

Tree Physiology

Early root growth and architecture of fast- and slowgrowing Norway spruce (Picea abies) families differ – potential for functional adaptation

Journal:	Tree Physiology
Manuscript ID	TP-2017-218.R2
Manuscript Type:	Research Paper
Date Submitted by the Author:	n/a
Complete List of Authors:	Hamberg, Leena; Luonnonvarakeskus, Management and Production of Renewable Resources Velmala, Sannakajsa Sievänen, Risto; Luonnonvarakeskus Kalliokoski, Tuomo; University of Helsinki, Forest Science Pennanen, Taina; Luonnonvarakeskus, Management and Production of Renewable Resources
Keywords:	biomass distribution, growth rate, mixed effect models, norway spruce, root distribution, root mass

1	Early root growth and architecture of fast- and slow-growing
2	Norway spruce (<i>Picea abies</i>) families differ – potential for
3	functional adaptation
4	
5	Running title: Root growth differs in spruce
6	
7	Leena Hamberg ¹ *, Sannakajsa M. Velmala ¹ , Risto Sievänen ¹ , Tuomo Kalliokoski ² ,
8	Taina Pennanen ¹
9	¹ Natural Resources Institute Finland, Helsinki, Finland
10	² Department of Physics, University of Helsinki, Helsinki, Finland
11	
12	
13	*Correspondence:
14	Leena Hamberg, Natural Resources Institute Finland, P.O. Box 2 (Latokartanonkaari 9), FI-
15	00790 Helsinki, Finland email: leena.hamberg@luke.fi, tel. +358 29 532 5400
16	
17	Keywords: seedlings, phenotypes, fine roots, WinRHIZO [™] , mixed models
18	

19 Abstract

The relationship between the growth rate of aboveground parts of trees and fine root development is largely unknown. We investigated the early root development of fast- and slow-growing Norway spruce (Picea abies L.) H. Karst. families at a developmental stage when the difference in size is not yet observed. Seedling root architecture data, describing root branching, were collected with the WinRHIZO[™] image analysis system, and mixed models were used to determine possible differences between the two growth phenotypes. A new approach was used to investigate the spatial extent of root properties along the whole sample root from the base of one-year-old seedlings to the most distal part of a root. The root architecture of seedlings representing fast-growing phenotypes showed ca. 30% higher numbers of root branches and tips, which resulted in larger root extensions and potentially a better ability to acquire nutrients. Seedlings of fast-growing phenotypes oriented and allocated root tips and biomass further away from the base of the seedling than those growing slowly, a possible advantage in nutrient limited and heterogeneous boreal forest soils. We conclude that a higher long-term growth rate of the aboveground parts in Norway spruce may relate to greater allocation of resources to explorative roots that confers a competitive edge during early growth phases in forest ecosystems.

Keywords: seedlings, phenotypes, fine roots, WinRHIZOTM, mixed models

39 Introduction

The relationship between tree phenotype, root proliferation and the spatial distribution of fine roots is largely unknown. For example, in Norway spruce (*Picea abies* L.) H. Karst., some genotypes grow faster and repeatedly outcompete others in long-term field experiments, but whether this relates to root development has seldom been investigated (Korkama et al. 2006, Velmala et al. 2014a). Resource allocation to roots may be a crucial part of a tree's strategy in competition with conspecifics and other species within a forest.

Variation in early root structure, such as larger root systems, implies great differences in the potential of growing roots to acquire nutrients and water in heterogeneous forest soils that may lead to better growth in later stages of long-lived trees. Small roots, also called fine roots, are traditionally defined as roots less than 2.0 mm in diameter, but in more recent investigations only roots less than 1.0 or 0.5 mm in diameter are considered fine roots (Pregitzer 2002, Pregitzer et al. 2002, Bagniewska-Zadworna et al. 2012, Beidler et al. 2015, McCormack et al. 2015). Fine root tissue is nutritionally expensive to produce and maintain due to its high concentration of nitrogen, metabolic activity and respiration rate (Pregitzer et al. 1997, Pregitzer 2002) as well as its turnover (Leppälammi-Kujansuu et al. 2014). In young tree seedlings, two functionally different fine root types can be found, i.e., pioneer roots and fibrous roots (Zadworny and Eissenstat 2011, Bagniewska-Zadworna et al. 2012; Zadworny et al. 2017). In developing root systems, the function of pioneer roots is soil exploration and assurance of long-distance, rapid transport of water and nutrients as well as provision of a framework for the whole root system. Pioneer roots are long and thick, not colonized by mycorrhizal fungi, they grow and extend rapidly in the soil both horizontally and vertically, and branch intensively since they typically quickly produce fibrous roots responsible for absorption of water and nutrients (Zadworny and Eissenstat 2011; Bagniewska-Zadworna et al. 2012). The production of short-roots, also called root tips, or exterior links by Fitter and

64	Stickland (1991), and associations with mycorrhiza increase the surface-area of roots and
65	thus the uptake of nutrients and water for a given amount of carbon (Ostonen et al. 2007,
66	2013). Root tips have a specific, dynamic role in root systems especially in absorbing water
67	and acquiring nutrients, with high biomass and turnover (Wang et al. 2006).
68	Norway spruce adapts its root growth in response to environmental conditions
69	(Kalliokoski et al. 2008). Stand characteristics have significant impacts on the architecture of
70	coarse roots and affect the amount of root tips in the organic layer (Helmisaari et al. 2009,
71	Kalliokoski et al. 2008, 2010). Furthermore, carbon allocation and the longevity of structural
72	compounds differ with thickness and the classification of roots, implying huge functional and
73	physiological heterogeneity within the outer rhizosphere (Keel et al. 2012).
74	Boukcim and Plassard (2003) showed that the number and total length of root
75	tips were higher in a fast-growing spruce family compared to a slow-growing family.
76	Accordingly, we have previously found some differences between seedling roots of six
77	Norway spruce families showing contrasting growth performance in long-term field trials
78	(Velmala et al. 2014a, b). The density of outermost ectomycorrhizal root tips (number of root
79	tips per root length) was lower in fast-growing than slow-growing families when seedlings
80	were still of the same size. Beyond these associations between root tips and phenotypic
81	characteristics, a genetic component driving root tip formation and root growth in Norway
82	spruce was found by comparing 55 clonal genotypes. The density of root tips among spruce
83	clones varied almost twofold, indicating huge adaptive potential, with root tip density being
84	moderately heritable ($H^2 = 0.41$) (Velmala et al. 2013).
85	However, evidence on the relationship between root structuring and shoot
86	growth rate is still incomplete as spruces were not included in the study where root traits of
87	fast- and slow-growing plants were compared (Comas and Eissenstat 2004). Bouckim and
88	Plassard (2003) compared only two Norway spruce families, while in other spruce root

Manuscripts submitted to Tree Physiology

89	studies comparing fast- and slow-growing phenotypes (Korkama et al. 2006, 2007, Velmala
90	et al. 2013, 2014a, b), no architectural analyses of root systems were performed. Especially,
91	studies including complete root segments extending from the base of a seedling to the most
92	distal part of a root are missing.
93	We compared the early root formation of six Norway spruce families showing
94	contrasting growth performance in long-term field trials before any differences in
95	aboveground growth were found. We were interested in determining whether there are
96	differences in root biomass, spatial extension of root systems and ability to form root
97	branches. Detailed architectural data on whole sample roots originating from the base of a
98	seeding were used in these analyses. The data included information on all root pieces
99	originating from each branching point. We hypothesized that seedlings of fast-growing
100	families would display lower root tip density (i.e., number of root tips per root length, see
101	Velmala et al. 2014a, b). Furthermore, we hypothesized that in seedlings of fast-growing
102	families, the length of sample roots is higher and includes more side branches (see Fig. 1)
103	further away from the base of a seedling than in seedlings of slow-growing families. To the
104	best of our knowledge, no previous intraspecific studies have concentrated on spatial
105	differences in tree roots, i.e., differences in root branching intensity along the length of
106	sample roots.
107	
108	Material and Methods
109	Seedlings
-	

The study was performed using six Norway spruce seed orchard families that originated from southern Finland and were selected for breeding purposes (Table 1). Three families were classified as fast-growing (good and excellent growth; family codes 298, 612, 1162) and three as slow-growing families (stunted; family codes 394, 427, 1183) based on stem height

measured in several long-term field trials. These contrasting groups of spruce families arehereafter referred to as the fast- and slow-growing phenotypes.

