DEVELOPMENT STUDIES RESEARCH GROUP

Working Papers no 9

THE DISTRIBUTION OF PERSONAL INCOME AMONG INCOME RECIPIENTS IN SOUTH AFRICA, 1970 AND 1976.

C.E.W. Simkins

DSRG Working Paper No. 9.

University of Natal Pietermaritzburg Department of Economics

ACE PMB

Development Studies Research Group

THE DISTRIBUTION OF PERSONAL INCOME AMONG INCOME RECIPIENTS IN SOUTH AFRICA, 1970 AND 1976.

C.E.W. Simkins

DSRG Working Paper No. 9.

Pietermaritzburg September 1979 The distribution of personal income among income recipients in South Africa, 1970 and 1976.

Introduction

For more than 50 years South African scholars have been making estimates of the share of total income (variously defined) received by the race groups into which the South African population is divided. A summary of the results of this work has recently been provided by McGrath. There has been very little by way of attempts to take the analysis of South African income distribution beyond this point; a major obstacle has been the lack of information about how income is distributed among Africans. In particular there exist no satisfactory estimates of Lorenz curves or Gini coefficients for the distribution of income among either income recipients or households. Adelman and Morris report a Gini coefficient of 0,58 for the distribution of income among 'population' in 1965; how unsatisfactory their estimate is can be seen from their assumption that 'all rural income (is) assumed to be distributed as in the Cape Peninsula.'2 It is the primary aim of this paper to present a method of arriving at a Lorenz curve and Gini coefficient for the distribution of income among all South African³ income recipients and to present the Lorenz curves and Gini coefficients for 1970 and 1976. There will also be brief discussions of the international context of the results of the decomposition of total inequality and of the distribution of income among Africans.

One needs to make clear in an exercise of this type which income concept one is using. Here personal income (as defined in the national accounts) with two exclusions is used. Personal income consists of four components:

- 1. <u>Remuneration of employees</u> which consists of salaries and wages, employers' contributions to staff funds, payments in kind such as a food, clothing and quarters as well as employers' contributions to social security funds.'
- 2. <u>Income from property by households</u> which consists of 'interest, dividends and rent receipts (net) by households and profits of non-corporate enterprise'
- 3. Current transfers received from general government.
- 4. Transfers from the rest of the world.

Item 4 is excluded from consideration here as well as imputed rent (part of item 2). Both exclusions are on the grounds that they are not included by the sources of information on income distribution.

Method of estimating the overall distribution of income

The fundamental <u>strategy</u> is to build up an overall distribution of income from a series of uniracial unisectoral distributions. Given four races (Whites, Coloureds, Asians and Africans) and ten sectors (I-Agriculture, II-Mining, III-Manufacturing, IV-Electricity etc., V-Construction, VI-Commerce, VII-Transport etc., VIII-Finance, IX-Services, O-Income Recipients not in Employment) one starts with 40 (41, in fact, as African agriculture is subdivided into subsistence and commercial) distributions. One then aggregates across sectors to arrive at 4 racial distributions which are in turn aggregated into an overall distribution. Formally, if $f_{ij}(x)$ x>0 are the density functions for race i and sector j and h_{ij} are the numbers of recipients of race i and sector j, the racial density functions $f_i(x)$ are given by

$$f_{i}(x) = \sum_{j} \frac{n_{ij} f_{ij}(x)}{\sum_{j} n_{ij}}$$

and the overall density function by

$$f(x) = \sum_{\substack{i \ j \\ \sum \sum n_{i,j}}} f_{i,j}(x)$$

When it comes to estimation, the fundamental <u>assumption</u> is that the individual f_{i} .(x) have constant <u>shape</u> over the period under consideration (1970 to 1976). This assumption is necessitated by the fact that only one observation of each $f_{ij}(x)$ is available during the 1970s. The assumption does not imply that the density functions remain constant because specific allowance will be made for their <u>location</u> to change. But it does mean that all relative inequality measures are assumed constant for each race-sector element. How serious a limitation is this if we are trying to assess changes in overall inequality?

Many relative inequality measures are <u>decomposable</u> i.e. there exists a simple relationship between the measure for the population as a whole and the measures for a set of groups forming a mutually exclusive and collectively exhaustive partition of the whole population. One such measure is the Theil-measure of inequality where the relation

$$T = \sum_{j=1}^{K} S_j T_j + T_B$$

holds, T being the Theil coefficient for the population as a whole, $S_{oldsymbol{j}}$ being the

share of group j in total income, T_j being the Theil coefficient for group j and T_B is the 'between-group' component of inequality - to calculate this, calculate the Theil measure on the assumption that everyone within a group receives that group's mean income. We are assuming that the T_j are constant, eliminating one source of variation in T, but there is nothing in our method which prevents S_j or T_B from varying i.e. two sources out of three can contribute to variations in T.

