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A B S T R A C T

Ethnicity is a well-established determinant of pediatric maturity, but the underlying genetic and environmental
contributions to these ethnic differences are poorly comprehended. We aimed to evaluate the influence of
ethnicity on skeletal age (SA), an assessment of pediatric maturation widely used in clinical settings. We in-
cluded children from the Generation R Study, a multiethnic population-based pregnancy cohort, assessed at a
mean age of 9.78 (± 0.33) years. SA was evaluated by a trained observer on hand DXA scans using the Greulich
and Pyle method. Ethnic background was defined as geographic ancestry (questionnaire-based assessment)
(N = 5325) and genetic ancestry (based on admixture analysis) (N = 3413). Associations between the ethnic
background and SA were investigated separately in boys and girls, using linear regression models adjusted for
age, height and BMI. Based on geographic ancestry, 84% of the children were classified as European, 6% as Asian
and 10% as African. Children of European background had on average younger SA than those of Asian or African
descent. Asian boys had 0.46 (95% CI 0.26–0.66, p-value < 0.0001) and African boys 0.36 years (95% CI
0.20–0.53, p-value < 0.0001) older SA as compared to European boys. Similarly, Asian girls showed 0.64 (95%
CI 0.51–0.77, p-value < 0.0001) and African girls 0.38 years (95% CI 0.27–0.48, p-value < 0.0001) older SA
as compared to European girls. A similar pattern was observed in the analysis with genetically-defined ancestry.
Furthermore, an increase in the proportion of Asian or African component was associated with older SA in both
boys (log[Non-European/European]proportion = 0.10, 95% CI 0.06–0.13, p-value < 0.0001) and girls (log
[Non-European/European]proportion = 0.06, 95% CI 0.04–0.08, p-value < 0.0001). In summary, children of
Asian and African backgrounds have on average older SA as compared to children of European descent, partially
explained by a genetic component.

1. Introduction

The determination and understanding of normal growth and ma-
turation in children are crucial from a medical and a psychosocial
perspective [1]. Maturation is widely assessed through the examination
of the development of carpal and metacarpal bones from the non-
dominant hand to determine the skeletal age (SA). The Greulich and
Pyle atlas method [2], compiled from European children and re-
cognized as a referent standard to determine SA, is used in the field of
pediatric radiology as the main tool for the assessment of individual
skeletal maturation [3].

Deviation of SA from chronological age is decisive for pediatricians

to diagnose and follow growth disorders, and to assess the effectiveness
of any applied treatment [4–7]. An inaccurate SA assessment may result
in an erroneous diagnosis and inadequate treatment of growth dis-
orders, carrying severe and sometimes irreversible consequences [5–7].

During the developmental process, the skeleton increases in both
bone size and density until the end of adolescence. This process is fi-
nalized after the closure of growth plates. Understanding the process of
skeletal maturation may lead to the development of strategies aiming to
assure that the child reaches optimal peak bone mass [8]. The Inter-
national Society of Clinical Densitometry (ISCD) has pointed out the
need to study the origin of ethnic differences in skeletal maturation, as a
crucial step to improve the assessment of pediatric bone health [8].
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The relative faster skeletal maturation of children from African
ancestry has been attributed to factors such as body weight, composi-
tion and earlier onset of puberty [9]. However, these factors only par-
tially explain ethnic differences in SA. Furthermore, there are few stu-
dies assessing differences in SA from the perspective of genetically-
determined ancestry [9], or performed in a population comprising in-
dividuals from the three main ethnic continental definitions [10].

Therefore, we aimed to assess ethnic differences in SA within the
Generation R Study, an optimal setting to investigate the influence of
ancestry on skeletal maturation, as it comprises a population-based
collection of children of diverse ethnic background (reclassified into
European, Asian and African ancestry), within a similar age range and
living in a restricted geographical area. Further, by employing both a
geographic and a genetic definition of ancestry, we aimed to disen-
tangle the genetic and environmental influences of the ethnic back-
ground on SA.

2. Methods

2.1. Study population

The Generation R Study, a multiethnic population-based prenatal
cohort, was established at the Erasmus University Medical Center in
Rotterdam. A total of 9778 mothers, with expected delivery between
April 2002 and 2006, gave consent to be included in the study. The aim
of the Generation R Study is to investigate early genetic and environ-
mental influences on pediatric growth, development and health [11].
All measurements used to address the current research question(s) were
collected in the third cohort visit (mean age of 9.78 ± 0.33 years).
Details about blood sampling and genotyping of the Generation R Study
can be found elsewhere [12,13]. This study was conducted in agree-
ment with the guidelines of the Helsinki Declaration and approved by

The Medical Ethic Committee of the Erasmus Medical Centre (MEC-
2012-165), with the informed consent obtained for all participating
children. The study included participants with complete information,
comprising 5325 children with geographic- and 3413 children with
genetic ancestry (Nbaseline = 5686). A flow chart of the study popula-
tion is presented in Supplementary Fig. 1.