Seeds were germinated under optimal growth conditions in nursery containers with unfertilised light Sphagnum peat (PP03, Kekkilä, Vantaa, Finland) in a glasshouse at the end of April 2011. Seedlings were transplanted after six weeks into Plantek-81F containers (vol. 85 cm³, BCC) filled with sieved forest humus, which was excavated from the uppermost layer of fine sandy till of a Norway spruce stand located in southern Finland. The humus acted as a natural source of forest microbiota, e.g. ectomycorrhizal fungi. In August, sieved forest humus (30 ml) was added again to the base of each seedling. Seedlings were grown outdoors in an open forest nursery field (62.625 N, 27.122 E, Supplementary Table 1) following common seedling production practises in Finland, i.e., irrigated regularly and fertilized once a week according to the Kekkilä Forest-Superex fertilisation program (NPK 22-5-16) - each seedling was provided with approximately 10 mg N during the growing season. The seedlings overwintered outdoors under natural snow cover. In the following summer, seedlings were grown in the same open nursery field and fertilized once a week according to the Kekkilä Forest-Superex fertilisation program with a slightly higher N load: the conductivity of peat was 2 mS cm^{-1} . In early August 2012, at 16 months of age and after two growing seasons, nine replicate seedlings from each family were sampled (Fig. 1a). Seedlings were removed from containers, the shoot was detached from roots and shoot height was measured from the base to the top of a seedling (mm) in order to examine if the phenotypes differed in height. Roots were washed gently with tap water and stored in water at +4 °C.

137 Description of root data

ו ס		
3	138	In most cases, there were altogether ca. five root branches per seedling. Three uppermost
4 5 6	139	sample roots per seedling were selected for the architectural analysis by sampling down from
0 7 8	140	the root collar (Fig. 1a). Thus, altogether 162 detached roots were investigated in detail. The
9 10	141	whole sample root from the base of a seedling up to the most distant part of a root was
11 12	142	included in the architectural analysis. Fresh sample roots were kept in water on large Petri-
13 14	143	dishes when scanned with an Epson perfection V700 Photo scanner (SeikoEpson
15 16	144	Corporation), and analysed using the WinRHIZO [™] image analysis system professional
17 18 19	145	software (2013) in order to obtain detailed link-based data for statistical analyses (see below).
20 21	146	Here, a link is defined as a piece of root between two branches or a piece of root forming a
22 23	147	root tip (Fig. 1b).
24 25	148	Soil humus ensured that the roots were highly ectomycorrhizal (>81%, Velmala
26 27	149	et al. 2014b). On average, seedlings were colonized with ca. five ectomycorrhizal species and
28 29 20	150	the fast- and slow-growing families did not differ in terms of their ectomycorrhizal
30 31 32	151	communities. The most abundant ectomycorrhizal colonizers belonged to the genera
33 34	152	Amphinema Piloderma and Thelephora which comprise more than two thirds of the
35 36	153	occurrences. The ectomycorrhizal fungal communities of the families are described in detail
37 38	154	in Velmala et al. (2014b)
39 40	154	
41 42	155	After scanning, roots and shoots were dried at 60 °C for 24 h. Total biomasses
43 44	156	of roots and shoots (g) were determined for three seedlings per family. Dry biomass (g) was
45 46	157	measured separately for detached sample roots.
47 48	158	In our data analyses, we used the developmental order-based classification of
49 50	159	WinRHIZO TM (2013) that counts root orders from the main branch of a sample root outwards
51 52	160	instead of the functional stream-order classification beginning from the outermost roots
53 54 55	161	inwards. This approach was chosen as our root systems were relatively small and simple
56 57 58	162	(mean diameter < 1 mm, Table 2, McCormack et al. 2015), and because the developmental
59 60		f

163	order-based classification provides more information on root architecture (i.e., on
164	architectural differences between the fast- and slow-growing phenotypes, such as the length
165	of the main branch of a sample root and the number of side branches along it, see Fig. 1b)
166	which was the main focus of the present study. In the developmental order-based
167	classification, the main branch of a sample root originating from the base of a seedling was
168	considered a zero order root, and at the branching point the thicker branch continued the same
169	zero order while the thinner one belonged to the next order. Thus, a root branch originating
170	from the zero order root was considered a first order root branch, and a root branch
171	originating from the first order root was considered a second order root branch, etc. (Fig. 1b).
172	The developmental order-based classification is especially useful for roots with a clear main
173	root axis or branch, and in which clear branches of higher orders can be observed, such as in
174	young spruce seedlings in our study (Fig. 2). Unlike the developmental order-based
175	classification of roots used in the present study, the stream-order classification is more
176	suitable for describing the function of roots based on the division between absorbing and
177	transporting roots so that the first three root orders representing absorbing roots are
178	considered anatomically and physiologically different from higher root orders (Pregitzer et al.
179	2002, McCormack et al. 2015, Liu et al. 2016, Norby and Iversen 2017). It seems that the
180	functional stream-order classification has widely been used in studies where roots have been
181	cut to small fragments (e.g., Chen et al. 2016; Ostonen et al. 2017; Zadworny et al. 2017),
182	whereas in the present study, a whole sample root was investigated in detail. Yet, root tips,
183	also known as exterior links, and interior links (other links than root tips) were investigated
184	separately (Fitter and Stickland 1991) to ensure comparability to the functional classification.
185	In the WinRHIZO TM (2013) data, the number, length (mm) and surface area
186	(mm^2) of each link of each order were available. WinRHIZO TM also calculated root volume
187	per sample root (mm ³). Furthermore, angle, in degrees, between each pair of two links

Manuscripts submitted to Tree Physiology

originating from the same branching point was provided. Utilizing this information, we calculated the total number, length and surface area of links per sample root, and separately for zero to the highest order links of root tips and interior links. In addition, root tip density, i.e., the number of root tips divided by the total length of links, and the mean angle for root tips and interior links were calculated per sample root. A side branch was defined as one branch of a root that originates from the zero order root link and contains all branching links from that point (see Fig. 1b). Side branches include more than one link, and are thus separated from exterior links (i.e., root tips). Utilizing the LIGNUM software (Sievänen et al. 2010), we determined the occurrence of side branches (Fig. 1b), the number of all links and root tips and the length of all links within each branch (both side branches and root tips were considered as branches) along a zero order root. The LIGNUM software was also used to visualize the roots.

Utilizing link-based data, we calculated specific root length (SRL, ratio of root length to root dry mass, mm g⁻¹), specific root area (SRA, ratio of surface area to root dry mass, m² kg⁻¹) and root tissue density (RTD, ratio of root dry mass to root volume, kg m⁻³) for all seedlings.

205 Statistical analyzes

Differences in shoot height (height of a seedling from the base to the top, mm), and total biomass of the three sample roots (g), specific root length (SRL, mm g⁻¹), specific root area (SRA, m² kg⁻¹) and root tissue density (RTD, kg m⁻³) between the fast- and slow-growing phenotypes were analyzed using linear mixed models (LMMs) in R with the *lme* function in library *nlme* (n = 54, six spruce families with nine seedlings in each, see Ostonen et al. 2013, Maherali 2014, R Core Team 2015, Pinheiro et al. 2016, Weemstra et al. 2016). In the

