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1. INTRODUCTION

Tlic only unknown parameter in pricing options using llic Black and Scliolcs ( 1973) model is tJic 

variance of the underlying security. As Merton (1980) observed, for the efficient estimation and 

management of risky investment in the market, we require an efficient estimation mediod for market 

volatility. An accurate estimate would render hedging strategics more effective in dealing will) risky 

investments. But the estimated variance of the stock returns lias been found to change over time, a 

phenomenon lliat is discussed widely in the literature.' Black and Scliolcs discovered the seemingly non­

slationary characteristics of the variance when they were testing their model. Again, the literature on 

volatility estimation is quite wide spread.1 2

Cognisant of the empirical evidence demonstrating the stochastic character of volatility, it has 

become apparent that a more general option pricing model than die Black and Scliolcs model applies in 

reality. Such a broader model would have to rid itself of the assumption of constant volatility employed 

in the standard Black and Scholcs model. Subsequently, option pricing models have been developed on 

the basis that both die stock price and its variance arc driven by Geometric Brownian motions and other 

processes. These stochastic volatility models were put forward by Merton (1973).Cox (1975), Cox and 

Ross (1976), Merlon (1976a), Rubistein (1983), Jones (1984), Ball and Torous (1985), Butler and 

Schachter( 1986), Hull and White (1987), Johnson and Slianno (1987), Scott (1987), Wiggins (1987). and 

Madan and Sencla (1990). However, the models of Merlon (1976a), Jones (1984), and Ball and Torous 

(1985) arc different from die rest even though they still take into account the fact that volatility changes 

over time. They present Diffusion-Jump models, where the stochastic differential equation of the slock 

price has two parts, a continuous Geometric Brownian motion, and a part comprising a discontinuous 

Poisson process dial captures the discrete arrival of new information in die market. Cox and Ross (1976) 

present a Pure-jump process for the stock returns as opposed to a diffusion-jump process.

Madan and Scnela use a Variance Gamma model of random volatility, where the volatility is a 

product of a constant variance and a random variable that has a gamma distribution. Their approach is 

related to Pracu’s (1972) approach where he considers die reciprocal of die random variable as having 

a gamma distribution that results in at distribution. Rubistein's( 1983) derives a more general model than 

the Black and Scholes model where he considers the stochastic process driving die stock price as arising 

from fundamental characteristics of the firm. The models includes debt as in die case of Gcskc (1979a)

1 See Rosenberg (1972), Merton (1980), French and Roll (1986), Porteba and Summers (1986), Taylor 
(1986), French, Schwert and Starabaugh (1987), Schwert (1989), Skirmcr (1989), Bailie and DcGertaro 
(1990) and Schwert and Scguin (1990).

2 Parkinson (1976,1980), Boyle and Ananlhanarayanan (1977), Garman and Klass (1980), Beckers 
(1983), Ball and Torous (1984), Rogers and Satchell (1990).
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and further decomposes lire firms assets into risky and riskless assets. This results in slocliaslic volatility 

of the stock.

Hull and While, and Wiggins’ models arc special cases of Johnson and Shanno's model. In this 

model both the stock price returns and the variance follow Geometric Brownian motion and its variations, 

and thus can be characterised by two stochastic dillcrcntial equations that are correlated. Cox’s model 

is a constant elasticity of variance (CEV) model. Again, liis model can be derived as a special ease of that 

of Johnson and Sbanno. Scott’s model is slightly different. He assumes that the slock returns follow a 

Geometric Brownian process but the instantaneous variance of the slock price follows an Ornstcin- 

Uhlenbcck process that is mean-reverting. Butler and Schachlcr (1986) developed an unbiased Black and 

Scholcs model by taking a Taylor series expansion of the formula and the density of the estimated 

variance. Their model also performs belter Ilian the standard Black and Scholcs model.

The main aim of this presentation is to propose a new time-varying volatility option pricing 

model where the volatility of stock returns is a deterministic function of timc-lo-cxpiration of the option, 

and that functional form is known or the method of determining it is known. Hie motivation lor this 

model comes from Merton’s (1973) model. Taylor (1986) also argues for time-varying volatility. Time- 

varying volatility can be estimated from the volatility implied by the option at any time before the option 

expires. The implied volatility is quite important ill the literature because it is perceived to lie an 

information preserving estimator of volatility. We propose llial the time-varying volatility can thus be 

characterised and approximated by a time polynomial with a known functional form, whose order is 

determined by, and may be equal to, the number of options written on the underlying slock price. We 

emphasize the use of several options written on the security in order to make use of all the information 

about die security. Heuce the new estimator is both time-varying in character and is based on market 

information making it information-preserving. In this analysis.we use data on the FI’-SE ICO Index 

European options traded in the London Traded Options Market which is part or the Loudon International 

Slock Exchange.

In the next section we develop the time-varying volatility option pricing model using the 

continuous hedging method. Section 3 will examine the time-varying volatility more closely, bringing 

out how the coefficients of the volatility polynomial are estimated. The empirical tests on the new model 

arc discussed in section 4 and a comparison is made with die standard Black and Scholcs model that uses 

the historical variance of logaridimic returns. Section 3 contains the results and a discussion on llicni. The 

conclusion is in section 6 and the appendices contain mathematical derivations and tables or results. 2

2. OPTION PRICING MODEL WITH TIME-VARYING VOLATILITY

On the onset let us state the assumptions under which our model obtains, which arc:
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i. no transactions costs and taxes,

ii. no penalties for short sales,

iii. the market operates continuously,

iv. die riskless rate of interest is constant

v. the stock pays no dividends during die life of lire option, and

vi. the option can only be exercised on die expiration dale.

The model will basically be for pricing European type options which can only be exercised on the dale 

of expiration (assumption vi) and the underlying stock is dividend protected. As in the standard Black and 

Scholcs model only five variables determine die price of die option namely (lie underlying slock pricc(S). 

exercise price (K), time-to-expiration (t), stock volatility (V), and the riskless rate of interest (r). The 

only unknown parameter is the volatility (V), otherwise the rest of the parameters are known.

We perceive investors as economic agents who revise dieir perception of volatility and risk in tire 

market all the lime. The revision is determined by the timc-lo-cxpiraiion of the option. The stochastic 

volatility option models described above arc consistent with a random revision of volatility, while our 

proposidon hinges on a deterministic revision of volatility and perception of market risk. The motivation 

for litis model is Merton’s approach, which aldiough docs not provide a functional expression for 

volatility, it expresses volatility as a "time variable"(Mcrton, 1973, p.166).

In conformity widi this approach, we define volatility as a “lime variable" of die form

V (T) = J „ '< r (t)d i, ( I )

where t is time, t  is (he time-to-expiration of die option, and rr(l) is the instantaneous variance of (lie 

stock returns at any time t. Expression ( I) implies dial we obtain the volatility of die stock returns, at any 

lime, by integrating the instantaneous volatility with respect to time, and value the result over die 

remaining life of the option written oil the slock. This bestows the time-varying characteristic on the 

volatility estimator, determined by the remaining life of Hie derivative security, the option.

