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Abstract

Under the threat of predation, a species of prey can evolve to its own extinction. Matsuda and
Abrams (1994, Theor. Pop. Biol. 45: 76-91) found the earliest example of evolutionary sui-
cide by demonstrating that the foraging effort of prey can evolve until its population dynamics
cross a fold bifurcation, whereupon the prey crashes to extinction. We extend this model in
three directions. First, we use critical function analysis to show that extinction cannot happen
via increasing foraging effort. Second, we extend the model to non-equilibrium systems and
demonstrate evolutionary suicide at a fold bifurcation of limit cycles. Third, we relax a crucial
assumption of the original model. To find evolutionary suicide, Matsuda and Abrams assumed
a generalist predator, whose population size is fixed independently of the focal prey. We embed
the original model into a 3-species community of the focal prey, the predator, and an alternative
prey that can support the predator also alone, and investigate the effect of increasingly strong
coupling between the focal prey and the predator’s population dynamics. Our 3-species model
exhibits (i) evolutionary suicide via a subcritical Hopf bifurcation and (ii) indirect evolutionary
suicide, where the evolution of the focal prey first makes the community open to the invasion of
the alternative prey, which in turn makes evolutionary suicide of the focal prey possible. These
new phenomena highlight the importance of studying evolution in a broader community context.
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1 Introduction

In a seminal paper, Matsuda and Abrams (1994) showed that adaptive evolution of a prey
species may lead to its own extinction in a process now known as evolutionary suicide (Gyllen-
berg and Parvinen 2001; Webb 2003). Here we revisit and generalize this model to relax some
biologically restrictive assumptions, especially the assumption that the predator-prey system is
isolated. Adding just one more species to the community, we find much richer dynamics and
several possible routes to evolutionary suicide.

Evolutionary suicide may seem counter-intuitive; common wisdom dictates that natural se-
lection will perfect a species rather than lead to its demise. The reason why evolution can lead
to extinction lies in the interaction between the dynamics of population size and the dynamics
of trait evolution. The population dynamics of a species depend on its traits (for example, on
how much resources it can collect and how much it exposes itself to predators); in other words, a
trait can be seen as a bifurcation parameter of population dynamics. Evolutionary suicide may
happen when the evolving trait crosses a catastrophic bifurcation point of population dynam-
ics, whereby the interior attractor of population dynamics disappears and the population goes
extinct (Gyllenberg and Parvinen 2001; Webb 2003).

Matsuda and Abrams (1994) considered a population of prey consumed by a fixed number
of predators with a Holling type II functional response. In this model, the key to the catas-
trophic bifurcation where evolutionary suicide happens is in the nonlinear dynamics generated
by the functional response. The Holling II functional response derives from the saturation of
the predators when the time needed to consume and digest an individual prey is non-negligible
(Holling 1959). At high prey densities, capturing prey is easy, so that most predators are busy
handling prey already captured; since only a few predators are searching for prey, the risk for
an individual prey of being attacked is small. At low prey densities, however, capturing prey is
hard, and therefore most predators are searching; for an individual prey, the risk of predation
is high. Mortality from predation therefore decreases with increasing prey density. This can
generate an Allee effect in the dynamics of the prey, such that for low to intermediate prey
densities (i.e., before the Holling II function saturates), the per capita growth rate of the prey
increases rather than decreases with prey density (see e.g. Thieme 2003, chapter 7).

In the model of Matsuda and Abrams (1994), the prey evolves its foraging effort (for exam-
ple, the amount of time spent actively foraging). Higher foraging effort implies higher fecundity,
but also higher exposure to predation. When the risk of predation is sufficiently high, a lower
foraging effort is advantageous. As the prey evolves to be less active, it becomes harder for the
predator to capture prey; more predators are thus searching, and this implies an even higher
risk of predation. The equilibrium population density of prey thus declines. Due to the Allee
effect induced by the Holling II functional response, the decline can be accelerating, and the prey
can cross a fold bifurcation point of its population dynamics, whereby its population crashes to
extinction.

The above scenario of evolutionary suicide is possible when the predator is a generalist, in
the sense that its population is regulated by factors other than the evolving prey, so that its
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density is a constant. To see this, Matsuda and Abrams (1994) formulated the model

dn

dt
=

[
B(c)− d− δn− cβp

1 + cβhn

]
n (1)

for the population dynamics of the prey, where n is its density and c is its foraging effort. The
per capita birth rate of the prey, B, is an increasing function of its foraging effort,

B(c) =
ρc

1 + ρbc
(2)

with positive parameters ρ and b. The prey is subject to death other than predation at a linearly
density dependent rate d + δn. This implies that in absence of the predator and with a given
trait value c, the prey follows the logistic model of population growth. The last term in the
brackets is loss due to predation, where p is the constant density of predators, β is the capture
rate and h is the predator’s handling time. It is easy to see that with p and c fixed, the dy-
namics in (1) can have two nontrivial equilibria, i.e., a stable equilibrium and an unstable Allee
threshold; the latter is due to the Allee effect induced by the Holling II functional response in
the predation term (see above). The two nontrivial equilibria of the prey can disappear through
a fold bifurcation when the foraging effort c varies. Matsuda and Abrams (1994) demonstrated
by examples that the adaptive evolution of the foraging effort c can push the prey through the
fold bifurcation point, whereupon the prey population goes extinct.

By contrast, if the predator is a specialist on the focal prey so that its reproduction solely
depends on how much of the focal prey it consumes, then p is variable and the model becomes

dn

dt
=

[
B(c)− d− δn− cβp

1 + cβhn

]
n

dp

dt
=

[
αcβn

1 + cβhn
− µ

]
p

(3)

where α is the predator’s conversion factor and µ is its death rate. This is the Rosenzweig-
MacArthur predator-prey model, which is well known to have a unique nontrivial equilibrium
(either a stable equilibrium or an unstable focus surrounded with a stable limit cycle). There
is thus no fold bifurcation in this model, and evolutionary suicide is not possible (Matsuda and
Abrams, 1994).

Evolutionary suicide in the prey therefore hinges upon the predator population size being
”sufficiently” independent of the focal (evolving) prey. There may be several factors that keep
the predator population approximately constant for a wide range of prey population sizes. In
this paper, we extend the model of Matsuda and Abrams (1994) assuming that the predator
has an alternative prey, which may maintain the predator population independently of the focal
prey, or else may contribute less such that the focal prey becomes an important resource for
the predator. In the limiting case when the predator depends only on the alternative prey,
we recover the model in (1) with evolutionary suicide as described by Matsuda and Abrams
(1994). By changing the relative contributions of the focal prey and of the alternative prey to
the predator’s birth rate, we can study a continuum of models between (1) and (3). Due to the
joint dynamics of the alternative prey, we uncover also other ways to evolutionary suicide, such
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as extinction via a subcritical Hopf bifurcation or a fold bifurcation of limit cycles.

In section 2, we describe our main model, which generalizes the model of Matsuda and
Abrams (1994) in three ways: the birth rate need not be a hyperbolic function of the forag-
ing effort c as assumed in (2); the dynamics of the predator need not be independent of the
focal prey; and the system may exhibit nonequilibrium dynamics when evolutionary suicide
happens. In section 3, we allow for an arbitrary birth rate function B(c) in (1) and establish
what conditions this function should fulfil to obtain evolutionary suicide at a given value of c.
In section 4, we allow for nonequilibrium dynamics of the predator-alternative prey system and
study evolutionary suicide in (1) with non-constant predator densities. In section 5, we explore
evolutionary suicide in the full three-dimensional system of the focal prey, alternative prey and
predator, assuming that the predator depends on both prey species.