2.2. Demographic and anthropometric measurements

Information about sex and birth date of all participating children
was collected from medical records and registries. Child's age was cal-
culated at the DXA examination visit date. Personnel trained at the
Erasmus research center measured child's height with a Harpenden
stadiometer (Holtain Limited, Dyfed, UK) and weight with a SECA scale
(Almere, The Netherlands). Body mass index (BMI) was derived as the
division of weight (kg) by height squared (m2).

2.3. Geographic ancestry

Geographic ancestry was determined using questionnaire-based as-
sessment of country of parents' origin (following the classification of
Statistics Netherlands) [14]. If one parent was born abroad, the child's
ethnicity was determined according to that parent. If both parents were
born abroad, the child was classified according to the mother's ancestry.
Further, children were divided into three main ethnic groups: 1) Eur-
opean: including Dutch, Turkish, North African, Oceanic, American and
other European; 2) Asian: including Surinamese-Hindu, Indonesian and
other Asian; and 3) African: including Surinamese-Creole, Sub-Saharan
African, Cape Verdean, Antillean and other African [15].

Fig. 1. Genetic determination of ancestry (N = 3413). Children are classified as European, Asian or African based on the highest proportion of estimated ancestral
component (c) (> 50%) (presented on x, y and z axes) or mixed if none of ancestral components reached 50%.
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2.4. Genetic ancestry

ADMIXTURE software [16], modeling the probabilities of observed
genotypes and based on ancestral proportions and population allele
frequencies, was used in the determination of genetic ancestry for the
subset of children with genome-wide genotyping data available
(N = 3413). Participants were classified as having European, Asian or
African ancestry based on the highest proportion of ancestral compo-
nent (> 50%), while those who did not reach 50% for any ancestral
component (N = 48), were classified as of mixed ancestry (Fig. 1)
[17,18].

2.5. Skeletal age

DXA-scans of the left hand were obtained by a trained investigator
using an iDXA densitometer (General Electric, formerly Lunar Corp.,
Madison, WI, USA). Scanning was performed in a supine position with
the left hand placed flat on the table for 66 s. Starting scan point was
defined at two-finger widths below the radiocarpal articulation.
Obtained images included all hand bones, the wrist and distal part of
radius and ulna. SA was obtained through the comparison of the ma-
turity indicators estimated on hand DXA-scans with the standardized
references provided in the Greulich and Pyle atlas [19]. One trained
observer performed the SA assessment in all children using enCORE V.
13.60 (Madison, WI, USA) and the optimal zoom. A randomly selected
subsample of 150 DXA-scans was blindly re-evaluated by the same
observer to assess intra-observer reliability demonstrating high con-
sistency (intra-class correlation 89%).

2.6. Statistical analyses

All analyses were performed separately in boys and girls, given the
already described sexual dimorphism underlying skeletal maturation
[2]. Association between SA and ancestry of the children, both geo-
graphically and genetically determined, was evaluated using a linear
regression model adjusted for age, height and BMI. Genetically de-
termined ancestry was additionally analyzed following a compositional
data approach. A log-ratio transformation [20] was used to assess if the
proportion of Non-European (Asian or African) component of ancestry,
as compared with the proportion of European component - set as the
reference - affects SA (log[Non-European/European]proportion). In the
sensitivity analyses, relative skeletal age (RSA) was used as an outcome
(RSA - difference between skeletal and chronological age), excluding
chronological age from the adjustment. SPSS Statistics version 21 (IBM
Corp, New York, USA) was used for all statistical analyses, with sta-
tistical significance set at p-value ≤ 0.05.

3. Results

This study included 5325 children (2616 boys, 49.1%) at a mean
age of 9.78 (± 0.33) years with available SA assessment, geographic
ancestry information, and anthropometric measurements
(Supplementary Fig. 1). Based on the geographic ancestry definition,

4445 (83.5%) children were classified as European, 549 (10.3%) as
African and 331 (6.2%) as Asian. For the analysis using genetically-
determined ancestry, we included 3413 children (1671 boys, 49%) at a
mean age of 9.79 (± 0.33) years. Following this definition, 3019
(88.5%) children were classified as European, 226 (6.6%) as African,
120 (3,5%) as Asian and 48 (1.4%) as of mixed ancestral background.