It is standard to assume dial the stock price is generated by a Geometric Brownian motion, the 

corollary being that die slock returns follow die stochastic differential equation’

dS/S = pdl + odW(t), (2) 3

3 Fora description of ltd type stochastic differential equations refer to Scliuss (1980). The lid processes 
derive from the assumption of a continuous time stochastic process which leads to continuous price 
changes with independent increments.
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wbcrc S is Ihc slock price, p die ex peeled return on the slock price per unit lime, a  llic local standard 

deviation of returns, and dW(t) ihe derivalive of a Gauss-Wiener process.

We now create a riskless hedge portfolio continuously, comprising a slock and a European call 

option, whose mixture is chosen in a particular way. The changes in Ihc call price arise from changes in 

the slock price, and so are Ihe changes in Ihe hedge portfolio. Because changes in the hedge portfolio tire 

only due to die slock price, Ihc hedge portfolio is a self-financing portfolio. The quantities of die slock 

and the option should be continuously adjusted appropriately as the slock price changes, such that the rale 

of return on the hedge portfolio is riskless.

Denote the number of shares of slock with to,, and Ihc number of options purchased as to,, and 

the call price as C. 'Htcn, die value of die hedge portfolio, H, can be expressed as Ihc stock price limes 

die number of shares plus the call price times the number of options purchased. That is4.

H = Soj, + Cto„ (.1)

Next, we have to find the value of tile change in tire hedge portfolio, litis we do by hiking the total 

derivalive of H in equation (3), yielding

dH = oi.dS + 0)edC, (1)

Next we need an expression for dC. The call option price funclion can he expressed as C(.S,K.r,T,V(T)). 

Since die stock price follows a Geometric Brownian molion culminating in stochastic differential 

equalion (2), hu's Lemma is employed lo obtain ihc total differential equation of the call option price 

given by’

4 Merton's (1973) hedge portfolio also contains a riskless bond as third asset. One can include it 
explicitly as a separate asset such that llic rale of return of the portfolio is zero or ns in our case, exclude 
it but make sure that in equilibrium the rate of return of Ihe hedge portfolio is equal lo dial of a riskless 
asset. Also see Smilh (1976) for Ihis approach.

5 h a s  Lemma for a function f(x(l),t) is given by

df(x(l),t) = (3f(x,t)/3x)dx + (3f(x,()/3t)dt + ( l^ c r^ f ix .O /rV jd t .

The formula corrects die classical chain rule

df(x(l),l) = (3f(x,t)/3x)dx + (3f(x,l)/3t)dt, 

by (lie additional term

(l/2)ff!0 Jf(x,t)/3x!)dt.
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dC = (r)C/r)S)dS + (3C/3l)d( + ( I /2 )(t):C/c)S J)<rS !dt. (5)

All lltc terms in die expression for dC arc deterministic except the stochastic term dS. Substituting lor dC 

in equation (4) yields

dll = (D,dS + <ur((rXv3S)dS + (3C/3i)dl + (!/2)(3:C/3SJ)crS:dt). (ft)

To ensure that the return on the hedge purtldlio is riskless, we choose the portfolio such that we 

have a long position on one share of stock tint! a short position of (3C/3S)'1 calls."

Then, the ratio of die number of shares per unit number of calls must equal the number of calls held short. 

Then, we have

= -3C/3.S. (7)

We can also derive expression (7) from saying that the change in the value of the hedge in equation (-1) 

should be equal to zero. That is,

w.tlS + oi,(3CA)S)dS = 0, (X)

from which condition (7) follows directly.

Since the investor holds one share only, meaning that (n,= 1, the number of options held arc, <0, 

= -1/(3C/3S). Under these conditions die change in the value of the hedge in equation (6) becomes

dll = - (3C73S)''((3C/3l) + ( l/2)(32C/3S!)o-’S!)dl. (9)

In equilibrium the return on the hedge portfolio must equal that of the riskless asset, such that

Notice that dx is defined by the stochastic differential equation 

dx/x = pdt + odW(t)

where W is a Gauss-Weiner process. Refer to Schuss (1980) for a general discussion.

‘ This method is similar lo dial proposed by Smith (1976). Merlon's (1973) approach on p. 164-165 
is rather long winded.
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dH/H = rdl. ( 10)

where r is (lie riskless rate and dH/H is (be return on the hedge portfolio. Substituting equations (3) and 

(9) into equatioo (10) and rearranging we obtain the partial differential equation for lire call price given 

by

subject to (lie boundary condition that the terminal value of the option price must be equal to tlic 

maximum of cither die difference between the stock price and the exercise price or zero. That is.

(12) C(S(t).K.r.0,V(t)) -  Max(0, S(t) - K).

where S(t) denotes die stock price at die expiration dale.

To solve equation (11) subject to (12) we use the Feynman-Kac Formula as suggested by Dill lie 

(1988a, 1988b). For completeness we shall stale die formula and here we are guided by Okscndal (1985).

Theorem 1 (Fcvmnan-Kac Formula): Consider a function

where E is an expectation operator, r(X) is bounded and continuous, and X solves the equation, tlX/X = 

pdf + ad\V. Then

(ltfxyc/dSVS2 + rSde/dS + ac/3t - r c = o. ( I I )

Y(x,t) = E Jexp(-krr(XJds g(XT)l, (Id)

dYIdt • LY + rY = 0, 0 £ t & T. (Id)

where L is the operator

\ld(.)ldx + (ll2)<rd(.?ldx‘. ( 15)

Proof: For the proof see Okseudal (1985), pages 95-96.

The Feynman-Kac Formula is a generalisation of the Kolmogorov backward equation ami is closely
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related lo Dynkin ’s Formula (sec Okscminl (1985), pages 91 -96).

In equation (13) tile term J0Tr(XJds is Ihc discount factor which in our case is rx and r is a 

constant. Also, in our case X = S, the security price, ;uid g(XT) = max (0, (S(x) - K), the value of the call 

option at expiration. The variable Y = C(S,K,r,x,V(x)), the value of Ihc option at any lime before 

expiration. Therefore, the value of the call option, which solves equation (II) subject lo (12) is given by

C(S,K j,t,V(x)) = E| cxp(-rt)max(0, S(x) - K), V(x)). (16)

where E is the risk-adjusted expectation.7 Equation (16) gives the option price as a martingale with 

respect to some risk-adjusted probability. This is consistent with Harrison and Kreps’ (1979) pricing of 

securities by the no-arbitrage argument and is also consistent with the efficient market hypothesis. To 

solve equation ( 16) we shall draw from the Cox and Ross (1976) risk-neutral approach, and the derivation 

of Ihc solution is given in appendix 2AB.1. The solution is the option model with time-varying volatility 

of the form"

C(S,K.r,x.V(x)) = S‘l>(d,) - Kexpf-rxWdj), (17)

where

d, = (l»(S/K) + n  + (l/2)V(x))/Vv(x),

d, = d, - x/V(x),

V(x) = cr(t)dl.

7 This solution to the option price is in conformity with the Cox, Ingersoll.and Ross (1985b) general 
intertemporal equilibrium model of asset prices in Lemma 4. The solution is also similar to that of Merton 
(1973), equation (38), page 166.

