constant, estimating volatility becomes dilticult,
because one has fo estimate the volatility of the stock, the correlation cocflicient between the Gauss-
Wiener processes of the stock price and inlerest rate, and the volatility of the interest rate.” But we could
employ the implied volatility under this scenario to absorb the effects of the stochastic inlerest rate.

In the prescoce of market friction, which includes margin requircmients, transactions costs, and
tax payments, the implied volatility is demonstrated to be the most accurate estimator of volatility. Jarrow
and Wiggins' argument successfully demonstrates the robustness of the implicd volatility approach umder
different conditions of market behaviour, which seems 10 suggest that a more general modelthan the
Black and Scholes model applies in reality. It this respect we employ the implicd volatility in estimating
the parameters of V(t), because of its accuracy, information content, and general robustness under
different market conditions.

To estimate the implied volatilitics of the stock price from the actual option prices, we shall
cmploy the Newton-Rapbson method.' Let us denote (he observed market call price by C,.. and the
Black and Scholes model value by C(6%). In this method, the aim is to find the root ol the cyuation,

? Merton (1973) first obtained a stochastic interest rate option model where the interest rate is governed
by geomeuric Brownian motion. Rabinovitch (1989) later derived a stochastic interest rate option model
under conditions where the interest rate follows an Ornsiein-Ublenbeck process, as suggesied by Vasicek
(1977). Rabinovitch’s option model is similar to Mecrton's, cxcept that it contains an expression that
explicitly reflects the effect of a mean-reverting term structure of interest rales.

' For a discussion of the Newton-Raphson method and other numerical optimisation procedures refer
to Harvey (1990), pages 123-145.



(C(5) - C,). Since C(0?) is monotonic with respect o the volatility, @, these is only onc root. This

mcthod uscs successive substitutions of 6%, such that,
0.” = & - [AC(6)0G)NFCE*HIGY) @

where (*) denotes the current estimate, (A) denotes the previous estimate, and [FC(8°YHG?)] is the
Hessian. The valuc of the implicd volatility is accepted if it yiclds a pricing crror, C() - Cm, that is \vilhil;
the preset tolerance limit. The method requires that we choose an initial vatue. @', for the ierative
process. Manaster and Kochler (1982), have suggested that for faster convergence we should choose the

initial absolute value, o,,’. in the following way,
0,7 =2(11n(S/K) + rt /. @5)

Notice that the expression (25) uses all the information contained in the other four known variables,
namnely, S, K, r, and 1, for choosing the initial valuc of o In the Black and Scholes model we need 1o
estimate the standard normal distribution, ®(d,), by numerical integration since it cannot be evaluated
directly."” A numerical approximation procedure of (d,) is discussed in Appendix 2AC.

Whaley (1982) suggested an iterative Ordinary Least Squares procedure for calculating the
implied volatility of the underlying stock." Day and Lewis (1988) use a generalized feast syuares (GLS)
procedure in which actively raded options are weighted more heavily than thinly traded ones. MacBeth
and Merville (1979) have suggested ways of estimating the at-the-moncy implied volatility from the
implicd volatilitics by regressing the implied volatilities on the degree to which the option is in- or out-of-

the money."* The at-the-money implicd volatility is taken 10 be the constant term., But one would stifl
Y y inj y

"' Sec Benninga (1989) for a discussion of numerical integration of a normat distribution,

12 Whaley (1982) put forward an iterative OLS regression procedure where we minimise the sum of
squares of Lhe efror in the econometric model, C,, = C(0) + €, where £ is the random error term with zero
mean and constant variance, and ¢ is unknown. Through a Taylor series expansion and rearranging the
terms we obtain, C - C(6) + 6,3C/06 = cdC/do + €, where G, is given. We apply OLS regression and
check the value of o; against a designed acceptance tolerance limit, (G, - 6;.,)) < z, where [or smali 2.> 0,
o, is the estimate of 0. We keep doing the OLS regression and obtaining the estimates, o;, until we get
a value that is acceptable within the tolerance limit,

'* MacBeth and Merville (1979) regress the implied standard deviation, ISD, on the degree to which
the option is iu- or out-of-the money, M = (S-Kexp(-rt))/Kexp(-rt). They estimatc the regression, 15D,
=a + BM, + g, where £ is the random error term with zero mean and constant variance. When the option
is at-the-money, M = 0, Under this condition, ISD = a, implying that a is Ihc at-the-money implied
volatility.
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have to estimatc the implied volatitities before doing such arclincinent to obtain the ai-the-moncy implicd
volatility.