2 The model

We extend the Rosenzweig-MacArthur model in (3) to include an alternative prey, assuming that
the predator hunts for only one prey species at a time (see the Discussion for the opposite case).
This happens if the focal and alternative prey species live in two different habitats, and the
predator spends a fraction q of its time in the first habitat, searching for and handling only the
focal prey, and spends the remaining fraction (1− q) of its time in the second habitat, searching
for and handling only the alternative prey. The same split of the predator’s time results also if
the two prey species have different diurnal patterns of activity, so that the focal prey is available
for a fraction q of the predator’s active time and the alternative prey is available during the
remaining fraction 1− q, or if individual predators have different non-heritable preferences such
that a fixed fraction q of the predators hunt for the focal prey and the rest for the alternative
prey. With this assumption, we obtain the system

dn1
dt

=

[
B(c1)− d1 − δ1n1 −

c1β1qp

1 + c1β1h1n1

]
n1 (4a)

dn2
dt

=

[
ρ2c2

1 + ρ2b2c2
− d2 − δ2n2 −

c2β2(1− q)p
1 + c2β2h2n2

]
n2 (4b)

dp

dt
=

[
α1qc1β1n1

1 + c1β1h1n1
+
α2(1− q)c2β2n2

1 + c2β2h2n2
− µ

]
p (4c)

where the notation is as in the Introduction, only now specific to the focal prey species 1 and to
the alternative prey species 2. For the focal prey, we shall use the hyperbolic birth rate function

B(c1) =
ρ1c1

1 + ρ1b1c1
(5)

when we resort to numerical analyses (Matsuda and Abrams 1994 used the same but with ρ1 = 1
fixed). For the alternative prey, we always use the hyperbolic birth rate function already sub-
stituted into equation (4b). Since we treat the foraging effort of the alternative prey c2 as a
constant model parameter, using the hyperbolic formula for the birth rate implies that the birth
rate of species 2 is a constant that falls between 0 and 1/b2.
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The population dynamics of this system have been studied by Krivan and Eisner (2006, see
their “fixed preference” model) and by Vitale (2016). The system can have up to three interior
equilibria (Appendix A), two of which can be asymptotically stable, as well as limit cycles. We
have no evidence for chaotic dynamics, but given the high number of parameters and lack of
comprehensive analysis, we cannot exclude it either. Related models that include also competi-
tion between the two prey species exhibit chaos (Bazykin 1998; Groll et al. 2017).

To investigate the evolution of the foraging effort c1 of the focal prey, consider a rare mutant
with foraging effort cm1 . If the resident system (4) has attained a stable equilibrium (n̄1, n̄2, p̄),
then the mutant, while rare, grows or declines exponentially at the rate

r(cm1 ; n̄1, p̄) = B(cm1 )− d1 − δ1n̄1 −
cm1 β1qp̄

1 + c1β1h1n̄1

which we refer to as the invasion fitness of the mutant. Notice the resident foraging effort c1
in the denominator of the last term. The factor 1/(1 + c1β1h1n̄1) in the Holling II functional
response is the fraction of predators who are searching rather than handling a prey, and this frac-
tion is determined by the resident population of the focal prey. We follow Matsuda and Abrams
(1994) in assuming that mortality other than predation occurs at the same rate (d1 + δ1n̄1) for
the mutant as for the resident.

The invasion fitness at cm1 = c1 is the resident’s growth rate, which is zero. A first-order
Taylor expansion of the invasion fitness as a function of cm1 around cm1 = c1 shows that a mutant
with foraging effort cm1 sufficiently close to c1 will invade the resident system if the selection
gradient

g(c1) =
∂r(cm1 ; n̄1, p̄)

∂cm1

∣∣∣∣
cm1 =c1

= B′(c1)−
β1qp̄

1 + c1β1h1n̄1
(6a)

has the same sign as (cm1 − c1). If the resident system has settled on a stable limit cycle, then
the invasion fitness of a mutant is the time average of its growth rate over a full cycle of the
resident system, and the selection gradient is

g(c1) = B′(c1)−
1

T

∫ T

0

β1qp(t)

1 + c1β1h1n1(t)
dt (6b)

where T is the period of the cycle.

If |cm1 − c1| is sufficiently small and c1 is away from evolutionary singularities (defined by
g(c1) = 0), invasion implies fixation, i.e., an invading mutant excludes the former resident and
becomes the new resident (Geritz 2005; Dercole and Rinaldi 2008; Dercole and Geritz 2016). By
repeated steps of mutation, invasion and fixation, the foraging effort c1 evolves towards higher
or lower values depending on whether the selection gradient g(c1) is positive or negative (Dieck-
mann and Law 1996; Geritz et al. 1998). Note that if the resident population has multiple
attractors of its population dynamics, the selection gradient in (6) depends on at which equilib-
rium or limit cycle we evaluate it. The “Tube Theorem” of Geritz et al. (2002) ensures that with
small mutations, the population tracks one branch of equilibria or limit cycles while evolving c1,
as long as no catastrophic bifurcation of the population dynamics is encountered. In all cases we
consider below, the resident population has only one attractor with the focal species present at
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positive population densities, but it may have another attractor on the boundary with the focal
species extinct. We evaluate g(c1) at the attractor where the focal species is present without
making this explicit in the notation. The adaptive dynamics of c1 described here agree with the
adaptive dynamics used by Matsuda and Abrams (1994, see their equation 6), which is based
on quantitative genetics (Abrams et al. 1993 and references therein discuss the relationship
between adaptive dynamics and quantitative genetic models of evolution).

The limiting case of Matsuda and Abrams

In order to recover the “generalist predator” model of Matsuda and Abrams (1994), we need
to assume that the predator’s dynamics are independent of the focal prey (i.e., the predator is
sustained solely by the alternative prey), but the predator does impact on the focal prey. In our
model, this is the case when α1 = 0, i.e., when consuming the focal prey does not contribute to
the reproduction of the predator. Biologically this limiting case is unrealistic, but this is how
our extended model connects to the original model of Matsuda and Abrams (1994). Because
evolutionary suicide is a structurally robust phenomenon, our predictions hold also for small
positive values of α1. We consider the degree of robustness in section 5.

With α1 = 0, the 2-dimensional system (4b,c) of the predator and the alternative prey is
autonomous, and it is the well-known Rosenzweig-MacArthur predator-prey model of a logistic
prey and a predator with Holling II functional response. Suppose that the predator is viable, and
the unique interior equilibrium (n̄2, p̄) of the Rosenzweig-MacArthur model in (4b,c) is stable.
Once the predator has equilibrated, p = p̄ in (4a) is fixed, and for the focal prey, we recover
the “generalist predator” model of Matsuda and Abrams (1994; see equation (1) above). The
two nontrivial equilibria of (1) correspond to two interior equilibria of the 3-dimensional system
in (4), which have the same coordinates for the predator and the alternative prey; depending
on whether (4b,c) has a stable node or focus, the equilibria of (4) are a stable node or a stable
focus-node and a saddle or a saddle-focus.

Figure 1 illustrates the adaptive dynamics of the foraging effort c1 with α1 = 0, p = p̄
constant and B(c1) as given in (5). In panels (a)-(e), we assume the same parameter values for
the focal species as Matsuda and Abrams (1994) did, and vary the effective predator density qp̄
experienced by the focal species via varying c2; panels (b) and (e) are identical to Figure 1b,d
in Matsuda and Abrams (1994).