LMMs, response variables were either the height, SRL, SRA or RTD of a seedling or the total biomass of three sample roots per seedling. As an explanatory variable, we used the long-term growth rate of a family (a factor with two levels: fast or slow), and as random factor we used the family (seedlings belonging to the same origin were given the same family code). Similarly, differences in the total biomass of roots and shoots, and root: shoot ratio, between seedlings of fast- and slow-growing phenotypes were investigated as above (n = 18, six spruce families with three seedlings in each). Detailed link data for each sample root of a seedling (n = 162, i.e., 54 seedlings with three sample roots in each), produced by WinRHIZOTM (2013), were analyzed using linear (LMMs) or generalized linear mixed models (GLMMs) in R. These models were estimated separately for root volume, root tip density, and number, angle and surface area of links, measured separately for each sample root of an individual seedling. These response variables were mainly investigated for the whole sample root, and for zero, first, second and the combined third to fifth order links separately (Fig. 1). Count response models were estimated assuming a Poisson distribution with log link function using the *glmer* function in the *lme4* library (Bates et al. 2015). For other responses, a normal distribution was assumed, and the *lme* function in library *nlme* was used to estimate these models (Pinheiro et al. 2016). The long-term growth rate of a seedling (a factor with two levels: fast or slow) was included as an explanatory variable. Furthermore, two nested random factors were included: family and seedling identity (as three sample roots per seedling within a family were investigated as an individual observational unit). Generalized additive mixed models (GAMMs) were used to investigate differences in root properties along zero order sample roots. The probability of occurrence of side branches, the number of root tips and all links, and the total length of links in branches along zero order links of sample roots were analyzed using the function *gamm* in library

http://mc.manuscriptcentral.com/tp

Manuscripts submitted to Tree Physiology

237	mgcv in R (Wood 2004, 2006, 2011). Models for seedlings of fast- and slow-growing
238	phenotypes were estimated separately. Models for the probability of occurrence of side
239	branches were estimated assuming a quasi-binomial distribution with logit link function in R.
240	The response in this model was a factor with two levels: $0 = a$ side branch does not exist but a
241	root tip was visible, $1 = a$ side branch with more than one link existed. GAMMs for count
242	responses (number of root tips, and all links per branch, i.e., both side branches and root tip
243	branches were included) were estimated assuming a quasi-Poisson distribution with log link
244	function, and the model for the total length of branches (mm) as a response was estimated
245	with a log-linear model. As an explanatory variable we used the total length of sample root
246	links of zero order in cm and in a separate model the total length was scaled from 0 to 100%.
247	These variables were smoothed when the models were estimated. As random factors we used
248	family, seedling identity (as three sample roots per seedling within a family were investigated
249	as an individual observational unit), and identity of a sample root (as several side branches
250	and root tips existed per sample root length). GAMMs are able to find curvilinear
251	relationships between two variables, as in these models, tiny regression lines are combined
252	together to form a smooth line representing variation in data along an investigated
253	explanatory variable (Wood 2004, 2006, 2011). P-values for the curves are given, but no
254	parametric estimate for the smoothed explanatory variable is provided as a result of this
255	analysis. Statistically significant results can be visualized by drawing a response curve based
256	on the GAMM.
257	
258	Results
250	Saadling results
233	
260	There were no differences in shoot height, specific root length, specific root area, root tissue

261 density, the total biomass of shoots or roots, nor in root:shoot biomass ratio between

seedlings of fast- and slow-growing Norway spruce phenotypes (Table 3). Only total biomass
of the three sample roots per seedling was indicatively higher in fast- than in slow-growing
seedlings.

266 Sample root results

The thickest links (zero order) comprised less than 20% of the root links while more than 80% of all links were of the 1st to 5th order (Table 2). In our data, root diameter decreased with increasing order (note that we used the developmental order-based classification of counting orders outwards from the main branch of a sample root). Mean diameter and the length of links did not differ between the seedlings of fast- and slow-growing phenotypes although fast-growing seedlings showed slightly higher values. Half of the links were root tips while the rest were interior links.

Root volume of the sample roots was indicatively higher in fast- than in slowgrowing seedlings (n = 162, p = 0.10), with predicted values based on the model being 319.7 \pm 26.7 and 238.3 \pm 26.7 mm³, respectively. Also the number of side branches (single root tips excluded, GLMM, p < 0.01) and the total number of links were higher in fast- than in slow-growing seedlings (Tables 4-5, Fig. 2-4). In particular, first order interior links and root tips attached to them were more abundant in fast- than slow-growing seedlings (Table 5, Fig. 4F and K), yielding higher total length values for the first order links in fast-growing seedlings (LMM, p = 0.04). The surface area of root tips was higher in fast-growing seedlings (LMM, Table 4, Fig. 3L, p = 0.04), but root tip density (LMM, p > 0.10) and total length of the main root branch (of zero order) was similar in all seedlings (LMM, p = 0.20). The angle of root tips, i.e., exterior links, was indicatively smaller in fast-

285 (60.5°) than slow-growing seedlings (62.6°, LMM, p = 0.07), while the angle of other links,

i.e., interior links, was indicatively larger among fast- (31.4°) than slow-growing seedlings
(30.2°, p = 0.06).
In the sample roots of fast-growing seedlings, the probability of occurrence of

side branches was higher right next to the base and 10-15 cm further away along zero order
root links compared to the branching profile of slow-growing seedlings (Figs. 5A and 6A).
Moreover, the total number of root tips and links per branch, and the total length of all branch
links along zero order roots peaked closer to the base in slow-growing seedlings (Fig. 5B-D),
i.e., ca. 5 cm from the base, while in fast-growing seedlings these values remained relatively
high up to 10-15 cm (Fig. 6B-D).

296 Discussion

The data supported our original hypothesis that seedlings of the fast-growing Norway spruce phenotypes have more branches further away along the sample roots than those with slow growth, although no differences in height or biomass between the groups could yet be observed. This indicates that fast-growing seedlings allocate more resources to root growth further away from the base of a seedling although – contrary to our hypothesis – the total length of zero root branches did not differ between the two growth phenotypes. Longer branches and the larger number of side branches and root tips especially further away from the base of seedlings (see Figs. 2 and 5) suggest that fast-growing seedlings have higher potential to produce pioneer roots (Zadworny and Eissenstat 2011, Bagniewska-Zadworna et al. 2012), enabling the growth of higher number of absorbing fine roots. This may be a general characteristic that differentiates fast- from slow-growing phenotypes. The formation of branches in roots is a vital process as it enables plants to extend to a larger area and to increase their contact area with the soil (Pagès 2014, Beidler et al. 2015). When comparing various deciduous and evergreen tree species, Comas and Eissenstat

311	(2004) found that roots of fast-growing tree species had a greater degree of branching, but
312	smaller diameters than slow-growing species. In our study, specific root length, SRL, did not
313	differ between the seedlings of fast- and slow-growing phenotypes, although higher SRL
314	values usually indicate thinner roots and greater root surface area (via longer roots with more
315	branches) for nutrient absorption, while lower values indicate thicker roots with lower surface
316	area (Craine et al. 2001, Comas and Eissenstat 2004, Maherali 2014, Weemstra et al. 2016).
317	Interestingly, Ostonen et al. (2013) also did not find variation in SRL in Norway spruce along
318	a latitudinal gradient. Most likely SRL is not an essential character regulating performance in
319	spruce under different conditions. In Scots pine (Pinus sylvestris L.), however, SRL is
320	dependent on latitude and, more specifically, on mean annual temperature (Ostonen et al.
321	2017, Zadworny et al. 2017).
322	In fast-growing seedlings, a larger branching angle of lower level interior links
323	may relate to the ability to enlarge the soil contact area, while smaller angles of root tips may
324	indicate a strategy of roots for more explorative growth further away from the base of a
325	seedling in forest soils to better reach patches of nutrients (Beidler et al. 2015) and soil
326	microbes (Pennanen et al. 1999) that may enable fast-growing seedlings to gather more
327	resources for future growth. Especially, in combination with the observation that fast-
328	growing spruce seedlings bore more side branches further away from the base of the seedling,
329	their ability to gain water, nutrients and symbiotic associations in highly heterogeneous forest
330	soils may be significantly higher than that of slow-growing ones since, e.g., ectomycorrhizal
331	fungi often occur in patches 3 - 17 m apart (Lilleskov et al. 2004).
332	Ectomycorrhizal trees are more dependent on mycorrhizal hyphal foraging (i.e.,
333	in absorbing water and acquiring nutrients) than arbuscular mycorrhizal trees which invest
334	more carbon in constructing foraging roots (Eissenstat et al. 2015, Chen et al. 2016).
335	Furthermore, fertilization may increase root proliferation and reduce mycorrhizal
	13

Manuscripts submitted to Tree Physiology

1
י ר
2
3
4
5
6
7
1
8
9
10
11
10
12
13
14
15
16
17
10
10
19
20
21
22
22
23 04
24
25
26
27
28
20
29
30
31
32
33
24
34
35
36
37
38
20
39
40
41
42
43
44
15
40
46
47
48
49
50
50
51
52
53
54
55
55
56
57
58
59
60
00