Having discusscd tiow to obtain the implied volatifitics, we have to discuss how 10 obfain the
coeflicients of the polynomial for estimating time-varying volatility given above. As before, assume that
the stock price has N opiioas wriiten oii it differentiated by dhieir limes-to-cxpirition. At any time the
options bave the same strike price, K. the ssifmie stock price, S, and the riskless interest rate, t, is constant
and is the sarhe for al! options. Witat differeritistes one option frofm anothet is e time-to-cxpiration. The
times-to-cxpiration of the option can be represented as, T, Ty, -e.eeey Ty Where T, < T, < Ty <., < Ty
The options valucs can thus be denoted by their times-to-expirsition as, C(t,), 8¢ < - . C(zy). with
their respective implied volatifities, a*(1,), 6°(Ty). -..... 6°(1y). For any given intrinsic value, the vatue
ol an option decreascs, as the option moves closer (0 maturity, a phenomicnon known as time-value decay.
This is true if the stock price upou which the option is written docs not pay dividends. Therefore, C(t,)
<C(3y) € vovenen < C(1y).

For each of the N instantancous volatilitics, there is some polynomial of time explaining it. In all
we have N polynomial equations. The problem could be represented as a sysiem of N polynomial

equations,

V(t,) =By1, +8,1,2 + By7 +........ +81,"
V(1) = ByTy + Baty? + 8,7, + e + By

o @6)

V(T) = Bty + 8,7, 4 Byt # ooneen + Bty
whiere V(1)) are ihié iiniplied volaiifities, The system can be solved since theie are N eyuations with N
unknown coelficicats, In matrix notation we can represent the problem as

Y(‘t) =th (v4)]
where Y(tj is an N x 1 vector of the average implicd volatilities, T is an N x N matrix of the variable,

timc-to-expiration, andﬂ is the N x 1 vector of coefTicients, B,. To solve for the vector of cocfTicients, B.
we invert equation (27) and obtain ’



R=t' V(o) . @8)
We substitulc the known times-to-cxpiration in the matrix, T. Then, the vector of cocflicients, 3. can be
solved for, since the vector, Y(‘t). and inverse of the matrix, T, are known,

This completes the cstimation procedure for the time-varying volatility polynomial, V(t). Note
that in estimating the parameters for the volatility polynomial we have uscd all the options, with different
strike prices, written on cach stock price. This is to make use of all available market information about
the underlying stock price and the cocflicients should preserve this information. As we stated carlier,
V(1) is perceived 1o be closcly refated to G°1, the volalility of the stock when it follows a logarithmic

random walk. Now, let us fum to the empirical analysis.

4. EMPIRICAL ANALYSIS

In this scction, we shall discuss how we usc our new option pricing modcl to vatuc the VI-SE
100 index European call options. The results will be compared with thosc obtained from the standard
Black and Scholes model that uses the historical variance of fogarithmic retums. The accuracy of the

models will be measurcd by percentage estimation errors, sum of squared errors and mean squire crror,

4.1 D;\TA BASE

Daily data was coliccted from the Financial Times and the London ‘Traded Options Market
(L'TOM) of the London international Stock Exchange for the period 1 February 1990 1o 31 March 1990,
The FT-SE 100 index oplions ure relatively new, having been inwroduced in the market on | February
1990. The options have the expiry cycle Mmch‘- Junc - Scptember - December, and the minitum period
for trading is three months and the maximum is twelve months. For the year 1990 the expiry dates of the
options are 29 March, 29 June, 28 September, and 31 December. The strike prices arc setat 25 and/or 75
index point levels.

The normal size of cach contract is £10 x index vatue, unlike equily options where the volume
of cach contract is 1000 shares, except for Vaal Reef shares with contracts of 100 shares cach. Since the
options arc of the European type they can only be exercised on the expiry day, at 11.20 am, as contrasted
{0 cquity options which cxpire normatly (wo days before the last day of dealings for litc tast complete
Stock Exchange account of the expiry month. Also, the index docs not pay dividends 1o sharcholders

during the life of the option. The American type index option can be exerciscd on any business day beforc
the expiry day of the option.
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The FT-SE 100 index was introduced on 3 January 1984 at a value of 1000, as an indicator of
market movement. As the name suggests it is based on 100 leading British companics, which account for
70 percent of ait equities in United Kingdom. Like the American Standard & Poor index, the 100 Index
used for Chicago uaded options, the FT-SE 100 index is 1 Weighted Arithmetic Index, weighted by the
size of each company’s equily in the stock market. Membership of the SE 100 is revised quanerly
requiring the revision of the index as pes membership revision. However, the FT 30 index, which was
introduced in 1935 and based on 30 lcading compauics, provides an up-to-the-minute indication of the
temper of the stock market. The FT 30 index is a geometric mean of each share price. divided by the price
at the base date. It fotlows that the calculation is performed by adding the iognritlnns of the share prices.
subtracting the logarithm of the base valuc, dividing by 30, and then taking the antitog of the result,

Regarding the riskless interest rate, we shall use the Treasury Bill rate which was 15 pereent
during the period defined in the sample. This rate also coincides with the one-year London interbank ofler
rate (Libor) of 15 percent, for the defined period.