As the foraging effort c1 evolves, the system tracks the stable interior equilibrium as long as it
exists (Geritz et al. 2002). Evolutionary suicide happens when c1 evolves downwards (in the dark
grey regions in Figure 1) to cross a saddle-node bifurcation point (marked with arrows in Figure
1a-c,f). When a mutant with foraging effort below the bifurcation point invades, the entire pop-
ulation of the focal species crashes to extinction. Note that a saddle-node bifurcation does not
necessarily imply evolutionary suicide; in Figure 1g, the selection gradient is positive such that
c1 evolves away from the bifurcation point. Next to evolutionary suicide, the model can also ex-
hibit attracting singularities (filled dots), evolutionary repellors (empty dots), and bistability of
the adaptive dynamics (in Figure 1d, between two attracting singularities; in Figure 1f, between
an attracting singularity and evolutionary suicide). Since [∂2r/∂(cm1 )2]cm1 =c1 = B′′(c1) < 0 with
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Figure 1: Bifurcation diagrams in the limiting case of Matsuda and Abrams (1994). The plots
show the density of the focal species n̄1 as a function of its evolving trait c1. Because α1 = 0,
n̄2 and p̄ do not depend on c1. Thick lines: stable equilibria; dashed lines: unstable equilibria;
dark grey background: the selection gradient of c1 is negative at the stable equilibrium; light
grey background: the selection gradient is positive. Filled dots mark convergence stable ESSs,
empty dots are evolutionary repellors. Arrows indicate the fold bifurcations where evolutionary
suicide occurs (panels (a)-(c) and (f)). B(c1) as in (5). Parameter values: d1 = 0.1, δ1 = 0.25,
ρ1 = 1, β1 = 1, h1 = 1, d2 = 0.9, δ2 = 0.01, b2 = 0.4, ρ2 = 0.9, β2 = 0.9, h2 = 0, α2 = 0.6,
µ = 0.5, q = 0.9 and (a)-(e) b1 = 1, (f) b1 = 0.9, (g) b1 = 0.5; the value of c2, given in the panel
titles, is chosen to obtain the values of qp̄ shown in the panels.
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the birth rate function in (5), the singularities are evolutionarily stable (ESS; Maynard Smith
1982; Geritz et al. 1998).

3 Evolutionary suicide through a saddle-node bifurcation:
Critical function analysis

In this section, we start with a non-specified birth rate function c1 7→ B(c1) for the focal species,
and ask what properties this function should have for the model to exhibit evolutionary suicide
at a given trait value c∗1. Starting with a non-specified birth rate function is motivated by the
fact that the choice of this function is the least justified element of the model. The hyperbolic
function in (5) is not derived from any underlying mechanism (in contrast to the Holling II
functional response of the predators, which derives from switching between searching and han-
dling), and while it is biologically realistic to assume that the birth rate is an increasing and
saturating function of the foraging effort, the particular shape of this function could well be
different. The following analysis is similar in spirit to the method of critical function analysis,
which is used to construct trade-off functions to obtain evolutionary branching points and other
types of evolutionary singularities (de Mazancourt and Dieckmann 2004; Bowers et al. 2005;
Geritz et al. 2007; Kisdi 2006, 2015; Kisdi et al. 2013). Here we apply this construction method
for the first time to find evolutionary suicide.

Throughout this section, we assume α1 = 0 so that that the dynamics of the predator and its
alternative prey in (4b,c) are decoupled from the dynamics of the focal prey in (4a). Suppose that
all parameters in (4b,c) are fixed such that the Rosenzweig-MacArtur system of the alternative
prey and the predator attains a stable interior equilibrium (n̄2, p̄). From (4a), the equilibrium
density of the focal species is given by

n̄±1 =
Γ±
√

∆

2δ1c1β1h1

with Γ = c1β1h1(B(c1)−d1)−δ1 and ∆ = Γ2+4δ1(Γ+δ1−c21β21h1qp̄). A saddle-node bifurcation
of equilibria occurs when the discriminant ∆ is zero, which is the case if Γ takes one of the two
values Γ± = −2δ1 ± 2c1β1

√
δ1h1qp̄. Notice that the smaller root Γ− is always negative. For the

saddle-node bifurcation to happen at a given foraging effort c1 = c∗1 and at a positive density
n̄∗1 = Γ+/(2δ1c1β1h1) > 0, it is necessary that Γ+ is positive and B(c∗1) is such that Γ = Γ+.
These two conditions are equivalent to

(c∗1)
2β21h1qp̄ > δ1 (7)

and

B(c∗1) =
Γ+ + δ1
c∗1β1h1

+ d1 = 2

√
δ1qp̄

h1
− δ1
c∗1β1h1

+ d1 (8)

respectively (note that by (7), the birth rate in (8) is always positive).

The necessary condition in (7) is independent of the choice of the birth rate function B.
For fixed model parameters, it implies that evolutionary suicide is possible only if the foraging
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effort c∗1 is chosen to be sufficiently high. Alternatively, one could fix c∗1 first, and choose the
parameters of the alternative prey and the predator (i.e., the parameters in (4b,c)) such that
p̄ is sufficiently high to satisfy condition (7). The well-known properties of the Rosenzweig-
MacArthur predator-prey model ensure that it is always possible to find parameters to get a
stable equilibrium with arbitrary predator density p̄. Biologically, (7) shows that at a given for-
aging effort c∗1, evolutionary suicide is not possible if the density of predators is too low. Further,
evolutionary suicide is never possible if there is no handling time for the focal prey (h1 = 0).
If the focal prey cannot saturate the predator, then there is no Allee effect in its dynamics and
therefore bistability and evolutionary suicide are not possible.

We say that the saddle-node bifurcation opens to the right if the two interior equilibria exist
for c1 > c∗1. This is the case when

∂∆

∂c1

∣∣∣∣
c1=c∗1

> 0

Using (8), this condition is equivalent to

1

β1

δ1
(c∗1)

2h1
< B′(c∗1) (9)

If the opposite strict inequality holds, then the saddle-node bifurcation opens to the left (i.e.,
two interior equilibria exist for for c1 < c∗1).

Recall that to ensure a saddle-node bifurcation at c∗1, ∆ = 0 is not sufficient in itself, two
non-degeneracy conditions must also be satisfied (Kuznetsov 1998, Theorem 3.1). Both involve
derivatives of the right hand side of (4a), evaluated at (c1, n1) = (c∗1, n̄

∗
1). First, the second

derivative with respect to n1 must not vanish; it is straightforward to show that this is ensured
by (7). Second, the derivative with respect to c1 must not be zero; this is equivalent to requiring
that (9) does not hold with equality.

The selection gradient at the bifurcation point, given by (6a) evaluated at (c1, n̄1) = (c∗1, n̄
∗
1),

is negative if and only if

B′(c∗1) <

√
qp̄

δ1
(c∗1)

2h1
(10)

Assuming that (7) holds, one can obtain evolutionary suicide at a given trait value c∗1 by choosing
the birth rate function such that its value B(c∗1) is as given in (8) and its slope B′(c∗1) satisfies
(9) and (10). In this case, there is a right-opening saddle-node bifurcation at c∗1 combined with
a negative selection gradient at the bifurcation point, and, by continuity, also in the vicinity
of the bifurcation point. The negative selection gradient drives the evolution of c1 downwards
until evolutionary suicide occurs at c∗1 (similarly to the examples in Figure 1a-c,f). The choice
prescribed by (9) and (10) is always possible because the right hand side of (10) is greater than
the left hand side of (9), i.e., √

qp̄
δ1

(c∗1)
2h1
− 1

β1

δ1
(c∗1)

2h1
> 0 (11)
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holds precisely when (7) is satisfied.

Notice that the required slope of the birth rate function is positive, which is biologically real-
istic. The width of the interval of B′(c∗1) which results in evolutionary suicide is given by the left
hand side of (11) (see Appendix B for details). Since evolutionary suicide is a non-degenerate
phenomenon, qualitatively similar results hold by continuity also for small positive values of α1.

The above construction method prescribes the birth rate function B only locally, up to first
order at c∗1; otherwise the function can be chosen arbitrarily, with biological realism in mind (e.g.
a monotonically increasing, saturating function). For example, the two-parameter hyperbolic
function in (5) is sufficiently flexible to satisfy the conditions obtained for evolutionary suicide
at c∗1, but so are many other functions.