* Merton (1973) employs the Fourier transformation approach to solve the model and he expresses it 
in terms of the error complement function. However, he solves the model for Ihc case where r = 0. <r = 
1, and K = I. Under normal conditions his model for tire option price could lie rewritten as. 
C(S.K,r,x,V(x)) = Scrfc(li,) - Kcxp(-rx)erf(hj), where h, = -(In(S/K) + rx + 0.5V(x))/'/V(x). and h2 = - 
(ln(S/K) + rx - 0.5V(x))/VV(x), and erfc(.) is the error complement function of die form, crfc(li) = I - 
(2/^n)Jn* * cxp(-u7)du, and V(x) = J„' 0*0) dt. (See Merlon (1973), page 167). The model is similar to our 
time-varying volatility option pricing model.



mui is a standard normal distribution of Ihe form <l>(t)j) = /„'''( I/V2tc)cxj>(-ij!/2>hi, with mean zero and 

unit variance. Assuming that (T t̂) = cr for all I, meaning that V(t) = <rt, we obtain tltc standard Black 

and Scltolcs model, which is in fact a special ease of the new model (17).

Alternatively, the solution for die option pricing model could be derived using die Cumeron- 

Marlin-Cirsanov Theorem (see Okscmlal (1985), pages 115-119). This theorem involves an explicit 

transformation of diffusions with a drift (|t in equation (2)) to diffusions without a drift. Subsequently, 

we can transform the probability measures. The derivation of die option model using the Cameron- 

Mariin-Girsaiiov Theorem is in appendix B.2.

The lime-varying volatility option pricing model still lias to be integrated over the functional form 

of die volatility, V(x). Now. suppose there are N options written on die slock, each with a different expiry 

dale but with the same strike price, and k strike prices, yielding Nxk options. Since the volatility changes 

with timc-lo-cxpiration, the implied volatility of die underlying stock, implied by each observed option 

price, is different for each of the Nxk options. We can thus estimate die average implied volatility for each 

lime-lo-cxpiration by summing the volatilities accross different strike prices and dividing by the number 

of strike prices. Then, the average implied volatility (Oj!) for each lime-lo-cxpiration is given by

k
a/- = ( l /k ) Z a i \  <l!i>

i=l

where a, is die implied volatility for each Uinc-lo-expiralion (x) and each strike price (K). and j denotes 

each average implied volatility. Then, V(x) can be thought of as the expression of average implied 

volatility, implied by different options with varying expiry dales.

Now, the question is what functional form docs the polynomial <r(l) take? We suggest dial the 

volatility <r(t), which here is thought of as an implied volatility, that can be approximated by an (N-1 )tli- 

ordcr polynomial function of lime (1). That is.

<r(t) = a , + out + ..... + a,N.1lN'1, a ,* 0 . (19)

and more generally expressed as 

N-l
cr’O) = £  a,!''1 a ,* 0 , (2°)

i= l

where t is lime, cq is the coefficient, and i denotes each option. To derive V(t) we integrate the 

polynomial (20) with respect to lime, I, and value the result over die remaining life or die option, x. That 

is.

9
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N-l
VW = /(.'(! 0,1") Jt, a,*o,

= a,, + a,T + (ct,/2)r + (a,/3)xJ + ...... + (aJuyiT . (21)

which in general can be expressed as 

N
V W =  I  |Vt'. (22)

i=0

where |i, = a j \ , which gives us the functional form of the lime-varying volatility estimator. In simple 

terms, one has to estimate tile coefficients, a,, anil then for each option substitute its timc-to-expiralion 

in equation (22) an«J evaluate the polynomial. Having obtained the expression for the volatility the lime- 

varying volatility option pricing model can be rewritten as,

C(S,K,r,T,V(T)) = S<D(d,) - Kcxp(-rt)d>(d,), (23)

where

d, = (ln(S/K) + rt + (l/2)V(t))/Vv(T), 

d, = d, - VV(T),

N
V (T )= £ P iTi,

i=0

and <t>(.) is a standard normal distribution defined as before in equation (17). In the polynomial V(t) we 

shall assume that the constant, p„ = 0. This is because at expiration, t  = 0, and die implied vo'atility is 

indeterminate. Since V(t) can be viewed as an area under the curve of the function, 0*0). from 0 to P"'11* 

T, the area at expiration should be zero. Hence the assumption that, p,, = 0. Now that the model is 

completely solved we need to discuss how to estimate the coefficients, ft. of the volatility polynomial, 

V(T), and die next section is devoted to dial. 3

3. ESTIMATING THE TIME-VARYING VOLATILITY
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In order lo calculate option prices using the time-varying volatility option model (23) we need 

to calculate llic coefficients of file volatility polynomial, V(t). If the data generating process of security 

prices is governed by a Geometric Brownian motion and investors price options according lo tlte Black 

and Scliolcs model, we can obtain the volatility of lire returns of the stock price, implied by the observed 

actual option price. In the literature it lias been argued dial Hie at-ilic-moncy options yield the most 

accurate implied volatility estimates, because they arc perceived lo contain accurate market information 

of each slock price.

We stated earlier that we want our volatility estimator to be both time-varying and iiiformalion- 

preserving. In this respect we shall make use of tlte implied volatilities lo estimate, V(t). Jarrow and 

Wiggins (1989) have argued that the implied volatility is quite robust under conditions where the Black 

and Scholcs assumptions have been violated. For instance, if stock prices follow an arbitrary process, 

Rudd and Jarrow (1982) using Edgeworth scries expansion, demonstrated that a Black and Scholcs model 

could still be obtained for certain classes of stock price distributions, but the volatility needs lo lie 

adjusted. The implicit volatility could 1)0 used as an eslimaie of ibis adjusted volatility.

When intcrcsl rates arc stochastic ratiter Ilian constant, estimating volatility becomes difficult, 

because one has to estimate the volatility of the slock, the correlation coefficient between the Gauss- 

Wiener processes of tlte stock price and interest rate, and the volatility of the interest rate." But we could 

employ die implied volatility under this scenario to absorb the effects of the stochastic interest rate.

In the presence of market friction, which includes margin requirements, transactions costs, and 

tax payments, the implied volatility is demonstrated to be the most accurate estimator of volatility Jarrow 

and Wiggins' argument successfully demonstrates the robustness of die implied volatility approach under 

different conditions of market behaviour, which seems to suggest that a more general modcl.lhan the 

Black and Scholcs model applies in reality. In this respect we employ the implied volatility in estimating 

the parameters of V(i), because of its accuracy, information content, and general robustness under 

different market conditions.

To estimate die implied volatilities of the stock price front die actual option prices, we sltall 

employ (be Ncwlon-Raphson ntedtod.10 Let us denote die observed market call price by C„. and the 

Black and Scholcs model value by C(0*). In this method, the aim is to find die root of the equation.

* Merton (1973) first obtained a stochastic interest rate option model where die interest rate is governed 
by geometric Brownian motion. Rabinovitch (1989) later derived a stochastic intcrcsl rate option model 
under conditions where the intcrcsl rale follows an Omstcin-Ublcnbcck process, as suggested by Vasicek 
(1977). Rabinovitch's option model is similar lo Merlon's, except that it contains an expression dial 
explicitly reflects the effect of a mean-reverting term structure of interest talcs.

