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ABSTRACT 

 

More than half a century ago, Percy Butler (1963: 4) wrote that we “need to study the functions 

of teeth more thoroughly so as to be in a position to assess the adaptive significance of observed 

variations and their possible selective value”.  There have been many advances in the study of 

dental functional morphology since that time.  Here we review the various approaches to 

characterizing and comparing occlusal form that have been developed, especially dental 

topographic analysis.  We also report on a new study of dental topography of platyrrhine 

primates (n = 341 individuals representing 16 species) with known differences in both dietary 

preferences and other food items eaten.    Results indicate frugivores, gummivores, folivores, and 

seed eaters each have a unique combination of slope, relief, angularity, sharpness, and occlusal 

patch size and count values.  Likewise, among frugivores, those that supplement their diets with 

hard objects, insects, leaves, and seeds, also each have a distinctive suite of topographic features.  

We conclude that both primary and secondary diet choices select for occlusal form, and that 

functional morphology more reflects the types of foods and mechanical challenges they pose 

rather than the frequencies in which they are eaten. 
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That teeth are adapted to diet is undeniable when specialized feeders, such as the Felidae and 

the vampire bat, have distinctive dentitions, or when dental divergence within a family, as 

between frugivorous and insectivorous phyllostomatid bats, is related to dietary differences.  It is 

less clear how far the smaller differences between related species can be explained this way. 

Butler, 1983: 289 

1. Introduction 

 Percy Butler (1983) recognized that dental functional morphology in mammals reflects diet, and 

holds the potential to teach us something about the selective pressures involved in evolving that 

morphology.  But while the differences between cats and bats are obvious, the subtler variation 

between closely-related species may be less so.  When Butler wrote those words, dental functional 

morphology work on mammals, especially primates, had already shown great promise (Kay 1975, 

Rosenberger and Kinzey 1976, Seligsohn and Szalay 1978). Those that habitually consumed fruits, for 

example, had shorter molar shearing crests than those that preferred leaves or insects. But such studies 

were still in their infancy, and quantitative characterization was limited mostly to studies of crest lengths 

on unworn teeth.  The ultimate potential of occlusal morphology to reveal subtle details about the diets 

to which species were adapted was yet to be established. 

 Work continued over the years that followed, and has recently accelerated, to better 

characterize the functional aspects of molar form in mammals.  The idea has been to push the limits of 

what we can learn from the form-function relationship.   Here we report on recent work in this vein, 

focusing on one of Butler’s favorite target orders, Primates (Butler 1963).  We review recent dental 

topographic analyses of occlusal form, and report on a large sample of new data collected from closely-

related New World monkeys that demonstrate the potential of this approach to reveal functionally 
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relevant aspects of morphology related both to primary (= preferred) and secondary (= less commonly 

eaten) diet elements. 

1.1 Background 
 

 To understand relationships between occlusal form and function, we must appreciate that 

mammalian cheek teeth work on two distinct levels at a time.  At one scale, they are guides for 

chewing motions, but at a finer one, they are tools for fracturing foods.  The two levels or scales 

at which teeth operate correspond roughly to what Butler (1983) called “internal” and “external” 

environments. 

Simpson (1933) worked out the basic model for teeth as guides for chewing. He believed 

that chewing motions depended on the way teeth fit together in occlusion, which in turn 

depended on the shapes of molar crowns.  He contrasted vertical and horizontal motions, and 

teeth with opposing crests with those with cusps and basins.  He used the term shearing to 

describe vertical movement of crests sliding past one another, grinding to refer to horizontal 

movement of cusps sliding across basins, and opposition for movement of cusps into basins 

(today we call this crushing).  He also linked these motions to diet by relating shearing to meat-

eating, grinding to plant-eating, and opposition to a combination of the two. Crompton and 

Hiiemae (1970) and others began to work out the details of jaw movements and their relations to 

tooth form with cineradiographic studies of opossums in the late 1960s. Vertical movements, 

combined with steep crests or edges of contact running parallel to the plane of motion, allow 

opposing teeth to slide past one another with an action reminiscent of a pair of shears in action.  

When vertical movements are combined with broad cusps and deep basins perpendicular to the 

plane of motion, the result is crushing.  Finally, when shearing and crushing components are 

combined, like with small crests or lophs on a horizontal surface, we get grinding. 
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But teeth are more than mere passive players in the game of mastication (sensu Hiiemae 

1967).  Peter Lucas (2004) has championed the idea of teeth as complex tools selected to fracture 

foods.  Some foods are hard, and require high stress to initiate cracks in them.  Others are tough, 

and demand significant work to spread those cracks to fragment food items. Chewing can be 

thought of as a perpetual death match in the mouth, with foods evolving ways to toughen or 

harden their tissues to resist fracture and teeth developing structures to overcome those defenses 

without themselves being broken in the process (Ungar 2008). A hemispherical cusp is well 

suited for initiating fracture in hard foods.  It concentrates force on a small area, but at the same 

time, its bluntness protects the tooth from cracking. Because hard foods are often brittle, once a 

crack starts, it tends to spread easily.  Opposing blades, on the other hand, are better suited for 

fracturing tough foods.  Cracks spread with tension as they are wedged apart at the advancing tip. 

Those blades can be narrow since breakage is less of a concern when soft, tough items deform 

around tooth tissues (Lucas 2004, Ungar and Lucas 2010). 