Initial estimates of the $f_{i,j}(x)$ are made as follows:

- (a) Whites, Coloureds and Asians: Tabulations of the distribution of personal income by race and industry are provided in the Personal Income Report of the 1970 Population Census. They are of the standard form: n_1 people have incomes in the interval $(0, x_1| , n_2$ in $(x_1, x_2|$ etc. A distribution function can be built up from this information to have the exact observed values $0, F_1, F_2$ at $0, x_1, x_2$... etc., while other values of F are supplied using cubic spline function interpolation. The distribution function is differentiable; differentiation yields a density function on the basis of which inequality measures can be calculated. 5
- (b) Africans: No comprehensive tabulations of the distribution of personal income are available. Tabulations with the best joint coverage appear in 10 reports of income and expenditure surveys carried out in urban areas in 1975 by the Bureau of Market Research. These cover African areas in Bloemfontein, Pretoria, Johannesburg, East London, Durban Port Elizabeth Uitenhage, Umtata, Pietermaritzburg, Cape Town and the East and West Rand. Multiple and single households are covered in each case save that of the East and West Rand where only multiple households are covered. In each of the 19 cases, the sample size and the size of the universe sampled are given. In addition one is given the following information:
- the number of people receiving income in each sector and the average income received
- a distribution of income in the standard form for all income receivers.

The 19 samples were amalgamated using the reciprocal of the sampling percentages as weights, multiplied by a factor to ensure the amalgamated sample size was equal to the sum of the original sample sizes. The problem then becomes that of:

- (i) assessing the extent of coverage in each sector
- (ii) assigning variances to sectoral distributions of income. The information is summarized in Table 1.

Table 1 - BMR information on the distribution of income among African income receivers, 1975.

(a) Sectoral information

Sector	Number in amalgamated sample	Mean income	Degree of sectoral coverage (%)
I	5	1631	-
ΙΙ	84	1259	3
III	1417	1218	38
IV	12	1715	11
V	410	1042	24
VI	1328	944	77
VII	399	1215	56
VIII	98	1072	39
IX	2646	7 94	31
0	360	265	-

Note: The degree of sectoral coverage was found by raising the amalgamated sample to the size of the universes sampled and comparing income recipients with total employment (found from other sources) in sectors II-IX. The figures therefore express how well employment in each sector is represented in the areas sampled.

(b) Distributional information

Income class	Number
0-249	370
250-499	691
500-749	1119
750-999	939
1000-1249	966
1250-1499	811
1500-1749	592
1750-1999	379
2000-2249	273
2250-2499	197
2500-2999	201
3000-3999	131
400C-4999	45
5000+	51

Sectoral coverage varies widely from fair to abysmal; the latter sectors will require estimates of variance from other sources.

We now proceed as follows. There are 13 degrees of freedom in the income distribution; we have to estimate parameters for 10 density functions. The sectoral means enable us to estimate one parameter each; the distribution enables us to estimate one other each. So we are obliged to consider the class of two parameter density functions as candidate forms for the sectoral distributions. The log-normal form has the best credentials and is therefore selected. The African density function then has the form

$$f_{A}(x) = \int_{\hat{J}}^{\Sigma} \frac{\frac{1}{4j} \frac{1}{\sqrt{2\pi} \sigma_{j} x} e^{-\frac{1}{2\sigma_{j}^{2}} (\ln x - \mu_{j})^{2}}{\int_{\hat{J}}^{\Sigma} n_{4j}} \dots (1)$$

If we denote the sectoral means by \bar{x}_j , the relation

$$\bar{x}_{j} = e^{\mu_{j} + \frac{1}{2}\sigma_{j}^{2}} \qquad (2)$$

also holds. This equation can be used to eliminate u_j from equation (1). $f_4(x)$ then depends only on the σ_j . For any set of σ_j the integrals $f_4(x')$ dx' $f_4(x')$ dx'

can be calculated, the x_k (k=0, 1, ..., 14) referring to the class boundaries

of the overall income distribution. Denote $\binom{\Sigma}{j}$ $\binom{n}{4}$ j $\binom{x_{k+1}}{x_k}$ f_4 (x^1) dx^1

by E_k , the expected frequencies in each class and denote the observed frequencies by 0_{ν} . Then, as always

$$\chi^2 = \frac{\Sigma (0_k - E_k)^2}{E_k}$$

 χ^2 is, of course, a function of the σ_j ; the set of σ_j minimising χ^2 is selected (maximising 'goodness of fit'). A computer minimisation algorithm was used to find the set of σ_j . The μ_j are then calculated from (2) and parameter estimation is complete. In fact the σ_j obtained by this method for sectors I (agriculture), II (mining), IV (electricity etc.) and 0 were too unreliable to be used because of inadequate coverage of these sectors in the sample.