"  For a discussion of the Ncwton-Rapbson method and other numerical optimisation procedures refer 
to Harvey (1990), pages 123-145.
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(C(cr) - Cm). Since Q o 2) is monolonic with respect to the volatility, o, there is only one root. This 

method uses successive substitutions or a2. such that,

a .2 = (r  - l3C(a2)/3(d2)|/[3!C(d2)/3(cr)2l (24)

where (*) (icnotes the current estimate, (A) denotes Die previous estimate, and |y C (d !)/3(d!): | is the 

Hessian. The value or the implied volatility is accepted ir it yields a pricing error, C(.) - Cm, dial is within 

the preset tolerance limit. The method requires that we choose an initial value. a„2, lor the iterative 

process. Manaster and Koehler (1982), have suggested that Tor Taster convergence we should choose the 

initial absolute value, o„2, in the following way,

<V = 2( I ln(S/K) + rt I )/t. (25)

Notice that the expression (25) uses all the information contained in the other four known variables, 

namely, S, K, r, and t ,  for choosing the initial value of a2. In the Black and Scholcs model we need to 

estimate the standard normal distribution, <b(d,), by numerical integration since it cannot lie evaluated 

directly." A numerical approximation procedure of <h(d,) is discussed in Appendix 2AC.

Whaley (1982) suggested an iterative Ordinary Least Squares procedure for calculating the 

implied volatility of die underlying stock." Day and Lewis (19S8) use a generalized least squares (GLS) 

procedure in which actively traded options are weighted more heavily than thinly trailed ones. MacBcth 

and Merville (1979) have suggested ways of estimating the al-die-moncy implied volatility from the 

implied volatilities by regressing the implied volatilities on the degree to which die option is in- or oul-of- 

Ihe money.* 12 * * 15 The al-lhc-moncy implied volatility is taken to be the constant term. But one would still

" Sec Benninga (1989) for a discussion of numerical integration of a normal distribution.

12 Whaley (1982) pul forward an iterative OLS regression procedure where we minimise the sum of 
squares of die error in the econometric model, C„ = C(c) + e, where e is die random error term with zero 
mean and constant variance, and a  is unknown. Through a Taylor series expansion and rearranging the 
terms we obtain, C - C(o) + o„3C/3o = o3C/3o + e, where c„ is given. We apply OLS regression and 
check the value of a, against a designed acceptance tolerance limit, (a, - a,.,) < z, where for small z > 0,
o, is the esdmatc of O. We keep doing the OLS regression and obtaining the cstimalcs, o„ until we gel
a value that is acceptable within die tolerance limit.

15 MacBedi and Merville (1979) regress die implied standard deviation, ISD, on die degree to which 
the option is in- or out-of-die money, M = (S-Kexp(-rt))/Kcxp(-rr). They estimate (lie regression, ISD, 
= a  + DM, + e,, where £ is the random error term with zero mean and constant variance. When die option 
is al-the-money, M = 0. Under diis condidon, ISD = a . implying dial a  is die at-dic-moncy implied 
volatility.
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have to estimate tlic implied volatilities before doing such a refinement to obtain die at-llic-moncy implied 

volatility.

Having discussed how to obtain the implied volatilities, we have to discuss how to obtain the 

coefficients of the polynomial for estimating lime-varying volatility given above. As before, assume that 

the stock price has N options written oh it differentiated by their timcs-to-cxpiralion. At any time the 

options have the same strike price, K, the same stock price, S, and the riskless interest rale, r. is constant 

and is the same for all optioos. Wllal differentiates one option from another is the linie-to-cxpiralion. The

times-to-expiration of the option can be represented as. x„ x,......... T„, where x, < x, < t ,  <........< x„.

Tlte options values can thus be denoted by their times-to-expiraiiori as, C(t,). C(x2)...........C(tN). with

their respective implied volatilities, <r(x,), cr(x,),___ _ <r(xN). For any given intrinsic value, the value

of an option decreases, as the option moves closer to maturity, a phenomenon known as lime-value decay. 

This is true if die stock price upou wliiclt the option is written docs not pay dividends. Therefore. C(x,) 

< C('2) < ........< C(xN).

For cadi of tlte N instantaneous volatilities. Utcrc is some polynomial of time explaining it. hi all 

we have N polynomial equations. Tlic problem could lie rcprcscnlcd as a system of N polynomial 

equations,

V(t,) = B,x, + Bjt, 3 + BjT,’ + ........+ B^t,"

V(Tj) = B,Xj + &,x23 + BjX,’ + ..... + BsXjN

V(x„)«  Bit* + BjX„3 + BjV  + ........+ B^x/

(26)

where V(t,) are the implied volatilities. The system can be solved since there arc N equations with N 

unknown coefficients. In matrix notation we can represent tlte problem as

V(x) = x i l  (27)

where V(xj is an N x 1 vector or the average implied volatilities, T is an N x N matrix o f tlte variable, 

timc-to-cxpiralion, and 0 is the N x 1 vector of coefficients, B,. To solve for the vector of coefficients, 0 .  

we invert equation (27) and obtain
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II = f' V(t) . <2H)
Wc substitute the known limcs-to-expiration in the matrix, t. Then, the vector of coefficients, (3. can lie 

solved for. since Hie vector, V(x), and inverse of the matrix. T. are known.

This completes llic estimation procedure for the time-varying volatility polynomial. V(t). Note 

that in estimating die parameters for die volatility polynomial wc have used all llic options, with different 

strike prices, written on each slock price. This is to make use of all available market information about 

die underlying slock price and the coefficients should preserve this information. As wc slated earlier. 

V(T) is perceived to be closely related to err, the volatility of die slock when it follows a logarithmic 

random walk. Now, let us turn to die empirical analysis.

4. EMI’IRICAL ANALYSIS

In this section, we shall discuss how we use our new option pricing model to value the FT-SE 

100 index European call optioos. The results will be compared with diosc obtained from the standard 

Black and Scliolcs model that uses the historical variance of logarithmic returns. The accuracy of the 

models will be measured by percentage estimation errors, sum of squared errors and mean square error.

4.1 DATA BASE

Daily data was collected from the Financial Times and the London Traded Options Market 

(LTOM) of the London International Stock Exchange Tor the period 1 February 1990 to 3 1 March 1990. 

The FT-SE 100 index options arc rclalivcly new, having been introduced in the market on I February 

1990. llic options have the expiry cycle March - June - September - December, and the minimum period 

for trading is three months and (lie maximum is twelve months. For llic year 1990 the expiry dates of lire 

options arc 29 March. 29 June, 28 September, and 31 December. The strike prices arc set at 25 and/or 75 

index point levels.

The normal size of each contract is £10 x Index value, unlike equily options where the volume 

of each contract is 1000 shares, except for Vaal Reef shares with contracts of 100 shares each. Since the 

options arc of the European type they can only be exercised on the expiry day. at 11.20 am. as contrasted 

to equity options which expire normally (wo days before the Iasi day of dealings for (lie last complete 

Slock Exchange account of the expiry month. Also, (be index does not pay dividends lo shareholders 

during the life of (lie option. The American type index option can be exercised on any business day before 

the expiry day of the option.
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The FT-SE 100 index was introduced on 3 January 1984 at a value of 1000, as an indicator of 

market movement. As the name suggests it is based on 100 leading British companies, which account lor 

70 percent of all equities in United Kingdom. Like the American Standard & Poor index, die 100 Index 

used lor Chicago traded options, die FT-SE 100 index is a Weighted Arithmetic Index, weighted by the 

size of each company's equity in the stock market. Membership of the SE 100 is revised quancrly 

requiring the revision of the index as per membership revision. However, die FT 30 index, which was 

introduced in 1935 and based on 30 leading companies, provides an iip-lo-the-minutc indication of the 

temper of the stock market. The FT 30 index is a geometric mean of each share price, divided by the price 

at the base date. It follows that the calculation is performed by adding the logarithms of die share prices, 

subtracting the logarithm of the base value, dividing by 30, and then taking (he antilog of the result.