In spite of the act that daily data scems to have distributional problems, we shall have to use
daily data. Fama (1965) first suggested that the distribution of daily stock returns seems 1o depart from
normality more than monthly returns. Evidence reveals that the distribution of daily returns has fatter taits
than thc normal distribution, but the distribution converges to a normal distribution for cross-sectional
daily stock returns." But in this study the use of daily data is unavoidable since the time-to-cxpiration

-of an option is mcasurcd in days and the quotation of the option prices is per day. Now let us look at the

cmpirical tests we can cmploy to measure the accuracy of our new model.

4.2 EMPIRICAL TESTS

To test the accuracy of the time-varying vokatility option pricing modet we shalf compare it with
the standard Black and Scholes model that uses the hislorical variunce of the logarithmic index returns.
The returns on the index are measured by the change in the natueal logarithm of the index between

successive periods. At any time t, the logarithmic return on the index is therefore given by

" For a discussion on this point, on the distributional anomaties of daily stock rcturns, sce Hagerman
(1978). Scholes and Williams (1977) suggest a further problem, that of non-synchronous trading, arising
from the fact that the return on the market index and that of the security may be mcasured over different
time intervals. This introduces a problem of errors of measurement in cconomietrics, producing biased and
inconsistent OLS estimators. Brown and Wamcr (1985) mention a further problcm, mainty that non-
synchronicity in trading which may produce scrially cosrelated daily stock returns. The variance of retusns
becomes non-stationary and it increases around cvents such as earnings asnouncement, as Patcli and
Wolfson (1979) argue. The rest of the litcrature on siock retums distribution and cvent studics is
discussed in Part 1 (Imroduction). ’
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Xa=(S/S,,), @9)

where S is the index. Then, the historical estimate of the variance of the logarithmic retums on the index,
X, is given by

-
8 = (YT-1) 'zl(x,, -9 <))

where T is the saunple size of the time series, and X is the mean ol X,,. The estimator (30) of the variance
is an unbiased estimator of (he true variance o™

We shall usc the estimator (30) of the variance in the standard Black and Scholes model, which
we shall compare with the time-varying volatility option modet (23). Because the distribution of the
cstimated call prices from the two models is unknown, it is difficult to rely on parametric tests. The

estimation errors that will be employed are discussed in the sections below.
4.2.1 PEKRCENTAGE ESTIMATION ERROR

This simiple upproach mercly compires the percentage errors of estimation in both models. Detine
the percentage error of estimation of each option modet by, D, = {{(C(.) - C,/C,)]100%, where i stands
for cach option modcel, C, is the actuat option price, and C(.) is the estimated model option price. D, could
be either positive or negative. We merely compare the magnitude of the percentage crrors, Dy, if we use
both models 1o forccast the option price one day forward,

The prcscncc.of mispricing errors provides opportunitics for making riskless arbitrage profit. In
this respect one could consider the monetary value of the errors defined by, [CL) - C,)I. The monctary
value of the error is £10{C(.) - C,,J. Il the error, is positive then an arbitrage profit can be made by buying
the stock at the strike of K index points, and sclling it in the market at a higher price S. The profit you
realise is £10C(.) which is larger than, £10C,, the monetary value of the difference between S and K. The
converse argument applies when the modcl underprices the option. The investor realises a lower prolii,
which is reduced by, £10{C,, - C(.)}. The investor could even make more sophisticated combination of

calls and puts and realisc more prolit, on the same stock and/or accross dilferent stocks.
4.2.2 SUM OF SQUARED ERRORS AND MEAN SQUARE ERROR

Apart from comparing the magnitude of errors we could also compare squares of the errors and

the mean square crrors, This approach disregards the sign of the error bul considers the degree of
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dispersion of the estimaled value from the actual option value. The sum of squarcd errors is given by
L(C(.); - C.). The mean squarc crror is basically the mean of the squares of several estimation errors,

Then the mean squarc egror is the sum of squared crrors divided by the nunber of oplions considered.
5. RESULTS AND DISCUSSION