Accordingly lognormal density functions were fitted to the Coloured sectoral distributions and their σ_j 's estimated. For the six sectors where the minimum χ^2 method yielded acceptable σ_j 's it was found that these (for Africans) were on average 0,635 those for Coloureds, so this fraction was applied to the four remaining Coloured σ_j 's to get African estimates. The question remains of what to do about subsistence agriculture – here the finding that rural incomes in Botswana were roughly lognormally distributed with a Gini coefficient of 0,52 6 was used, the South African distribution being assumed the same.

How do the locations of the $f_{ij}(x)$ change while the shapes remain constant? Associated with each original $f_{ij}(x)$ is a mean \bar{x}_{ij}^0 . As time passes, the \bar{x}_{ij} change. In the case of cubic spline distribution functions the way to accommodate this is as follows.

Let
$$k_{ij} = \frac{\bar{x}_{ij}}{\bar{x}_{ij}^0}$$
. Then let the class limits in the (i,j)-th case each be multiplied

by k_{ij} . The values of the distribution function at the original class limits are now assumed to hold at the revised class limits. Should a cubic spline function now be fitted to the revised data, the associated density function will have the same shape (with identical relative inequality measures) with the new mean.

In the case of the lognormal density functions one simply lets σ_j (the shape parameter) remain constant and alters μ_j (the location parameter) in accordance with equation (2) above.

It remains, then, to generate tables of n_{ij} and \bar{x}_{ij} for the 41 elementary distributions in 1970 and 1976. Details of how this is done are provided in Appendix I. Table 2 presents the results.

Results:

From the information in Table 2, racial shares in personal income can be calculated and are found to be as follows:

	<u>Whites</u>	Coloureds	Asians	<u>Africans</u>
i 970	71,7	(perc 6,2	ent) 2,3	19,8
1976	65 , 7	6 . 4	2,7	25,1

The 1970 figures are very close to those reported by McGrath. 7 The drop in the white share has been reported by Nattrass. 8 So our methods yield results which agree with those of other researchers in the field.

Table 2 - Numbers of recipients and average income received by each race in each sector

1920 and 1926 (\bar{x} .. in Rand/year)

			ī 970				19	70 and	l 1976 (\bar{x}_{ij} in Ra	and/year)	1976				
	Whit	es	Coloureds		Asians		Africans		White	es :	Coloured	S	Asians		Africans	;
Sector	r n _{ij}	Χīj	n ₂ j	x ₂ j	n ₃ j	×ءَ	n ₄ j	х̄ _ч ј	n ₁ j	x _{1j}	n ₂ j	ײ j	n ₃ j	×̄₃ j	n ₄ j	×,j
IA	100429	5361	220207	233	7810	1995	1322440	115	98161	12455	179612	621	6788	5174	988189	304
IB	-	-	-	-	-	-	406400	133	-	-	-	-	-	-	406400	292
ΙΙ	75749	5657	6786	922	622	1183	599688	245	88583	10184	7371	2183	1094	3406	606984	1089
III	254327	4896	183062	974	64334	1045	567198	709	276900	9227	205700	2093	72900	2494	717900	1696
IV	7959	4849	642	999	2	517	13878	666	13000	8963	1300	2221	-	-	2300	1674
٧	50213	5048	48718	1427	5766	1816	213117	658	60500	8699	52900	2844	5800	3895	327700	1471
VI	285896	3517	75498	954	43541	1675	316319	672	323925	6421	96020	1940	49487	3227	371447	1391
VII	161641	4825	30838	1088	5650	1067	150387	696	171189	9169	28008	1876	8885	2997	191978	1627
VIII	133795	4507	6808	1263	2817	2091	35264	887	158118	8000	12905	2755	9932	3763	49064	2123
IX	290243	3862	169264	705	23296	1058	1188512	441	351506	6905	207099	1469	28234	2735	1414846	1030
0	299549	1712	87705	259	20242	384	384427	58	316294	3420	93509	582	24095	862	373100	140
otals	1659801		829528		174080		51 97 630		1858176		884424		207215		5449908	

Once the aggregate density function is known, points on the Lorenz curve can be calculated as

 $(\int_0^x f(x)dx, \int_0^x \frac{xf(x)dx}{\bar{x}})$

Table 3 sets out points on the Lorenz curve for 1970 and 1976. Table 3 - Lorenz curve points - 1970 and 1976.