Regarding the riskless interest rale, we shall use the Treasury Bill rale which was 15 percent 

during die period defined in die sample. This rate also coincides with the one-year London interbank ot ter 

rate (Libor) of 15 percent, for the defined jteriod.

In spite of the fact that daily data seems to have distributional problems, we shall have to use 

daily data. Farna (1965) first suggested that the distribution of daily stock returns seems to depart from 

normality more dian mondily returns. Evidence reveals that the distribution of daily returns has fatter tails 

than the normal distribution, but the distribution converges to a normal distribution for cross-sectional 

daily stock returns.14 But in this study the use of daily data is unavoidable since the limc-lo-cxpiration 

of an option is measured in days and the quotation of the option prices is per day. Now let us look at the 

empirical tests we can employ to measure the accuracy of our new model.

4.2 EMPIRICAL TESTS

To test the accuracy of die time-varying volatility option pricing model we shall compare it with 

die standard Black and Scholcs model that uses the historical variance of the logarithmic index returns. 

The returns on die index are measured by the change in the natural logarithm of the index between 

successive periods. At any time t, die logarithmic return on the index is therefore given by

14 For a discussion on this point, on the distributional anomalies of daily stock returns, sec Hagcrman 
(1978). Scholcs and Williams (1977) suggest a furdierproblem, that of non-synchronous trading, arising 
from llic fact that llic return on the market index and dial of die security may lie measured over different 
lime intervals. This introduces a problem of errors of measurement in econometrics, producing biased and 
inconsistent OLS estimators. Brown and Warner (1985) menUon a further problem, mainly that non- 
synchronicity in trading which may produce serially correlated daily stock rcturns.Tlic variance ofreturns 
becomes non-slaliooary and it increases around events such as earnings announcement, as Patch and 
Wolfson (1979) argue. The rest of the literature on slock returns distribution and event studies is 
discussed in Part 1 (Introduction).
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x„ = InfS/S.-i), (29)

where S is the index. Then, die historical estimate of the variance of the logarithmic returns on the index, 

x„ is given by

T
da = (l/X -l) Z(x„-x)2, (30)

1=1

where T  is Utc sample size of the time scries, and x is the mean of x„. The estimator (30) of the variance 

is an unbiased estimator of the true variance <r.

We shall use die estimator (30) of die variance in the standard Black and Scholcs model, which 

we shall compare with the time-varying volatility option model (23). Because die distribution of the 

estimated call prices from the two models is unknown, it is difficult to rely on parametric tests. "Hie 

estimation errors that will be employed arc discussed in the sections below.

4.2.1 PERCENTAGE ESTIMATION ERROR

'litis simple approach merely compares the percentage errors of estimation in bodt modclx. Dclinc 

llte percentage error of estimation of each option model by, D, = |(C(.) - C,„/CJ|I(X)%, where i stands 

for each option model, C„ is llte actual option price, and C(.) is the estimated model option price. D, could 

be either positive or negative. We merely compare die magnitude of the percentage errors, Div if we use 

both models 10 forecast the option price one day forward.

The presence of mispricing errors provides opportunities for making riskless arbitrage prolit. In 

this respect one could consider the monetary value of die errors defined by. |C(.) - C,„)|. The monetary 

value of the error is £ 10(C(.) - C J .  If die error, is positive then an arbitrage profit can tic made by buying 

the stock at die strike of K index points, and selling it in Hie market at a higher price S. The profit you 

realise is £ 10C(.) which is larger dtan,£IOCm, die monetary value of the difference between S and K. The 

converse argument applies when die model underprices die option. The investor realises a lower profit, 

which is reduced by, £10(C„, - C(.)J. The investor could even make more sophisticated combination or 

calls and puts and realise more profit, on the same stock and/or accross different stocks.

4.2.2 SUM OE SQUARED ERRORS AND MEAN SQUARE ERROR

Apart from comparing the magnitude of errors we could also compare squares or the errors and 

the mean square errors. This approach disregards the sign of the error but considers die degree of
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dispersion of Ibc estimated value front the actual option value. The sum of squared errors is given by 

^(C(.)i - C„j)J. The mean square error is basically the mean of Ibc squares of several estimation errors. 

Then the mean square error is the sum of squared errors divided by the number of options considered.

5. RESULTS AND DISCUSSION

In this section we shall discuss the results. We calculated the average implied volatilities of 

logarithmic returns on die index, for the following 14 consecutive trading dales: 115/02/5)0, 19/02/90. 

20/02/90. 21/02/90. 22/02/90, 23/02/90, 26/02/90, 27/02/90, 28/02/90, 01/03/90, 02/03/90. 05/03/90. 

06/03/90, and 07/03/90'5. From 16/02/90 to 26/02/90, the eight strike prices across which the average 

implied volatility was calculated were. 2225,2275,2325,2375,2425,2475,2525, ami 2625. But for the 

remaining seven days the strike prices were 2125,2175, 222.'), 2275,2325, 2375, 2425, and 2475. For 

each stock price there arc four expiry months, namely March, June, September, and December. For 

reasons of accuracy we only used the options for March, June, and September expiry months, because 

the December implied volatilities are less accurate. The Newton-Raphson mclliod, based on the Black 

and Scholcs model and discussed above, was used for estimating the implied volatilities. We also 

estimated the historical variance of index returns for each day from 01/11/89 to 07/03/90. Table AI in 

appendix A. shows the implied volatilities and the historical standard deviations of die FT-SE 100 index. 

for (he 14 trading days.

Next, we estimated the coefficients of the lime-varying volatility polynomial, for the consecutive 

trading dales referred to above, using the method described in section 3. Since we considered only three 

expiry months, die polynomial is a cubic one, or third order. Therefore, only three coefficients namely, 

0„ p3, and p„ were estimated. Table 1 below shows die estimated coefficients for each trading dale.

« « T u b lc  1 H e r e » »

From table I above, we notice that each coefficient of (he volatility polynomial litis a consistent sign, in 

the sense dial p, and arc positive while is consistently negative. Having obtained the coefficients 

one can now proceed to estimate future volatility by substituting for tinic-lo-cxpiration in the polynomial 

(19).

In the next stage or (he analysis we wish to assess the accuracy of each volatility polynomial in 

estimating option prices one day forward for 14 consecutive trading days (fortnight). Next, we wanted

11 Hie weekends, namely Saturday and Sunday, and holidays arc excluded because the market is closed 
at these times.
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lo find out liow accurate the time-varying volatility model is in predicting options Dial arc iii-ilic-money. 

near tlic money, and out-of-the-money. Options with strike prices 2225.2325. and 2425, which arc in-the- 

money, near-tlic-moncy, and out*of-thc-moncy. respectively, were chosen. We Ihcrcforc estimated option 

prices one day forward, under the three strike prices, for die three expiry months. We only need lo 

calculate the option price one day forward because the following day we have a new security price and 

new information for another one day forecast. Option price estimates from cacli model were tested against 

the actual option price observed in the market to assess the accuracy of the time-varying volatility option 

model against the standard Black and Scholcs model. Subsequently, Hie average percentage errors of 

estimation, sum of squared errors, and mean square errors, were calculated.

