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Abstract

Learning scientific knowledge is largely based on understanding what are its key
concepts and how they are related. The relational structure of concepts also affects
how concepts are introduced in teaching scientific knowledge. We model here how
students organise their knowledge when they represent their understanding of how
physics concepts are related. The model is based on assumptions that students use
simple basic linking-motifs in introducing new concepts and mostly relate them to
concepts that were introduced a few steps earlier, i.e. following a genealogical order-
ing. The resulting genealogical networks have relatively high local clustering coeffi-
cients of nodes but otherwise resemble networks obtained with an identical degree
distribution of nodes but with random linking between them (i.e. the configuration-
model). However, a few key nodes having a special structural role emerge and these
nodes have a higher than average communicability betweenness centralities. These
features agree with the empirically found properties of students’ concept networks.
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1 Introduction

Learning scientific knowledge and its structures involves understanding what
its key concepts are, and how these concepts are related and connected as
part of a system of other concepts. Such interconnections between concepts
have also an essential role in establishing their meaning. Scientific knowledge
thus forms a system of networked concepts and higher conceptual structures
(e.g. laws and models). Learning such knowledge is also learning to construct
and map possible conceptual connections in that system [1–3]. The structure
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of the knowledge system also affects how concepts are introduced in teaching
scientific knowledge and how they are acquired in formal teaching and learn-
ing [4–8]. Scientific knowledge may appear to be complex and its concepts
entangled in many ways with other concepts, but in learning the basic forms
of knowledge organization and acquisition may be based on the use of simple
patterns. Recent cognitively oriented research on learning suggests that proce-
dures of knowledge construction and processing are often reducible to simple
basic patterns of diverse types of hierarchies, cliques, transitive patterns and
cycles [9–13].

The relational structure of scientific knowledge and knowledge as a networked
system is effectively and transparently illustrated by using complex network
methods as a kind of cartography of knowledge [14–16]. Network methods have
also been applied to model scientific discovery [17,18]. Such approaches are also
well adapted to the related problems of knowledge retrieval and acquisition,
and of learning about knowledge [19–21]. Linguistic and lexical structures and
their learning has also been approached from a viewpoint of networks, with
results that show the importance of relational connections between words in
learning their meaning [22,23]. Learning scientific knowledge, its terms and
concepts and their syntactic structures apparently share many similarities with
these recently explored fields of knowledge processing and acquisition. These
notions have encouraged the idea that paying attention to such patterns may
help in understanding the cognitive processes behind knowledge construction
and its acquisition, and may also lead to the development of computational
models for cognitive processes in learning [11–13].

Empirical studies of students’ knowledge of physics concepts, investigated
through using concept maps and networks and related techniques, have re-
vealed that students’ declarative (i.e. expressible in terms of writing or sym-
bolically) knowledge is structured. The structure, however, is not hierarchi-
cal as often assumed [4] but instead web-like and contingent [24–27]. Such
web-like concept networks drawn by students are locally tightly connected
and have highly clustering cliques and globally long paths that connect sev-
eral concepts [24–27]. The networks that are at the same time coherent and
contingent provide diverse ways for students to conceptualise the system of
scientific knowledge. Two properties of much interest in that context are the
relatively high local clustering of concept-nodes in the networks, and the role
of communicability and the communicability betweenness centrality. The high
local clustering appears to be related to how students use auxiliary concepts
while the high communicability centrality is typical for globally important key
concepts that provide the overall coherence of the concept network [25,27].

Here we concentrate on the problem of learning scientific knowledge and its
concepts, and ask how the relational structure of physics concepts, as it is
found in empirical studies, can be modelled as a network. Generative models
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that produce high clustering operate typically by explicitly controlling the ad-
dition of triangular subgraphs in the networks [28], or in terms of controlling
the rewiring that favours formation triangular subgraphs [29]. The generative
mechanism is also at the core of the present model. In addition, the contiguous
paths to introduce new concepts sequentially in the network are of importance.
The contiguity of the real concept networks is modelled by assuming that stu-
dents introduce new concept in the networks by following a simple genealogical
strategy, relating new concept preferably to concepts introduced only a few
generation steps before, and by using a handful of basic linking-motifs; new
knowledge that becomes added to the network is processed by using the re-
cently processed knowledge and simple patterns. The model shares similarities
with ordered (or directed) acyclic graphs [21,28,30,31] and models used to de-
scribe networks of science and scientific knowledge [15–18]. The results of the
model suggest that knowledge ordering and processing by human learners may
indeed take place in terms of very simple patterns, while more extensive and
complex structures are outgrowths of combinations of these simple patterns.
This simplicity of knowledge organisation strategies opens up interesting pos-
sibilities for computational, network based modelling of knowledge acquisition
in learning.

2 Concept networks: Empirical sample

The concept networks taken here as empirical examples to test the model are
constructed by physics students, based on their thinking how concepts in elec-
tricity and magnetism (including electromagnetic induction) are related. Our
sample of 12 different concept maps, each one made by a different student,
comes from a 7-week teacher preparation course, where topics in electricity
and magnetism were discussed at the level of a first-year introductory univer-
sity course. The task was to represent how concepts, principles and laws could
be introduced as part of a growing conceptual network by using the key exper-
iments and models, as they are discussed in textbooks and known to students.
The number of nodes and links students included in their concept networks
was not restricted. The empirical sample of networks to which we compare our
model consist only of 12 networks, where the smallest network has 44 nodes
(concepts) and 64 links, while the most extensive has 69 concepts and 129
links. On average, the networks have 60 nodes and 95 links. The analysis of
the structure of the 12 concept networks has revealed that students tend to
connect a concept to a small number (from 2 to 4 most often, with an average
value of 3) of other concepts [27]. An example of the concept network made
by students is shown in Figure 1. Some of the most important concepts in the
12 networks are provided in Table I.