1.2 Characterizing occlusal functional morphology 
 

 In order to use dental functional morphology to infer diet in fossil taxa, it is important to 

develop standards for the quantitative characterization of occlusal form.  Researchers have 

developed a number of approaches.  The simplest approach is to count the number of cusps and 

lophs, or shearing blades, on a molar’s surface (Liu et al. 2012). This, along with tooth height, 

can give us a pretty good sense of diet for many mammalian species. And when we add cusp 

shape and crest orientation to define specific crown types, we can get even more (Jernvall et al. 

1996). Alternatively, we can measure areas of shearing and crushing on a tooth, and consider the 
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ratio of one to the other to gauge the relative importance of each to dental function (Friscia et al. 

2007, Herring 1993, Janis and Fortelius 1988, Kay 1975, Sanson 1989).   

The “gold standard” for primate studies has been Kay’s (1984) shearing quotient 

analysis.  The summed length of mesio-distal crests on a molar are plotted against tooth length 

for related species with diets judged similar, and a regression line is used to identify the 

relationship.  The SQ is a measure of the deviation from that line, and indicates whether a 

species has longer or shorter crests than expected for that group.  Folivorous and insectivorous 

primates tend to have higher SQs, and longer crests, than expected for a soft-fruit eater; and 

among frugivores, hard-object feeders tend to have the lowest SQ values, and bluntest cusps 

(Anthony and Kay 1993, Kay and Covert 1984, Meldrum and Kay 1997, Strait 1993). 

But such studies are limited to unworn, or nearly unworn, teeth because they rely on 

landmarks that change or are obliterated with wear. This presents a problem because teeth begin 

to wear as soon as they come into the mouth, and natural selection must surely act to keep teeth 

functionally efficient as they wear.  Indeed, many mammals exhibit what Fortelius (1985) called 

“secondary morphology”; they must wear to develop the sharp edges between softer dentin and 

harder enamel needed for food processing.  Consider the guinea pig, for example, which actually 

grinds its teeth in utero so that they are worn and ready for use at birth (Teaford and Walker 

1983).  Unless we can characterize worn tooth morphology, we stand to lose an important part of 

the story -- how wear sculpts occlusal surfaces in a manner that promotes functional efficiency. 

Some researchers (e.g., Seligsohn 1977, Teaford 1983) attempted to deal with worn teeth 

after the classic papers of Kay (1975, 1977) and Rosenberger and Kinzey (1976), but progress 

was limited by either the qualitative nature of the data or the technology available at the time.  

This began to change in the early 2000s, however, when dental topographic analysis was 
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developed as a landmark-free solution to the worn tooth conundrum (Ungar and M'Kirera 2003). 

It involves quasi-3D
1
 characterization of whole occlusal surfaces, which offers the advantage of 

independence from human decisions as to what is important to measure. First, x,y,z points 

representing the occlusal surface of a tooth are collected using a laser scanner, touch-probe 

scanner, micro-CT scanner, or another instrument, and converted to a digital elevation model, or 

DEM (see Evans 2013, Ungar 2015 for review).   

One approach to analyzing the resulting DEMs is by standard geographic information 

systems (GIS) measures, such as the first derivative of elevation (slope), the second derivative of 

elevation (slope of slope, or angularity), and ratio of 3D surface area to planimetric area (relief) 

(M'Kirera and Ungar 2003, Ungar and M'Kirera 2003).  And results to date on a rather limited 

number of primate species confirm that folivorous taxa have more occlusal relief and more 

sloping, angular surfaces than do frugivores, and that among frugivores, hard-object feeders have 

the least slope and relief.  Angularity also separates taxa, and appears rather insensitive to gross 

wear, at least to the point of dental senescence, when enamel is essentially worn away from the 

occlusal table and little occlusal relief remains.  This means that, while teeth of most primate 

species get flatter with use, differences among taxa hold at comparable wear stages. 

Other measures have been developed specifically with occlusal functional morphology in 

mind.  These include optimal patch count rotated (OPCR) (Evans and Jernvall 2009) and 

Dirichlet normal energy (Bunn et al. 2011). Optimal patch count characterizes crown complexity 

as the number of contiguous areas of similar aspect (called patches) grouped by the four cardinal 

and four intercardinal directions.  These patches have been likened to tools, with each viewed as 

                                                           
1
 These models are technically quasi-3D or 2.5D.  While they are represented as a cloud of points with x, y, and z 

coordinates, they’re not truly 3D because surface elevation is not independent of the horizontal coordinate axes – 

there is only one z-value possible for a given x-y pair (Turner, 1997).  
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a separate surface for processing food, and herbivores with tough, fibrous diets indeed tend to 

have higher values compared with carnivores. This approach has also proven valuable for 

distinguishing among living and fossil primates (Boyer et al. 2012, Boyer et al. 2010, Godfrey et 

al. 2012, Ledogar et al. 2013). And OPCR appears to be rather insensitive to phylogeny and 

gross differences in morphology.  Dirchlet Normal Energy, in contrast, measures surface 

curvature using tools from differential geometry.  It also separates primates by diet, as teeth with 

taller, sharper cusps have higher values (Winchester et al. 2014).   