One can easily construct a birth rate function such that the model exhibits a left-opening
saddle-node bifurcation at a given foraging effort c∗1, but evolutionary suicide is not possible at
such a point. Figure 1c shows an example; there is a left-opening saddle-node bifurcation at c1
slightly below 1, but the selection gradient is negative at this point, so that the focal prey evolves
away from extinction. To prove that this is always the case, recall that for a left-opening saddle-
node bifurcation at a positive density n̄∗1, (7) and (8) must hold together with the opposite of
(9). For the selection gradient at c∗1 to be positive, which would drive the focal species through
the saddle-node bifurcation to extinction, the opposite of (10) should hold. For the opposites of
(9) and (10) to be true simultaneously, the opposite of (11) is necessary; but this contradicts (7).
Hence in the limiting case of the “generalist predator” model of Matsuda and Abrams (1994),
evolutionary suicide can never happen due to evolving higher values of the foraging effort c1, no
matter what the birth rate function is.

4 Evolutionary suicide through a fold bifurcation of limit cycles

Since evolutionary suicide is a structurally stable phenomenon, it should occur also if the density
of predators is not constant but has some small temporal variation. In the context of our model,
the equilibrium that undergoes a saddle-node bifurcation at the point of evolutionary suicide can
be replaced with a limit cycle, so that evolutionary suicide happens through a fold bifurcation
of limit cycles.

To obtain an example for this, we can use the construction method of the previous section
combined with a continuity argument. Throughout this section, we assume α1 = 0. In the
first step, we consider the autonomous planar system of (4b,c), i.e., the Rosenzweig-MacArthur
model of the predator and its alternative prey, and poise it at a Hopf bifurcation point as follows.
Fix all parameters in equations (4b,c) except c2. The birth rate of the alternative prey is an
increasing function of its foraging effort c2, and hence the predator-free equilibrium density of the
prey increases with c2. The predator needs a minimum density of the prey to be viable, i.e., c2
needs to exceed a certain threshold c̃2 for a positive interior equilibrium to exist (the expression
for c̃2 is easy to derive but is relatively lengthy). Let tr J denote the trace of the 2× 2 Jacobian
matrix evaluated at the unique interior equilibrium of (4b,c); by the Routh-Hurwitz criteria, the
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Hopf bifurcation occurs when trJ = 0. With c2 only slightly above the transcritical bifurcation
point c̃2, the equilibrium must be a stable node and therefore tr J is negative. Further,

d tr J

dc2
=

ρ2h2µ

α2(1− q)(1 + ρ2b2c2)2
+

δ2µ[α2(1− q) + h2µ]

α2β2c22(1− q)[α2(1− q)− h2µ]
> 0

since α2(1− q) > h2µ is necessary for predator viability and

lim
c2→∞

tr J =
h2µ(1− b2d2)
α2b2(1− q)

> 0

whenever the handling time h2 is nonzero since b2d2 < 1 is necessary for the viability of the prey.
It thus follows that there is a unique c2 = cH2 > c̃2 where tr J = 0 and the system undergoes
a Hopf bifurcation. The Hopf bifurcation of the Rosenzweig-MacArthur model is known to be
supercritical, such that a stable limit cycle of the alternative prey-predator system is present
when c2 exceeds cH2 .

In the second step, we take c2 = cH2 and use section 3 to obtain evolutionary suicide of the
focal prey. Let p̄H denote the equilibrium predator density at c2 = cH2 . Fix the values of d1, δ1,
β1 and h1 in equation (4a). Choose c∗1 such that (7) holds with p̄ = p̄H . With the parameter
values used in Figure 2, cH2 = 2.128, p̄H = 1.187, and (7) is equivalent to c∗1 > 0.4478; we set
c∗1 = 2.1. From (8), we obtain the value B(c∗1) = 0.67. Conditions (9) and (10) constrain B′(c∗1)
to be between 0.0324 and 0.1519; we choose the slope B′(c∗1) = 0.1. The birth rate function in
(5) has the required value B(c∗1) = 0.67 and slope B′(c∗1) = 0.1 if its parameters are ρ1 = 1.018
and b1 = 1.025. With the parameters obtained at this point, the focal species undergoes evolu-
tionary suicide through a collision of two non-hyperbolic equilibria.

In the last step, we increase the value of c2 to exceed the supercritical Hopf bifurcation point
cH2 . The two interior non-hyperbolic equilibria are then replaced with two limit cycles, which
are stable when n1 is fixed, but one is attracting and the other is repelling in the n1-direction.
By continuity, these limit cycles are near the original equilibria, so that for a sufficiently small
change in c2, a fold bifurcation of limit cycles takes place near c∗1 and the sign of the selection
gradient remains unchanged. Thus we obtain evolutionary suicide through a fold bifurcation of
limit cycles.

In Figure 2 illustrating this result, we have also rounded off the parameters of the birth rate
function to ρ1 = 1 and b1 = 1; due to continuity, this does not alter the outcome. The selection
gradient of c1, obtained from (6b), is negative on the stable limit cycle for all values of c1 shown
in Figure 2. Hence evolution will drive c1 downwards until the population of the focal species
collapses at the fold bifurcation of limit cycles at around c1 = 2.16. By continuity, the same
must happen also for small positive values of α1, i.e., if the predator is not fully decoupled from
the focal prey’s dynamics.

11



Figure 2: Evolutionary suicide through a fold bifurcation of limit cycles. Each vertical line
represents the range of n1 along a limit cycle. For each value of c1 above the fold bifurcation
of limit cycles at ca c1 = 2.16, there exist a stable limit cycle (upper branch) and an unstable
limit cycle (lower branch); the corresponding lines are shown at slightly different values of c1
for readability. The selection gradient is negative on the upper branch of stable limit cycles.
Parameter values: d1 = 0.1, δ1 = 0.1, b1 = 1, ρ1 = 1, β1 = 1, h1 = 0.7, d2 = 0.9, δ2 = 0.01, b2 =
0.4, ρ2 = 0.9, β2 = 0.9, h2 = 0.5, α1 = 0, α2 = 0.7, µ = 0.5, q = 0.6, c2 = 2.13.

5 Robustness and evolutionary suicide through a subcritical
Hopf bifurcation

In this section we consider the model with α1 > 0, so that all three equations in (4) are coupled.
The full model has very rich population dynamics (see Krivan and Eisner 2006; Vitale 2016). We
do not aim at a comprehensive analysis; rather, we show two examples to illustrate robustness
issues and various routes to evolutionary suicide. The numerical bifurcation analysis presented
below was carried out using MatCont (Dhooge et al. 2008).

Example 1

In our first example, we assume that both prey species are associated with a positive handling
time (h1, h2 > 0), but the parameters are such that the 2-species Rosenzweig-MacArthur model
of the alternative prey and the predator has a stable equilibrium. We take the birth rate func-
tion of the focal prey as given in (5) and choose parameter values such that at α1 = 0, and
by continuity also at sufficiently small values of α1, the first prey species exhibits evolutionary
suicide by evolving lower values of c1 until the stable interior equilibrium disappears through a
saddle-node bifurcation. At α1 = 0, this recapitulates the evolutionary suicide scenario found
by Matsuda and Abrams (1994; cf. section 2).