1976 1970

Income	Prop	ortion of	people	Proportion of income	Proportion of	Proportion of
(x)	with	n income 1	ess than x	accruing to these	people with in-	income accru-
				people	come less than x	ing to these
						people
100 150 200 250 300		0,2385 0,2904 0,3238 0,3951 0,4208		0,0119 0,0176 0,0230 0,0374 0,0437	0,0128 0,0588 0,1039 0,2149	0,0005 0,0025 0,0063
400 500 600 700		0,5478 0,5835 0,6570 0,7411		0,0840 0,0980 0,1349 0,1839	0,2402 0,2587 0,2771	0,0214 0,0249 0,0293
800 1000 1200 1400		0,7645 0,7892 0,8048 0,8172		0,1993 0,2193 0,2346 0,2492	0,4145 0,5096 0,5758 0,6341	0,0704 0,1062 0,1369 0,1691
1600 2000 2500 3000 3500 4000 4500		0,8292 0,8511 0,8720 0,8899 0,9058 0,9187 0,9312		0,2654 0,3008 0,3431 0,3874 0,4338 0,4775 0,5254	0,7251 0,7690 0,7947 0,8139 0,8318 0,8470 0,8592	0,2268 0,2582 0,2832 0,3053 0,3299 0,3541 0,3759
5000 6000 7000 8000 10000 15000 20000		0,9428 0,9606 0,9725 0,9804 0,9894 0,9962 0,9981		0,5750 0,6625 0,7321 0,7856 0,8575 0,9286 0,9593	0,8691 0,8901 0,9070 0,9218 0,9475 0,9796 0,9906	0,3973 0,4443 0,4908 0,5376 0,6350 0,7984 0,8784
30000		Group		Share	0,9964	0,9358
	Bottom Next Next Top	40% 20% 20% 20%	1970 3,85% 6,71% 12,41% 77,03%	1976 6,57% 8,39% 13,93% 71,11%		

These Lorenz curves are plotted on Figure 1. The Gini coefficients for 1970 and 1976 are 0,71 and 0,65 respectively. By international standards these values are extremely high ~ in the list of income distributions among households and persons for 56 countries presented by Paukert ⁹ there is no Gini coefficient as high as 0,71 (or 0,65, for that matter, though some countries come close to this latter figure). Without all the evidence being in, we may safely say that South Africa is at or near the head of the world inequality league. The decline between 1970 and 1976 is substantial, however, and we shall look at it in more detail shortly.

The overall distribution of income can be divided into quintiles and the racial composition of each quintile examined. The results of this exercise are presented below:

				Percent	of grou	p	
Group		1970	White 1976	<u>Coloured</u> 1970	/Asian 1976	Afri 1970	can 1976
Bottom	1 60%	3	4	11	11	86	85
Next	20%	9	12	17	18	74	70
Top	20%	86	86	13	13	1	1

Very little has changed in the bottom three and top quintiles. In the quintile next to the top, Africans were less heavily represented in 1976 than in 1970. The difference in the racial composition between the top quintile and the other four is, of course, extreme.

If inequality is measured by a decomposable index, the relative importance of various components of inequality can be assessed. The Gini coefficient is not decomposable (or not readily so); a decomposable measure often used is the Theil coefficient whose decomposition has already been discussed. Table 4 presents elementary (race-sector) Theil coefficients, racial Theil coefficients and the overall Theil coefficient for 1970 and 1976.

Two observations are particularly worth making:

(a) The 'between-sector' contributions to the racial Theil coefficients are small in the case of Whites and Asians and, to a lesser extent, Coloureds, relative to the 'within-sector' contributions as one would expect if labour markets are in rough inter-sectoral equilibrium. The position is reversed in the case of Africans where the 'between-sector' component dominates. This suggests lack of equilibrium