1.3 Primary and secondary food preferences and dental functional morphology 
 

Despite the variety of analytical approaches developed, the number of studies of primate 

dental topography have remained limited, and the ultimate resolution of this approach for 

detecting subtle differences in diets is still unknown. For example, two primate species might 

both prefer ripe, fleshy fruits, but supplement their diets differently, say with leaves in one case 

and insects in another.  It has often been assumed that preferred foods, or at least those most 

commonly eaten, have the greatest selective influence on molar design (Kay 1975), but as 

Kinzey noted for Callicebus moloch and C. torquatus, while both are primarily frugivorous, the 

former have longer shearing crests for slicing leaves, and the latter have a larger talonid basin for 

crushing insect chitin. Kinzey (1978: 378) intuited from this that, “when a food item is critical 

for survival, even though not part of the primary specialization, it will influence the selection of 

dental features”.  

This notion has developed into the idea of the fallback adaptation.  Many primates have a 

penchant for succulent, sugar-rich foods, a legacy of the ancestral anthropoid dietary adaptation 

(Ross 2000, Ungar 2009).  But differences in diet often emerge, hinging on seasonal shifts to 
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fallback foods taken when preferred resources are less available.  In such cases, favored foods 

are easy to consume and digest, offer a low cost-benefit ratio, and may not result in selective 

pressures that would tax functional morphology. On the other hand, less desirable fallback foods 

might require some morphological specialization, even if those foods are only critical when 

preferred ones are unavailable (Robinson and Wilson 1998).  One extreme example is 

Lophocebus albigena at Kibale in Uganda.  This mangabey prefers soft, fleshy fruits, which it 

eats most of the time. But it falls back on hard seeds and bark when the forest is severely 

stressed, such as occurs during extreme El Niño events (Lambert et al. 2004).  In this case, flat 

teeth and thickened crown enamel are needed only once-in-a-generation, but they still confer an 

advantage to those that have them. 

But primate dental-dietary adaptations are complicated.  Yes, some species have dental 

specializations for foods other than their preferred diets. But for other primates, mechanically 

challenging foods are the preferred ones. Consider another flat-toothed, thickly-enameled 

mangabey, Cercocebus atys, in the Ivory Coast’s Taï National Park. The most abundant item in 

its diet is the Sacoglottis nut, which harder than a cherry pit (McGraw et al. 2014). Cercocebus 

atys specializes on these nuts because they are rot-resistant and available year round.  Moreover, 

other primates are not dentally equipped to handle them. 

In terms of selection for dental form then, as Butler (1983: 289) noted, “the ability to 

exploit an unusual food source in times of scarcity may be decisive.”   So can dental topography 

reflect both preferred foods and fallback ones?  And can we parse the topography related to 

primary and secondary diet types?  Here we provide an example of molar functional morphology 

of closely-related platyrrhine primates to begin to address these questions.  We consider a large 
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sample of teeth representing 16 species in 11 genera, selected because of variation in both their 

primary food preferences, and their secondary diet choices.  

2. Materials and methods 
 

This study involved the characterization and analysis of crown topography of upper 

second molars (M
2
s) of 341 wild-caught individuals from northeastern Brazil.  The taxa, sample 

sizes for each, and their reported diets (both primary and secondary) are presented in Table 1.  

Aotus, Ateles, Callicebus, Cebus, Lagothrix, Saguinus, and Saimiri all prefer fruits, Callithrix 

consumes mostly gums, Alouatta eats more leaves, and Pithecia and Chiropotes favor seeds.  

Moreover, secondary diet items vary among the frugivores, with Aotus, Saguinus and Saimiri 

generally consuming more insects, Ateles more seeds, Callicebus and Lagothrix more leaves, and 

Cebus more hard objects (see Table 1 for references).  Of course, all diet categories have 

shortcomings. For instance, some foods may be eaten frequently at some sites and less frequently 

at others (e.g., differences in proportion of leaves eaten by some groups of Aotus).  Likewise, 

some categories may include foods with similar properties.  For instance, hard objects and seeds 

can be overlapping categories, but we distinguish them here on the basis that Cebus apella typically 

consumes more hard-shelled seeds than do Ateles spp.  For that matter, Pithecia and Chiropotes typically 

husk hard-shelled seed pericarps with their front teeth, so that molars can focus on the softer endocarp 

within (Norconk 2007, Rosenberger 1992).  Thus, the purpose of these analyses is to give a first 

approximation of the usefulness of these techniques in making finer resolution functional distinctions 

between taxa. 

Specimens used in this study are housed in various museum collections, including the 

Museum of Comparative Zoology in Cambridge, MA, The Field Museum of Natural History in 

Chicago, the American Museum of Natural History in New York, the US National Museum of 
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Natural History in Washington, DC, and the Museu Paraense Emilio Goeldi in Belém, Brazil.  

High-resolution impressions were taken of each primate dentition using President's Jet regular-

body polyvinylsiloxane dental impression material (Colténe-Whaledent, Corp., Mawah, NJ), and 

replicas were poured using Epotek 301 (Epoxy Technologies, Inc., Billerica, MA) epoxy resin 

and hardener. The replicas were then coated with a thin layer of graphite (The B’Laster Corp., 

Valley View, OH) followed by Teflon (CRC Industries, Warminister, PA) to mitigate effects of 

translucency of the resulting casts during laser scanning. Replicas were mounted in putty on a 

horizontal plate so that the occlusal plane of the tooth row was as parallel as possible to the plate. 

A quasi-3D point cloud representing each occlusal surface was created using an XSM multi-

sensor scanning machine (Xystrum Corp., Turino, Italy) with an integrated OTM3 laser head 

(Dr. Wolf & Beck GmbH, Wangen, Germany). Elevation data were collected at a lateral point 

spacing of 25 µm, resulting in a matrix of 1,600 z-values for each 1 mm
2
 of tooth surface in the 

x-y plane. 