In this section we shall discuss the results. We calculated the average implicd vol;llililics of
lognﬁlhmic returns on the index, for the following 14 consecutive trading dates: 16/02/90, 19/02/90,
20/02/90, 21/02/90, 22/02/90, 23/02/90, 26/02/90, 27/02/90, 28/02/90, 01/03/90, 02/03/90, 05/03/90,
06/03/90, and 07/03/90". From 16/02/90 to 26/02/90, the eight strike prices across which the average
implied volatility was calculated were, 2225, 2275, 2325, 2375, 2425, 2475, 2525, and 2625. But for the
remainipg seven days the strike prices were 2125, 2175, 2225, 2275, 2325, 2375, 2425, and 2475, For
cach stock price there arc four expiry months, namely March, June, September, and December. For
reasons of accuracy we only used the options for March, Junc, and September expiry months, because
the December implicd volatilities are less accurate. The Newton-Raphson method, bascd on the Black
and Scholes model and discussed above, was used for estimating the implicd volatilitics. We also
cstimated the historical variance of index returns for each day from 01/11/89 to 07/03/90. Table Al in
appendix A, shows the implied volatilities and the historical standard deviations of the FT-SE 100 index.,
for the 14 trading days.

Next, we estimated the coefTicicnts of the time-varying volatility polynomial, for the consceutive
trading datcs referred to above, using the imcthod described in section 3. Since we considered only three
expiry months, the polynomial is a cubic oue, or third order. Therefore, onty three coefficients namely,

B, B, and f,. were estimated. Table | below shows the estimated coeflicients for cach rading dale.
<<<<Table 1 Here>>>>

From table 1 above, we notice that cach coefficient of the volatility polynomiul s & consistent sign, in
the scnse that ﬁ and ’IXI are posilivc; while 'l% is consistently ncgative. Having obtained the cocllicients
one can gow proceed to estimate future volatifity by substituting for timé-to-expiration in the polynomial
(19).

In the next stage of the analysis we wish to assess the accuracy of cach volatility polynomial in

estimating option prices one day forward for 14 consccutive trading days (forinight). Neat, we wanted

" The weekends, namely saturday and sunday, and holidays are excluded because the market is closed

' ai these times. "



18
10 find out how accurate the time-varying volatility model is in predicting options that are in-the-money.
near the money, and out-of -the-money. Options with strike prices 2225, 2325, and 2425, which are in-the-
money, ncar-the-money, and outsof-the-money, respeclively, were chosen. We therclore estimated option
prices one day forwird, under the three strike prices, for Uie threc expiry months. We only need lo
calculate the aption price one day forward because the following day we bave a new security price and
pew information for another one day forccast. Opticn price estimates from cach model were lested against
the actual option price observed in the market to asscss the accuracy of the lime-varying volatility option
model against (he standard Biack and Scholes model. Subsequently, the average percentage crrors off
_estimation, sum of squarcd crrors, and mean square crrors, were calculated.

‘Table A2 appendix A shows the results for the options that are in-the-money with the strike price
02225, The average percentage crror of estimation is genefally positive for both models, for the 14 dates,
except for only one case for e option wodel with time-varying volatility. The implication is .lhzll both
models tend to overprice the option prices, with the potential of atlowing for the realisation of riskless
arbitrage profits by investors. But taking a closer look at the percenlage data again, we notice that the
time-varying volatility option model, has lower perceulage errors than Black-Scholes modet in all 14

-cases. The sums of squarcd errors and mean square crrors also confirm these results. The sum of squared
errors and the mean squared crrors of the time-varying volatility modcl are lower than those of the
standard Black and Scholes model in all the cases. This implies that the new model is more accurate for
estimating option prices.

In table A3 in appendix A, we have the results for options that arc near the moncey, with a strike
price of 2325, In all butiwo cases, the Black and Scholes model shows positive average percentage crrors.
This implics that the model tends to overestimate the true option price. The picture of the time-varying
volatility option model is somewhat different. Under the new model, we have scven cases ol negative
average percentage crrors, imnplying that the remaining seven are positive. In is not clear which direction
the new model misprices the option. Looking at the sum of squared errors and the mean squared crrors
we notice that those of the time-varying volatility option model arc lower than those of the Black and
Scholes model in all but one cases. The exceptional case is the prediction of 07/03/90. Again, the resulls
reveal that the new wodel is more accurate than the standard Biack and Scholes model for options (hat
arc near the moncy.

The case of the out-of-Lhe-moncy options, with strike price 2425, is depicted in table A4 and in
appendix A, For the Black and Scholes modcl, 9 out of the 14 cases show positive average percentage
errors. The implication is that the model weakly overprices the option. The case of the lime-varying
volatility model is more consistent, This model shows negative average perceniage crrors in all but iwo

cases for dates 19/02/90 and 28/02/90. We arc thercfore led to conclude that the new model tends 1o
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underestimate out-of-Lhe-moncy options. Looking at the sum of squared crrors and mean squared errors,
we nofice that the time-varying volatility model bas in ten cases errors that are lower than those of the
standard Black and Scholes model. In this respect, we would conclude that the new model is more

accurate than the standard Black and Scholes model for options that are out-of-the-moncy as well,
6. CONCLUSION .