Table A2 appendix A shows the results for the options that me in-the-money with the strike price 

of 2225. The average percentage error of estimation is generally positive for bolli models, for the 14 dales, 

except for only one case lor die option model with time-varying volatility. The implication is that both 

models tend lo overprice the option prices, with the potential of allowing for the realisation of riskless 

arbitrage profits by investors. But taking a closer look at the percentage data again, we notice that the 

time-varying volatility option model, has lower percentage errors than Black-Scholcs mode! in all 14 

eases. The sums of squared errors and mean square errors also confirm Uicsc results. 'Hie sum of squared 

errors and the mean squared errors of die time-varying volatility model arc lower than those of the 

standard Black and Scholcs model in all die eases. This implies dial the new model is more accurate for 

estimating option prices.

In table A3 in appendix A, we have the results for options that arc near die money, with a strike 

price of 2325. In all but twocascs, the Black and Scholcs model shows positive average percentage errors. 

This implies that die model tends to overestimate the true option price. The picture of the time-varying 

volatility option model is somewhat different. Under die new model, we have seven eases of negative 

average percentage errors, implying dial the remaining seven are positive. In is not clem which direction 

the new model misprices die option. Looking at the sura of squared errors and the mean squared errors 

we notice that diosc of die lime-varying volatility option model arc lower dian those of die Black and 

Scholcs model in all but one cases. The exceptional case is die prediction of 07/03/90. Again, die results 

reveal dial the new model is more accurate dian the standard Black and Scholcs model for options that 

arc near the money.

The ease of die out-of-dic-moncy options, widi strike price 2425, is depicted in table A4 and in 

appendix A. For the Black and Scholes model, 9 out of the 14 eases show positive average percentage 

errors. The implication is that die model weakly overprices die option. The case of die lime-varying 

volatility model Is more consistent. This model shows negadvc average percentage errors in all but two 

cases for dales 19/02/90 and 28/02/90. We arc therefore led to conclude dial the new model lends to



19

underestimate oul-of-llic-moncy options. Looking at tile sum of squared errors and mean squared errors, 

we notice that die time-varying volatility model bas in ten eases errors that me lower Ilian those of die 

standard Black and Scholcs model. In Uiis respect, we would conclude that die new model is more 

accurate dian the standard Black and Scholcs model for options that me out-of-the-money as well.

6. CONCLUSION .

In die foregoing analysis we have developed an option pricing model with time-varying volal ility 

that can be solved analytically. The motivation for this approach is from Merton's (1973) model. The new 

model is compared with the standard Black and Scholcs model, in pricing the FT-Sli 100 index call 

options of the European type which were introduced in the London Traded Options Market on I February 

1990. The lime-varying volatility option model has on the overall proved lo be more accurate than the 

standard Black and Scholcs model.

The results seem lo support the assertion dial investors may revise dteir perception of risk, 

measured by die volatility of slock returns, as the options written on the index move closer to maturity. 

This renders the volatility dependent on die time-to-expiratioii. and its functional form could he 

approximated by a polynomial whose order is determined by the number of options written on the index. 

The results also put pointers lo the fact that a more general model than the standard Black and Scholcs 

model can be applied. The results, aldiough applied on a limited sample, support this assertion.

This approach could be extended to the pricing of odicr types of options such as individual stock 

options, currency options, and commodity options, where again we could assume lime-varying volatility. 

However, Uiis is a subject for future research.
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TIME-VARYING VOLATILITY POLYNOMIAL (\{x)) 

No. of Trading Days = 14

DATE u. k P,
16/02/90 2.045048 - 7.939370 7.814084

19/02/90 1.734859 - 6.384520 6.314906

20/02/90 2.086579 - 7.778200 7.540097

21/02/90 2.254998 - 8.332740 7.957987

22/02/90 2.209441 - 8.034980 7.649384

23/02/90 2.480910 - 9.095430 8.742783

26/02/90 2.841785 -11.120800 11.151240

27/02/90 3.819039 -16.125000 16.919300

28/02/90 2.366383 -9.514540 9.827108

01/03/90 2.640698 -11.149800 11.618970

02/03/90 3.255821 -13.747300 14.460600

05/03/90 4.023202 -17.189000 18.474000

06/03/90 3.487456 -15.359300 16.635030

07/03/90 3.493746 -15.557600 17.206700

Noles: In estimating coefficients, time-lo-cxpiralion is denned as a fraction of a year.
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APPENDIX A 

Tabic AI
IMPLIED VOLATILITIES AND HISTORICAL STANDARD DEVIATIONS OF Fl'-SE 100

INDEX

16 February 1990 to 7 March 1990 
No. of Trading Days = 14

DATE - S MONTH CTj d

41 March 0.1406
16/02/90 133 2325 June 0.0691 0.1522

224 Sept 0.0710

38 March 0.1185
19/02/90 130 2299 June 0.0933 0.1538

221 Sept 0.1116

37 March . 0.1394
20/02/90 129 22S2 June 0.0987 0.1537

220 Sept 0.0830

36 March 0.1490
21/02/90 12S 2259 June 0.1092 0.1546 j

219 Sept 0.0721

35 March 0.1447
22/02/90 127 2267 June 0.1 182 0.1534

218 Sept 0.0831

34 March 0.1592
23/02/90 126 2238 June 0.1322 0.1557

217 Sept 0.0973

31 March 0.1680
26/02/90 123 2248 June 0.1215 0.1547

214 Sept 0.0908

30 March 0.2101
27/02/90 122 2251 June 0.1103 0.1548

213 Sept 0.0936

29 March 0.1300
28/02/90 121 2237 June 0.0988 0.1530

212 Sept 0.0868

28 March 0.1390
01/03/90 120 2259 June 0.0784 0.1534

211 Sept 0.0414
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02/03/90
27
119
210

2254
March
June
Sept

0.1588
0.1105
0.0632

0.1522

24 March 0.1899
05/03/90 116 2239 June 0.1391 0.1520

207 Sept 0.1166

23 March 0.1580
06/03/90 115 2216 June 0.0978 0.1530

206 Sept 0.0609

22 March 0.1528
07/03/90 115 2233 June 0.1011 0.1527

205 Sept 0.0970

Notes: T is the number of days to maturity; S is the FT-SE 100 index; MON TH is the expiry month; Gt 
is the square root of the average annualised implied volatility, averaged accross strike prices; a  is the 
historical annualised standard deviation calculated from 01/11/89.
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T able A2