Point clouds were then converted to ASCII format using Digiline software (Xystrum 

Corp., Turino, Italy) and processed using ArcGIS 10.2 (ESRI Corp., Redlands, CA). 

Digital elevation models of the surfaces were interpolated in ArcGIS using the inverse distance 

weighting, and cropped to include only the occlusal table, defined by elevations above the lowest 

point on the occlusal basin (see Klukkert et al., 2012 for details).  The resulting surface models 

were characterized quantitatively using six variables: slope, angularity, relief, OPCR, patch size, 

and sharpness.   

The first three variables considered were average surface slope (the first derivative of 

elevation), angularity (average slope of slope, or second derivative of elevation), and relief (the 

ratio of surface area calculated from triangulated irregular network models divided by the 
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underlying planimetric 2D areas).  These measures are described in detail in Ungar and M’Kirera 

(2004) and M’Kirera and Ungar (2004), and were calculated in ArcGIS 10.2.  The fourth 

variable, OPCR (orientation patch count, eight rotations) was calculated in SurferManipulator 

(Alistair Evans, 2008) as the number of contiguous patches of similar aspect taken in each of the 

four cardinal and four intercardinal directions, and averaged (Evans, Wilson, et al. 2007).  Point 

clouds for each tooth were reduced to 50 data rows following standard protocol.  The fifth 

variable, median patch size, is the median of OPCR patch size in pixels, calculated in 

SurferManipulator.  And the sixth variable, surface sharpness, was calculated according to the 

GISWear method (Karme et al. 2010) as the areal proportion of steeply sloped elements to the 

rest of the surface (with shallower slopes), determined using the natural breaks method  

classification (Jenks’ optimization) with three classes in ArcGIS 10.0.   These attributes in 

combination provide a robust characterization of molar occlusal table morphology that reflects 

both surface complexity and relief. 

 In addition, each specimen was scored for gross wear using a modified version of Scott’s 

(1979) method.  Scott scores (0 to 10) were recorded for each cusp of each tooth, then the values 

were averaged, rather than summed, because Callithrix and Saguinus have three molar cusps, 

whereas the other taxa have four. We then divided individual specimens for each genus into three 

wear stages (1 = slight, 2 = moderate, 3 = extreme) for statistical analyses.  The dividing line 

between the wear stages was set separately for each genus so as to assure as equal sample sizes 

as possible for each wear stage in the statistical analyses. 

 Principal components analysis (PCA) was used on the correlation matrix for all six 

variables to visualize patterns of specimen distribution in a low-dimensional space given that the 

variables are clearly not entirely independent of one another.  Specimens were plotted by both 
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primary and secondary diets.  Secondary diet comparisons were limited to taxa that consumed 

fruit as their primary diet, as the other primary diets were represented by only a single secondary 

diet type each.  Second, two-factor multivariate analysis of variance (MANOVA) models, with 

diet and wear category as the independent variables and the six shape attributes as the dependent 

variables, were used to assess effects of food preference, dental wear, and the interaction 

between the two. Primary and secondary diet tests were conducted separately rather than by a 

nested model because, again, only frugivores had more than secondary diet represented.  Data 

were rank transformed to mitigate violation of assumptions inherent in parametric statistics 

(Conover and Iman, 1981), and all six variables were included in the analyses.  Single-

classification ANOVAs on each variable and pairwise comparisons tests were used as needed to 

identify sources of significant variation.  Both Tukey’s HSD post hoc and Fisher’s LSD a priori 

tests were used to balance risks of Type I and Type II errors (Cook and Farewell, 1996).  Cases 

where Fisher’s LSD test yielded p < 0.05 but Tukey’s HSD test did not were treated as 

suggestive but of marginal significance. 

3. Results 
 

 Summary statistics, considered by diet category and wear stage, are presented in Table 2.   

3.1 Principal components analyses 
 

Results from the principal components analysis show that PC1 and PC2 explain 45% and 

30% of the variance respectively (Table 3).  Component loadings indicate that sharpness, slope, 

angularity and relief variables contribute the most to PC1, whereas OPCR and patch size 

contribute the most to PC2 when all specimens are combined.  Separate plots for each wear stage 
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evince good separation in PC1-PC2 bivariate space whether considered by primary diet or 

secondary diet for the frugivores (Figures 1-2). For primary diet variation, granivores separate 

well from gummivores and folivores along the PC1 axis, and frugivores and gummivores 

separate well from granivores and folivores along the PC2 axis.  For secondary diets, among the 

frugivores, those that supplement with insects separate well along the PC1 axis from those that 

consume seeds and hard objects, with leaf-eaters occupying an intermediate space.  These 

patterns hold for all wear stages. 

3.2 General linear model for primary diet  

 

The two-factor MANOVA with primary diet and wear as the independent variables 

yielded significant results for both attributes, as well as an interaction between the two factors 

(Table 4).  Single-classifications ANOVAs on the primary diet x wear interaction was unable to 

detect significant variation in any individual variable, however, suggesting a low-level 

significance in multidimensional space; the result was clearly driven by the large number of 

degrees of freedom (df = 36, 1416).   There was significant variation between groups considered 

by primary diet for all of the shape variables, and significant variation between groups 

considered by wear category for all but angularity and OPCR.  Values for sharpness, slope, and 

relief generally declined with increasing wear, but angularity and OPCR values held steady. 