Figure 1 - Lorenz Curves - Distribution of Personal Income 1970 and 1976

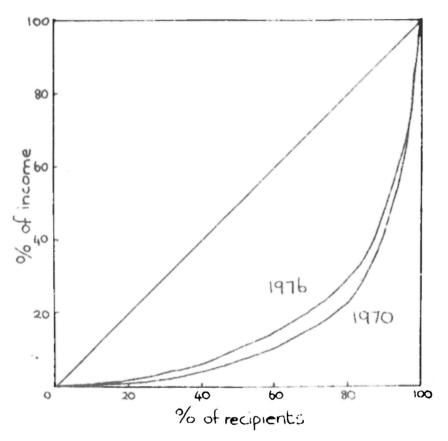
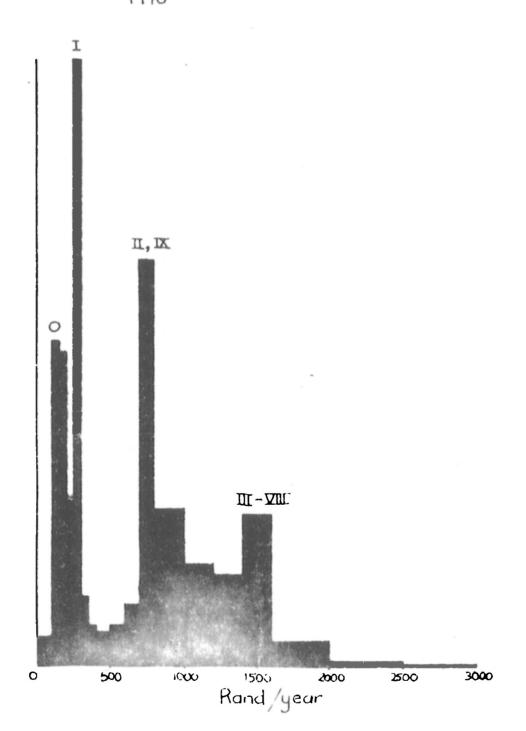


Table 4 - Race - sector, racial and overall Theil coefficients - 1970 and 1976

					197	0					1976					
	White	es.	Colou	ireds	Asia	ns	Afri	cans	White	S	Colou	ireds	Asian	ıs	Afric	ans
Sector		S _{1j}	T ₂ j	S ₂ j	T ₃ J	S ₃ j	T ₄ j	S ₄ j	T ₁ j	S ₁ j	T ₂ j	S _{2j}	T _{3j}	S ₃ j	T ₄ j	S ₄ j
IA	0,529	0,0825	0,428	0,0913	0,554	0,0737	0,169	0,0845	0,529	0,0889	0,428	0,0830	0,554	0,0622	0,169	0,0571
IB	-	-	-	-	_	_	0,499	0,0300	-	-	-	-	-	-	0,499	0,0226
ΙΙ	0,134	0,0657	0,441	0,0111	0,183	0,0035	0,173	0,0816	0,134	0,0656	0,441	0,0120	0,183	0,0066	0,173	0,1257
III	0,231	0,1908	0,223	0,3171	0,275	0,3182	0,098	0,2235	0,231	0,1859	0,223	0,3202	0,275	0,3218	0,098	0,2315
IV	0,129	0,0059	0,182	0,0011	=	=	0,099	0,0051	0,129	0,0085	0,182	0,0021	-	-	0,099	0,0073
V	0,233	0,0388	0,303	0,1236	0,236	0,0496	0,142	0,0779	0,233	0,0383	0,303	0,1119	0,236	0,0400	0,142	0,0916
VI	0,340	0,1541	0,308	0,1281	0,388	0,3452	0,178	0,1181	0,340	0,1513	0,308	0,1386	0,388	0,2827	0,178	0,0982
VII	0,185	0,1195	0,192	0,0597	0,453	0,0285	0,099	0,0582	0,185	0,1142	0,192	0,0391	0,453	0,0471	0,099	0,0594
VIII	0,402	0,0924	0,245	0,0153	0,378	0,0279	0,134	0,0174	0,402	0,0920	0,245	0,0264	0,378	0,0662	0,134	0,0198
IX	0,297	0,1718	0,593	0,2122	0,383	0,1167	0,268	0,2912	0,297	0,1766	0,593	0,2262	0,383	0,1367	0,268	0,2769
0	0,623	0,0786	0,397	0,0404	0,596	0,0368	0,160	0,0124	0,623	0,0787	0,397	0,0405	0,596	0,0368	0,160	0,0100
ΣS _{ij} T _{ij}	0,318		0,349		0,365		0,186		0,320		0,353		0,364		0,181	
TB	0,052		0,166		0,072		0,249		0,054		0,114		0,057		0,192	
T _i	0,370		0,515		0,437		0,435		0,374		0,467	3	0,421		0,373	
Si	0,7173		0,0618		0,0232		0,1977		0,6572		0,0643		0,0270		0,2515	
				$\Sigma S_i T_i$	0,393						$\Sigma S_i T_i$	0,38	i i			
				T _B	0,607	_					ТВ	0,44	8			
				T	1,000						T	0,82	9			

between sectors in the African labour market; for readers familiar with administrative 'labour canalisation' practices in respect of Africans this will come as no surprise.