The design of the concept networks was based on simple rules so that the
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nodes in the map were required to be: 1) concepts or quantities; 2) laws; 3)
models or 4) experiments. The links, on the other hand, were required to
be actions or procedures, e.g., change in a quantity, setting the value of a
quantity, or determining the value of a quantity. The students constructed
the concept networks sequentially, adding one concept at a time to form a
network. The starting concepts of the networks vary, but most often the con-
cepts of electric charge, force and electric current are found among the starting
concepts. In constructing the networks, students followed simple genealogical
strategies so that they relate new concepts preferably to concepts introduced
only a few generation steps before and simple linking-motifs in introducing the
new concepts [24,26,32]. In introducing new concepts as part of the already
existing network, students based the introduction of new concepts either on
textbook experiments (i.e. known to students as discussed in textbooks) to
operationalise the concept (i.e. make it measurable) or to models to introduce
them deductively [24–26]. In a a typical case of a textbook experiment that
illustrates how a new concept can be added as a part of an existing network
students introduce a concept C by using two previous concepts A and B, and
quite frequently then also add a connection between A and B if such a con-
nection does not exist; this produces transitive, triangular linking-motifs. A
very similar procedure is involved in using models to introduce new concepts
and laws (relational connection between concepts) by deducing them on the
basis of existing theoretical knowledge [24–26,32]. The resulting concept net-
works are thus ordered and directed having a kind of genealogical ordering
where all new concepts added to the network are related to some (at least
one) previous ones. The number of steps between concepts in the order they
were introduced is termed a genealogical step. The meaning and content of the
nodes in the empirical sample of real student networks is discussed in more
detail elsewhere [25,32] and are not reproduced here where the modelling of
the structural features are in focus.

Table I
The key concepts appearing in the students’ concept maps. The numbers given in
bold text are the best substantiated concepts. Some concepts appear twice, either
theoretically (t) or empirically (e) substantiated.

Concept Concept Concept

2. Electric charge 38. Electric potential 71. Magnetic flux density (e)

8. Coulomb’s law 44. Electric field (t) 72. Electric current

14. Displacement current 51. Gauss’ law 83. Magnetic force

15. Electric field lines 57. Magnetic interaction 91. Magnetic field

27. Superposition of fields 63. Magnetic moment 100. Induction law

28. Electric field (e) 66. Magnetic flux density (t) 109. Rotational electric field

33. Mechanical work 69. Magnetic flux 113. Ampere-Maxwell law

The concept networks and many of their properties (like small cycles and dif-
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Fig. 1. An example of a concept network drawn by a student (redrawn for clarity).
The map is shown only to illustrate the overall appearance of the maps. The content
of the links is not essential here.

ferent centralities of nodes) are close to what one could expect on the basis
of the configuration-model, where the degree sequence of nodes is fixed but
the nodes are otherwise linked randomly. A handful of nodes, however, have
properties that are significantly different from what could be expected on the
basis of the configuration-model [27]. These few nodes (concepts) provide long
contiguous paths throughout the network and connect otherwise unconnected
or poorly connected parts of the network [24–26,32]. Such nodes can be effec-
tively and reliably discerned through the communicability betweenness cen-
trality [33–35]. The reason why the communicability betweenness centrality is
a relevant centrality measure is related to the fact that, in concept networks,
the information, contained in already existing parts of the network, is effec-
tively channelled to support the introduction of new nodes through contiguous
paths that connect the nodes. The concepts which have a high betweenness
centrality can be thus identified as kinds of key concepts in the networks, not
only from a viewpoint of structure but also of content [27,32]. In Table I the
concepts that have higher than average communicability betweenness central-
ity are shown in bold text. It is easy to recognise that these concepts are also
central in regard to the content. It should be noted that the structural analy-
sis based on the communicability betweenness centrality and content analysis
are independent forms of analysis, but conclusion drawn from both are mutu-
ally supportive and strongly suggest the conclusion that for concept networks
global, contiguous connections are typical feature of key concepts. Some of the
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key concepts are also a part of long cyclical paths and thus contribute appre-
ciably to subgraph centralities [27]. In addition, the local clustering coefficient
of many nodes in the rule-based concept networks is substantially higher (from
0.3 to 0.6) than expected in case of network of identical degree sequence but
random linking (configuration-model). The concepts with high clustering only,
however, if their communicability betweenness centrality is not high, are not
central from the viewpoint of content but are only auxiliary concepts [24,25].
Consequently, the model introduced here attempts to reproduce and explain
the following structural features of rule-based concept networks:

• Degree distribution that is peaked around small values of degree (typically
a degree of 3), but where also larger degrees are found (typically up 12-14).
• Local clustering coefficients of the order of 0.3-0.6 of nodes occurring with

substantially higher probability than in a network with identical degree
sequence but random linking (configuration-model).
• Communicability betweenness centralities [34,35] and subgraph centralities

which are relatively high for some nodes, occurring with substantially higher
probability than in the configuration-model.

In addition to these features the real networks are modular, consisting of
three modules. Modularity is here simply a pre-determined property because
the networks describe the three phenomenologically distinct but connected
areas: electricity, magnetism and electromagnetic induction. This modularity,
however, must be taken into account in modelling the network.

3 The model

The networks that simulate the construction process of real concept networks
and their empirical properties are based on simple generative rules and the
use of a few basic linking-motifs introducing new concepts. These simulated
networks are then compared with the real networks through the distribution
of node degrees D, local clustering coefficient C, communicability betweenness
subgraph centralities B and S, respectively. The statistical significance of the
results is evaluated based on Z-scores.