In Figure 3, we show what happens as α1 increases (the predator can better utilize the focal
prey). In this figure, the selection gradient of the focal prey’s foraging effort (evaluated numer-
ically) is negative wherever the focal prey persists (either at a stable equilibrium or on a stable
limit cycle). The evolutionary trajectory is therefore a straight line downwards to lower c1. At
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Figure 3: Bifurcation diagram for Example 1. Solid line: saddle-node bifurcation (a stable
focus-node and a saddle-focus collide left to ZH, a saddle-focus and an unstable focus-node
collide right to ZH); dashed line: Hopf bifurcation; dotted line: fold bifurcation of limit cycles;
ZH: zero-Hopf bifurcation; GH: generalized Hopf bifurcation. Numbered regions: see text for
description. Parameter values: d1 = 0.1, δ1 = 0.25, b1 = 1, ρ1 = 1, β1 = 1, h1 = 1, d2 = 0.9, δ2 =
0.01, b2 = 0.4, ρ2 = 0.9, β2 = 0.9, h2 = 0.5, α2 = 0.7, µ = 0.5, q = 0.6, c2 = 2.06.

low values of c1 (in region 1 of Figure 3), there is no interior equilibrium. Given the values
of the fixed parameters, the focal species cannot invade the 2-species system of the alternative
prey and the predator with any c1 > 0, i.e., the equilibrium on the boundary n1 = 0 is always
stable also transversally; and for the values of α1 shown in Figure 3, the predator is not viable
in absence of the alternative prey, such that the 2-species system of the focal prey and the
predator has no positive equilibrium. In region 1, therefore, the only stable equilibrium is the
boundary equilibrium where the focal species is extinct, and this equilibrium attracts all orbits.
Near α1 = 0, evolutionary suicide happens as c1 evolves downwards and crosses the saddle-node
bifurcation line (solid line in Figure 3) to region 1.

In region 2, the model has a pair of stable and unstable interior equilibria. Near α1 = 0,
these equlibria are a node and a saddle (all eigenvalues of the Jacobian are real), but with
increasing α1, they turn into a stable focus-node and a saddle-focus (both have two complex
eigenvalues with negative real parts, the third eigenvalue is real and negative for the focus-node
and positive for the saddle-focus). With increasing α1, the saddle-focus undergoes a Hopf bifur-
cation (dashed line between regions 2 and 3), whereby an unstable limit cycle is born (the first
Lyapunov coefficient of the Hopf bifurcation is negative, yet the limit cycle is unstable because
of the positive eigenvalue of the saddle-focus). The stable focus-node is still present in region 3,
along with an unstable focus-node and the unstable limit cycle.

The Hopf and saddle-node bifurcation lines are tangent at the point of the zero-Hopf bifur-
cation (of the kind with s = 1, θ(0) > 0 using the notation of Chapter 8.5 in Kuznetsov 1998;
see his figure 8.13). To the right of the zero-Hopf point, the subcritical Hopf bifurcation (now
with a positive first Lyapunov coefficient) involves the stable focus-node of region 3, turning it
into a saddle-focus (with a real negative eigenvalue and a complex conjugate pair with positive
real part). Hence in region 4, there is no stable equilibrium and all orbits are attracted to the
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boundary equilibrium where the focal species is extinct.

Slightly above c1 = 4, the right branch of the Hopf bifurcation line turns into supercritical
at the point of a generalized Hopf bifurcation. When crossing from region 3 to region 5, a stable
interior limit cycle is born as the stable focus-node of region 3 is destabilized. The stable limit
cycle coexists in region 5 with the unstable limit cycle already present in region 3, and they
disappear through the fold bifurcation of limit cycles that connects to the generalized Hopf point
(dotted line between regions 4 and 5).

Recall that the selection gradient is everywhere negative. As c1 evolves downwards, evolu-
tionary suicide happens either via a saddle node-bifurcation (crossing from region 2 to 1) or via
a subcritical Hopf bifurcation (from region 3 to 4). Starting with a limit cycle in region 5, the
evolution of c1 first stabilizes the population dynamics (crossing to region 3), and then leads to
evolutionary suicide via the subcritical Hopf bifurcation (crossing to region 4).

In this example, the scenario of evolutionary suicide found at α1 = 0 (which corresponds
to Matsuda and Abrams 1994) is not robust. At quite small positive values of α1, suicide via
a saddle-node bifurcation is replaced by suicide via a subcritical Hopf bifurcation. The latter
however exists only in a narrow range of α1, and if α1 is increased further, the focal species is
not viable for any foraging effort c1. Note that this non-robustness is invisible if the analysis
assumes a constant predator density. With α1 = 0, the bifurcation diagram with respect to c1
looks the same as Figure 1a.

Example 2

In Figure 4, we show an example where evolutionary suicide robustly extends to positive values
of α1 (the only difference to the previous example is in the choice of the fixed parameters).
This example also shows a way how the “generalist predator” model of Matsuda and Abrams
(1994), with evolutionary suicide, connects through a continuous change of parameters to their
“specialist predator” model, where evolutionary suicide is not possible.

At α1 = 0, the example in Figure 4 is precisely the same as Figure 1b above and Figure
1b of Matsuda and Abrams (1994). In addition, we have h2 = 0 in this example, so that the
alternative prey-predator system has no limit cycle.

As before, near α1 = 0 and starting with high foraging effort, c1 decreases until evolutionary
suicide occurs at a saddle-node bifurcation (solid line extending to α1 = 0 in Figure 4). There
is a narrow interval of low values of c1, between two horizontal dotted lines of transcritical bi-
furcations, where the focal species is viable and has an attracting ESS (marked with a dot in
Figure 1b). This interval remains the same for all α1, because at the transcritical bifurcations
n1 becomes zero, so that the product α1n1 in equation (4c), the only equation that contains
α1, is zero independently of α1. The position of the singularity (the borderline between areas
of positive and negative selection gradients between the dotted lines) depends on α1 too weakly
to be visible in Figure 4. If the initial value of c1 is within this narrow interval, then it evolves
to the singularity within the interval and evolutionary suicide does not occur.
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Figure 4: Bifurcation diagram for Example 2. (a) Main diagram; (b) the vicinity of AB mag-
nified. Solid line through ZH: saddle-node bifurcation (a stable focus-node and a saddle-focus
collide left to ZH, a saddle-focus and an unstable focus-node collide right to ZH); dashed line
through GH: Hopf bifurcation; dotted line connecting to GH and running close above the Hopf
bifurcation line: fold bifurcation of two unstable limit cycles; GH: generalized Hopf bifurcation;
ZH: zero-Hopf bifurcation; horizontal dotted lines: transcritical bifurcations. Except for the
grey area between the horizontal dotted lines, the selection gradient of c1 is negative whenever
the focal prey is present. Features resolved in panel (b), dashed curve delineating regions 6-8:
transcritical bifurcation of interior equilibria crossing the equilibrium on the boundary n2 = 0;
solid line through A: supercritical Hopf bifurcation of the two-dimensional system restricted to
the boundary n2 = 0, with a limit cycle on the boundary on the right; dotted line connecting
to A: transcritical bifurcation of the boundary limit cycle, transversally unstable on the right.
Point A: the Hopf bifurcation of the interior equilibrium happens on the boundary n2 = 0; B:
the saddle-node bifurcation happens on the boundary n2 = 0. The bifurcation lines are not
drawn where the corresponding equilibria are outside the positive orthant. Numbered regions:
see text for description. Parameter values: d1 = 0.1, δ1 = 0.25, b1 = 1, ρ1 = 1, β1 = 1, h1 =
1, d2 = 0.9, δ2 = 0.01, b2 = 0.4, ρ2 = 0.9, β2 = 0.9, h2 = 0, α2 = 0.6, µ = 0.5, q = 0.9, c2 = 1.96417
(this choice ensures qp̄ = 0.45 at α1 = 0).
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The equilibria of regions 1-4 in Figure 4, organized by the zero-Hopf bifurcation point, are
similar to the corresponding regions of Figure 3. In region 1, there is no interior equilibrium; in
region 2, there is one stable and one unstable interior equilibrium; when crossing to region 3, the
unstable saddle-focus of region 2 becomes an unstable focus-node, but the stable equilibrium
does not change. In the example of Figure 4, the generalized Hopf bifurcation is on the left
branch of the Hopf bifurcation line, so that it involves the saddle-focus of region 2, not the
stable equilibrium. All limit cycles associated with the Hopf bifurcation left to the zero-Hopf
bifurcation point are unstable. Region 4 is very narrow, but the subcritical Hopf bifurcation
line is above the saddle-node line (see panel (b)).