Inthe foregoing analysis we have developed an option pricing model with time-varying volm ility
that can be solved analytically. The motivation for this approach is from Merton's (1973) model. The new
model is compured with the standard Black and Scholes model, in pricing the FT-SE 100 index call
options of the European type which were introduced in the London Traded Options Markcton | February
1990. The time-varying volalility option model has on the overall proved 10 be more accurate than the
standard Black and Scholes model.

The results scem to support the assertion that investors may revise their pesception of risk,
measured by the volatility of stock retums, as the oplions wriltcn on the index move closer to nurturity.
This renders the volatility dependent on the time-to-cxpiration, and its functional form could be
approximaied by a polynoniial whosc order is determined by the number of options writicn on the index.
The results also put pointers (o the fact that a more general model than the standard Black and Scholes
model can be applicd. The results, although applicd on a limited sample, support this assertion.

This approacii could be extended to the pricing of other types of options such as individual stock
options, currency options, and commodity options, where again we could assume ime-varying volatitity.

However, this is a subject for future research.
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Table 1.
TIME-VARYING VOLATILITY POLYNOMIAL (V(1))
No. of Trading Days = 14
DATE ﬁl Bz Bs
16/02/90 2.045048 -7.939370 7.814084
19/02/90 1.734859 - 6.384520 6.314906
20/02/90 2.086579 - 7.778200 7.540097
21/02/90 2.254998 - 8.332740 7.957987
22/02/90 2209441 - 8.034980 7.649384
23/02/90 2.480910 - 9.095430 8.742783
26/02/90 2.841785 -11.120800 11151240
27/02/90 3.819039 -16.125000 16.919300
28/02/90 2.366383 -9.514540 9.827108
01/0340 2.640698 -11.149800 11.618970
02/03/90 3.255821 -13.747300 14.460600
05/03/90 4.023202 -17.189000 18.474000
06/03/50 3.487456 -15.359300 16.63503()
07/03/90 3.493746 -15.557600 17.206700

Notes: In estimating coefficicnts, B, time-to-expiration is defined as a fraction of a year.
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IMPLIED VOLATILITIES AND HISTORICAL STANDARD DEVIATIONS OF FT-SE 100

INDEX

16 February 1990 to 7 March 1990
No. of Trading Days = 14

DATE T S MONTH 0; a
41 March 0.1406
16/02/90 133 2325 June 0.0691 0.1522
224 Sept 0.0710
38 March 0.1185
19/02/90 130 2299 June 0.0933 0.1538
221 Sept 0.1116
37 March . 0.1394
20/02/90 129 2282 June 0.0987 0.1537
220 Sept 0.0830
36 March 0.1490
21/02/90 128 2259 June 0.1092 0.1546
219 Sept 0.0721
35 March 0.1447
22/02/90 127 2267 June 0.1182 0.1534
218 Sept 0.0831
34 March 0.1592
23/02/90 126 2238 June 0.1322 0.1557
217 Sept 00973
31 March 0.1680
26/02/90 123 2248 June 0.1215 0.1547
214 Sept 0.0908
30 March 0.2101
27/02/90 122 2251 June 0.1103 0.1548
213 Sept 0.0936
29 March 0.1300
28/02/90 121 2237 June 0.0988 0.1530
212 Sept 0.0868
28 March 0.1390
01/03/90 120 2259 June 0.0784 0.1534
211 Sept 0.0414