Significant differences were observed in all baseline characteristics
across the three ethnic groups (p-value < 0.0001). African children
presented as older, taller and heavier than children of European and
Asian background (Table 1). Likewise, African children showed the
oldest SA as compared to the two other ancestral groups (p-value <
0.0001) (Table 1). To a great extent, these differences were mirrored in
the sex-stratified analyses (Supplementary Table 1) and also in the
analysis employing genetically-determined ancestry classification
(Supplementary Table 2). Lastly, girls had older SA than boys across all
ancestral groups (mean difference_Europeans: 0.25, 95% CI 0.17–0.32, p-
value < 0.0001; mean difference_Asians: 0.40, 95% CI 0.10–0.70, p-
value = 0.010 and mean difference_Africans: 0.45, 95% CI 0.22–0.68, p-
value = 0.0001).

Ethnic differences in SA were still evident after adjustment for age,
height and BMI in both sexes. Boys of European background had
0.46 years younger SA as compared to boys of Asian background (95%
CI 0.26–0.66, p-value < 0.0001), and 0.36 years younger SA in
comparison to African boys (95% CI 0.20–0.53, p-value < 0.0001).
Likewise, girls of European background had 0.64 years younger SA as
compared to girls of Asian background (95% CI 0.51–0.77, p-value <
0.0001), while they had 0.38 years younger SA in comparison to
African girls (95% CI 0.27–0.48, p-value < 0.0001).

Conclusions drawn from the genetically derived ancestry (excluding
children with mixed ancestry), mirrored the ones drawn from the
geographic ancestry. European boys had 0.76 years younger SA as
compared to Asian (95% CI 0.40–1.11, p-value < 0.0001) and
0.48 years younger SA as compared to African boys (95% CI 0.24–0.73,
p-value < 0.0001). Also, European girls had 0.79 years younger SA as
compared to Asian (95% CI 0.60–0.99, p-value < 0.0001) and
0.30 years younger SA as compared to African girls (95% CI 0.14–0.46,
p-value = 0.0002). Furthermore, increase in proportion of Asian or
African (Non-European) ancestry was associated with older SA in both
boys (Per log[Non-European/European]proportion: 0.10, 95% CI
0.06–0.13, p-value < 0.0001) and girls (Per log[Non-European/
European]proportions: 0.06, 95% CI 0.04–0.08, p-value < 0.0001). An
overview of ethnic differences in SA is presented in Fig. 2.

Sensitivity analyses using RSA as an outcome supported the same
conclusions (Supplementary Table 3).

4. Discussion

The current study assessed ethnic differences in skeletal maturation
in 5325 children from the Generation R Study with a mean age of
9.78 years. Children of Asian and African background have on average
an older SA than children of European descent, in line with the con-
tention that children of non-European background reach skeletal ma-
turation earlier. These findings are not explained by differences in body

Table 1
Baseline characteristics of the population across geographic ancestral groups.

N = 5325 Europeans (4445)
Mean (SD)

Asians (331)
Mean (SD)

Africans (549)
Mean (SD)

ANOVA p-value

Age (years) 9.78 (0.32) 9.78 (0.32) 9.84 (0.39) <0.0001
Height (m) 1.416 (0.06) 1.403 (0.07) 1.424 (0.08) <0.0001
Weight (kg) 35.09 (6.87) 34.84 (7.52) 38.34 (9.61) <0.0001
BMI (kg/m2) 17.41 (2.62) 17.58 (2.92) 18.71 (3.40) <0.0001
SA (years) 9.33 (1.27) 9.81 (1.39) 9.92 (1.35) <0.0001

N - sample size, SD - standard deviation, BMI - body mass index.
Significant p-values (p-value≤ 0.05)- presented in bold.
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height and/or BMI across ethnic backgrounds. With the analysis using a
genetic assessment of ancestry, we showed that a genetic ancestral
component partially accounts for differences in skeletal maturation.
Also, our analyses indicate that ethnic differences in skeletal maturation
are not sex specific.