336	colonization (Eissenstat et al. 2015). Clear differences in fine root architecture between fast-
337	and slow-growing Norway spruce origins have, thus far, only been found under mycorrhiza-
338	free conditions in a study by Boukcim and Plassard (2003). They reported that the number
339	and length of root tips were higher in a fast-growing spruce family, but the difference
340	disappeared when roots were associated with an ectomycorrhizal fungus, i.e., it seemed that
341	after mycorrhizal colonization, the fast-growing family did not anymore allocate resources to
342	root growth. Our results were obtained under conventional growth conditions of spruce, and
343	seedlings were cultivated in a substrate containing soil humus ensuring ectomycorrhizal
344	colonization of the roots (> 81%, ca. five species per seedling with no differences between
345	the seedlings of fast- and slow-growing phenotypes; Velmala et al. 2014b). Interestingly, in
346	our study, fast-growing seedlings invested differently to roots than slow-growing seedlings,
347	i.e., they had higher number of side branches, links and root tips, even after ectomycorrhizal
348	colonization. As seedlings were cultivated under uniform conditions, the observed differences
349	in root architecture most probably reflect variation in the genetic background of the spruce
350	seedlings rather than environmental effects (see Fitter and Stickland 1991).
351	In contrast to studies by Velmala et al. (2014a, b) and our hypothesis, we
352	showed that root tip density does not differ between seedlings of fast- and slow-growing
353	spruce phenotypes, although the number of root tips was higher in fast-growing seedlings.
354	This may be due to the finding that also the total length of links was indicatively higher in
355	fast-growing seedlings, thus resulting in similar densities between the phenotypes. Velmala et
356	al. (2014a) reported that the root tip density of younger, 13-month-old Norway spruce
357	seedlings grown in a homogenous growth substrate in a nursery was higher and that the roots
358	were denser in seedlings of slow-growing phenotype, but also that the total number of root
359	tips in a seedling did not differ. However, in Norway spruce at 12 years of age, roots of fast-
360	growing clones supported higher ectomycorrhizal diversity and a greater number of root tips

 Page 16 of 72

361	than the slow-growing ones (Korkama et al. 2006, 2007). Differences in these results
362	estimating root tip densities may reflect either true differences in roots at different stages of
363	seedling growth or different methods used to measure root tip densities. The $WinRHIZO^{TM}$
364	analysis used here provided an estimate of large compartments of root systems compared to
365	previous studies in which roots were sampled by a soil corer (Korkama et al. 2006) or cut into
366	1-2 cm pieces (Velmala et al. 2013) as sampling was aimed only to detect ectomycorrhizal
367	root tips. Still, both the mycorrhizal root tip-focused sampling and the present root
368	architecture approach show that tree genotype affects root structure. This indicates that
369	different strategies for root investigations are possible if limitations of the approach and
370	comparability of the samples between treatments are considered.
371	This is the first time the spatial distribution of root branch properties, i.e., side
372	roots and root tips along main side branches, was investigated. We believe that this is an
373	approach that could be utilized in future studies when complete root systems of small
374	seedlings can be analysed. Furthermore, the use of developmental order-based classification
375	allowed us to get detailed information on the location of root variables, such as side branches
376	and root tips, within the root systems, e.g., along the main root branch of zero order.
377	However, due to the limited number of observations, our results were often indicative, and
378	therefore larger datasets are needed to provide a comprehensive view of the belowground
379	development of tree seedlings.
380	
381	Conclusions
382	The roots of 16-month-old seedlings of Norway spruce phenotypes with contrasting growth
383	rates in long-term field experiments were investigated. After two growing seasons,
384	aboveground parts of seedlings were still even-sized, but the differing growth phenotypes had

385 different strategies for early root growth under uniform conditions. Fast-growing phenotypes

386	showed higher numbers of root tips (i.e., exterior links) and interior links, and oriented and
387	allocated root tips and biomass further away from the base of the seedling than slow-growing
388	ones. The genetic background of spruce seedlings is likely to determine these differences
389	since environmental conditions were similar for all seedlings. The ability of different spruce
390	origins to control their root architecture may cause, in later life, differences in their ability to
391	gain nutrients, water and mutualistic associations in heterogeneous forest soils, potentially
392	explaining the systematic long-term growth differences and competitive relationships in
393	forest ecosystems. We conclude that over time, small differences in these specific allocation
394	patterns for root growth may create positive self-reinforcing mechanisms that underlie the
395	higher growth rates and superior long-term growth performance of some trees in forests.
396	
397	Conflict of Interest
398	None declared.
399	
400	Funding
401	Academy of Finland (project number 292967).
402	
403	Acknowledgements
404	We thank Dr. Tiina Rajala for participating in the planning of the study, Adbi Aliberto for
405	assistance in the laboratory, Dr. Tapani Repo for the WinRhizo program, Prof. Juha
406	Heikkinen for help in coding in R, Dr. Johan Kotze and Dr. Matti Salmela for checking the
407	language, and two anonymous reviewers for valuable comments on the manuscript.
408	
409	
410	References

411	Bagniewska-Zadworna A, Byczyk J, Eissenstat DM, Oleksyn J, Zadworny M (2012).
412	Avoiding transport bottlenecks in an expanding root system: Xylem vessel
413	development in fibrous and pioneer roots under field conditions. Am J Bot 99:1417-
414	1426.
415	Bates D, Maechler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using
416	lme4. J Stat Software 67(1):1–48.
417	Beidler KV, Taylor BN, Strand AE, Cooper ER, Schönholz M, Pritchard SG (2015) Changes
418	in root architecture under elevated concentrations of CO2 and nitrogen reflect
419	alternate soil exploration strategies. New Phytol 205:1153-1163.
420	doi:10.1111/nph.13123
421	Boukcim H, Plassard C (2003) Juvenile nitrogen uptake capacities and root architecture of
422	two open-pollinated families of <i>Picea abies</i> . Effects of nitrogen source and
423	ectomycorrhizal symbiosis. J Plant Physiol 160:1211-1218. doi:10.1078/0176-1617-
424	00973
425	Chen W, Koide RT, Adams TS, DeForest JL, Cheng L, Eissenstat DM (2016). Root
426	morphology and mycorrhizal symbioses together shape nutrient foraging strategies
427	of temperate trees. PNAS 113:8741-8746. doi:10.1073/pnas.1601006113
428	Comas LH, Eissenstat DM (2004) Linking fine root traits to maximum potential growth rate
429	among 11 mature temperate tree species. Funct Ecol 18:388–397.
430	doi:10.1111/j.0269-8463.2004.00835.x
431	Craine JM, Froehle J, Tilman DG, Wedin DA, Chapin FS (2001) The relationships among
432	root and leaf traits of 76 grassland species and relative abundance along fertility and
433	disturbance gradients. Oikos 93:274–285. doi:10.1034/j.1600-0706.2001.930210.x

2 3	434	Eissenstat DM, Kucharski JM, Zadworny M, Adams TS, Koide RT (2015) Linking root traits
4 5 6	435	to nutrient foraging in arbuscular mycorrhizal trees in a temperate forest. New
7 8	436	Phytol 208:114-124. doi: 10.1111/nph.13451
9 10	437	Fitter AH, Stickland TR (1991) Architectural analysis of plant root systems 2. Influence of
11 12	438	nutrient supply on architecture in contrasting plant species. New Phytol 118:383-
13 14 15	439	389.
16 17	440	Helmisaari H-S, Ostonen I, Lõhmus K, Derome J, Lindroos A-J, Merilä P, Nöjd P (2009)
18 19	441	Ectomycorrhizal root tips in relation to site and stand characteristics in Norway
20 21	442	spruce and Scots pine stands in boreal forests. Tree Physiol 29:445–456.
22 23 24	443	doi:10.1093/treephys/tpn042
24 25 26	444	Kalliokoski T, Nygren P, Sievänen R (2008) Coarse root architecture of three boreal tree
27 28	445	species growing in mixed stands. Silva Fenn 42:189–210. doi:10.14214/sf.252
29 30	446	Kalliokoski T, Pennanen T, Nygren P, Sievänen R, Helmisaari H-S (2010) Belowground
31 32	447	interspecific competition in mixed boreal forests: fine root and ectomycorrhiza
33 35	448	characteristics along stand developmental stage and soil fertility gradients. Plant Soil
36 37	449	330:73-89. doi:10.1007/s11104-009-0177-9
38 39	450	Keel SG, Campbell CD, Högberg MN, Richter A, Wild B, Zhou X, Hurry V, Linder S,
40 41	451	Näsholm T, Högberg P (2012) Allocation of carbon to fine root compounds and their
42 43 44	452	residence times in boreal forest depend on root size class and season. New Phytol
45 46	453	194: 972–981. doi:10.1111/j.1469-8137.2012.04120.x
47 48	454	Korkama T, Pakkanen A, Pennanen T (2006) Ectomycorrhizal community structure varies
49 50	455	among Norway spruce (Picea abies) clones. New Phytol 171:815-824.
51 52 53	456	doi:10.1111/j.1469-8137.2006.01786.x
55 55	457	Korkama T, Fritze H, Pakkanen A, Pennanen T (2007) Interactions between extraradical
56 57	458	ectomycorrhizal mycelia, microbes associated with the mycelia and growth rate of
58 59 60		18