19 February 1990 lo 8 March 1990 
No. o l option prices predicted with each volatility estimate = 1 

Total number of options = 52 
K = 2225 r = O.I5

ER RO RS O F ESTIM ATIO N PREDICTING  O N E DAY FO RW A R D

DATE PE SSE MSE PE* SSE* MSE* |

19/02/90 49.67 19095.28 6365.09 43.23 13783.79 4594.60 |

20/02/90 40.33 13049.84 4349.95 32.26 8705.60 2901.87 |

21/02/90 40.73 11146.19 3715.40 31.73 6327.04 2109.01 |

22/02/90 20.95 5066.01 168S.67 12.03 1712.45 570.82 1

23/02/90 48.19 11758.57 3919.53 39.25 6968.19 w n t

26/02/90 12.44 3063.06 1021.02 5.33 864.56 288.19 j

27/02/90 12.06 3183.28 1061.09 5.89 868.12 289.37 j

28/02/90 17.86 3345.67 1115.22 16.24 1047.66 349.22 1

01/03/90 24.30 5068.92 1689.64 13.07 1813.66 604.55 ]

02/03/90 30.48 6414.87 2138.29 16.68 2153.47 717.82 |

05/03/90 28.80 4889.73 1629.91 19.02 1468.11 489.00 1

06/03/90 5.36 1323.81 -141.27 5.20 278.37 92.79 ]

07/03/90 5.40 1614.03 538.01 -5.13 179.39 59.79 j

08/03/90 41.97 .8979.40 1993.13 31.78 2582.60 860.87 |

Notes: PE, SSE and MSE arc the average percentage error, sum o f  squared errors, and mean square error
o f the Black and Schotes model, respectively; PE*. SSE*, and MSE* arc the average percentage error,
sum o f squared errors, nod mean squared error o f  the new option m odel with lim c-vsuying volatility.
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19 February 1990 lo 8 March 1990 
No. of option prices predicted with each volatility estimate = 3 

Total number of options = 52 
K = 2325 r = 0.15

Table A3

ERRO RS O F ESTIM A TIO N  PREDICTING  ONE DAY FORW ARD

DATE PE SSE MSE PE* SSE* MSE*

19/02/90 57.66 11349.86 3783.29 36.S7 4144.18 1381.39

20/02/90 44.07 7597.27 2532.42 19.65 3013.12 1004.37

21/02/90 46.06 6397.69 2132.56 21.81 1350.03 450.01

22/02/90 18.12 2729.20 909.73 - 2.97 38.17 12.72

23/02/90 51.95 6276.S2 2092.27 29.49 1507.24 502.41

26/02/90 7.46 1641.21 547.07 - 7.63 34.41 11.47

27/02/90 4.13 1703.47 567.82 - 8.50 56.17 18.72

28/02/90 10.57 1585.76 528.59 13.10 112.83 37.61

01/03/90 16.00 2088.06 696.02 - 12.14 136.58 45.53

02/03/90 26.77 3256.59 1085.53 - 12.21 75.39 25.13

05/03/90 24.44 2357.55 785.85 1.81 27.81 9.27

06/03/90 -9.22 525.30 175.10 - 7.35 25.73 8.58

07/03/90 -4.94 630.15 210.05 -29.04 1260.44 420.15

08/03/90 - 4.94 2899.67 966.56 10.48 226.76 75.59

Notes: PE, SSE and MSE are die average percentage error, sunt of squared errors, and mean square error
d  the Black and Scholcs model, respectively: PE*, SSE*, and MSE* arc the average percentage error,
sum of squared errors, and mean squared error of die new option model with lime-varying volatility.
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Table A4

19 February 1990 to 8 March 1990 
No. of option prices predicted with each volatility estimate = 5 

Total number of options = 52 
K = 2425 r = 0.15

ERRORS OK ESTIMATION PREDICTING ONE DAY FORWARD

DATE PE SSE MSE PE* SSE* MSE*

19/02/90 57.37 6119.99 2039.99 7.75 302.00 100.67

20/02/90 41.01 3967.22 1322.41 - 8.18 860.62 286.87

21/02/90 43.90 3168.12 1056.04 - 4.54 28.77 9.59

22/02/90 12.54 1320.26 440.09 - 26.47 644.80 214.93

23/02/90 40.99 2862.19 954.06 - 0.40 16.41 5.47

26/02/90 - 5.01 750.88 250.29 -30.17 353.26 117.76

27/02/90 - 6.82 708.02 236.01 - 28.58 535.72 173.57

28/02/90 - 0.21 712.80 237.60 9.80 501.85 167.28

01/03/90 7.31 1074.99 358.33 -41.22 505.39 168.46

02/03/90 14.54 1474.78 491.59 - 58.09 2230.96 743.65

05/03/90 6.24 864.47 288.16 - 34.70 1280.87 426.96

06/03/90 -21.72 138.67 46.22 - 19.72 322.55 107.52

07/03/90 -19.98 188.78 62.93 -61.96 3130.31 10-13.44

08/03/90 6.83 1594.83 531.61 - 34.66 99.01 33.00

Notes: PE, SSE and MSE arc Hie average percentage error, sum of squared errors, and mean square error
of ihc Black and Scholcs model, respectively: PE*, SSE*, and MSE* arc the average percentage error,
sum of squared errors, and mean squared error of the new option model with lime-varying volatility.
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APPENDIX B

In this section we solve for the option model with lime-varying volatility by two alternative ways, 

namely the risk-neutral valuation on the Fcynman-Kac Formula results, ami by the Camcron-Marun- 

Girsanov Theorem.

IU  SOLUTION FOR THE OPTION MODEL WITH TIME-VARYING VOLA TILITY BY RISK- 
NEUTRAL VALUATION

Using the Fcynman-Kac Formula, the general solution to valuing the option as a state-contingent 

payoff is given by

C(S.K,r,x,V(x)) = E{exp(-rt)max|0, (S, - K)J |. (Bl)

where t denotes the date at expiration of the option. Tilts solution also follows from the Feynman-Kac 

Formula for solving partial differential equations, demonstrated by Duffie (1988a, 1988b). For the case 

(S, - K) > 0, we can rewrite equation (Bl) as

C(S,K j ,t,V(t)) = cxp(-rx)E[S, - KIS, > K], (B2)

Now, define the return on the slock as the change in the logarithm of the stock price. Then, the return on 

the stock is given by

x = ln(S/S,.,), (B3)

and

S, = Sl.,exp(x). (Bl)

Substituting equation (B4) into equation (B2), we obtain

C(S,K/,x,V(x)) = exp(-rx)E[SMexp(x) - Kl St ,exp(x) > KJ

exp(-rx)E[S,.,exp(x) -  Kl x  >  Iu(K/SM)]. (85)
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The variable, x, is normally distributed, with a density function f(x). To solve equation (B5) we integrate 

it with respect to x. Willi no loss or generality, let us replace S,.„ with S. Integrating with respect to x, we 

have

C(S,Kj ,t,V(t)) = cxp(-rt) J" (Sexp(x) - K)f(x) dx. • (B6)i*tus>

Firstly, let us solve the first term on the right hand side of equation (B6). We can rewrite it as.