Differences in skeletal maturation in children of distinct ethnic
background have been reported previously [9,21,22]. McCormack et al.
assessed the influence of ancestry on RSA in a healthy longitudinal
cohort in the US including 1592 non-obese children in the age range of
5–17 years at study entry (4622 assessments, 19% African-American).
Consistent with our findings, the authors reported older RSA in African-
American as compared to non-African-American children [9], and older
RSA in girls as compared to boys. Ethnic and sex disparities in skeletal
maturation were also assessed in the “Birth to twenty” cohort, from
South Africa, including 607 (66% black) children in the age range of 9
to 20 years at study entry [23]. In line with our findings, girls matured
1.9 years earlier than boys. Conversely, the authors reported no dif-
ferences in skeletal maturational timing between black and white girls,
while skeletal maturation was postponed for 7 months in black as
compared to white boys [23]. Discrepancies in the observations from
the South African cohort and our study could be explained by the dif-
ferent age range of both cohorts, the presence of a different degree of
genetic admixture or overall health, and other environmental differ-
ences affecting skeletal maturation. Furthermore, the outcome was
defined using bone maturity scores based on the Tanner-Whitehouse
standards, originally developed in Scottish children [23,24]. This
method was reported as more reproducible than the Greulich and Pyle
method by Bull et al. [25]; whereas another study suggested the
Greulich and Pyle method as the more appropriate one for use in
clinical practice, showing adequate reproducibility and requiring sig-
nificantly shorter time to be performed as compared to its concurrent
[26]. Most importantly, the study by McCormack et al. has the draw-
back of grouping European and Asian children into the non-African
group. This may result in the creation of one highly heterogeneous
group with respect to both genetic and behavioral characteristics.
Further, neither McCormack et al. or Cole et al. provided information
about skeletal maturation in Asian as compared to European and/or
African children [9,23]. In contrast, our study classified children into
the three continental ancestry groups. To the best of our knowledge,
there is only one other study that investigated SA across four different
ethnicities: Asian, African, European and Hispanic background [10].
That study included children and adolescents between 1 and 18 years of
age and found older RSA in Asian as compared to European children, in
girls between 10 and 13 years and in boys of 11 and 15 years of age.
However, the former study did not report differences in SA beyond this
age range, nor differences between African and European children.
These slightly different findings may be related to the statistical ap-
proach used by the authors - analysis of variance - with no adjustment
for any of the anthropometric covariates.

BMI/overweight and pubertal timing have been postulated as the
most relevant confounders when investigating differences in skeletal

maturation [9,18,27–29]. Indeed, we observed higher BMI in children
of African and/or Asian ancestry as compared to European children
(Table 1). However, in our study population, adjustment for BMI in the
association of SA and ethnicity resulted only in an average change of
2% in the effect estimates, indicating that BMI differences are unlikely
to explain a considerable proportion of the ethnic differences in skeletal
maturation. Nevertheless, BMI could play a more relevant role on SA in
children of more advanced pubertal stage. Since the assessment of
pubertal stage in our cohort was not performed, we could not account
for it in our association models.

As a large fraction of the participants are third-generation im-
migrants, determination of ethnicity based on the country of parents'
birth, does not fully capture the genetic background of the children
[13]. Therefore, we evaluated skeletal maturation also in the context of
genetic ancestry (Fig. 1). An increase in either Asian or African pro-
portion of ancestry (as compared to the proportion of European an-
cestry) was associated with older SA. This is in line with the findings of
McCormack et al. [9] reporting that an increase in the proportion of
African admixture was associated with advanced skeletal maturation.
Further, this is the first study to demonstrate advances in SA with the
increase in the proportion of Asian admixture.

Since higher levels of adrenal androgens are associated with ad-
vances in skeletal maturation [30], ancestry-specific differences in SA
could be explained by differences in hormonal regulation in children of
different ethnic background. For instance, higher levels of dehy-
droepiandrosterone-sulfate (DHEA-S) together with insulin-like growth
factor 1 (IGF-1) have been reported in healthy pre-pubertal girls (age
range 7.5–9.0 years) of African-American origin as compared to Eur-
opean girls, before any other evidence of adrenarche [31]. In addition,
the increase in African genetic admixture was associated with the in-
crease in IGF-1 levels in pre-pubertal boys and girls (mean age 8 years)
of African-American origin [32]. Likewise, advanced SA in girls as
compared to boys, has been attributed to slightly elevated estrogen
levels in girls prior to puberty [9,33,34]. Moreover, the accumulation of
certain steroid hormones in congenital adrenal hyperplasia [35–37],
has been linked to deviations from the physiological pace of skeletal
maturation, further pointing to the essential role of hormonal levels
during development. However, not only the hormonal status, but also
its complex interaction with environmental factors, might play an im-
portant role in skeletal maturation [38].

In a previous study embedded in the Generation R Study, we have
already investigated ethnic differences in maturation assessed through
permanent teeth maturation - dental development (DD) - [18]. Despite
a slightly different ethnic classification, in line with our current find-
ings, DD was more advanced in Antillean and Surinamese-Creole chil-
dren as compared to Dutch children. Furthermore, higher proportions
of Asian or African ancestry were associated with advanced DD. This
may suggest that overall biological maturation occurs later in the
European children as compared with non-European ones.