459	Norway spruce (Picea abies) clones. New Phytol 173: 798-807. doi:10.1111/j.1469-
460	8137.2006.01957.x
461	Leppälammi-Kujansuu J, Salemaa M, Berggren Kleja D, Linder S, Helmisaari H-S (2014)
462	Fine root turnover and litter production of Norway spruce in a long-term temperature
463	and nutrient manipulation experiment. Plant Soil 374:73-88.
464	Lilleskov EA, Bruns TD, Horton TH, Taylor DL, Grogan P (2004) Detection of forest stand-
465	level spatial structure in ectomycorrhizal fungal communities. FEMS Microbiol Ecol
466	49:319-332. doi:10.1016/j.femsec.2004.04.004
467	Liu B, He J, Zeng F, Lei J, Arndt SK (2016). Life span and structure of ephemeral root
468	modules of different functional groups from a desert system. New Phytol 211:103–
469	112. doi: 10.1111/nph.13880
470	Maherali H (2014) Is there an association between root architecture and mycorrhizal growth
471	response? New Phytol 204:192–200. doi:10.1111/nph.12927
472	McCormack ML, Dickie IA, Eissenstat DM, Fahey TJ, Fernandez CW, Guo D, Helmisaari
473	H-S, Hobbie EA, Iverse CM, Jackson RB, Leppälammi-Kujansuu J, Norby RJ,
474	Phillips RP, Pregitzer KS, Pritchard SG, Rewald B, Zadworny M (2015) Redefining
475	fine roots improves understanding of below-ground contributions to terrestrial
476	biosphere processes. New Phytol 207:505-518. doi:10.1111/nph.13363
477	Norby RJ, Iversen CM (2017) Introduction to a Virtual Issue on root traits. New Phytol
478	215:5–8.
479	Ostonen I, Lõhmus K, Helmisaari H-S, Truu J, Meel S (2007) Fine root morphological
480	adaptations in Scots pine, Norway spruce and silver birch along a latitudinal gradient
481	in boreal forests. Tree Physiol 27:1627-1634. doi:10.1093/treephys/27.11.1627
482	Ostonen I, Rosenvald K, Helmisaari H-S, Godbold D, Parts K, Uri V, Lõhmus K (2013)
483	Morphological plasticity of ectomycorrhizal short roots in Betula sp. and Picea abies

Page 21 of 72

Manuscripts submitted to Tree Physiology

2 3 1	484	forests across climate and forest succession gradients: its role in changing
5	485	environments. Front Plant Sci 4 (Article 335):1-10. doi:10.3389/fpls.2013.00335
7 8	486	Ostonen I, Truu M, Helmisaari H-S, Lukac M, Borken W, Vanguelova E, Godbold DL,
9 10	487	Lõhmus K, Zang U, Tedersoo L, Preem J-K, Rosenvald K, Aosaar J, Armolaitis K,
11 12	488	Frey J, Kabral N, Kukumägi M, Leppälammi-Kujansuu J, Lindroos A-J, Merilä P,
13 14 15	489	Napa Ü, Nöjd P, Parts K, Uri V, Varik M, Truu J (2017) Adaptive root foraging
16 17	490	strategies along a boreal-temperate forest gradient. New Phytol 215:977-991. doi:
18 19	491	10.1111/nph.14643
20 21	492	Pagès L (2014) Branching patterns of root systems: quantitative analysis of the diversity
22 23 24	493	among dicotyledonous species. Ann Bot 114:591-598. doi:10.1093/aob/mcu145
24 25 26	494	Pennanen T, Liski J, Bååth E, Kitunen V, Uotila J, Westman CJ, Fritze H (1999) Structure of
27 28	495	the microbial communities in coniferous forest soils in relation to site fertility and
29 30	496	stand development stage. Microb Ecol 38:168-179. doi:10.1007/s002489900161
31 32	497	Pinheiro J, Bates D, DebRoy S, Sarkar D, R Core Team (2016) nlme: Linear and nonlinear
33 34 35	498	mixed effects models. R package version 3.1-127, URL: http://CRAN.R-
36 37	499	project.org/package=nlme.
38 39	500	Pregitzer KS (2002) Fine roots of trees – a new perspective. New Phytol 154:267–273.
40 41	501	Pregitzer KS, Kubiske ME, Yu CK, Hendrik RL (1997) Relationship among root branch
42 43	502	order, carbon, and nitrogen in four temperate species. Oecologia 111:302-308.
44 45 46	503	Pregitzer KS, DeForest JL, Burton AJ, Allen MF, Ruess RW, Hendrick RL (2002) Fine root
47 48	504	architecture of nine North American trees. Ecol Monogr 72(2):293-309.
49 50	505	R Core Team (2015) R: A language and environment for statistical computing. R foundation
51 52	506	for statistical computing. Vienna, Austria. URL https://www.R-project.org/.
55 55	507	Sievänen R, Perttunen J, Nikinmaa E, Posada J (2010) "Functional structural plant models -
56 57	508	case LIGNUM". In: Li B, Jaeger M, Guo Y (eds) Plant Growth Modeling,
58 59		

Manuscripts submitted to Tree Physiology

509	Simulation, Visualization and Applications. Proceedings - PMA09, IEEE Computer
510	Society, Los Alamitos, California, ISBN 978-0-7695-3988-1, pp 3-9.
511	Velmala SM, Rajala T, Haapanen M, Taylor AFS, Pennanen T (2013) Genetic host-tree
512	effects on the ectomycorrhizal community and root characteristics of Norway
513	spruce. Mycorrhiza 23:21-33. doi:10.1007/s00572-012-0446-y
514	Velmala SM, Rajala T, Heinonsalo J, Taylor AFS, Pennanen T (2014a) Profiling functions of
515	ectomycorrhizal diversity and root structuring in seedlings of Norway spruce (Picea
516	abies) with fast- and slow-growing families. New Phytol 201:610–622.
517	doi:10.1111/nph.12542
518	Velmala SM, Rajala T, Smolander A, Petäistö R-L, Lilja A, Pennanen T (2014b) Infection
519	with foliar pathogenic fungi does not alter the receptivity of Norway spruce
520	seedlings to ectomycorrhizal fungi. Plant Soil 385:329-342. doi:10.1007/s11104-
521	014-2238-у
522	Venäläinen M (1993) The combined results of 190 progeny tests of Scots pine in southern
523	and central Finland. In: Lee SJ (ed) Progeny testing and breeding strategies.
524	Proceedings of the Nordic group for tree breeding held in Edinburg, Scotland 7-10
525	October 1993, pp 36–42.
526	Venäläinen A, Tuomenvirta H, Pirinen P, Drebs A (2005) A basic Finnish climate data set
527	1961-2000. Description and illustrations. Finnish Meteorological Institute, Reports
528	No. 2005: 5. Edita, Helsinki.
529	Wang Z, Guo D, Wang X, Gu J, Mei L (2006). Fine root architecture, morphology, and
530	biomass of different branch orders of two Chinese temperate tree species. Plant Soil
531	288:155–171.