 Each of the primary diet groups has a distinctive suite of attributes that in combination 

separates it from the others.  And all diet pairs differ significantly from one another in at least 

five of the six variables (Table 4). The frugivores, for example, have moderate but variable 

values for all attributes, suggesting moderate occlusal relief and fairly simple crowns (Figure 1).  

The seed eaters, in contrast, have less occlusal relief, with duller, less sloping crowns and smaller 
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patchs.  Gummivores and folivores are at the opposite end of the spectrum, with higher average 

slope and other attributes -- relief and OPCR in the case of folivores, and sharpness and 

angularity for the gummivores. 

3.3 Separating frugivores by secondary diet 
 

The two-factor MANOVA with secondary diet for frugivores and wear as the factors also yielded 

significant results for both attributes (Table 5).  In this case, though, there was no higher-order 

interaction between wear and diet.  Single-classification ANOVAs revealed significant variation 

between secondary-diet groups for all of the shape variables and, once again, significant 

variation between groups considered by wear score for all variables except angularity and OPCR 

(these are reflected by the consistent patterns of differences across wear stages in the PC plots of 

Figure 2).  As with the results for primary diet data, values for sharpness, slope, and relief 

generally declined with increasing wear, but angularity and OPCR values held firm. 

Like the primary diet groupings, each secondary diet group for the frugivores also has a 

distinctive suite of attributes that separates it from the others. Pairwise comparisons tests show 

that pairs of secondary diet groups differ significantly by an average of more than four of the six 

attributes.  Only one pair-wise comparison, hard-objects versus seeds, differs by as few as two 

attributes.  Frugivores that supplement their diets with insects tend to have sharp, sloping cusps 

with high relief and angularity, but low OPCR values (Figure 2).  Those that supplement with 

leaves also tend to have high angularity and relief, but high OPCR values and low patch sizes.  In 

contrast, frugivores that supplement their diets with hard objects and seeds tend to have low 

angularity and relief values, in addition to low average sharpness and OPCR values respectively.  

And hard-object feeders tend to have larger patch sizes too. 
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4.  Discussion 

 

Results of this study make clear that platyrrhine dental topography reflects both the sorts 

of foods primates are adapted to eat, and the degree to which teeth are worn. 

 

4.1 Wear-related changes to occlusal form 
  

While wear-related differences in occlusal form are not the focus of this study, it should be 

noted that different topographic attributes responded differently to wear.  First and foremost, 

none of the six variables showed interactions between wear and food type, either primary or 

secondary.  This is important, because it suggests that differences in dental topography between 

diet types hold for any given stage of wear, so like-worn specimens can be compared directly to 

assess diet differences.   

Furthermore, while most of the attributes changed with wear (e.g., more worn teeth were 

flatter, with less sloping surfaces and less topographic relief), two attributes, angularity and 

OPCR, did not differ significantly between the wear stages.  In other words, while these 

variables separated groups by both primary and secondary diet, their values were relatively 

insensitive to wear. This is consistent with previous studies of both angularity and OPCR for a 

variety of primates (Cuozzo et al. 2014, Dennis et al. 2004, Evans, Fortelius, et al. 2007, Ungar 

and M'Kirera 2003).   

Angularity and OPCR are both measures of complexity, or jaggedness, of the surface.  And a 

lack of variation in complexity between wear stages has been argued to reflect the maintenance 

of a functional aspect of occlusal morphology with wear (Ungar and M'Kirera 2003).  This 
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evidently relates to slope changes in the occlusal table resulting from angled walls of the pits that 

form as enamel gives way to softer dentin during tooth wear.  The basic idea is that Nature 

selects for a spatial relationship between cap enamel and underlying dentin horns that allows 

wear to sculpt the teeth in a manner that maintains functional efficiency.  This may be considered 

comparable to the phenomenon with herbivorous ungulate molars, which have complex 

infoldings and lophs that form sharp edges with dentin exposure for shearing and grinding tough 

vegetation.  Indeed, surface complexity seems to hold steady for primate molars studied so long 

as there is some enamel remaining on the occlusal surface, after which jaggedness declines and 

functional senescence sets in (King et al. 2005).   

4.2 Dental topography and diet 
  

More to the point here, dental topography reflects diet in a manner that makes sense in terms 

of the biomechanics of chewing and food fracture.   The frugivores, and especially the seed 

eaters, have fairly simple crowns and with low occlusal relief, and duller, less sloping crowns 

with smaller patches.  This morphology is appropriate for pulping fruit flesh and crushing seeds.  

The folivores and gummivores are at the opposite end of the spectrum, with higher average 

surface slope for shearing tough foods.  Of course, gums themselves aren’t mechanically 

challenging, and likely put little selective pressure on the cheek teeth.  But the secondary foods 

that Callithrix consumes, insects, have tough, chitinous exoskeletons most effectively pierced 

with pointed cusps or sharp occlusal blades (Crompton and Hiiemae 1970).  While shearing and 

grinding tough, fibrous leaves is likely more efficient with Alouatta teeth given its higher OPCR 

values (and more “tools” for the job of food fracture), Callithrix benefits from more angular 

surfaces for piercing insect exoskeletons to release their contents.   
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The higher angularity average for Callithrix is more-or-less consistent with previous findings 

on strepsirrhine primates that insectivores have more curvature (i.e., higher Dirchlet Normal 