3.1 Network generation

The basic assumptions we make about how the learners process and represent
knowledge are as follows:

(1) New concepts are introduced on the basis of the old concepts, which are
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Fig. 2. The four linking-motifs mi, i = 1, . . . , 4 of the genealogical model. The
new node (large black dot) is added to ancestral nodes (tiny black dots) with a
probability πi. The linking-motif 4 also connects (dotted line) two ancestral nodes.

already part of the network. Relatively few (from two to four) of the
old concepts are used as the basis of introducing the new concepts. The
connection between new and old ancestral concepts are thus close, usually
from three to seven genealogical steps in the ordered tree of ancestors.

(2) Concepts are recognized on the basis of the phenomenological meaning
(here concepts related to electricity and concepts related to magnetism).
This gives rise to the modularity. Within the module conceptual connec-
tions are close (three to seven step), while between modules the connec-
tions of nodes are separated by a greater number of genealogical steps
(more than ten).

(3) Four basic linking-motifs are used in adding new nodes to the network.
Each new node is linked either to: one pre-existing node (linking-motif
m1); two pre-existing nodes thus forming a 2-star (linking-motif m2);
three pre-existing nodes thus forming a 3-star (linking-motif m3); and
to two pre-existing nodes which also become connected, thus forming a
triadic pattern (linking-motif m4). Each of these linking-motifs mk appear
with the probability πk with

∑
πk = 1.

The network is generated by introducing nodes 1, 2, . . . i − 1, i, i + 1, . . . n se-
quentially so that each node i+1 is connected in a directed way to some of the
preceding nodes 1, 2, . . . i. The directionality is defined from ancestor nodes to
new nodes. The probability distribution function (PDF) that i+1 connects to
the given ancestor i′ which is j steps away from it (i.e. to node i′ = i+ 1− j)
is assumed to follow a discrete gamma-distribution [36]

fi,j(α, λ) =
1

Zi (α, λ)
jα−1 exp [−λj] , (1)

where parameters α and λ control the form of the distribution. The normal-
ization Zi(α, λ) is obtained in a closed form in terms of Lerch’s transcendental
φ-function [36]

Zi(α, λ) = φ(e−λ, 1− α, 1)− e−λ(α−1) φ(e−λ, 1− α, 1 + i) (2)
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In practice, the detailed functional form of the distribution is not crucial, as
it is peaked. The discrete gamma-distribution is chosen because it is flexible
and the cumulative distribution function (CDF) for PDF in Eq. (1) can be
given in the form

F (i, j) =
j∑

j′=1

fi,j′ =
Zi(α, λ)

Zj(α, λ)
(3)

This CDF is the basic distribution that defines the genealogical back-reference
step lengths (i.e. how many steps separates the new node and the ancestral
node). The CDF thus determines how new concepts are linked as part of the
pre-existing network. The same rule of linking is used for intra-cluster linking
of nodes within a given module, and between inter-cluster linking between
the modules. The difference between intra- and inter-cluster linking is that
in inter-cluster, linking operates with all four linking-motifs but with intra-
cluster linking operates with m1 only.

3.2 Simulation method

In all simulations, we used the roulette wheel -method, where events are real-
ized in proportion to their probabilities [37]. The nodes are connected on the
basis of CDF in Eq. (3). The simulation consists of three steps, which are:

(1) The module size N and its variation ±∆N are selected.
(2) The linking-motif is selected. In selecting the basic linking-motif used to

add a new node a discrete set of 4 possible motifs k with probabilities
πk are arranged with cumulative probability Φk =

∑k
i=1 pi/

∑4
i=1 pi. The

linking-motif mk is selected if the random number 0 < r < 1 falls in
the slot Φk−1 < r < Φk. In simulations only the probability π3 is varied.
Varying π3 affects also the probabilities of other events because of the
normalisation

∑
πk = 1 but the ratios πi/πj, i, j 6= 3 remain unchanged.

(3) For each ancestral node appearing in the selected linking-motif, the ge-
nealogical distance is selected. For each link to an ancestor, a random
number r ∈ [0, 1] is generated and the new node is connected to an an-
cestor at a distance j∗ defined from r = F (i, j∗).

In simulations, attempts to connect already connected nodes may occur, in
which case no multiple connections are allowed. In practice, values of j∗ cor-
responding to different values of r are tabulated in advance for each i, so that
repeated inversions of r = F (i, j∗) during the simulation is avoided. In the sim-
ulation model we have three modules. Within the modules we use the same
parameters to connect the nodes, but the values of the parameters between
the modules can be different from their values within the modules.
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3.3 Network analysis

Connections between nodes in concept networks are described in terms of the
adjacency matrix a, where variables aij indicate the connections between nodes
i and j. If nodes are connected, then aij = 1 and if there is no connection,
then aij = 0. Here we analyse the networks as undirected ones with aij = aji,
although the generation process is directed. This is because in the empirical
sample the directionality is ambiguous and not easily interpretable (students
use direction to indicate a cause or an effect). For a network of N nodes these
elements form a N × N dimensional adjacency matrix a. In the analysis of
network properties, we focus on four observables: 1) the node degree D, 2) the
local clustering coefficients C, 3) the communicability betweenness B, and
4) the subgraph centrality S. The definitions and formulas to obtain these
observables from the adjacency matrix are provided in Appendix A.