2 3	532	Weemstra M, Mommer L, Visser EJW, van Ruijven J, Kuyper TW, Mohren GMJ, Sterck FJ	
4 5 6	533	(2016) Toward a multidimensional root trait framework: a tree root review. New	
7 8	534	Phytol 211:1159-1169. doi:10.1111/nph.14003	
9 10	535	WinRHIZO TM (2013) Basic, reg, pro & Arabidopsis for root measurement. Regent	
11 12 13	536	Instruments Canada Inc.	
14 15	537	Wood SN (2004) Stable and efficient multiple smoothing parameter estimation for	
16 17	538	generalized additive models. J Am Stat Assoc 99:673–686.	
18 19	539	Wood SN (2006) Generalized Additive Models: An Introduction with R. Chapman and	
20 21	540	Hall/CRC.	
22 23 24	541	Wood SN (2011) Fast stable restricted maximum likelihood and marginal likelihood	
25 26	542	estimation of semiparametric generalized linear models. J Royal Stat Soc (B) 73:3-	
27 28	543	36.	
29 30	544	Zadworny M, Eissenstat DM (2011) Contrasting the morphology, anatomy and fungal	
31 32	545	colonization of new pioneer and fibrous roots. New Phytol 190:213-221. doi:	
33 34 35	546	10.1111/j.1469-8137.2010.03598.x	
36 37	547	Zadworny M, McCormack ML, Żytkowiak R, Karolewski P, Mucha J, Oleksyn J (2017)	
38 39	548	Patterns of structural and defense investments in fine roots of Scots pine (Pinus	
40 41	549	sylvestris L.) across a strong temperature and latitudinal gradient in Europe. Global	
42 43 44	550	Change Biol 23:1218–1231. doi: 10.1111/gcb.13514	
45 46	551		
47 48			
49			
50 51			
52			
53			
54			
55			
56			
5/			
58 50			
วษ 60		2	2
<u> </u>		2	<u>ن</u>

552 Figure legends

554	Figure 1. Sampling design: (A) Altogether 54 seedlings from six spruce families (i.e., nine
555	seedlings per family), and their sample roots, three per seedling, were investigated. (B)
556	Schematic representation of a sample root with explanations for some root variables. A link is
557	a part of a root between two branches or the most distant part of a branch (i.e., root tip). All
558	side branches include more than one root link whereas a root tip includes one link only.
559	Angle is determined as degrees between two links starting from the same point. The order of
560	branches (and links within a branch) is indicated with a number as presented in the figure.
561	The zero order root links form the main root branch of a sample root, first order links form a
562	first order branch originating from the zero order root branch, second order links form a
563	second order branch originating from first order branch links etc. This developmental order-
564	based classification was utilized in this study.
565	
566	Figure 2. Schematic model of four sample root branches of Norway spruce (<i>Picea abies</i>)
566 567	Figure 2. Schematic model of four sample root branches of Norway spruce (<i>Picea abies</i>) seedlings representing: (A) a sample root with the highest number of links for fast-growing
566 567 568	Figure 2. Schematic model of four sample root branches of Norway spruce (<i>Picea abies</i>) seedlings representing: (A) a sample root with the highest number of links for fast-growing seedlings, (B) a root containing a median number of root links for fast-growing seedlings, (C)
566 567 568 569	Figure 2. Schematic model of four sample root branches of Norway spruce (<i>Picea abies</i>) seedlings representing: (A) a sample root with the highest number of links for fast-growing seedlings, (B) a root containing a median number of root links for fast-growing seedlings, (C) a root containing a median number of root links for slow-growing seedlings, and (D) a
566 567 568 569 570	Figure 2. Schematic model of four sample root branches of Norway spruce (<i>Picea abies</i>) seedlings representing: (A) a sample root with the highest number of links for fast-growing seedlings, (B) a root containing a median number of root links for fast-growing seedlings, (C) a root containing a median number of root links for slow-growing seedlings, and (D) a sample root with the lowest number of links for slow-growing seedlings. The lengths, widths
566 567 568 569 570 571	Figure 2. Schematic model of four sample root branches of Norway spruce (<i>Picea abies</i>) seedlings representing: (A) a sample root with the highest number of links for fast-growing seedlings, (B) a root containing a median number of root links for fast-growing seedlings, (C) a root containing a median number of root links for slow-growing seedlings, and (D) a sample root with the lowest number of links for slow-growing seedlings. The lengths, widths and branching angles of the root links were analyzed with WinRHIZO TM , and visual
566 567 568 569 570 571 572	Figure 2. Schematic model of four sample root branches of Norway spruce (<i>Picea abies</i>) seedlings representing: (A) a sample root with the highest number of links for fast-growing seedlings, (B) a root containing a median number of root links for fast-growing seedlings, (C) a root containing a median number of root links for slow-growing seedlings, and (D) a sample root with the lowest number of links for slow-growing seedlings. The lengths, widths and branching angles of the root links were analyzed with WinRHIZO [™] , and visual rendering was done using the LIGNUM program (Sievänen et al. 2010).
566 567 568 569 570 571 572 573	Figure 2. Schematic model of four sample root branches of Norway spruce (<i>Picea abies</i>) seedlings representing: (A) a sample root with the highest number of links for fast-growing seedlings, (B) a root containing a median number of root links for fast-growing seedlings, (C) a root containing a median number of root links for slow-growing seedlings, and (D) a sample root with the lowest number of links for slow-growing seedlings. The lengths, widths and branching angles of the root links were analyzed with WinRHIZO TM , and visual rendering was done using the LIGNUM program (Sievänen et al. 2010).
566 567 568 569 570 571 572 573 573	 Figure 2. Schematic model of four sample root branches of Norway spruce (<i>Picea abies</i>) seedlings representing: (A) a sample root with the highest number of links for fast-growing seedlings, (B) a root containing a median number of root links for fast-growing seedlings, (C) a root containing a median number of root links for slow-growing seedlings, and (D) a sample root with the lowest number of links for slow-growing seedlings. The lengths, widths and branching angles of the root links were analyzed with WinRHIZO™, and visual rendering was done using the LIGNUM program (Sievänen et al. 2010).
566 567 568 570 571 572 573 574 575	 Figure 2. Schematic model of four sample root branches of Norway spruce (<i>Picea abies</i>) seedlings representing: (A) a sample root with the highest number of links for fast-growing seedlings, (B) a root containing a median number of root links for fast-growing seedlings, (C) a root containing a median number of root links for slow-growing seedlings, and (D) a sample root with the lowest number of links for slow-growing seedlings. The lengths, widths and branching angles of the root links were analyzed with WinRHIZO™, and visual rendering was done using the LIGNUM program (Sievänen et al. 2010). Figure 3. Number, total length and surface area of links among the sample roots of fast- and slow-growing Norway spruce (<i>Picea abies</i>) seedlings based the predictions of linear or
 566 567 569 570 571 572 573 574 575 576 	 Figure 2. Schematic model of four sample root branches of Norway spruce (<i>Picea abies</i>) seedlings representing: (A) a sample root with the highest number of links for fast-growing seedlings, (B) a root containing a median number of root links for fast-growing seedlings, (C) a root containing a median number of root links for slow-growing seedlings, and (D) a sample root with the lowest number of links for slow-growing seedlings. The lengths, widths and branching angles of the root links were analyzed with WinRHIZO™, and visual rendering was done using the LIGNUM program (Sievänen et al. 2010). Figure 3. Number, total length and surface area of links among the sample roots of fast- and slow-growing Norway spruce (<i>Picea abies</i>) seedlings based the predictions of linear or generalized linear mixed models (<i>n</i> = 162). Values for the whole sample root, side branches,

Manuscripts submitted to Tree Physiology

interior links, i.e., other links than root tips, and root tips, i.e., exterior links are presented. Standard error values are not presented as these are not available for all model types. Statistically significant differences (p < 0.05) are indicated with an asterisk, and mean raw data values for spruce families are shown with a cross. See Table 4. Figure 4. Total number of links, the number of interior links (i.e., other than root tips), and root tips between the sample roots of fast- and slow-growing seedlings of Norway spruce (*Picea abies*) based on the predicted values of generalized linear mixed models (GLMMs, n =162). Values for different root orders are presented (note that the developmental order-based classification was used, see Fig. 1). Note that the numbers are extremely low in panels H and I. Standard error values are not presented as these are not available for this model type. Statistically significant differences (p < 0.05) between the fast- and slow-growing seedlings are indicated with an asterisk, and mean raw data values for spruce families are shown with a

590 cross. See Table 5.