Our study holds some limitations. In the third visit of the Generation
R Study, neither puberty nor hormonal levels in the blood were

Fig. 2. Sex-stratified representation of skeletal age across different ethnic groups. Skeletal age (years) - estimated marginal means for skeletal age (adjusted for
age, height and BMI) presented with 95% confidence interval.
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assessed, as specified above, and some children could have entered
puberty resulting in increased hormonal secretion and faster pace of
growth and development [39,40]. This could be determinant in the
interpretation of our results, especially considering that it has been
reported that children of African background enter puberty earlier than
European children [41]. However, in the report from McCormack et al.
[9], ethnic disparities in skeletal maturation were evident even after
accounting for pubertal timing. Furthermore, it has been recently sug-
gested by a meta-analysis that the Greulich and Pyle atlas method may
be imprecise when applied to African females and Asian males [1],
despite being the most commonly used method for SA assessment in
both clinical and research settings [9]. Nevertheless, this precision issue
is more likely to bias the determination of chronological age for forensic
purposes across individuals, rather than the summary level estimates
drawn in well-powered epidemiologic studies [1]. In addition, given the
low number of non-European children included, conclusions should be
interpreted with caution. Lastly, residual confounding cannot be dis-
carded, despite our effort to include the most relevant confounders in
our analyses.

Our study accounts also a number of strengths. To the best of our
knowledge, this is the largest cohort of healthy children with a com-
prehensive determination of SA and available information on both
geographic and genetic ethnicity. There is also an advantage of having
study participants drawn from a similar age range and well-defined
geographic area (i.e., living in Rotterdam), as environmental exposures
(such as sociodemographic and lifestyle factors together with uniform
access to health care) are expected to be less influential than in studies
drawn across distinct populations. Also, with all study participants
being examined at the Erasmus Medical Center, using the same devices
and assessments, our cohort results in a relatively-well harmonized
collection of pediatric data, suitable to investigate the influence of
ancestry on different outcomes, including skeletal maturation.

5. Conclusion

Overall, children of Asian and African ancestry have on average
older skeletal maturation as compared to European children.
Furthermore, our study is pointing to a genetic origin of ethnic differ-
ences in skeletal maturation, providing insight into biologic differences
in pediatric bone health. However, it is still to be determined to which
extent the presented biological component can explain differences in
the pace of maturation as compared to environmental (cultural) factors.

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.bone.2019.115180.

Declaration of competing interest

The authors have no conflicts of interest to disclose.

Acknowledgements

We gratefully acknowledge the contribution of children and parents,
general practitioners, hospitals, midwives and pharmacies in
Rotterdam, involved in the Generation R Study.

Funding sources

The general design of Generation R Study is made possible by fi-
nancial support from the Erasmus Medical Center, Rotterdam, the
Erasmus University Rotterdam, the Netherlands Organisation for Health
Research and Development (ZonMw), the Netherlands Organisation for
Scientific Research (NWO), the Dutch Ministry of Health, Welfare and
Sport. Additional grants from the Netherlands Organisation for Health
Research and Developmentsupported this study (ZonMw 907.00303,
ZonMw 916.10159, ZonMw VIDI 016.136.361 and ZonMw VIDI
016.136.367 to F.R. and C.M-G).

References

[1] K. Alshamrani, F. Messina, A.C. Offiah, Is the Greulich and Pyle atlas applicable to
all ethnicities? A systematic review and meta-analysis, Eur. Radiol. (2019) 1–14,
https://doi.org/10.1007/s00330-018-5792-5.

[2] W.W. Greulich, S.I. Pyle, Radiographic Atlas of Skeletal Development of the Hand
And Wrist, 2nd ed., Stanford University Press, 1959.

[3] P.S. Dahlberg, A. Mosdol, Y. Ding, O. Bleka, V. Rolseth, G.H. Straumann,
M. Skjerven-Martinsen, M. Delaveris, G.E. V, A systematic review of the agreement
between chronological age and skeletal age based on Greulich and Pyle atlas, Eur.
Radiol. (2018) 1–13.

[4] R.W. Nahhas, R.J. Sherwood, W.C. Chumlea, B. Towne, D.L. Duren, Predicting the
timing of maturational spurts in skeletal age, Am. J. Phys. Anthropol. 150 (2013)
68–75, https://doi.org/10.1002/ajpa.22142.