Energy values) than folivores (Winchester, et al. 2014).  On the other hand, the observation that 

insect-feeding Callithrix had lower average relief and OPCR values than Alouatta runs counter 

to expectations given previous results on strepsirrhines (Boyer 2008, Bunn, et al. 2011).  There 

are any number of possible explanations for the apparent discrepancy.  It could be that in one 

case, (Alouatta), the tougher diet is the primary one while in the other (Callithrix), it is the 

secondary one.  Or it could be as simple as the fact that we’re considering very different primates 

here, and that phylogeny is confounding results.  On the other hand, it does make some sense that 

the folivores would have more “tools” for food fracture than insectivores, as leaf eaters need to 

dice foliage to increase surface area for digestive enzymes to act on, whereas insect eaters must 

simply pierce, rupture, and separate chitinous exoskeletons to release the softer-tissue contents 

within (Lucas 2004, Prinz et al. 2003).  A similar argument was used to explain higher optimal 

patch counts in herbivores as compared with carnivores (Evans, et al. 2007).  Nevertheless, 

further study on more taxa should help resolve this. 

Differences in molar functional morphology are also evident with subtler diet differences.  

When comparing platyrrhine frugivores, those that consume different foods as their secondary 

resources also differ significantly in their occlusal topography in predictable ways.  As one might 

expect, those that supplement their fruit diets with insects and leaves have high angularity and 

occlusal relief.  Further, secondary insectivores have sharper cusps but lower OPCR values than 

secondary folivores.  And those that supplement with hard objects and seeds tend to have low 

angularity and relief values, as well as low average sharpness and OPCR values respectively.  

These attributes make sense given both food fracture properties and chewing biomechanics. 
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4.3 Selective influences on occlusal morphology 
 

This also raises the important point that dental topography can reflect either preferred 

foods, less-commonly consumed items, or both (Ungar 2017).  Debates concerning the 

relationship between proportion of a food type and its selective influence on molar design go 

back several decades (Kay 1975, Kinzey 1978, Rosenberger and Kinzey 1976).  At first glance, 

it makes sense that more commonly eaten, and therefore presumably more important foods, 

should have a greater selective influence.  But what about favored foods that are not protected 

against fracture by tough or hard tissues, like soft fruit flesh? These do not require specialized 

occlusal form.  Some have argued, alternatively, that selective influence on tooth shape is 

proportional to the degree of mechanical protection of food rather than its frequency in the diet.  

Put another way, it doesn’t matter what your teeth look like if you eat mush most of the time, but 

if have to chew rocks, even on rare occasion, to survive, then your teeth had better be able to 

handle rocks. 

This may well explain the conundrum that Kay, Sussman and Tattersall (1978) 

encountered discovering that ring-tailed and brown lemurs had similar shearing crest lengths. 

Sussman (1977) had studied these species in three forest patches: one with brown lemurs but no 

ringtails, another with ringtails but no brown lemurs, and a third with both. The species 

overlapped in their diets (with both consuming fruits, leaves, flowers, and bark), but the brown 

lemurs ate more leaves, and the ringtails consumed more fruit. And this difference was consistent 

between sites and seasons, whether or not the same plant species were available at a given time 

and place. Sussman’s observation was the inspiration for his species-specific dietary adaptations 

model, wherein “dietary patterns are ultimately dependent on the morphological and 

physiological adaptations of the species” (Sussman 1987: 152).  
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Kay and his colleagues proposed several possible explanations, one of which was the 

suggestion leaves may put stronger selective pressure than do fruits on shearing crest length. 

They mused, “how much folivory is needed to select for folivorous dental morphology?” (Kay, 

et al. 1978: 126).  Could it be that shearing crest length doesn’t reflect how many leaves you eat 

but, rather, whether you need to eat them at all? They had hit upon a profound and important new 

idea, though it would remain undeveloped for decades.  This indeed can also explain why 

mangabeys at Kibale, which take hard food only at times of extreme resource stress, and those at 

Taï, which consume them more than any other food type, both have flat molar teeth with thick 

enamel (see above, and Lambert, et al. 2004, McGraw, et al. 2014).  In the case of the 

mangabeys, as with the lemurs, it seems that selection is responding not to whether an animal 

prefers mechanically challenging foods, but to whether it needs to be able to eat them at all to 

survive. 

A special example of this phenomenon is Liem’s paradox. Consider Minkley’s cichlid 

fish. Some have flat, pebble-like teeth adapted to crack hard snail shells; but these fish pass right 

by the snails when softer foods are available (Liem and Kaufman 1984). They avoid the very 

foods to which they are adapted given the choice. The paradox is, as Ichthyologist Karel Liem 

(1980) wrote, that “the most specialized taxa are not only remarkable specialists in a narrow 

sense, but also jacks-of-all-trades”. So more specialized teeth can actually lead to broader, more 

generalized diets, at least when dental morphology does not limit the ability to consume 

preferred foods (Fortelius et al. 2014, Robinson and Wilson 1998).   

Primates are no exception when it comes to fallback adaptations (Cuozzo et al. 2012).  

They tend to prefer soft, succulent, energy-rich fruit flesh to mechanically or chemically 

challenging foods.  This is, as noted above, a legacy of the ancestral dietary adaptation (Ross 
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2000, Ungar 2009).  Yes, there are examples where the most commonly eaten foods are hard or 

tough, like the Saccoglottis fruits taken by the mangabeys at Taï, or for that matter, the wild 

celery and other terrestrial herbaceous vegetation (THV) consumed by gorillas at Karisoke in 

Rwanda (Fossey and Harcourt 1977).  And these primates have very specialized digestive 

anatomy to allow them to overcome the mechanical defenses of the plants they eat.  It could well 

be the case, however, that these primates are not driven to eat mostly hard or tough foods 

because they prefer them, but rather, because availability demands it and their teeth allow it.   In 

the case of the Taï mangabeys, niche partitioning with the many other primates in the forest 

evidently play a role in limiting their diets to items foraged mostly from leaf litter on the forest 

floor (McGraw 2007).  While in the case of the Karisoke gorillas, hunting and forest clearing for 

firewood and cultivation around the Virunga Massif have kept the mountain gorillas to altitudes 

where little other than THV is available to eat (Mehlman 2008).  Could these be examples of 

“perpetual” fallback feeders (Ungar 2004)?   