The decision to focus on the clustering and on the communicability central-
ity and the subgraph centrality are motivated by empirical notions based on
previous results on the analysis of students networks, which has shown that:

(1) The local clustering D is related to how students use auxiliary (not al-
ways central or key concepts) locally to substantiate (or support) the
introduction of new concepts (nodes) in the network [24,26].

(2) The communicability betweenness B is related to how a given concept
(node) is globally susbtantiated (or supported) by all other nodes in the
network. The substantiation of the node is namely based on information
which is passed from one node to another, thus making the introduction of
new nodes contiguous to previously existing nodes. This is also the basic
generative dynamics coded in the genealogical model introduced here. As
shown previously, the nodes which have a high value of communicability
betweenness in concepts networks are also central from the point of view
of the content of the concept network, i.e. they are kinds of key concepts
[27,32].

(3) The subgraph centrality S provides complementary information of the
global substantiation of a given node by taking into account the cycli-
cal paths that provide the overall coherence. The subgraph centrality S,
although it gives information largely redundant to infomation already
contained in B, is useful in ranking the importance of key concepts [27].

For these reasons we focus in the analysis of the genealogical model on observ-
ables D,C,B and S. The roles of these observables in content analysis and in
finding the key concepts of the real concept networks, reported in more detail
elsewhere [24,26,27,32], is not further discussed here.

The statistical significance of the observable values O ∈ {D,C,B, S} as mea-
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sured from the genealogical model (G-m) networks is estimated by comparing
the results based on the genealogical-model to results obtained from a null-
model, where the degree sequence is identical to the original network, but the
links are established randomly [39,33]. In what follows we refer to the null-
model as the configuration-model (C-m). The statistical significance of the
given value of observable O is here assessed by calculating its Z-score (see
Appendix A), which is a commonly used simple measure to assess the statis-
tical significance of observables’ values in networks [33,38]. The Z-score of a
given observable O is particularly suitable given that the nodes of interest are
those which have higher than average value of the local clustering C or the
communicability betweenness B.

The similarity of the distributions corresponding to different model parame-
ters is also of interest, although in the present study, the purpose is not to
focus on the detailed form of the distributions or their detailed comparisons
to the empirical sample. Empirical results in cases studied here are scarce, as
they are based on a limited number of samples and all the values based on em-
pirical data are tentative rather than conclusive. Moreover, the distributions
are discrete and their estimation by smooth parametric distributions is not
pursued here. For these reasons, we have chosen to base the similarity com-
parison of distribution p and q on the Kullback-Leibler divergence KLD(p|q)
(see Appendix A), which is a nonparametric information theoretical measure
for the similarity between distributions [39,40].

4 Results

In the simulations, the parameters were varied and the set of parameters which
appeared best to correspond to the empirical results for the distribution of
degrees D were chosen for closer scrutiny. No exact agreement, however, with
the empirical sample was attempted since the empirical sample consists of
only 12 cases, which is too few for comprehensive comparative analysis. Four
models A-D with different set of parameters, given in Table II, were chosen
for closer scrutiny. The parameters were chosen so that variations are limited
to the relevant range of average degree D̄ roughly from a value of 3 to 4. In
what follows we discuss the effects of parameter variations on the distributions
for the degree D, the local clustering coefficient C, and for the subgraph
and communicability betweenness centralities S and B, respectively. In all
simulations the number of modules is three corresponding to the number of
modules in the empirical sample. In what follows, only the probability π3 of
linking-motif m3 and back-reference step length L are varied. In addition, the
fixed average size N = 20 of modules is varied by±∆N to check the robustness
of results against relative changes of the order of 10%-50% in module size. All
results are for 1000 sample of the given parameterization of a genealogical-
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model (models A-D). For each realization in the sample, 10 repetitions for
corresponding configuration-models with identical degree sequences were done.
Simulations, configuration-model generation and all analysis are carried out
by using the graph and network package of Wolfram Mathematica 11.

Table II
The parameters used in simulations of the genealogical-model. The parameters α
and λ are for inter-cluster linkage, corresponding average genealogical step length
L. The parameters for intra-cluster linkage are α = 13 and λ = 1.3 corresponding
L = 18 and they remain the same for all simulations. For linking-motifs only π3 ≡ π
is provided since only it is varied while the ratios π2/π1 = 0.17, π4/π1 = 0.25 and
π4/π2 = 0.67 of the other linking-motifs remain unchanged. For intra-cluster linking
only linking-motif 1 with π1 = 0.80 is active. In all cases the average module size
is N = 20 with ∆N = 5 for random variation in module size. The average values
of the node degree (D̄),the local clustering (C̄), the communicability centrality (B̄)
and the subgraph centrality (S̄) are also provided.

Model α λ L π D̄ C̄ B̄ S̄

A 9 1 9 0.25 3.3 0.15 0.065 0.017

B 4 1.5 6 0.40 3.4 0.16 0.068 0.018

C 9 1 9 0.20 3.7 0.14 0.061 0.016

D 4 1.5 6 0.60 3.9 0.15 0.063 0.016

The genealogical-model A with parameters as given in Table II provides the
closest match with the empirical networks. A close match by parameter opti-
mization, however, is not pursued here because instead of quantitative agree-
ment the focus is on the qualitative similarities between the empirical networks
and the networks generated by the genealogical model. Simulations are used
to explore ensembles of networks generated by the genealogical model: how
measurable properties of these networks are distributed within ensembles with
similar degree distribution of nodes, and how the thus obtained measurable
values compare to the empirical observations. The networks generated by the
genealogical model (G-m) as well as the empirical networks (Emp) are com-
pared against the configuration-model (C-m) networks, which have identical
degree sequences with the networks they are compared to.