[5] P. Cohen, A.D. Rogol, C.L. Deal, P. Saenger, Consensus statement on the diagnosis
and treatment of children with idiopatic short stature: a summery of the Growth
Hormone Research Society, the Lawson Wilkins Pediatric Endocrine Society, and
the European Society for Pediatric Endocrinology Workshop, J. Clin. Endocrinol.
Metab. 93 (2008) 4210–4217.

[6] P.F. Collett-Solberg, A.A.L. Jorge, M.C.S. Boguszewski, B.S. Miller, C.S.Y. Choong,
P. Cohen, A.R. Hoffman, X. Luo, S. Radovick, P. Saenger, Growth hormone therapy
in children; research and practice – a review, Growth Hormon. IGF Res. 44 (2019)
20–32, https://doi.org/10.1016/j.ghir.2018.12.004.

[7] A.L. Creo, W.F. Schwenk, Bone age: a handy tool for pediatric providers, Pediatrics.
140 (2017) e20171486, , https://doi.org/10.1542/peds.2017-1486.

[8] C.M. Gordon, M.B. Leonard, B.S. Zemel, 2013 pediatric position development
conference: executive summary and reflections, J. Clin. Densitom. 17 (2014)
219–224, https://doi.org/10.1016/j.jocd.2014.01.007.

[9] S.E. McCormack, A. Chesi, J.A. Mitchell, S.M. Roy, D.L. Cousminer, H.J. Kalkwarf,
J.M. Lappe, V. Gilsanz, S.E. Oberfield, J.A. Shepherd, S. Mahboubi, K.K. Winer,
A. Kelly, S.F.A. Grant, B.S. Zemel, Relative skeletal maturation and population
ancestry in nonobese children and adolescents, J. Bone Miner. Res. 32 (2017)
115–124, https://doi.org/10.1002/jbmr.2914.

[10] A. Zhang, J.W. Sayre, L. Vachon, B.J. Liu, H.K. Huang, Racial differences in growth
patterns of children assessed on the basis of bone age, Radiology. 250 (2009)
228–235, https://doi.org/10.1148/radiol.2493080468.

[11] M. Kooijman, C.J. Kruithof, C.M. van Duijn, L. Duijts, O.H. Franco, M. Ijzendoorn,
J. Jongste, The Generation R Study: design and cohort update 2017, Eur. J.
Epidemiol. 31 (2016) 1243–1264, https://doi.org/10.1007/s10654-010-9516-7.

[12] C.J. Kruithof, M.N. Kooijman, C.M. van Duijn, O.H. Franco, J.C. de Jongste,
C.C.W. Klaver, J.P. Mackenbach, H.A. Moll, H. Raat, E.H.H.M. Rings,
F. Rivadeneira, E.A.P. Steegers, H. Tiemeier, A.G. Uitterlinden, F.C. Verhulst,
E.B. Wolvius, A. Hofman, V.W.V. Jaddoe, The Generation R Study: biobank update
2015, Eur. J. Epidemiol. 29 (2014) 911–927, https://doi.org/10.1007/s10654-014-
9980-6.

[13] C. Medina-Gomez, J.F. Felix, K. Estrada, M.J. Peters, L. Herrera, C.J. Kruithof,
L. Duijts, A. Hofman, C.M. van Duijn, A.G. Uitterlinden, V.W.V. Jaddoe,
F. Rivadeneira, Challenges in conducting genome-wide association studies in highly
admixed multi-ethnic populations: the Generation R Study, Eur. J. Epidemiol. 30
(2015) 317–330, https://doi.org/10.1007/s10654-015-9998-4.

[14] M. Alders, Classification of the population with a foreign background in The
Netherlands, Meas. Mismeasure Popul. Stat. Use Ethn. Racial Categ. Multicult. Soc.
Centre d’Etudes et de Recherches Internationales (CERI) and the Institut National
d’Etudes D emographiques (INED), Paris, 2001, pp. 1–14.

[15] C. Medina-Gomez, D.H. Heppe, J.-L. Yin, K. Trajanoska, A.G. Uitterlinden,
T.J. Beck, V.W. Jaddoe, F. Rivadeneira, Bone mass and strength in school age
children exhibit sexual dimorphism related to differences in lean mass: the
Generation R Study, J. Bone Miner. Res. 31 (2016) 1099–1106, https://doi.org/10.
1002/jbmr.2755.

[16] D.H. Alexander, J. Novembre, K. Lange, Fast model-based estimation of ancestry in
unrelated individuals, Genome Res. 19 (2009) 1655–1664, https://doi.org/10.
1101/gr.094052.109.vidual.