Figure 5 (A) The probability of occurrence of side branches, (B) the number of root tips per branch (composed of one or more links), (C) the number of all links per branch, and (D) the total length of branch links along the total length of sample root links of zero order expressed as a proportion (0-100%) for fast- and slow-growing Norway spruce seedlings. All responses are statistically significantly curvilinear (GAMMs, p < 0.01) and 95% confidence intervals are presented with dashed lines.

Figure 6 (A) The probability of occurrence of side branches, (B) the number of root tips per branch, (C) the number of all links per branch (composed of one or more links), and (D) the total length of branch links along the total length of sample root links of zero order expressed

- 602 in cm for fast- and slow-growing Norway spruce seedlings. All responses are statistically
- 603 significantly curvilinear (GAMMs, p < 0.01) and 95% confidence intervals are presented as
- 604 dash line response curves.

2 Tables

4 Table 1. Origin, seed collection year and growth performance of the Norway spruce (Picea

abies (L.) Karst.) families used in this study. The growth performance of two groups (fast and

6 slow) has been assessed from 14 year old trees in seven to 10 growth experiments done

7 earlier in the field. The table is modified from Velmala et al. (2014a).

Family code	Female	Origin ^a Male	Collection year	Growth performance ^b	Succession rate [°]	Group
20.9	220	1515	2000	Carl	90	Es et
298	239	1515	2000	Good	89	Fast
612	5519	4309	1998	Excellent	102	Fast
1162	46	Open pollination	1989	Excellent	95	Fast
394	7133	Open pollination	1983	Poor	33	Slow
427	5514	Open pollination	1983	Poor	35	Slow
1183	217	Open pollination	1989	Poor	33	Slow

9 ^a All trees are of southern Finnish origin, except male 4309 which originates from Germany.

10 ^b Growth performance of the family was based on stem height (see Venäläinen 1993).

^c Proportional reference level is 50: values more or less than 50 indicate better or worse aboveground growth

12 than average in Norway spruce, respectively.13

Variable	Fast (<i>n</i> = 81)	Slow $(n = 81)$
Mean diameter of links (mm)		
• All links	0.51 ± 0.08	0.50 ± 0.06
• Interior links ^a	0.65 ± 0.11	0.64 ± 0.08
• Root tips ^a	0.37 ± 0.05	0.35 ± 0.04
• 0 order links ^b	0.95 ± 0.21	0.90 ± 0.16
• 1 st order links	0.49 ± 0.08	0.47 ± 0.08
• 2 nd order links	0.37 ± 0.06	0.36 ± 0.06
• 3 rd to 5 th order links	0.35 ± 0.11	0.33 ± 0.12
Mean length of links (mm)		
• All links	2.95 ± 0.44	2.91 ± 0.52
Interior links	2.93 ± 0.53	2.91 ± 0.64
• Root tips	2.98 ± 0.49	2.91 ± 0.54
• 0 order links	3.26 ± 0.73	3.32 ± 0.87
• 1 st order links	3.68 ± 0.64	3.52 ± 0.73
• 2 nd order links	2.15 ± 0.54	2.09 ± 0.46
• 3 rd to 5 th order links	1.02 ± 0.41	1.05 ± 0.43
Proportion of links $(\%)^{c}$		
Interior links	51.40 ± 0.01	51.39 ± 0.01
• Root tips	48.60 ± 0.01	48.61 ± 0.01
• 0 order links	16.52 ± 5.80	17.77 ± 5.85
• 1 st order links	43.90 ± 3.84	44.48 ± 4.02
• 2 nd order links	33.04 ± 5.75	31.93 ± 5.59
• 3 rd to 5 th order links	6.55 ± 4.25	5.82 ± 4.42

^b Note that the developmental order-based classification was used. Zero order links form the main branch of a

sample root, first order links form branches originating from zero order links, second order links form branches originating from first order links etc. (see Fig. 1b). 3rd to 5th order links occurred in 100% and 94% of the roots

of fast- and slow-growing seedlings, respectively

^c The proportion of interior or root tip links or a particular root order to the total number of links

- Table 3. Differences in some variables describing growth between the fast- and slow-
- growing Norway spruce seedlings (Picea abies). Predicted values are based on linear mixed

models (LMM) (n = 54). Means with standard errors (SE) are presented.

Variable	Fast $(n = 27)$	Slow $(n = 27)$	р
Shoot height (mm)	1567+126	145.6 ± 10.5	0.54
Shoot height (hill) Specific root length (SRL $m g^{-1}$)	130.7 ± 12.0 68 5 + 3 5	143.0 ± 10.3 70.8 ± 3.5	0.54
Specific root area (SRA, $m^2 k a^{-1}$)	08.5 ± 5.5 112 5 ± 5 7	70.8 ± 5.3 111 4 ± 5.7	0.00
Poot tissue density (RTD kg m^{-3})	112.3 ± 3.7 61 0 + 4 0	111.4 ± 3.7 57.6 ± 4.0	0.90
Total biomass of shoots $(\alpha)^a$	01.0 ± 4.9 0 003 + 0 105	0.817 ± 0.105	0.00
Total biomass of roots (g) ^a	0.905 ± 0.105 0.245 ± 0.025	0.017 ± 0.103 0.220 ± 0.025	0.59
Root shoot biomass ratio ^a	0.243 ± 0.023 0.29 + 0.02	0.229 ± 0.023 0.28 + 0.02	0.08
Total biomass of the three sample roots	0.27 ± 0.02 0.052 ± 0.004	0.20 ± 0.02 0.040 ± 0.004	0.78
ner seedling (g)	0.052 ± 0.004	0.040 ± 0.004	0.07
³ Number of seedlings both in the fast- and slow-gro	wing group was nine		

Manuscripts submitted to Tree Physiology

34	with standard errors (SE) are shown. See Fig. 3.
33	differences ($p < 0.05$) between fast- and slow-growing seedlings are in bold. Coefficients
32	the surface area of links, and GLMMs for the number of links. Statistically significant
31	spruce (<i>Picea abies</i>) seedlings ($n = 162$). LMMs were used for the analysis of total length and
30	results relating to root characteristics of the sample roots of fast- and slow-growing Norway
29	Table 4. Linear or generalized linear mixed models (LMMs and GLMMs, respectively)

Variable	Intercept		Difference between t	the
	-		phenotypes (slow vs.	. fast)
	$Coeff. \pm SE$	р	Coeff. \pm SE	р
Number of links				
All links	5.652 ± 0.075	< 0.01	0.251 ± 0.106	0.02
• All branches ^a	5.469 ± 0.082	< 0.01	0.273 ± 0.116	0.02
• Interior links ^b	4.988 ± 0.077	< 0.01	0.251 ± 0.108	0.02
• Root tips ^b	4.931 ± 0.074	< 0.01	0.251 ± 0.105	0.02
Total length of links (mm)				
All links	865.620 ± 76.147	< 0.01	255.363 ± 107.688	0.08
• All branches ^a	713.075 ± 72.847	< 0.01	239.498 ± 103.021	0.08
• Interior links ^b	444.905 ± 42.182	< 0.01	126.845 ± 59.655	0.10
• Root tips ^b	420.715 ± 36.266	< 0.01	128.518 ± 51.287	0.07
Surface area of links (mm ²)				
• All links	1409.306 ± 126.738	< 0.01	444.250 ± 179.235	0.07
• All branches ^a	990.104 ± 101.524	< 0.01	369.317 ± 143.577	0.06
• Interior links ^b	883.485 ± 83.222	< 0.01	243.814 ± 117.693	0.11
• Root tips ^b	525.821 ± 47.255	< 0.01	200.436 ± 66.829	0.04

 ^a Side branches and root tips (see Fig. 1b).
 ^b Fitter and Stickland (1991) used the terms exterior links for root tips and interior links for other links than root tips.

40 the sample roots of fast- and slow-growing Norway spruce (*Picea abies*) seedlings in

41 different root orders (n = 162). Statistically significant differences (p < 0.05) between fast-

42 and slow-growing seedlings are in bold. Coefficients with standard errors (SE) are shown.