The distributions of the degree D, the local clustering C and the communi-
cability betweenness and the subgraph centralities B and S, respectively, for
each node are calculated for all simulation cases. In Fig. 3 are shown results
for distributions of these observables as the pairwise histograms, where on the
left is shown the empirical distribution (Emp) compared with the result cor-
responding to configuration-model (C-m), and on the right are the results of
genealogical model A (G-m) compared with the corresponding configuration-
model (C-m). The scatter-plots of values of observables are compared for the
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genealogical-model (G-m) and the configuration-model (C-m) on the upper
right diagonals, while comparisons for the empirical (Emp) and genealogical-
model (G-m) are shown in the lower left diagonals. The results in Fig. 3 show
that qualitatively the genealogical-model A provides results close to real net-
works, but for local clustering both the genealogical-model A and the real
networks have local clustering different from the configuration model. For the
communicability betweenness and subgraph centralities B and S the differ-
ences are not so clear, provided that a few outliers in B in the case of the
empirical results are ignored.

The results in Fig. 3 suggest that for most nodes the values for B and S
agree with the values as they emerge in the corresponding configuration-
model networks. This means that the centralities are predictable on the basis
of the configuration-model provided that the degree sequence is known. On
closer inspection, a small subset of nodes have values of B and S which oc-
cur with clearly higher probabilities than could be expected on the basis of
configuration-model. Such nodes are few, but the nodes with exceptional high
B and S centralities are the most interesting ones, and supposedly also the
most important ones that we should pay close attention to. These nodes have
important roles in providing the network global connectivity and in connect-
ing substantial portions of the network. In the case of empirical networks just
these kinds of nodes can be identified as key concepts in the network [27].

The results for the local clustering C of the genealogical model are close to
the empirical results for students’ real networks, while the results for both of
them are clearly different from the results obtained for configuration models
with identical degree distributions. Also the communicability betweenness cen-
trality B shows deviations from the configuration model results, while values
of the subgraph centrality S appears to be closer to the configuration-model.
These differences are clearly revealed by the Z-values of the observables shown
in Fig. 4. The Z-values are calculated for binned observables, for each of the
12 networks and each generated genealogical network against the 10 configu-
ration samples. The resulting Z-values of empirical networks and genealogical
networks are displayed as box-whisker plots. The extreme medians and the
upper- and lower-quartiles of the Z-values are shown in Table III. For com-
parisons, the Kullback-Leibler divergences are also provided in Table III.

The Z-values for the clustering in Fig. 4 show that the median of Z-value
increases with increasing observable value for the clustering C and the com-
municability betweenness centrality B. For clustering 0.24 < C < 0.45 the
median of Z scores for clustering is 4-5, with the highest value Z = 5.5 for
empirical networks and Z = 4.3 for the genealogical-model A. These indi-
cate statistically significant deviations (p-values p < 0.001) from clustering in
the configuration-model. Clustering, however, is not indicative of being a key
concept (i.e. important in the global sense) in students’ real networks, as is
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Fig. 3. The distribution and scatter-plots of observables O ∈ {D,C,B, S} in real,
empirical networks (Emp) and genealogical-model A (G-m) networks compared with
configuration-model (C-m) networks with equivalent degree sequences. The distri-
bution of the degree D, local clustering coefficient C, communicability betweenness
centrality B and subgraph centrality S are shown as pairwise histograms in the di-
agonals. The scatter-plots of the observables are shown in the lower left and upper
right diagonals. In the lower left diagonal (denoted by Emp & G-m) the distri-
butions of students’ networks (Emp, black markers) and model A networks (G-m,
grey markers) are compared. In the upper right diagonal (denoted G-m & C-M) the
model A (G-m, black markers) and corresponding configuration-model (C-m, grey
markers) networks are compared. All histograms are normalized to unity and can
be thus compared although the vertical scales are not shown.

known from analysis of empirical concept networks[27]. Rather, high cluster-
ing reflects the important role of local 2- and 3-star linking-motifs, m2 and
m3, respectively, in substantiating the addition of nodes that ultimately often
remain as auxiliary nodes.
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The Z-values of the communicability betweenness and subgraph centralities
B and S, respectively, have a rather similar form of distribution in G-m and
C-m. The values of Z ≈ 2.2 for high enough values B > 0.2 reveal that
B in the empirical sample and in the genealogical-model differs significantly
from the values found in the configuration-model, at the significance level
of p < 0.05. The subgraph centralities, on the other hand, are not statisti-
cally significantly different from values found in the configuration-model, as is
shown by Fig. 4 and extreme values provided in Table III. This means that in
regard to the subgraphs, for the most part, the genealogical-model networks
are like configuration-model networks. The differences between the empirical
to configuration-model networks, and the genealogical- to configuration-model
networks are summarised by the quantile-quantile plots shown in the lowest
row in Fig. 4. The quantile-quantile -plots show that for Z < −2.5 and Z > 2.5
the quantiles of the data are quite different from the quantiles expected on the
basis of normal distributions. The interpretation that clustering is significantly
different (higher) in empirical and genealogical networks than in configuration-
model is complemented by the Kullback-Leibler divergencies (KLD) provided
in Table III.

Table III
The Kullback-Leibler divergences KLD(p|q) for distributions of the degree D, the
local clustering C, the communicability betweenness centrality B and the subgraph
centrality S. The KLD is provided for the empirical sample (E) compared to the
genealogical (G) and configuration (C) models, and genealogical compared to the
configuration-model. The ordering of comparisons of p, q ∈ {E,G,C} is as denoted
in KLD(p|q). The KLD values are given in units of 100xnats, which for present
purposes is roughly interpretable as % of new information needed to infer p from q.
For the Z-scores the median value (Med) and values of 75% upper quantile (QU )
and 25% lower quantile (QL) are provided, for empirical and genealogical models,
respectively. The p-values corresponding to the given median values of Z-scores are
denoted by * for p < 0.05, ** for p < 0.01 and *** for p < 0.001. The KLD of
empirical degree distribution compared to genealogical is 6.6 100xnats.