Regions 2 and 3 are the parts where the focal species can be present at a stable interior equi-
librium. The selection gradient of c1 is negative everywhere in these regions, so that c1 evolves
downwards. For α1 below ca 0.45, i.e., to the left of the zero-Hopf bifurcation, evolutionary
suicide happens when c1 crosses the saddle-node bifurcation line to region 1. For greater α1,
evolutionary suicide happens through the subcritical Hopf bifurcation between regions 3 and 4.

For higher values of α1, the focal species alone can maintain a sufficiently large population
of the predator to drive the alternative prey extinct. The line between regions 3 and 6 (see
Figure 4b) is the line of a transcritical bifurcation, where the stable interior equilibrium leaves
the positive orthant through the equilibrium of the focal prey and the predator on the boundary
plane n2 = 0. In region 6, the boundary equilibrium (n̄1, 0, p̄) is stable both transversally and
with respect to perturbations of n1 and p. Note that since h2 = 0, the boundary equilibrium
with the alternative prey, (0, n̄2, p̄), is always stable with respect to perturbations of n2 and
p; and it is also transversally stable except at very low c1, between the two horizontal lines of
transcritical bifurcations described above. Therefore in region 6, the model exhibits bistability
with two stable boundary equilibria where one or the other prey is extinct.

On the boundary n2 = 0, the focal prey and the predator follow the Rosenzweig-MacArthur
model. The boundary equilibrium (n̄1, 0, p̄) undergoes a supercritical Hopf bifurcation between
regions 6 and 7. The limit cycle born in the bifurcation is transversally stable in the narrow
region 7, but transversal stability is soon lost; in region 8, the alternative prey can invade the
limit cycle of the focal prey and the predator, and drives the focal prey extinct (recall that
there is no stable interior equilibrium here). Finally, the transcritical bifurcation line between
regions 5 and 8 marks where the unstable focus-node, which is present in regions 3-4 and 6-8,
leaves the positive orthant and makes the boundary equilibrium (n̄1, 0, p̄) (which has lost sta-
bility through the supercritical Hopf bifurcation) also transversally unstable. The supercritical
Hopf bifurcation of the boundary equilibrium (n̄1, 0, p̄) exists independently of the transversal
stability of this equilibrium, so that the bifurcation line continues also below point A. In region
5, orbits on the boundary n2 = 0 go to a transversally unstable limit cycle, whereas in region 1,
to a transversally unstable equilibrium. Starting with all three species present, the focal species
goes extinct both in region 1 and region 5, and the only attractor is the boundary equilibrium
(0, n̄2, p̄).

The selection gradient of c1 is negative at the stable boundary equilibrium (n̄1, 0, p̄) in region
6 and on the stable limit cycle in region 7. As c1 evolves downwards, this first stabilizes the
boundary equilibrium (if starting from region 7), and then sufficiently decreases the equilibrium
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density of the predator for the alternative prey to invade the system (when crossing from region
6 to region 3). Once the alternative prey is present (in region 3), evolutionary suicide occurs
through the subcritical Hopf bifurcation as described above.

Notice that in regions 6 and 7, the focal prey and the predator behave as in the “specialist
predator” model of Matsuda and Abrams (1994), where evolutionary suicide is not possible.
However, the focal prey evolves such that the system becomes vulnerable to the invasion of the
alternative prey, and once the alternative prey invades, the focal prey evolves to its extinction.
This may be seen as an indirect way of evolutionary suicide; the evolution of the focal prey
first facilitates the invasion of a new species (the alternative prey), whereby evolutionary suicide
becomes possible. In this example, the evolution of the focal prey cannot drive the alternative
prey extinct.

6 Discussion

Evolutionary suicide, a species evolving to its own extinction, is perhaps the most counterin-
tuitive result of evolution by natural selection (Gyllenberg 2008). From a mathematical point
of view, a slowly evolving trait may be seen as a slowly changing bifurcation parameter of the
population dynamics of the evolving species. Evolutionary suicide can happen when the evolving
trait crosses a point of a catastrophic bifurcation, where a population dynamic attractor dis-
appears without leaving a new attractor in its neighbourhood (Gyllenberg and Parvinen 2001;
Gyllenberg et al. 2002; Parvinen and Dieckmann 2013).

Note that crossing a catastrophic bifurcation point is generically a necessary but not a suf-
ficient condition for evolutionary suicide, because the system may settle at another interior
attractor such that no species is lost (see Dercole et al. 2002 for an example). In the model
we consider in the present paper, however, the interior attractor is unique and crossing a catas-
trophic bifurcation does result in extinction. We note further that evolution may lead to very low
equilibrium population densities (Matsuda and Abrams 1994b) or to a limit cycle along which
population density becomes repeatedly very low (e.g. in the Rosenzweig-MacArthur predator-
prey model with slow predator and fast prey dynamics, Rinaldi and Muratori 1992; Dercole
et al. 2010) also without encountering a catastrophic bifurcation. Since there is a positive at-
tractor, these examples are not considered to be evolutionary suicide, but may in reality lead
to extinction e.g. due to demographic stochasticity. Without a catastrophic bifurcation, how-
ever, evolution of a single species generically cannot lead to zero population density of the same
species (Gyllenberg and Parvinen 2001; a mathematically non-generic but biologically relevant
exception is analysed by Boots and Sasaki 2003 and Boldin and Kisdi 2016).

Webb (2003) has catalogued bifurcations that potentially lead to evolutionary suicide. Since
the path the evolving trait(s) generate in the parameter space of population dynamics is unlikely
to go through bifurcations of codimension 2 and higher, the bifurcations where evolutionary sui-
cide can generically happen are the codimension-1 catastrophic bifurcations. In 2-dimensional
systems, these are the saddle-node bifurcation, the subcritical Hopf bifurcation, the fold bifur-
cation of limit cycles, and global bifurcations involving homoclinic or heteroclinic structures;
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the subcritical Neimark-Sacker bifurcation of limit cycles should be added for systems in three
dimensions and higher.

Matsuda and Abrams (1994) demonstrated evolutionary suicide in a one-dimensional model
of a prey that evolves its foraging effort under threat from a “generalist” predator that has
constant population density. With single-species population dynamics, the only possible route
to evolutionary suicide is through a fold bifurcation of equilibria (the one-dimensional analogue
of the saddle-node bifurcation), and this is what Matsuda and Abrams (1994) found. In the
present paper, we have relaxed the assumption of constant predator density by adding an al-
ternative prey, which can maintain the predator also if the focal prey does not, and by varying
the strength of coupling between the predator’s dynamics and the focal prey through the pa-
rameter α1, the factor at which the predator converts the focal prey consumed into predator
offspring (α1 = 0 means that the predator’s dynamics are decoupled from the focal prey as
assumed by Matsuda and Abrams 1994). In this augmented model, we have found evolutionary
suicide through saddle-node bifurcations, subcritical Hopf bifurcations (Figures 3 and 4), and
fold bifurcations of limit cycles (Figure 2; a possibility Webb (2003) did not have an example
for). In our first example in section 5, evolutionary suicide is not robust when the predator’s
dynamics are not independent of the focal prey, because the focal prey is not viable unless α1 is
small (Figure 3). In our second example, however, evolutionary suicide through a saddle-node
bifurcation occurs in a wide interval of α1, and in another wide interval of α1 we obtain evolu-
tionary suicide via a subcritical Hopf bifurcation (Figure 4).