(b) Comparing the Σ S_{ij} T_{ij} , T_{iB} , Σ S_{i} T_{i} and T_{B} terms for 1970 and 1976 we may note that there has been a reduction in Theil inequality between sectors for Coloureds, Asians and Africans over the period 1970-1976 leading to a reduction in the Theil coefficients for these races. Shares of income have also changed, and there is not much of a change in the 'within race' component of overall Theil inequality. The 'between race' component has dropped quite sharply leading to a drop in the overall Theil coefficient paralleling the drop in the Gini coefficient.


In view of the special conditions among Africans, it is worth taking a particular look at the African income distribution. A histogram for 1976 appears as Figure 2 calculated from the density function equation (1). Distributions of income most commonly are unimodal; our histogram, however, has four peaks. Next to the peaks are entered the sectors with which they are associated. The first peak is associated with transfer incomes, the next with agriculture, the third with mining and services (of which domestic service is an important part) and the last with manufacturing, electricity etc., construction, commerce, transport, etc., and finance. The separation between the peaks arises from the restriction of access to the more desirable sectors.

A glance at Figure 2 also shows how ambiguous are the currently modish 'strategies' of narrowing the wage-gap (in sector III-VIII) between whites and blacks (few whites work in agriculture, mining and domestic service and those that do - in mining - are not going to see differentials much reduced without a fight) and of improving the urban environment. These, if implemented, will move the right hand tail of the distribution further to the right and so tend to increase inequality among Africans (although between-race inequality would drop). Serious consideration of programmes to improve the situation of people in the left-hand part of the distribution would be much more to the point.

Summary of results

(a) Up to now, studies of the South African distribution of income have stopped with the calculation of racial shares of total income. By building up an overall distribution from distributions associated with each race, it is possible, however, to draw a Lorenz curve and calculate a Gini coefficient for the distribution of personal income between income recipients.

Figure 2 - Distribution of income among Africans 1976

- (b) The Gini coefficient was found to be 0,71 in 1970 and 0,65 in 1976. Coefficients greater than these are not reported for any country in a quite comprehensive list published by the International Labour Organisation in 1973.
- (c) While 85% of the bottom 60% of income earners were African, only 1% of the top 20% were African in 1976. 86% of the top 20% in 1976 were White.
- (d) The decrease of Theil-inequality between 1970 and 1976 is mainly attributable to a decrease in inequality between races. Inequality among Coloureds, Asians and Africans also fell over the period.
- (e) The African distribution of income has a peculiar 4-peaked shape reflecting the state of administratively imposed disequilibrium in the African labour market.

NOTES:

- 1. See M.D. McGrath, Racial Income Distribution in South Africa, Black/White Income Gap Project Interim Research Report No. 2. Department of Economics, University of Natal, Durban, 1977, especially Tables 1 and 2.
- 2. I. Adelman and C.T. Morris. Economic Growth and Social Equity in Developing Countries, Stanford University Press, California, 1973, p. 247.
- 3. Throughout this paper South Africa refers to the territory contemplated in the Act of Union, i.e. Transkei and Bophuthatswana and all other 'homelands' are included.
- 4. See, for instance, F.A. Cowell, Measuring Inequality, Philip Allan, Oxford, 1977, p. 166. Given a density function f(x), x>0 the Theil coefficient is defined as $\int_0^\infty \frac{x}{\bar{x}} \log(\frac{x}{\bar{x}}) f(x) dx$ (Cowell, p.154)
- 5. For a fuller discussion of the cubic spline function see my 'Income Distribution Among Settled Urban African Households in South Africa: 1970 and 1975', DSRG Working Paper no. 6, Pietermaritzburg, 1978, p.4. and Appendix I.
- 6. See Republic of Botswana <u>Rural Income Survey 1974/75</u>, Gaborone, Government Printer, T976.
- McGrath, op. cit., Table 6.
- 8. See J. Nattrass, The narrowing of Wage Differentials in South Africa, South African Journal of Economics, vol. 45 no.4, 1977, p. 431, Nattrass's income concept is 'personal income excluding income in kind' which is different from ours. It is open to question whether she has in fact measured what she purported to measure; however, a change of similar extent to ours between 1970 and 1975 shows up.
- 9. See F. Paukert, Income Distribution at Different Levels of Development; A Survey of Evidence, International Labour Review, vol. 108 nos. 2/3, August/September 1973, pp. 97-125.