27 March 0.1588

02/03/90 119 2254 June 0.5105 0.1522
210 Sept 0.0632
24 March 0.1899

05/03/90 116 2239 June 0.1391 0.1520
207 Sept 0.1166
23 March 0.1580

06/03/90 it5 2216 June 0.0978 0.1530
206 Sept 0.0609
22 March 0.1528

07/03/90 115 2233 June 01011 0.1527
205 Sepl 0.0970

Notes: T is the number of days to maturity: S is the FT-SE 100 index; MONTH is the expiry month: g,
is the square root of the average annualised implied volatility, averaged accross strike prices: & is the
historicat annualised standard deviation calculated from 01/11/89.
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Table A2
" ERRORS OF ESTIMATION PREDICTING ONE DAY FORWARD
19 February 1990 to 8 March {990
No. of option prices predicted with cach volatlity estimate =3
Total number of options = 52
K =2225 ¢=0.15
DATE PE SSE MSE PE* SSE* MSE*
19/02/90 49.67 19095.28 6365.09 4323 13783.79 4594.60
20/02/%0 40.33 13049.84 4349.95 3226 8705.60 2901.87
210290 40.73 11146.19 3715.40 3173 637 2109.04
22/02/90 20,95 5006.04 1688.67 1203 171245 570.82
23/02/90 48.19 11758.57 3919.53 39.25 6968.19 232271
26/02/90 12.44 3063.06 2t.02 533 864.56 288.19
27/02/50 12.06 3183.28 1061.09 589 86812 284.37
28/02/90 17.86 3345.67 1115.22 16.24 1047.66 349.22
01/03/00 24.30 5068.92 1689.64 13.07 1813.66 6U4.55
02/03/90 30.48 6414.87 2138.29 16.68 2153.47 717.82
05/03/90 28.80 4889.73 1629.91 19.02 1468. 11 489.00
06,0390 5.36 1323.81 41.27 5.20 278.37 92.79
07/03/30 5.40 1614.03 538.01 -3.13 179.39 59.79
08/03/90 41.97 5979.40 1993.13 78 2582.60 860.87

Notes; P12, SSE and MSE are the average percentage error, sum of squared errors, and mcin square crror
of the Black and Scholes model, respectively; PE*, SSE*, and MSE* arc the average percentage error,
sumn of squared errors, and mean squarced error of the new option model with time-varying volatility.
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Table A3 .
ERRORS OF ESTIMATION PREDICTING ONE DAY FORWARD
19 February 1990 to 8 March 1990
No. of option prices predicted with each volatility estimate = 3
Total number of options = 52
K=2325 r=0.15
DATE PE SSE MSE PE* SSE* MSE*
19/02/90 57.66 11349.86 3783.29 36.87 4144.18 1381.39
20/02/90 44.07 7597.27 2532.42 19.65 301302 1004.37
21/02/90 46.06 6397.69 2132.56 21.8t 1350.03 450.01
22/02/90 18.12 2729.20 909.73 - 297 38.17 12.72
23/02/90 5195 6276.82 2092.27 29.49 1507.24 502.41 .
26/02/90 7.46 1641.21 547.07 - 163 3d.4t 11.47
27/02/90 4.13 1703.47 567.82 - 8.50 56.17 18.72
28/02/90 10.57 1585.76 528.59 13.10 112.83 37.61
01/03/90 16.00 2088.05 696.02 -12.14 136.58 45.53
02/03/90 26.77 3256.59 1085.53 - 1221 75.39 2513
05/0300 24.44 2351.55 785.85 1.81 27.81 9.27
06/03/90 -922 525.30 175.10 - 735 2513 8.58
07/03/90 -4.94 630.15 210.05 - 29.04 1260.44 420.15
08/03/90 -4.94 2899.67 966.56 10.48 226.76 75.59

Notes: PE, SSE ind MSE are the average percentage error, sum of squared errors, and mean square error
of the Black and Scholes model, respectively; PE*, SSE*, and MSE* arc the average percentage error,
sum of squared errors, and mean squarcd ~rror of the new option model with time-varying volatility.
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Table A4
ERRORS OF ESTIMATION PREDICTING ONE DAY FORWARD
19 February 1990 to 8 March 1990
No. of option prices predicled with each volatility estimate = 3
Total number of options = 52
K=2425 r=0.15
DATE PE SSE MSE PE* SSE* MSE*
19/02/90 57.37 6119.99 2039.99 1.75 302.00 100.67
20/02/90 41.01 3967.22 1322.41 - 8.18 860.62 286.87
21/02/90 43.90 3168.12 1056.04 - 4.54 28.77 9.59
22/02/50 12.54 1320.26 440.09 -2647 644.80 214,93
23/02/90 40.99 2862.19 954.06 - 040 16.41 5.47
26/02/90 - 5.01 750.88 250.29 -30.17 353.26 117.76
27/02/90 -682 | 708.02 236.01 -28.58 535.72 173.57
28/02/90 - 0.21 712.80 237.60 9.80 501.85 167.28
01/0390 7.3t 1074.99 358.33 -41.22 505.39 168.46
02/0390 14.54 1474.78 491.59 -58.09 2230.96 743.65
©5/03/90 6.24 864.47 288.16 -34.70 1280.87 426,96
06/03/90 -21.72 138.67 46.22 S1972 | 32255 107.52
07/03/90 -19.98 188.78 62.93 -61.96 3130.31 104344
08/03/00 6.83 1594.83 531.61 - 34.66 99.01 300

Notes: PE, SSE and MSE are the average percentage error, sum of squarcd crrors, and mean squarc errof
of the Black and Scholes model, respectively; PE*, SSE*, and MSE* arc the average percentage error,
sum of squared errors, and mean squared error of the new option model with time-varying voladility.
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APPENDIX B

In this section we solve for the option model with time-varying volatility by two alternative ways,
namely the risk-neutral valuation on the Feynman-Kac Formula results, and by the Cameron-Martin-

Girsanov Theorem.