Further, our second example illustrates an indirect way of evolution leading to extinction.
Evolutionary suicide is not possible without the alternative prey, so that if the 2-species system
of the focal prey and the predator excludes the alternative prey, as it happens in regions 6 and
7 in Figure 4b, then the system appears to be safe. The evolution of the focal prey however
makes the community vulnerable to the invasion of the alternative prey (by crossing to region
3 in Figure 4), whereupon the focal prey continues to evolve to its own extinction (crossing to
region 4). A similar, but not identical, indirect evolutionary suicide occurs in the intraguild
predation model of Hin and de Roos (in prep), who found that the evolution of the predator
opens the community to the invasion of a new species that drives the predator instantly (i.e.,
without further trait evolution) extinct. The different routes to evolutionary suicide that open
up in our 3-species model and especially the scenario of indirect evolutionary suicide highlight
the importance of studying evolution in a community context.

In our model, only the special case of α1 = 0 is analytically tractable. α1 = 0 means that
the predator does not benefit from capturing the focal prey, which is biologically unrealistic.
Still, the analysis of this special case is useful, because, by continuity, the results hold also for
small positive values of α1. We used a construction method similar to critical function analy-
sis (de Mazancourt and Dieckmann 2004; Bowers et al. 2005; Geritz et al. 2007; Kisdi 2006,
2015; Kisdi et al. 2013) to obtain birth rate functions such that evolutionary suicide through
a saddle-node bifurcation occurs at a prescribed foraging effort c∗1 of the focal prey. Note that
the function c1 7→ B(c1) used for linking foraging effort to offspring production is the least jus-
tified element of the model. Our analysis in section 3 shows that a wide class of two-parameter
functions can lead to evolutionary suicide. In section 4, we extended the method of section 3
to construct an example for evolutionary suicide through a fold bifurcation of limit cycles. It
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follows from the autonomous dynamics of the predator and the alternative prey (which obey the
Rosenzweig-MacArthur predator-prey model when α1 = 0) that other catastrophic bifurcations
are not possible in this limiting case of the model.

For α1 = 0, we have also shown that evolutionary suicide can happen only when c1 evolves
downwards, not when it evolves towards higher values (with arbitrary birth rate functions, see
section 3). This is so despite that the saddle-node bifurcation can open in either direction, and
also the selection gradient can point in either direction (see Figure 1 for examples); but left-
opening bifurcations cannot combine with positive selection gradients. Also in our numerical
analysis of the full model (section 5), we find evolutionary suicide with decreasing c1. The title
of Matsuda and Abrams (1994) equates a low foraging effort c1 with the prey being timid. We
could thus conclude that evolving timidity may lead to suicide whereas evolving braveness will
not. Note, however, that the trait c1 is expressed by the prey independently of whether or not
the predator presents an acute danger to the individual prey. This is different from timidity as
a reaction to an encounter with the predator, for example hiding when the predator is sighted
or smelled. Prey reacting to the actual presence of the predator implies a different functional
response (Geritz and Gyllenberg 2012), and the evolution of timidity in the sense of hiding
quicker and for longer times upon sensing a predator is different from the evolution of foraging
effort we considered (Geritz and Gyllenberg 2014).

We assume that the two prey species interact only via the shared predator (apparent com-
petition, Holt 1977). Adding resource competition or interference competition between the two
prey species would make the population dynamics even more complicated, with heteroclinic bi-
furcations and chaos (see Bazykin 1998; Groll et al. 2017). Global bifurcations like a heteroclinic
bifurcation are also possible routes to evolutionary suicide (Webb 2003), but in our model these
are not found. Further, in our model the Holling type II functional response is the only source
of an Allee effect in the dynamics of the prey. In reality, however, the prey may suffer an Allee
effect also due to other reasons, such as due to low mating success at low population densities. In
this case, heteroclinic bifurcations occur (Van Voorn et al. 2007) and also a specialist predator
can drive the prey to evolutionary suicide (Berec et al. 2018).

Throughout this paper, we assumed that only the focal prey evolves, whereas the parameters
pertaining to the alternative prey and the predator are fixed. This assumption ensures that we
have “clean” examples of evolutionary suicide, scenarios where extinction is a direct consequence
of the evolution of the focal species. Our bifurcation plots in Figures 3 and 4, however, give some
insight also into the consequences of predator evolution. Given that the predator spends a frac-
tion q of its time hunting for the focal prey, it will be under selection to utilize this prey as best
as possible, and hence (everything else being the same) the conversion factor α1 will increase.
As a consequence, the predator can overhunt and drive the alternative prey extinct, but, some-
what paradoxically, the focal prey can also go extinct. The alternative prey is excluded when,
by increasing α1, the system crosses from region 3 to region 6 in Figure 4. This is an example
for apparent competition between the two prey species resulting in competitive exclusion via a
transcritical bifurcation; as α1 increases, the focal prey maintains higher predator density, and
therefore the alternative prey gradually declines to extinction (Holt 1977). The same scenario
can not lead to the exclusion of the focal prey, because with n1 going to zero, the dynamics in
equations (4) become independent of α1. Increasing α1 may, however, result in a catastrophic
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bifurcation, whereupon the focal prey crashes to extinction. This happens in Figure 3 when
increasing α1 takes the system from region 2 to 1 (saddle-node bifurcation), from region 3 to 4
(subcritical Hopf bifurcation) or from region 5 to 4 (fold of limit cycles). The example in Figure
4 shows a further twist; starting from region 3 at high values of c1, increasing α1 first leads to
the exclusion of the alternative prey (in regions 6 and 7), but as the predator further increases
α1, the alternative prey can invade again and drive the focal prey extinct (when crossing to
region 8). In both examples, as the focal prey becomes a valuable resource for the predator, the
predator drives it extinct!

An essential assumption of our model is that the predator hunts for only one prey species
at a time. Biologically, this may be the case if the two prey species live in separate habitats,
or if they are active (and therefore accessible) during different times. Our model applies also
if individual predators have non-heritable fixed preferences such that a fraction q of the preda-
tor population hunts for the focal prey and the remaining fraction for the alternative prey. In
Appendix C, we investigate a model where all three species are present simultaneously in one
well-mixed system, and the predators catch any prey without preference. We show that this
alternative model, or its extension to an arbitrary number of prey species, has no saddle-node
bifurcation and hence cannot underpin the model of Matsuda and Abrams (1994). To explain
this result heuristically, note that at least one prey species must be common for the predator
to be at a sufficiently high density to drive the evolution of its prey. In a well-mixed system, a
common prey species saturates the predator and thereby lifts the predator-induced Allee effect,
described in the Introduction, in the dynamics of the less common prey. Without an Allee effect,
the system does not have a saddle-node bifurcation. In our main model in equations (4), the
alternative prey can maintain a high predator density and yet the predator, when it hunts for
the focal prey, is not saturated with the alternative prey.

We obtain evolutionary suicide assuming that the predator is constrained to spend a fraction
q of its time hunting for only the focal prey, even if consumption of the focal prey contributes
little or none to the predator’s fitness (α1 is small or zero). If q were free to evolve, the predator
would spend its time hunting for the more profitable prey (see Krivan and Eisner 2006 for a
version of this model where the predator can quickly adapt its foraging behaviour). However,
there may be reasons why the predator does not evolve q to zero even if α1 is small. If the
alternative prey is not active during part of the day or its habitat is inaccessible (e.g. too
dark or too cold/hot) in fraction q of the predator’s active time, then even a small positive
α1 makes it worthwhile for the predator to exploit the focal prey during the time otherwise
lost. If it is easier to catch the focal prey than the more profitable alternative prey, then in-
dividuals in weaker condition may prefer the focal prey even if α1 is small. Hunting for the
focal prey gives no advantage when α1 = 0; hence to underpin the evolutionary suicide model
of Matsuda and Abrams (1994) with our model, it is important whether evolutionary suicide
is robust with respect to increasing α1 from zero to positive (as it is in Figure 4) or not (Figure 3).