KLD(p|q) in 100xnats Zempirical Zgeneal.

E|G E|C G|C Med QU QL Med QU QL

C 2.3 21.8 12.9 5.5*** 6.3 4.7 4.3*** 5.5 2.5

B 2.7 3.8 0.4 2.2** 4.4 0.9 2.2* 3.4 0.7

S 3.8 1.5 0.1 1.6 2.4 0.3 0.4 1.5 -0.5

The sensitivity of results to changes in model parameters were tested by vary-
ing: 1) the size of modules by ±∆N ; 2) the back-reference step length L (by
changing α and λ) of genealogical relatedness; and 3) the probability π3 of 3-
star linking-motif. Parameter variations were chosen so that the average degree
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Fig. 4. The box-whisker plots of Z-values of the clustering C, and the communi-
cability betweenness and subgraph centrality B and S, respectively, in the case of
the empirical networks (upper row) and genealogical model A (middle row). The
notched boxes in the box-whisker plots show the median values (white, middle bar
in the box) of the observables and their upper (75%) and lower (25%) quartiles (up-
per and lower boundaries of the boxes, respectively). The whiskers show the limits
beyond which the data-points are considered as outliers (the first set of outliers
are shown as dots, for clustering also the second set are shown as boxes). The cor-
responding quantile-quantile plots (lower row) are shown. In the quantile-quantile
plot, the dotted line represents the quantiles of normally distributed data.

values remained between 3 to 4, which is within the scope of interest. Results
for the distribution of D, C, B and S for models A-D with different parame-
ters (see Table II) are shown in Fig. 5. The distribution for S is qualitatively
so similar to B that it is not shown in what follows. The Kullback-Leibler
divergences KLD(p|q) are given in Fig. 5 for model A (distribution p) and for
models B-D (distribution q), and for comparisons, also in cases where q corre-
sponds to the configuration model. In all cases, with increasing probability of
3-star linking-motifs m3 the distribution of D, C and B shift to larger values
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Fig. 5. Histograms of distributions of the degree D, clustering coefficient C and com-
municability betweenness centrality B, respectively, for models A-D corresponding
to different parameters (see Table II). The Kullback-Leibler difference KLD(p|q)
between distributions p for model A and q for models B-D are given on the left
side of the slash and corresponding KLD for the configuration model on the right
side. The models A and C are with parameters α = 9.0 and λ = 1.0 with average
back-reference steps L = 6 and π = 0.25 and 0.40, respectively, while models B and
D are with α = 4 and λ = 1.5 with L = 6 and π = 0.60 and 0.25, respectively.
In all cases ∆N = 5. All the histograms are normalized to unity and can be thus
compared although the vertical scale is not shown.

as expected but the changes are rather moderate as shown by the values of
KDL. Only for the communicability betweenness centrality are the changes
due to increasing probability of 3-star motifs larger than the KLD between
the genealogical and configuration-models.

Within the chosen range of parameter variations the changes in average val-
ues of the observables are nearly linear in regard to changes and the average
value of observables adequately characterizes the changes in the distributions.
Therefore, instead of absolute changes we report in Table IV the rate of change
∆O/∆π of average values of observables O ∈ {D,C,B, S} when the proba-
bility π of 3-stars changes. The rates of changes are reported for models with
L=9.0 and 6.0 and for ∆N = 3, 5 and 7, respectively. The total range of vari-
ation of π is 0.45, and values for rates of changes are obtained as averages for
π=0.20, 0.25, 0.35, 0.45, 0.55, 0.60 and 0.65.
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Table IV
Rate of change ∆O/∆π of observable mean values O ∈ {D,C,B, S} when the
probability π3 of 3-stars changes. Simulation results are for models with  L = 6 and
9 and for ∆N = 3, 5 and 7.

L = 9 L = 6

∆N = 3 ∆N = 5 ∆N = 7 ∆N = 3 ∆N = 5 ∆N = 7

∆D/∆π 1.90 1.89 1.83 2.23 1.98 2.58

∆C/∆π 0.46 0.46 0.59 0.61 0.90 0.36

∆B/∆π 0.50 0.50 0.53 1.27 1.58 1.47

∆S/∆π -1.31 -0.13 -0.13 0.06 0.20 -0.42

The results show that when the probability of π3 increases, the average values
of observables D,C,B also increase but that of S decreases for large back-
reference step lengths. The increase of average values of D and C simply results
from increased local connectivity, while for B the increase of average value in-
dicates increases in the length of the contiguous paths. The decrease of the
average value of S, on the other hand, indicates that the role of small cycles in-
creases with increasing π3 when the genealogical back reference step decreases;
for small genealogical distances the connections begin to favour small cycles.
Although the results allow no clear generalisation of the parameter dependen-
cies they nevertheless support the conclusion that the individual variations in
students’ concept networks can result from simple and small variations in how
they use the basic linking-motifs in introducing the new concepts and in how
far backwards in the genealogical history the new connections reach.