43 See Fig. 4.

Variable	Intercept		Difference between the	
			phenotypes (slow vs. fast)	
	Coeff. \pm SE	р	Coeff. ± SE	р
Total number of links "				
• 0 order links	3.788 ± 0.052	< 0.01	0.128 ± 0.073	0.08
• 1 st order links	4.827 ± 0.068	< 0.01	0.231 ± 0.096	0.02
• 2 nd order links	4.538 ± 0.091	< 0.01	0.301 ± 0.128	0.02
• 3 rd to 5 th order links	2.790 ± 0.191	< 0.01	0.394 ± 0.269	0.14
Number of interior links ^b				
• 0 order links	3.764 ± 0.053	< 0.01	0.132 ± 0.075	0.08
• 1 st order links	4.383 ± 0.084	< 0.01	0.265 ± 0.119	0.03
• 2 nd order links	2.793 ± 0.162	< 0.01	0.336 ± 0.228	0.14
• 3^{rd} to 4^{th} order links	0.443 ± 0.250	0.08	0.316 ± 0.345	0.36
Number of root tips ^b				
• 0 order links	1		1	-
• 1 st order links	3.778 ± 0.054	< 0.01	0.131 ± 0.076	0.08
• 2 nd order links	4.328 ± 0.082	< 0.01	0.285 ± 0.115	0.01
• 3^{rd} to 5^{th} order links	2.691 ± 0.186	< 0.01	0.397 ± 0.263	0.13

^a Note that the developmental order-based classification was used. Zero order links form the main branch of a
 sample root, first order links form branches originating from zero order links, second order links form branches
 originating from first order links etc. (see Fig. 1b).

^b Fitter and Stickland (1991) used the terms exterior links for root tips and interior links for other links than root
 tips.

Figures

Figure 1. Sampling design: (A) Altogether 54 seedlings from six spruce families (i.e., nine seedlings per family), and their sample roots, three per seedling, were investigated. (B) Schematic representation of a sample root with explanations for some root variables. A link is a part of a root between two branches or the most distant part of a branch (i.e., root tip). All side branches include more than one root link whereas a root tip includes one link only. Angle is determined as degrees between two links starting from the same point. The order of branches (and links within a branch) is indicated with a number as presented in the figure. The zero order root links form the main root branch of a sample root, first order links form a first order branch originating from the zero order root branch, second order links form a second order branch originating from first order branch links etc. This developmental orderbased classification was utilized in this study.

Figure 2. Schematic model of four sample root branches of Norway spruce (*Picea abies*) seedlings representing: (A) a sample root with the highest number of links for fast-growing seedlings, (B) a root containing a median number of root links for fast-growing seedlings, (C) a root containing a median number of root links for slow-growing seedlings, and (D) a sample root with the lowest number of links for slow-growing seedlings. The lengths, widths and branching angles of the root links were analyzed with WinRHIZO[™], and visual rendering was done using the LIGNUM program (Sievänen et al. 2010).

6

 Figure 3. Number, total length and surface area of links among the sample roots of fast- and slow-growing Norway spruce (*Picea abies*) seedlings based the predictions of linear or generalized linear mixed models (n = 162). Values for the whole sample root, side branches, interior links, i.e., other links than root tips, and root tips, i.e., exterior links are presented. Standard error values are not presented as these are not available for all model types. Statistically significant differences (p < 0.05) are indicated with an asterisk, and mean raw data values for spruce families are shown with a cross. See Table 4.

.near n. .f.cant differences (p < 0.05) are ı. .e 4.

Figure 4. Total number of links, the number of interior links (i.e., other than root tips), and root tips between the sample roots of fast- and slowgrowing seedlings of Norway spruce (*Picea abies*) based on the predicted values of generalized linear mixed models (GLMMs, n = 162). Values for different root orders are presented (note that the developmental order-based classification was used, see Fig. 1). Note that the numbers are extremely low in panels H and I. Standard error values are not presented as these are not available for this model type. Statistically significant differences (p < 0.05) between the fast- and slow-growing seedlings are indicated with an asterisk, and mean raw data values for spruce families Γable 5. are shown with a cross. See Table 5.

Figure 5 (A) The probability of occurrence of side branches, (B) the number of root tips per branch (composed of one or more links), (C) the number of all links per branch, and (D) the total length of branch links along the total length of sample root links of zero order expressed as a proportion (0-100%) for fast- and slow-growing Norway spruce seedlings. All responses are statistically significantly curvilinear (GAMMs, p < 0.01) and 95% confidence intervals are presented with dashed lines.

Figure 6 (A) The probability of occurrence of side branches, (B) the number of root tips per branch, (C) the number of all links per branch (composed of one or more links), and (D) the total length of branch links along the total length of sample root links of zero order expressed in cm for fast- and slow-growing Norway spruce seedlings. All responses are statistically significantly curvilinear (GAMMs, p < 0.01) and 95% confidence intervals are presented as dash line response curves.

Figure 1. Sampling design: (A) Altogether 54 seedlings from six spruce families (i.e., nine seedlings per family), and their sample roots, three per seedling, were investigated. (B) Schematic representation of a sample root with explanations for some root variables. A link is a part of a root between two branches or the most distant part of a branch (i.e., root tip). All side branches include more than one root link whereas a root tip includes one link only. Angle is determined as degrees between two links starting from the same point. The order of branches (and links within a branch) is indicated with a number as presented in the figure. The zero order root links form the main root branch of a sample root, first order links form a first order branch originating from the zero order root branch, second order links form a second order branch originating from first order branch links etc. This developmental order-based classification was utilized in this study.

88x45mm (300 x 300 DPI)

Figure 2. Schematic model of four sample root branches of Norway spruce (Picea abies) seedlings representing: (A) a sample root with the highest number of links for fast-growing seedlings, (B) a root containing a median number of root links for fast-growing seedlings, (C) a root containing a median number of root links for slow-growing seedlings, and (D) a sample root with the lowest number of links for slowgrowing seedlings. The lengths, widths and branching angles of the root links were analyzed with WinRHIZO[™], and visual rendering was done using the LIGNUM program (Sievänen et al. 2010).

172x186mm (300 x 300 DPI)

Figure 3. Number, total length and surface area of links among the sample roots of fast- and slow-growing Norway spruce (Picea abies) seedlings based the predictions of linear or generalized linear mixed models (n = 162). Values for the whole sample root, side branches, interior links, i.e., other links than root tips, and root tips, i.e., exterior links are presented. Standard error values are not presented as these are not available for all model types. Statistically significant differences (p < 0.05) are indicated with an asterisk, and mean raw data values for spruce families are shown with a cross. See Table 4.

203x203mm (300 x 300 DPI)

Figure 4. Total number of links, the number of interior links (i.e., other than root tips), and root tips between the sample roots of fast- and slow-growing seedlings of Norway spruce (Picea abies) based on the predicted values of generalized linear mixed models (GLMMs, n = 162). Values for different root orders are presented (note that the developmental order-based classification was used, see Fig. 1). Note that the numbers are extremely low in panels H and I. Standard error values are not presented as these are not available for this model type. Statistically significant differences (p < 0.05) between the fast- and slowgrowing seedlings are indicated with an asterisk, and mean raw data values for spruce families are shown with a cross. See Table 5.

203x203mm (300 x 300 DPI)

Figure 5 (A) The probability of occurrence of side branches, (B) the number of root tips per branch (composed of one or more links), (C) the number of all links per branch, and (D) the total length of branch links along the total length of sample root links of zero order expressed as a proportion (0-100%) for fastand slow-growing Norway spruce seedlings. All responses are statistically significantly curvilinear (GAMMs, p < 0.01) and 95% confidence intervals are presented with dashed lines.

157x141mm (300 x 300 DPI)

Figure 6 (A) The probability of occurrence of side branches, (B) the number of root tips per branch, (C) the number of all links per branch (composed of one or more links), and (D) the total length of branch links along the total length of sample root links of zero order expressed in cm for fast- and slow-growing Norway spruce seedlings. All responses are statistically significantly curvilinear (GAMMs, p < 0.01) and 95% confidence intervals are presented as dash line response curves.

157x142mm (300 x 300 DPI)