A further possibility to maintain q > 0 as a worthwhile strategy for the predator is if the
focal prey shares its habitat with a third species of prey. With only this one shared habitat, the
dynamics are like in our alternative model in Appendix C, where a saddle-node bifurcation is not
possible. Adding the second habitat and its alternative prey, however, changes this situation
(see the equations of this three-prey model at the end of Appendix C). Continuity with our
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model in (4) ensures that evolutionary suicide is now possible at least if the third prey is not too
abundant and/or profitable (i.e., if α3n3 is sufficiently small). The presence of the third prey
makes it worthwhile for the predator to spend any time not suitable for hunting in the second
habitat with hunting in the first habitat, even if α1 = 0. Incidental predation on the focal prey
may then drive the focal prey to evolutionary suicide.

The three-prey model suggests that extending our model to include more species would not
be a futile exercise in complexity. Our main finding is that embedding the classic model of
Matsuda and Abrams (1994) into our slightly larger community yields not only much richer
dynamics but also new routes to evolutionary suicide, including the indirect route where the
invasion of a new species is the key to evolutionary suicide. Studying evolution in a community
context is an important challenge for future research (Walsh 2013; terHorst et al. 2018).
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Appendix A

In this appendix, we investigate the interior equilibria (n̄1, n̄2, p̄) of the population dynamics in
equations (4). Using the notation

G1 = B(c1)− d1, G2 =
ρ2c2

1 + ρ2b2c2
− d2

for abbreviating the density-independent part of the per capita growth rates as well as

φ1 =
qc1β1n̄1

1 + c1β1h1n̄1
, φ2 =

(1− q)c2β2n̄2
1 + c2β2h2n̄2

(A.1)

for the Holling II factors, the equilibrium equations (assuming nonzero population densities n̄1,
n̄2, p̄) are

G1 − δ1n̄1 = φ1p̄/n̄1 (A.2a)

G2 − δ2n̄2 = φ2p̄/n̄2 (A.2b)

α1φ1 + α2φ2 = µ (A.2c)

First, we express n̄1 and n̄2 from (A.1),

n̄1 =
φ1

c1β1(q − h1φ1)
, n̄2 =

φ2
c2β2(1− q − h2φ2)

(A.3)

Next, we eliminate p̄ by dividing (A.2a) with (A.2b), and substitute n̄1 and n̄2 with the above
expressions to rewrite the equation in terms of φ1 and φ2,

G1 − δ1 φ1
c1β1(q−h1φ1)

G2 − δ2 φ2
c2β2(1−q−h2φ2)

=
c1β1(q − h1φ1)

c2β2(1− q − h2φ2)

which is rearranged into

[G1c1β1(q−h1φ1)−δ1φ1]c22β22(1−q−h2φ2)2 = [G2c2β2(1−q−h2φ2)−δ2φ2]c21β21(q−h1φ1)2 (A.4)

Substituting φ2 = (µ − α1φ1)/α2 from (A.2c), we obtain a cubic polynomial for φ1. Each root
of this cubic equation yields a root of the equilibrium equations (A.2) with φ2 from (A.2c), n̄1
and n̄2 from (A.3), and p̄ from (A.2a). Figure 29 of Vitale (2016) shows an example where all
three roots are real and positive, i.e., biologically admissible equilibria of the model.

If α1 = 0, then φ2 = µ/α2 is a constant independent of φ1. Therefore (A.4) is only quadratic
in φ1, yielding at most two interior equilibria.

25



Appendix B

In section 3, we show that evolutionary suicide occurs at a given trait value c∗1 if the birth rate
function at this point has a specific value B(c∗1) given by (8) and a slope B′(c∗1) in the interval
given by inequalities (9) and (10). The figure below shows the width of this interval,√

qp̄
δ1

(c∗1)
2h1
− 1

β1

δ1
(c∗1)

2h1

Evolutionary suicide is impossible if this width is negative (grey area). The width depends on
the chosen value of c∗1 (panel (a)). It is easy to see also analytically that the width increases
with qp̄ (all panels) and with β1 (panel (b)), and has a maximum as a function of the composite
parameter (c∗1)

2(h1/δ1) (panels (a),(c)).

Figure 5: The width of the interval for B′(c∗1) that results in evolutionary suicide. The contour
lines, starting from the bottom line, correspond to values 0, 0.1, 0.2, ..., 0.7. In the grey area (i.e.,
below the 0 contour line) condition (7) is violated and hence evolutionary suicide is not possible.
Parameter values: (a) h1/δ1 = 4, β1 = 1; (b) h1/δ1 = 4, c∗1 = 1.2; (c) β1 = 1, c∗1 = 1.2.

Appendix C

Here we consider a well-mixed system where all species are present in one habitat and the
predator searches for both prey simultaneously all time. This alternative model is given by

dn1
dt

=

[
B1 − d1 − δ1n1 −

c1β1p

1 + c1β1h1n1 + c2β2h2n2

]
n1 (C.1a)

dn2
dt

=

[
B2 − d2 − δ2n2 −

c2β2p

1 + c1β1h1n1 + c2β2h2n2

]
n2 (C.1b)

dp

dt
=

[
α1c1β1n1 + α2c2β2n2

1 + c1β1h1n1 + c2β2h2n2
− µ

]
p (C.1c)

where B1 and B2 abbreviate the birth rates of prey species 1 and 2, respectively. Note that in
contrast to equations (4), here both prey densities appear in the denominator of the Holling II
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terms. To interpret this difference, recall that 1 over the denominator of the Holling II functional
response gives the fraction of predators that are searching (as opposed to handling an already
captured prey). In the model of (C.1), handling any of the prey in the well-mixed system re-
moves a predator individual from the searching predators. In our main model (4), in a fraction
q of its time a predator can only capture, and therefore handle, prey species 1, whereas in the
remaining 1− q fraction of time it can handle only species 2. Thus within each time frame, only
handling one prey species removes an individual from the searching predators; accordingly, only
one prey species appears in the functional response in equations (4).

The model in (C.1) naturally extends to k prey species,

dni
dt

=

[
Bi − di − δini −

ciβip

1 +
∑k

j=1 cjβjhjnj

]
ni for i = 1, ..., k (C.2a)

dp

dt
=

[ ∑k
i=1 αiciβini

1 +
∑k

j=1 cjβjhjnj
− µ

]
p (C.2b)

To find the equilibria, let S denote the number of searching predators,

S =
p

1 +
∑k

j=1 cjβjhjnj
(C.3)

At an interior equilibrium of (C.2), we have

Bi − di − δini − ciβiS = 0 for i = 1, ..., k (C.4a)

1

µ

k∑
i=1

αiciβini = 1 +

k∑
j=1

cjβjhjnj (C.4b)

This is a linear system for the unknowns n1, ..., nk, S, and hence generically has only one solution
for the equilibrium. The equilibrium value of p follows directly from (C.3). Since the population
dynamics in (C.1) has a unique interior equilibrium, it cannot undergo a saddle-node bifurcation
for any change of the traits such as the foraging effort c1 and the birth rate B1.

The four-species model

dn1
dt

=

[
B1 − d1 − δ1n1 −

qc1β1p

1 + c1β1h1n1 + c3β3h3n3

]
n1 (C.5a)

dn2
dt

=

[
B2 − d2 − δ2n2 −

(1− q)c2β2p
1 + c2β2h2n2

]
n2 (C.5b)

dn3
dt

=

[
B3 − d3 − δ3n3 −

qc3β3p

1 + c1β1h1n1 + c3β3h3n3

]
n3 (C.5c)

dp

dt
=

[
q

α1c1β1n1 + α3c3β3n3
1 + c1β1h1n1 + c3β3h3n3

+ (1− q) α2c2β2n2
1 + c2β2h2n2

− µ
]
p (C.5d)

unites the features of our main model in equation (4) and the alternative model in (C.1); here
the focal prey 1 and prey 3 live in the first habitat where the predator spends a fraction q of
its time, and the alternative prey 2 lives in the second habitat where the predator spends the
remaining fraction (1− q) of its time. This model is briefly mentioned in the Discussion.
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