5 Discussion and conclusions

We have explored students’ expressions of the relational structure of concepts
by analysing the concept networks they have made. The aspects of inter-
est in these networks are the relatedness of concepts, and how certain basic
linking-motifs are used in an ordered addition of new concepts to the networks.
Attention has been paid to the local and global relational organisation of the
concepts by measuring local clustering of nodes (concepts) around other nodes,
and on how a given node participates in communicability between nodes. It
was found that the networks have an appreciable local clustering but be-
tweenness communicability and subgraph centralities of the nodes are largely
comparable to corresponding randomized structures. Only a small number of
nodes have higher values of these centralities than expected on the basis of
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the random network model. These nodes, however, are essential in creating
the global order and they are structurally kinds of key nodes in conferring
the overall contiguity of the conceptual connection within the network. Nodes
with comparable properties are also found in real concept networks where they
play a key role in regard to the content [27,32].

The results of the model and how they compare to real concept networks can be
understood to be related to the design principles used by students - their use of
experiments and models in connecting concept create local ordering based on
triangular patterns, but with no appreciable global ordering except in the case
of a few nodes. The model shows that such structures may originate from a
set of simple generic rules to add new concepts to the existing network. What
is needed, is a collection of basic linking-motifs to introduce new concepts:
the addition of one node with one link; a node with two or three links (2-
star or 3-star); or the addition of a node with 2-star and triadic closure. In
addition, the links are formed on the basis of a genealogical rule where nodes
are linked not to the most recently added nodes but nodes further away in the
genealogical ordering. The best match is reached with back-reference where
within a module steps from 6 to 9 are most probable, while between the
modules the step lengths are on the average 18-20 genealogical steps. These
simple rules are enough to generate networks with comparable properties as
those found empirically.

The results presented here model specific types of concept networks used in
learning, where students have constructed networks following specific rules
to substantiate the addition of new concepts as part of the network. The
construction thus requires careful considerations from students of how the
inclusion of new concepts is substantiated. Such concepts networks are very
different from traditional concept maps based on propositions but requiring
no substantiation or epistemic justification [24–26]. At present, there are only
a few examples of rule-based concept networks and more comprehensive com-
parisons are not yet possible. However, the results presented here interestingly
parallel recent findings in learning lexicons [22,23]. Also in that case the rela-
tional structure of words is closely connected to the learning of the meaning
of words. In the case of lexicons, the closeness centrality appears to be in-
dicative of a key word [22,23]. In the case of rule-based networks, the high
communicability betweenness centrality is a characteristic feature of key con-
cepts because the key concepts of rule-based networks must be substantiated
through contiguous paths of other concepts [27]. In both cases, however, key
concepts can be recognised through their structural role.

The results provided here suggest that learners handle knowledge so that they
process the relational aspect of conceptual knowledge in rather small pieces,
finding the connections on the basis of the affiliation of concepts in the pro-
cedures (experiments and models), where they are used. Furthermore, there
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is a finite genealogical span of a few concepts in making these affiliations.
At a more general level these results support the view that students process
and order their knowledge by using simple basic linking-motifs and genealog-
ical affiliation schemes. In short, there seems to be a preference for a certain
parsimony in handling the knowledge. Of course, this finding is not very un-
expected, but nicely confirmed here through structural analysis of knowledge
representations. These notions indicate that simple basic elements are enough
to understand at least some relevant aspects of how students conceptualise
scientific knowledge and organise complex knowledge.

Acknowledgements: This work was supported by the Acedemy of Finland
through Grant 311449.
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Appendix A: Network metrics and statistical analysis

Connections between nodes in concept networks are described in terms of
the adjacency matrix a, where variables aij indicate the connections between
nodes i and j. If the nodes are connected, then aij = 1, and if there is no
connection, then aij = 0. Here we analyse the networks as undirected ones
with aij = aji, although the generation process is directed. For a network of
N nodes these elements form a N × N dimensional adjacency matrix a. In
analysis of network properties, we pay attention to the distribution of node
degrees D, local clustering coefficients C and communicability betweenness
and subgraph centralities B and S, respectively.

A1. The degree Dk of the given node k simply counts the number of links
attached to the node and it is given in terms of the adjacency matrix in the
form [38,39]

Dk =
∑
i

(aik + aki) /2 . (A.1)

A2. The local clustering coefficient Ck measures the local interconnectedness
of nodes through three-cycles or triangles. This quantity is of particular impor-
tance here, because the design principle of the networks favours the formation
of triangles. The local clustering coefficient Ck of node k is defined as the ratio
of number of triangles to the 2-stars (connected triples) as [38,39]

Ck =

∑
i>j akjakiaji∑
i>j akjaki

. (A.2)

The local clustering coefficient takes values between 0 and 1.

A3. The subgraph centrality Sk operationalises the role of closed walks, i.e.
cycles. The kth diagonal element of the nth power of the adjacency matrix
gives the number of cycles starting from a given node k and involving n nodes
(or links). In defining the subgraph centrality each closed walk is divided by
the factorial of the length of the walk to compensate for the rapidly (though
not strictly factorially) increasing number of walks when the length of the walk
increases. The subgraph centrality of node is then obtained from the matrix
exponential of adjacency matrix in the form [33–35]

Sk =
[ exp(a) ]kk∑
k[ exp(a) ]kk

(A.3)

A4. The communicability betweenness Bk measures the relative ease to pass
from one node to another node so that a given node k is included. For the

20



communicability we use here a similar definition as for the subgraph centrality
in that the longer paths are assigned lesser weights, in proportion of the facto-
rial l! of the length l. The communicability betweenness is then conveniently
expressed in terms of matrix exponentials [34,33,35]

Bk =
1

A

∑
i,j

[exp(a)]ij − [exp(a + b)]ij
[exp(a)]ij

, i 6= j 6= k. (A.4)

Matrix b ≡ b(k) has nonzeros only in row and column k, so that these row and
column has -1 where the adjacency matrix a has +1. Then the denominator in
Eq. (A.4) counts all the paths between nodes i and j where node k is included.
The normalization factor is given by A = (N − 1)2− (N − 1) for a network of
N nodes [33–35].