B.1 SOLUTION FOR THE OPTION MODEL WITH TIME-VARYING VOLATILITY BY RISK-
NEUTRAL VALUATION

Using the Feynman-Kac Formula, the gencral solution to valuing the option as a state-contingent

payoff is given by

C(5.K.r.1, V(1)) = E{exp(-rt)max|0, (S, - K)] 1. sn
where t denotes the date at expiration of the option. This solution also follows from the Feynman-Kac
Formula for solving partial differential equations, demonstrated by Duffie (19884, 1988b). For the case
(S, - K) > 0, we can rewrite cquation (B1) ag

C(S.K.1.1,V{(1)) = exp(-r)ELS, - KIS, > K]. B2)

Now, define the return on the stock as the change in the logarithm of the stock price. Then, the return on

the stock is given by

x =(S/S,.), . (83)
and

S, =S, eapix). ) (B4)
Substituting cquation (B4) into equation (B2), we obtain

C(S.K 1,7, V(1)) = exp(-r0)E[S, ,exp(x) - KI §,,exp(x) > K]

= exp(-r)E[S, ,exp(x) - KI x > {K/S,.))}. . (8%)
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The variable, x, is normally distributed, with a density function {(x), To solve equation (BS5) we integrate

it with respect to x. With no loss of generality, It us replace S,.(, with S. Integrating with respect (o x, we

have
CS KLtV = explert) {; (Sexp(®) - KN(x) dx. . {B6)
Firstly, lct us solve the first term on the right hand side of equation (BG). We can rewritc it as,
Sexp(-rv) [ exp(x)f(x) dx = Sexp(-rv) [~ (1/oV2m)exp(-((x-p)* + 26°x))26° dx. ®n
MKS) In(K/S) 7

where p'is the mean of x, and o is the instantancous variance of x also given by 6 = (1/1)V(1). Let the
exponent within the in(égml be y. Then, by cxpanding it we obtain

y= - (x*-2(+0)x + 1Y), . ’ (BY)

By completing the square we obtain

¥ = - (& - 240K + (07 - (o) + 1), (1B9)
which becomes
y=Quo* + 0" - (x - 1 + )2 B

Dividing (B10) by 2¢*, we oblain
Y26 = exp(p+0f2) + (120%)(x - ( + &) ®ih

Substituting (B11) in (B7) we obtain

Sexproeiaeol) [ (e 2mpexp(-(V2X(-uro™) oY) dx. @
. )

Sccondly, we write the normal density function of x in the second term on the right hand side of (BT)
Equation (B6) can now be rewriticn as '
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CSKr1,V(r) = Scxp(-mp«f/z)' {; ’(1/0"121t)exp(-(| RYUx-(u+cDVo)) dx
Il

- chp(»rtl) '{; (1/oV2myexp(-(1/26%)(x-4)?) dx. 31k}
(] ]

Let z = (In(x) - p)/o, and w = (In(K/S) - p)/o. Then, equation (B13) becomes

C(S. KT, V(1)) = Sexp(-rt+p+072) [ = (1/2Vmexp(-(z-0)12) dz

- Kexp(-r1) J,™ (1/2Vmjexp(-z12) dz, v BK)

which becomes
CSKr 1, V(1)) = Sexp(-ri+p+0712) [ (1/2Vr)exp(-(z-G)*2) dz.

- Kexp(-rt) J_™ (1/2¥m)exp(-2*12) dz, ®15

~which simplifics to
C(S.K. V(1)) = Sexp(rt+p+672) [ (1/2Vm)exp(-22) dz.

- Kexp(-rt) [ (1/2¥m)exp(-22/2) dz. B9
We can now rewrite (B16) as
C(SKI1,V(1)) = Sexp(-ri+p+0%/2)P(-w+0) - exp(-r))K d(-w), ®m)

where, w = (In(K/S) - it)/c and D(.) is a standard normal distribution,
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Since we have risk neutrality'
exp(p+a7/2) =uﬁﬂ). &
which mem§ that
Wo+o2=rT o

Since the stock price follows a stationary random walk and we ate considering a one period change in the
stock price, we have

o’ =V(1), &)
where V(1) is the volatility polynomiaf in equation (19), which implies that
p=r1- V(). @)

Substituting equation (B21) in the expression for w, and then in equation (B18) we obtain

C(S.K.1r,1, V(1)) = SB(d,) - Kexp(-rT)d(d,), [ ea]
where,
d, =-w+IV(7)
= (I(S/K) + 1T+ (xn>V(¥>>rIV<r). i)
and
dy = d, - ¥v(r).