Butler (1963: 4) wrote, “we have indeed made a beginning, but so far we have only 

scratched the surface, and our knowledge of the teeth of non-human primates is particularly 

superficial”.  While it’s true that we still have much to learn about the relationships between 

dental form and function in primates, we’ve clearly come a long way in the past half century.  

Among the more important findings is that occlusal topography can teach us something about 

both primary and secondary dietary adaptations in primates.   
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 Figure legends 

 

Figure 1.  Primary diet analyses.  Principal Components Analyses for each of the three wear 

stages described in the text (left) and bivariate plots illustrating results for pairs of variables 

comparing groups by diet (right). 

Figure 2. Secondary diet analyses for frugivores.  Principal Components Analyses for each of the 

three wear stages described in the text (left) and bivariate plots illustrating results for pairs of 

variables comparing groups by diet (right). 
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Table 1.  Specimens included in this study with diet attributions. 

 

  

Diet 

  Taxon n Primary Secondary References 

Alouatta 60 leaves fruit Julliot and Sabatier, 1993 

Alouatta 

belzebul 54 

   Alouatta 

seniculus 6 

   Aotus 9 fruit insects Wright, 1989 

Aotus infulatus 9 

   Ateles 32 fruit seeds Suarez, 2006 

Ateles 

belzebuth 27 

   Ateles paniscus 5 

   Callicebus 35 fruit leaves 

 Callicebus 

moloch 35 

   Callithrix 29 gums insects 

 Callithrix 

argentata 15 

   Callithrix 

humeralifer 14 

   

Cebus 30 fruit 

hard 

objects Terborgh, 1983; Galetti and Padroni, 1994 

Cebus apella 30 

   Chiropotes 35 seeds fruit Van Roosmalen, 1981; ; Ayers, 1989 

Chiropotes 

albinasus 14 

   Chiropotes 

satanas 21 

   Lagothrix 16 fruit leaves Defler and Defler, 1996 

Lagothrix 

lagotricha 16 

   Pithecia 19 seeds fruit Kinzey and Norconk, 1993; Peres, 1993 

Pithecia 

irrorata 11 

   Pithecia 

monachus 8 

   Saguinas 41 fruit insects Anapol, 1994 

Saguinas midas 41 

   Saimiri 35 Fruit insects Terborgh, 1983; Lima and Ferrari, 2003 

Saimiri ustus 35 
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Table 2. Summary statistics.  Individuals divided by diet and wear stage. 

 

n 

 

Sharpness Slope Angularity Relief OPCR ClumpSize 

Wear stage 1                 

Leaves/Fruit 18 Mean 0.253 40.345 88.904 178.385 64.972 10.955 

    SD 0.029 2.975 0.189 15.982 7.89 2.226 

Fruit/Insects 26 Mean 0.286 39.115 89.298 157.222 41.351 14.413 

    SD 0.039 3.451 0.108 13.374 11.732 3.853 

Fruit/Seeds 13 Mean 0.191 33.326 88.828 144.648 45.029 15.077 

    SD 0.035 3.851 0.1 12.943 5.5 3.63 

Fruit/Leaves 14 Mean 0.246 35.797 88.983 148.155 53.563 13.643 

    SD 0.046 3.699 0.142 15.154 11.289 3.578 

Gums/Insects 8 Mean 0.265 38.583 89.261 147.59 33.469 20.047 

    SD 0.05 3.029 0.07 9.175 4.747 4.958 

Seeds/Fruit 20 Mean 0.216 32.176 89.115 148.609 61.75 9.018 

    SD 0.055 3.112 0.126 20.147 14.457 2.55 

Fruit/Hard 8 Mean 0.211 33.462 88.725 138.835 42.688 20.031 

    SD 0.045 3.415 0.102 6.203 5.892 5.717 

Wear stage 2   
      

  

Leaves/Fruit 23 Mean 0.232 39.252 88.881 171.658 62.897 11.625 

    SD 0.04 2.293 0.158 14.715 7.476 2.109 

Fruit/Insects 27 Mean 0.306 39.528 89.318 158.17 42.065 14.141 

    SD 0.053 4.186 0.123 17.316 11.154 3.651 

Fruit/Seeds 11 Mean 0.176 29.436 88.818 133.271 43.886 17.233 

    SD 0.049 3.101 0.049 7.641 7.58 5.34 

Fruit/Leaves 28 Mean 0.23 32.99 88.996 142.314 54.045 12.071 

    SD 0.049 4.272 0.136 15.672 14.18 2.334 

Gums/Insects 5 Mean 0.259 37.475 89.374 145.598 36.1 20.712 

    SD 0.026 1.892 0.055 6.451 2.42 1.684 

Seeds/Fruit 17 Mean 0.172 28.585 88.992 137.558 56.919 9.018 

    SD 0.035 3.422 0.15 14.147 14.744 2.55 
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Fruit/Hard 16 Mean 0.196 31.331 88.63 136.579 43.461 19.902 