A5. The statistical significance of the observable values O ∈ {D,C,B, S}
as measured from the networks is estimated by comparing the results of the
analysis to results obtained from a configuration-model (null-model), where
the degree sequence is identical to the original network, but the links are
established randomly [39,33]. The statistical significance of the observable O
is assessed by calculating the so-called Z-scores defined as [19,33].

Z =
O − 〈O〉R

σR
(A.5)

where O is the observable value in the simulated ensemble and 〈O〉R the
corresponding value in the configuration model and < σ >R the correspond-
ing standard deviation. Statistical significance requires that Z-values are high
enough. In what follows a value 1.65 < Z < 2.33 (corresponding p-values
0.01< p<0.05) is consider as significant (marked by *), 2.33 < Z < 3.093
(corresponding 0.01<p<0.001) highly significant (**) and Z > 3.09 (corre-
sponding p<0.001) extremely significant (***).

A6. The difference between distributions p and q is estimated on the basis
of the Kullback-Leibler divergence (KLD) which is an information theoretic
measure of distribution difference. If distribution p is compared to distribu-
tion q KLD can be taken as a measure of the information gained when new
information becomes available to update the probability distribution q to a
new one p, or differently, as a measure of how much information is lost when
p is approximated with q. In the case of discrete probability distributions p
and q the Kullback-Leibler divergence is defined as [39,40]

KLD(p|q) =
∑
i

pi log
pi
qi

(A.6)
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KLD is thus the expectation value of the logarithmic difference between the
probabilities pi and qi when the probability of i is given by pi. The KLD is
always positive and defined only if for qi = 0 also pi = 0 holds. In addition,
when pi=0 also pi log pi = 0. It should be noted that KLD is not a proper
metrics because it is not symmetric and KLD(p|q) 6= KLD(q|p). In calculating
the KLD we use natural logarithms, in which case KLD is given in units of
nats [40]. A KLD value of 0 means complete similarity while a value of 1 means
complete dissimilarity of the distributions. Here, a given value KLD < 1 can
roughly be interpreted as a relative fraction of new information needed to
deduce the distribution p from q.
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[21] J. Goñi, B. Corominas-Murtra, R. V. Solé, and C. Rodŕıguez-Caso. Exploring
the randomness of directed acyclic networks. Physical Review E 82 (2010)
066115.

[22] M. Stella, N. M. Beckage, and M. Brede. Multiplex lexical networks reveal
patterns in early word acquisition in children. Scientific Reports 7 (2017) 46730.

[23] M. S. Vitevich, and N. Castro. Using network science in the language and clinic.
International Journal of Speech-Language Pathology 17 (2015) 13-25.

[24] I. T. Koponen, and M. Pehkonen. Coherent Knowledge Structures of Physics
Represented as Concept Networks in Teacher Education. Science & Education
19 (2010) 259-282.

[25] I. T. Koponen, and M. Nousiainen. Pre-service physics teachers understanding
of the relational structure of physics concepts: Organising subject contents
for purposes of teaching. International Journal of Science and Mathematics
Education 11 (2013) 325-357.

[26] M. Nousiainen. Coherence of Pre-service Physics Teachers Views of the
Relatedness of Physics Concepts. Science & Education 22 (2013) 505-525.

[27] I. T. Koponen, and M. Nousiainen. Concept networks in learning: Finding key
concepts in learners’ representations of the interlinked structure of scientific
knowledge. Journal of Complex Networks 2 (2014) 187-202.

[28] M. E. J. Newman. Random Graphs with Clustering. Physical Review Letters
103 (2009) 058701.

[29] D. Foster, J. Foster, M. Paczuski, and P. Grassberger. Communities, clustering
phase transitions, and hysteresis: Pitfalls in constructing network ensembles.
Physical Review E 81 (2010) 046115.

[30] B. Karrer, M. E. J. Newman. Random Acyclic Networks. Physical Review
Letters 100 (2008) 118703.

[31] B. Karrer, and M. E. J. Newman. Random graph models for directed acyclic
networks. Physical Review E 80 (2009) 046110.

24



[32] M. Nousiainen, and I. T. Koponen. Pre-service physics teachers content
knowledge of electric and magnetic field concepts: Conceptual facets and their
balance. European Journal of Science and Mathematics Education, 5, (2017)
74-90.

[33] E. Estrada. The structure of complex networks. Oxford University Press, 2012.

[34] E. Estrada, N. Hatano, and M. Benzi. The physics of communicability in
complex networks. Physics Reports 514 (2012) 89-119.

[35] E. Estrada, D. J. Higham, and N. Hatano. Communicability betweenness in
complax networks. Physica A 388 (2009) 764-774.

[36] I. S. Gradshteyn, and I. M. Ryzhik. Table of Integrals, Series and Products, 5th
ed. Academic Press, 2000.

[37] A. Lipowski, and D. Lipowska. Roulette-wheel selection via stochastic
acceptance. Physica A 391 (2012) 2193–2196.

[38] L. da F. Costa, F. A. Rodrigues, G. Travieso, and P. R. Villas Boas.
Characterization of Complex Networks: A Survey of Measurements. Advances
in Physics 56 (2007) 167-242.

[39] E. D. Kolaczyk. Statistical Analysis of Network Data. Springer, 2009.

[40] E. T. Jaynes. Probability Theory: The Logic of Science. Cambridge University
Press: Cambridge, MA, 2003.

25