[17] C. Medina-Gómez, A. Chesi, D.H.M. Heppe, B.S. Zemel, J.L. Yin, H.J. Kalkwarf,
A. Hofman, J.M. Lappe, A. Kelly, M. Kayser, S.E. Oberfield, V. Gilsanz,
A.G. Uitterlinden, J.A. Shepherd, V.W.V. Jaddoe, S.F.A. Grant, O. Lao,
F. Rivadeneira, BMD loci contribute to ethnic and developmental differences in
skeletal fragility across populations: assessment of evolutionary selection pressures,
Mol. Biol. Evol. 32 (2015) 2961–2972, https://doi.org/10.1093/molbev/msv170.

[18] B. Dhamo, L. Kragt, O. Grgic, S. Vucic, C. Medina-Gomez, F. Rivadeneira,
V.W.V. Jaddoe, E.B. Wolvius, E.M. Ongkosuwito, Ancestry and dental development:
a geographic and genetic perspective, Am. J. Phys. Anthropol. 165 (2018) 299–308,
https://doi.org/10.1002/ajpa.23351.

[19] Greulich WW Pyle SI, Radiographic Atlas of Skeletal Developement of the Hand and
Wrist. 2nd edition, n.d.

[20] J. Aitchison, The statistical analysis of compositional data, J. R. Stat. Soc. 44 (1982)
139–177.

[21] S. Mora, M. Ines Boechat, E. Pietka, H.K. Huang, V. Gilsanz, Skeletal age determi-
nations in children of European and African descent: applicability of the Greulich
and Pyle standards, Pediatr. Res. 50 (2001) 624–628, https://doi.org/10.1203/
00006450-200111000-00015.

[22] R.M. Malina, Growth and physical performance of American negro and white
Children: a comparative survey of differences in body size, proportions and com-
position, skeletal maturation, and various motor performances, Clin. Pediatr. 8
(1969) 476–4783.

[23] T.J. Cole, E.K. Rousham, N.L. Hawley, N. Cameron, S.A. Norris, J.M. Pettifor, Ethnic

O. Grgic, et al. Bone 132 (2020) 115180

5

https://doi.org/10.1016/j.bone.2019.115180
https://doi.org/10.1016/j.bone.2019.115180
https://doi.org/10.1007/s00330-018-5792-5
http://refhub.elsevier.com/S8756-3282(19)30474-0/rf0010
http://refhub.elsevier.com/S8756-3282(19)30474-0/rf0010
http://refhub.elsevier.com/S8756-3282(19)30474-0/rf0015
http://refhub.elsevier.com/S8756-3282(19)30474-0/rf0015
http://refhub.elsevier.com/S8756-3282(19)30474-0/rf0015
http://refhub.elsevier.com/S8756-3282(19)30474-0/rf0015
https://doi.org/10.1002/ajpa.22142
http://refhub.elsevier.com/S8756-3282(19)30474-0/rf0025
http://refhub.elsevier.com/S8756-3282(19)30474-0/rf0025
http://refhub.elsevier.com/S8756-3282(19)30474-0/rf0025
http://refhub.elsevier.com/S8756-3282(19)30474-0/rf0025
http://refhub.elsevier.com/S8756-3282(19)30474-0/rf0025
https://doi.org/10.1016/j.ghir.2018.12.004
https://doi.org/10.1542/peds.2017-1486
https://doi.org/10.1016/j.jocd.2014.01.007
https://doi.org/10.1002/jbmr.2914
https://doi.org/10.1148/radiol.2493080468
https://doi.org/10.1007/s10654-010-9516-7
https://doi.org/10.1007/s10654-014-9980-6
https://doi.org/10.1007/s10654-014-9980-6
https://doi.org/10.1007/s10654-015-9998-4
http://refhub.elsevier.com/S8756-3282(19)30474-0/rf0070
http://refhub.elsevier.com/S8756-3282(19)30474-0/rf0070
http://refhub.elsevier.com/S8756-3282(19)30474-0/rf0070
http://refhub.elsevier.com/S8756-3282(19)30474-0/rf0070
https://doi.org/10.1002/jbmr.2755
https://doi.org/10.1002/jbmr.2755
https://doi.org/10.1101/gr.094052.109.vidual
https://doi.org/10.1101/gr.094052.109.vidual
https://doi.org/10.1093/molbev/msv170
https://doi.org/10.1002/ajpa.23351
http://refhub.elsevier.com/S8756-3282(19)30474-0/rf0095
http://refhub.elsevier.com/S8756-3282(19)30474-0/rf0095
https://doi.org/10.1203/00006450-200111000-00015
https://doi.org/10.1203/00006450-200111000-00015
http://refhub.elsevier.com/S8756-3282(19)30474-0/rf0105
http://refhub.elsevier.com/S8756-3282(19)30474-0/rf0105
http://refhub.elsevier.com/S8756-3282(19)30474-0/rf0105
http://refhub.elsevier.com/S8756-3282(19)30474-0/rf0105


and sex differences in skeletal maturation among the Birth to Twenty cohort in
South Africa, Arch. Dis. Child. 100 (2015) 138–143, https://doi.org/10.1136/
archdischild-2014-306399.