    SD 0.068 4.008 0.12 9.343 8.224 4.609 

Wear stage 3   
      

  

Leaves/Fruit 18 Mean 0.21 35.67 88.908 165.352 66.729 14.413 

    SD 0.033 2.682 0.118 16.666 8.462 3.853 

Fruit/Insects 23 Mean 0.266 39.588 89.317 160.12 48.315 12.53 

    SD 0.066 4.877 0.086 14.853 16.185 4.231 

Fruit/Seeds 9 Mean 0.14 26.763 88.778 131.99 49.028 13.076 

    SD 0.041 2.873 0.069 8.638 8.204 4.388 

Fruit/Leaves 15 Mean 0.189 30.011 88.915 139.42 54.517 12.071 

    SD 0.04 4.084 0.119 16.287 10.784 2.334 

Gums/Insects 15 Mean 0.268 37.405 89.295 146.391 38.333 16.104 

    SD 0.055 4.256 0.08 11.029 11.452 4.616 

Seeds/Fruit 17 Mean 0.141 25.986 88.914 130.347 51.669 9.566 

    SD 0.021 3.556 0.141 10.267 9.911 2.728 

Fruit/Hard 8 Mean 0.174 30.762 88.624 146.665 42 18.484 

    SD 0.047 5.124 0.173 29.589 5.919 3.819 
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Table 3.  Principal Components Analysis results. 

 

Component 1 2 3 4 5 

Percent variance explained 44.956 30.064 13.756 5.660 4.276 

Variance by components 2.697 1.804 0.825 0.340 0.257 

Sharpness 0.839 0.255 -0.087 0.460 -0.095 

Slope 0.945 0.038 0.229 -0.093 0.012 

Angularity 0.672 0.046 -0.691 -0.180 0.190 

Relief 0.805 -0.329 0.405 -0.220 -0.065 

OPCR 0.000 -0.918 0.124 0.198 0.319 
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Table 4. MANOVA/ANOVA and multiple comparisons tests with specimens grouped by primary diet preference. ANOVA and 

Wilks’ λ results *p < 0.05, pairwise comparisons **p < 0.05 Tukey’s and Fisher’s tests, *p < 0.05 Fisher’s test only. 

 

 ANOVA results           Wilks' λ   

  Sharpness Slope Angularity Relief OPCR Clump size df F df 

Primary 19.363* 41.244* 17.707* 43.489* 65.763* 65.65* 3, 327 35.727* 18, 911 

Wear  9.606* 9.738* 0.991 4.944* 0.153 3.858* 2, 327 3.343* 12, 644 

Interaction 1.457 1.118 1.087 1.435 1.567 1.433 6, 327 1.667* 36, 1416 

          

 

Pairwise 
comparisons 

 

  
      Primary Sharpness Slope Angularity Relief OPCR Clump size 
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Ungar et al., p. 37 
 

  

fruits x gums -51.662** -55.359** -109.812** -5.578 82.915** -56.42** 

  

 

fruit x leaves -0.558 -69.247** 49.047** -116.95** -131.475** 80.811** 

  

 

fruits x seeds 86.244** 92.918** 3.859 49.694** -71.508** 139.44** 

  

 

gums x leaves 51.104* -13.888 158.859** -111.372** -214.39** 137.231** 

  

 

gums x seeds 137.906** 148.276** 113.671** 55.271** -154.423** 195.86** 

  

 

leaves x seeds 86.803** 162.164** -45.188** 166.643** 59.968** 58.629** 
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Ungar et al., p. 38 
 

 

 

Table 5.  MANOVA/ANOVA and multiple comparisons tests with frugivores grouped by secondary diet. ANOVA and Wilks’ λ results *p < 0.05, 

pairwise comparisons **p < 0.05 Tukey’s and Fisher’s tests, *p < 0.05 Fisher’s test only. 

 

 ANOVA results           Wilks' λ   

  Sharpness Slope Angularity Relief OPCR Clump size df F df 

Secondary 53.872* 61.74* 287.873* 34.37* 12.086* 14.901* 
3, 186 

31.929 
8, 512 

Wear  10.346* 9.743* 1.618 3.093* 1.28 3.698* 2, 186 3.852 
12, 362 

Interaction n/a n/a n/a n/a n/a n/a 6, 186 1.059 36, 797 

          Secondary Sharpness Slope Angularity Relief OPCR Clump size 
   hard x insects -78.778** 

-78.599** -135.954** -73.214** -6.336 66.303** 

   hard x leaves -26.133** -11.673 -65.467** -15.293 -57.682** 74.333** 

   hard x seeds 17.505 15.928 -30.564** 4.903 -20.027 48.909** 

   insects x leaves 52.645** 66.925** 70.487** 57.921** -51.346** 8.031 

   insects x seeds 96.283** 94.527** 105.39** 78.117** -13.691 -17.394 

   leaves x seeds 43.638** 27.601** 34.903** 20.196 37.656** -25.424* 

    

 

 

 

Wilks' λ  
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Figure 1.  Primary diet analyses.  Principal Components Analyses for each of the three wear stages described 
in the text (left) and bivariate plots illustrating results for pairs of variables comparing groups by diet 

(right).  
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Figure 2. Secondary diet analyses for frugivores.  Principal Components Analyses for each of the three wear 
stages described in the text (left) and bivariate plots illustrating results for pairs of variables comparing 

groups by diet (right).  
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