Appendix I

Generation of Table 2 - Numbers of recipients and average income received by each race in each sector 1970 and 1976

1. Personal income as defined for the purposes of this study can be divided into two main parts:

		1970	1976
		((R mill)
Α.	Remuneration of employees	6990	16374
В.	Property and transfer income		
	Household property income	2027	4271
	Current transfers from government	293	805
	<u>Less</u> imputed rent	208	533
		2112	4543
тот	AL	9102	20917

<u>Source</u>: RSA, <u>South African Statistics 1978</u>, p. 21.9 and 21.17. Note that the two estimates of remuneration of employees on these pages are unreconciled. I have used the p.21.9 estimates.

The end result of our calculations must be that $\sum\limits_{i}\sum\limits_{j}n_{ij}$ equals these totals

- 2. Remuneration of employees is broken down by sector but not by race. To get the race-sector breakdown we must turn to the (incomplete) employment, salaries and wages series (S.A. Statistics 1978, pp. 7.6 and 7.7). These statistics are incomplete in two senses
- they do not cover all employment
- they do not cover all components of remuneration.

For the sectors they do cover fully they are nonetheless used as a basis for our calculations.

Procedures for each sector are detailed below:

IA. <u>Wage employment in agriculture</u>. Numbers and average earnings (in cash and kind) for regular and casual employers were taken from the Agricultural Censuses. 1970 figures are the means of those found in the 1969 and 1971 Censuses; 1976 figures were taken from the Statistical News Release announcing the preliminary results of the 1976 Agricultural Census. Average wages were multiplied by a factor to bring total remuneration up to the national accounts total.

IB <u>Incomes of Whites</u>, <u>Coloureds and Asian farmers</u>. Information on the numbers of White, Coloured and Asian farmers is to be found in the 1969 and 1971 Agricultural Censuses. 70% of the gross operating profit in agriculture was assumed to accrue as income to these farmers. In the absence of further information average incomes for the three races were assumed equal. The numbers of farmers of each race were assumed to be the same in 1976 as in 1970. These incomes are property incomes.

IC <u>Subsistence</u> agriculture. It was assumed that the average income in subsistence agriculture in 1970 was the same as that in African regular agricultural employment. The total value of subsistence production was taken from BENBO, <u>Black Development</u>, Pretoria, 1976 and the number of recipients found by division. For 1976 it was assumed that the number of recipients was the same as in 1970, and that the real value of subsistence production was the same in 1976 as it had been in 1973. These incomes are also property incomes.

- II. <u>Mining</u>. Numbers of recipients and average incomes were taken from RSA, <u>Mining Statistics</u>, 1970 and 1976. Average incomes were multiplied by a factor to bring total remuneration up to the national accounts level.
- III. <u>Manufacturing</u>. Numbers of recipients and average incomes were taken from <u>S.A. Statistics 1978</u>. Average incomes were multiplied by a factor to bring total remuneration up to the national accounts level.
- IV. <u>Electricity</u>, etc. Numbers of recipients and average incomes were taken from <u>S.A. Statistics 1978</u>. As many of the employees in this sector are counted by <u>S.A. Statistics under IXA</u> Government employment, total incomes under IV and IX A are amalgamated and a factor calculated which will bring the total up to the national accounts level for both sectors.

V. <u>Construction</u>. As III.

VIA. <u>Commerce - Working Proprietors</u>. The numbers of working proprietors in 1970 was taken from the 1971 <u>Census of wholesale and retail trade</u>. Gross operating profit (after provision for depreciation) was allocated between small and large establishments in sector VI. That accruing to small firms was treated as income for working proprietors. It was assumed that the numbers of working proprietors were the same in 1976 as in 1970. These incomes are property incomes.

- VIB. <u>Commerce Employees</u>. Numbers of recipients and average incomes were taken from <u>S.A. Statistics 1978</u> with an adjustment to numbers made to compensate for incomplete coverage of the accommodation subsector. Average wages were multiplied by a factor to bring total remuneration up to the national accounts level.
- VII.A. Transport private sector. Numbers of employees and total remuneration were taken from the Census of Transport and Allied Workers 1970. In arriving at average racial wage rates it was assumed that these bore the same relation to one another as did their public sector counterparts. 1976 figures were found by assuming that the ratio of private to public sector employment and average earnings had remained constant since 1970.
- VII.B. <u>Transport public sector</u>. Numbers of employees and average incomes were taken from <u>S.A. Statistics 1978</u>. Average incomes in sectors VIIA and VIIB were multiplied by the same factor to bring total remuneration for transport up to the national accounts level.
- VIII. $\underline{\text{Finance}}$. As for VIB replacing 'accommodation' by 'real estate and business services.'
- IXA. Government service. See IV.
- IXB. Private sector services other than domestic. The 1970 employment figures were derived from the 1970 Population Census. Total remuneration (from the national accounts) was allocated so that average racial incomes bore the same relation to each other as their public sector counterparts. 1976 employment figures were found by techniques discussed in Chapter IV of 'Urban and Rural Unemployment in South Africa' in (ed) C.Simkins and C.Desmond, South African Unemployment:

 A Black Picture, DSRG/AIM, 1978. Average racial incomes were calculated in the same wayas for 1970.
- IXC. <u>Domestic servants</u>. The employment figures were derived in the same way as those for sector IXB. Average racial incomes were assumed indentical.
- 0. <u>Income recipients not in employment</u>. The means from the 1970 Personal Income report (which referred to the period 1.4.69 30.3.70) were inflated to convert them to calendar 1970 figures. The number and average incomes for Africans was

obtained from the Social Security section of <u>S.A. Statistics 1978</u>. Total income in this sector was assumed to have risen in proportion to total income from property and transfers between 1970 and 1976; recipients were assumed to have risen in proportion to total income recipients. The average racial incomes were assumed to bear the same relation to each other in 1976 as in 1970. These are property and transfer incomes.

All remuneration of employees is now accounted for. Some of the property and transfer income is also accounted for (in sectors IB, IC, VIA and 0). The proportion of property and transfer income thus found is 56% in both 1970 and 1976. The remainder is assumed to accrue to Whites in sectors II-V and VIB-IXB. Average incomes in these sectors are inflated by a constant factor to reflect this.

DEVELOPMENT STUDIES RESEARCH GROUP

Publications, Papers and Proceedings

BOOKS

- 1. CHARLES SIMKINS AND DUNCAN CLARKE, Structural Unemployment in Southern Africa, Natal University Press, 1978. Price: R3,75 (Order from the Press at P.O. Box 375, Pietermaritzburg, 3200).
- 2. CHARLES AND COSMAS DESMOND (eds.), South African Unemployment: A Black Picture, Development Studies Research Group and Agency for Industrial Mission, 1978. Price:R3.

WOR	KING PAPERS	COST	
1.	D.G. CLARKE	Foreign African Labour Supply in South Africa, 1960-1977. 62p. April 1977	2,00
2.	D.G. CLARKE	The South African Chamber of Mines: Policy and Strategy with Reference to Foreign African Labour Supply. 45p. April 1977	,00
3.	C.E.W. SIMKINS	Conditions of Work in Contemporary South African Industry: A Study of Minimum Standards. 26p. April 1977	,00
4.	D.G. CLARKE	State Policy on Foreign African Labour in South Africa: Statutory, Administrative and Contractual Forms. 27p. September 1977	,00
5.	COSMAS DESMOND	Limehill Revisited: a Case Study of the Longer- term Effects of African Resettlement. 28p. Jan.1978	,00
6.	C.E.W. SIMKINS	Income Distribution among Settled Urban African Households in South Africa: 1970 and 1975. 59p. March 1978	2,00
7.	C.E.W. SIMKINS & D.C.HINDSON	The Division of Labour in South Africa, 1969-1977 Feb. 1979	2,00
8.	C.E.W. SIMKINS	South African Development in International Perspective 1950-197544p September 1979	,00
9.	C.E.W. SIMKINS	The Distribution of Personal Income among income recipients in South Africa, 1970 and 1976.	1,00
DIS	CUSSION PAPERS		
1.	D.G. CLARKE	Inflation and Subsistence Wages:Revised Estimates of the Urban Poverty Datum Line in Rhodesia for September 1976. 10p	0,50
2.	L. CLARKE	Poverty and Unemployment in Nqutu. 9p	0,50
3.	C. SIMKINS	Development economics and radical theories of the peripheral state	0,50
4.	C SIMKINS	Male African Unemployment in the Richards Bay Area	0,50
5.	C. SIMKINS	The Current Population Survey and South African Un- employment: Some Puzzles	0,50
6.	M. MCGRATH	A Comment on the Current Population Survey, Income	0,50
7.	C. SIMKINS	On Quantitative methods in the social sciences	0,50
PR	OCTEDINGS	WORKSHOP ON UNEMPLOYMENT AND LABOUR REALLOCATION IN SO AFRICA, DSRG, PIETERMARITZBURG.18/19 Mar.1977 (8 papers	

Copies of all items listed may be purchased. The DSRG is also interested in exchanging literature with researchers in related fields. Proposals in this connection, orders for papers or request, for further information should be addressed to the Secretary, Development Studies Research Group. Department of Economics, University of Natal, P.O. BOX 3 perfetermaritypurg, 3200.

This work is licensed under a Creative Commons
Attribution – NonCommercial - NoDerivs 3.0 Licence.

To view a copy of the licence please see: http://creativecommons.org/licenses/by-nc-nd/3.0/