“This gives us the option pricing model with time-varyiog volatility. Substituting o’ for V() in cqumfou
.{B23) yiclds the standard Black and Scholes model.

%_Sce Cox and Ross 71976).
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1.2 SOLUTION FOR OPTION MODEL USING CAMERON-MARTIN-GIRSANOV THEOREM
Wecould also solve for the option model with time-varying volatility using the Cameron-Martin.
Girsanov Theorem (sce Oksendal (1985), pages 115-119). The theorem characterises the behaviour of
semimartingales under a change of probability racasure. The theorem transforms the stochastic diffusion
equation with a drift to one without a drift. In option pricing the theorem has been employed by Harrison
and Kreps (1979), Duffie (1988b), and Cheng (1991).
Consider a security price whose diffusion is represented by the stochastic differentinl equation
with a drift
dS/S = pdi + cdW(t) it
where W(1) is a Gauss-Wiener process, and also consider a riskiess bond whose stochastic equation is
dB =rBdt. ®s
The sccurily price, S, is a scuimartingale relative to some probability space (§2,{F,),P). Now, l¢t
o, T) = o, (Lt
and a Gauss-Wiencr process,
W)= W) - [Jo(s.T)ds, 0S LS T, iies)
where T is the maturity time of the bond.
From equation (B27) we have
o, T) = dW()/dt - dW'(1, T)/SL. ®®

Equating (B26) to (B28) we obtain

dW() = dW'(LT) - (u/o)dt. - @)
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Substituting (B29) in (B24) we obtain a stochastic differential equation
dS/S =adW'(LT). | e840}
. Equation (B30) now has no drilt parameter, 1. We have thus transformed equation (B24) with a drift 10
equation (B30) without a drift. But for (B30) to bold the following coanditions should be satisticd (sce
Harison and Kreps (1979), pages 396-398):

[Ta@.Tidt <o as., 3¢

that is, a(t,T) must be square integrable. The Radon-Nikedym derivative which defines change of measure

must be defined. The Radon-Nikodym derivative is given by
P(T) = exp(faTa(t.T) dW(1) - (1/2)),Te(t. T)* dt, U]
and l:'_(p(T)z) < o0, and E(p(T)) = 1. Also p(T) = dQ/dP where both Q and P arc defined on {F]. These

conditions are sufficicnt for the application of the Cameron-Martin-Girsanov Theorem.

Hence,
E(Sp(T) =E%S), o

where E? is the expectation with respect 10 the new mcasure Q. At expiration the opiion price is given
by C(S.K) = (S(T) - K)*, otherwise it is '

C(SK.1,3,V(2)) = E?{ exp(-rt)(S - K)'}, fix¢h)
where S is obtaincd from equation (B30), Equation (B34) reveals that the option price isa martingalc with
respect to the new measure Q. This is consistent with Harrison and Kreps® pricing of securities by the no-
arbitrage argument. By subsd(uling for S, given by equation (B30), in (B34), and solving the cxpectation
yields the option model with time-varying volatility, which is given by

C(S.K.1.1,V(1)) = Sd(d,) - Kexp(-rt)d(d,). . (4]

where, T



d, = (In(S/K) + it + 1/2)VONV(),
& =d, - V().

This completes the derivation of the model. _

Also, refer to Cheag (1991) who checks the suitabilily of various stochastic processes of bond
prices for the priciug of options by whcther they satisly the Cameron-Martin-Girsanov Theorem, She
coasiders Brownian motion, Orastein-Uhlenbeck process, Brownian Bridge process and Exporiential

Brownian Bridge process.

APPENDIX C

-NUMERICAL APPROXIMATION OF A STANDARD NORMAL

DISTRIBUTION

To approximate a Standard Norinal Distribution, ®(d), for the random variable, d, numerically.

we use the polynomial

O(d) = | - [gldlyio, + ony + &Y + oy’ + o) v e, )}

where,

a>0,
£(d) = (iN2myexpl-d¥/2).
y = 1K1+ pd),
p=+02316419,
0o =+ 0.319381530,
@, =- 0356563782,
@, = + 1.781477937,
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o, =- 1.821255978,
o, =+ 1330274429,

and £, is an errof term. From this numerical approximation procedure, the value of the crror is less than

7.5 x 10*. For the case where, d <0, set &(d) = 1 - B(-d).
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