Scxp(-rt) jr exp(x)f(x) dx = Sexp(-rr) f" ( l/<r/2ir)exp(-((x-p)2 + 2<rx))/2<r dx. (B7)hUOSl M(IUM

where p is the mean of x, and a2 is the instantaneous variance of x also given by cr = ( I/t)V(t). Let the 

exponent within the integral be y. Then, by expanding it we obtain

y * - (xs - 2(p+cr)x + p2). ■ (B8)

By completing the square we obtain

y = - «x2 - 2(p+<r)x + (p+o3)2 - (p+cr)2 + p2), (IS>)

which becomes

y = (2p<r + o4) - (x - (p + <r))2. (BKH

Dividing (BIO) by 2o \ we obtain

y/202 = exp(p+crJ/2) + (1 ̂ cr'Xx - (p + o2))2- (Bl I)

Substituting (Bl 1) in (B7) we obtain

Scxp(-rT+p+o2/2) J'(l/oV2ir)exp(-(l/2)(((x-(p+cr))2/a)2)dx. (BI3
■ ta(K/5>

Secondly, we write the normal density function of x in the second term on die right hand side of (B7) 

Equation (B6) can now be rewritten as



C(SJC.r,T,V(T)) = Scxp(-rt+n-Kr/2)^(l/cW2rt)exp(-(I/2)(((x-(n+CT2))!/o)J)

- Kexp(-rt) J“ (l/cr\/2ji)exp(-(I/2cr!)(x-u)!) dx.WK/Sl

Let 7.  =  (ln(x) - p)/a, and w =  (ln(K/S) - p)/o. Tlien, equation (B13) becomes 

C(S.K.r,T,V(t)) = Scxp(-n+p+cr/2) (!/2Vtt)exp(-(z-a)2/2) dz

- Kcxp(-rt) (l/2Vjc)cxp(-z2/2) dz,

wiiich becomes

C(S,K,r,T,V(T)) = Scxp(-rr+p-wr/2) L "  (l/2Vjt)exp(-(z-a):/2) d/.

- Kcxp(-rt) J_"* (l/2Vit)cxp(-z2/2) dz, 

which simplifies to

C(S.K,r,T,V(t)) = Scxp(-rr+p+<r/2) (l/2Vn)cxp(-z2/2) dz

- Kexp(-rc) L 'w (l/2V;c)exp(-zJ/2) dz.

We can now rewrite (B16) as

C(S,K,r,T,V(x)) = Sexp(-n+p+o2/7>t>(-w+o) - cxp(-n)K<b(-w), 

where, w = (ln(K/S) - p)/a and <1>(.) is a standard normal distribution.
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Since we have risk neutrality1*

exjKn+o2# )  = exp(n), (BB?

which means thal

ji, + 0,72 = rx. (Bty

Since the stock price follows a stationary random walk and we are considering a one period change in the 

stock price, wc have

er = V(t), IP3&

where V(t) is the volatility polynomial in equation (19), which implies Utat

H = r t  - V(t)/2. (121)

Substituting equation (B21) in the expression for w, and then in equation (BIS) we obtain

C(S,K.r/t,V(T)) = Sd>(d,) - Kexp(-n)<l>(d2), <B22)

where,

d, = - w + VV(t)

= (ln(S/K) + r t + ( 1/2)V(t)W v (t), <BS)

and

d2 -  d ,- V v ( x ) .

This gives us the option pricing model with limc-varyiog volatility. Substituting o^r Tor V(t) in equation 

. (B23) yields the standard Black and Scholcs model.

Sec Cox and Ross 0976).
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B.2 SOLUTION FOR OPTION MODEL USING CAMERON-M ARTIN-GIRS ANO V THEOREM

Wecould also solve for Uie option model with lime-varying volatility using the Camertm-Martin- 

Girsanov Theorem (see Oksendal (1985). pages 115-119). The theorem characterises the behaviour of 

semimartingales under a change of probability measure. The theorem transforms the stochastic diffusion 

equation with a drift to one without a drift. In option pricing the theorem has been employed by Harrison 

and Krcps (1979), Duffie (1988b). and Cheng (1991).

Consider a security price whose diffusion is represented by the stochastic differential equation 

with a drift

where \V(1) is a Gauss-Wiener process, and also consider a riskless bond whose stochastic equation is

The security price. S, is a scmimartingalc relative to sonic probability space (£1,|1:,],P). Now, let

dS/S = |idl + cdW(t) <KJ0

dB = rBdt. <K5)

a(l,T) = -p/O, am

and a Gauss-Wiener process.

W'(t) = W(t) - I„'ct(s,T)ds, 0 £ t < T, (JS)

where T is the maturity time of die bond.

From equation (B27) we have

ot(t,T) = dW(t)/dt - dW*(t,T)/dt. am
Equaling (B26) to (B28) we obtain

dW(l) = dW‘(l,T) - (p/c)dt. am
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Substituting (B29) in (B24) we obtain a stochastic differential equation 

dS/S = <jdW*(t,T).

. Equation (B30) now has no drift parameter, p. We have thus transformed equation (B24) with a drift to 

equation (B30) without a drift. But for (B30) to bold the following conditions should be satisfied (see 

Harrison and Kreps (1979), pages 396-398):

J/aCt.Tfdt < ~  a.s„ (TOO

that is. a(t,T) must be square intcgrnblc.Thc Radon-Nikodym derivative which defines change of measure 

must be defined. The Radon-Nikodym derivative is given by

p(T) = exp(JBTa(t,T) dW(l) - (l/2)J#Ta(t.T)3 dt, (BO

and E(p(T)3) < ■», and E(p(T)) = 1. Also p(T) = dQ/dP where both Q and P arc defined on | F, | . 'Iltcse 

conditions are sufficient for the application of the Cameron-Martin-Girsanov Theorem.

Hence,

E(Sp(T)) = E°(S), (BO

where E? is the expectation with respect to the new measure Q. At expiration the option price is given 

by C(SX) = (S(T) - K)*, otherwise it is

C(SJC,r,T,V(T)) = E?(exp(-rt)(S - K)*), (BO

where S is obtained from equation (B30). Equation (B34) reveals that the option price is a martingale with 

respect to the new measure Q. This is consistent with Harrison and Kreps’ pricing of securities by the no­

arbitrage argument. By substituting for S, given by equation (B30), in (B34), and solving the expectation 

yields the option model with time-varying volatility, which is given by

C(S JCj.t.V(x)) -  Sd>(d,) - Kexp(-rt)<l>(dj), <PQ

where.



d, = (ln(S/K) + rr + ( l/ 2 ) V ( t ) W v ( T ) .

d2-d ,-V v (T ).

This completes (lie derivation of the model.

Also, refer to Cheng (1991) who checks the suitability of various stochastic processes of bond 

prices for the pricing of options by whether they satisfy the Camcran-Martin-Girsanov Theorem. Site 

considers Brownian motion, Ornstcin-Uhlcubcck process. Brownian Bridge process and Exponential 

Brownian Bridge process.

APPENDIX C

N U M ER IC A L  APPRO X IM AT IO N  O F A STANDARD N O RM AL 
D IST R IBU T IO N

To approximate a Standard Normal Distribution, *t>(d), for die random variable, d, numerically. 

we use the polynomial

<b(d)« 1 - lg(d)y(e» + ot,y + <*#' + + «dr4)l + (Cl)

where.

d > 0 ,

g(d)»(l/V2*)cxp(.<iV2). 

y =  1/(1 +  pd), 

p = + 0.2316419, 

oto *  + 0319381530. 

a, =  - 0356563782,

Gj = + 1.781477937,



(X, = - 1.821255978, 

a 4 = + 1.330274429,

and £, is an error term. From this numerical approximation procedure, (lie value of die error is less Ilian 

7.5 x 10"*. For the case where, d < 0, set <I>(d) = I - <h(-d).
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