[24] J.M. Tanner, M.J.R. Healy, H. Goldstein, Assessment of Skeletal Maturity and
Prediction of Adult Height (TW3 Method), (2001).

[25] R.K. Bull, P.D. Edwards, P.M. Kemp, Bone age assessment: a large scale comparison
of the Greulich and Pyle, and Tanner and Whitehouse (TW2) methods, Arch. Dis.
Child. 81172–173 (81) (1999) 172–173.

[26] D.M. Steventon, P.R. King, M.P. O’Sullivan, V.P.L. Hornsby, D.G. King,
I.G. Jefferson, A.M. Cook, Reproducibility of bone ages when performed by radi-
ology registrars: an audit of Tanner and Whitehouse II versus Greulich and Pyle
methods, Br. J. Radiol. 67 (2009) 848–851, https://doi.org/10.1259/0007-1285-
67-801-848.

[27] D.L. Russell, M.F. Keil, S.H. Bonat, G.I. Uwaifo, J.C. Nicholson, J.R. McDuffie,
S.C. Hill, J.A. Yanovski, The relation between skeletal maturation and adiposity in
African American and Caucasian children, J. Pediatr. 139 (2001) 844–848, https://
doi.org/10.1067/mpd.2001.119446.

[28] D.R. Weber, R.H. Moore, M.B. Leonard, B.S. Zemel, Fat and lean BMI reference
curves in children and adolescents and their utility in identifying excess adiposity
compared with BMI and percentage body fat, Am. J. Clin. Nutr. 98 (2013) 49–56,
https://doi.org/10.3945/ajcn.112.053611.

[29] C.L. Ogden, M.D. Carroll, B.K. Kit, K.M. Flegal, Prevalence of childhood and adult
obesity in the United States, 2011–2012, JAMA J. Am. Med. Assoc. 311 (2014)
806–814, https://doi.org/10.1001/jama.2014.732.

[30] S. Vandewalle, Y. Taes, T. Fiers, K. Toye, E. Van Caenegem, J.M. Kaufman, J. De
Schepper, Relation of adrenal-derived steroids with bone maturation, mineral
density and geometry in healthy prepubertal and early pubertal boys, Bone. 69
(2014) 39–46, https://doi.org/10.1016/j.bone.2014.09.002.

[31] R. Girgis, S.A. Abrams, D. Castracane, S.K. Gunn, K. Ellis, K. Copeland, Ethnic
differences in androgens, IGF-I and body fat in healthy prepubertal girls, J. Pediatr.
Endocrinol. Metab. 13 (2000) 497–503.

[32] P.B. Higgins, J.R. Fernández, M.I. Goran, B.A. Gower, Early ethnic difference in

insulin-like growth factor-1 is associated with African genetic admixture, Pediatr.
Res. 58 (2005) 850–854, https://doi.org/10.1203/01.PDR.0000182583.92130.08.

[33] G.B. Cutler, The role of estrogen in bone growth and a maturation during childhood
and adolescence, J. Steroid Biochem. Mol. Biol. 61 (1997) 141–144, https://doi.
org/10.1016/S0960-0760(96)00219-1.

[34] F. Courant, L. Aksglaede, J.P. Antignac, F. Monteau, K. Sorensen, A.M. A,
N.E. Skakkebaek, A. Juul, B. LeBizec, Assessment of circulating sex steroid levels in
prepubertal and pubertal boys and girls by a novel ultrasensitive gas chromato-
graphy-tandem mass spectrometry method, J. Clin. Endocrinol. Metab. 95 (2010)
82–92.

[35] K.M. Curnow, L. Slutsker, J. Vitek, T. Cole, P.W. Speiser, M.I. New, P.C. White,
L. Pascoe, Mutation in the CYP11B1 gene causing congenital adrenal hyperplasia
and hypertension cluster in exons 6, 7 and 8, Proc. Natl. Acad. Sci. U. S. A. 90
(1993) 4552–4556.

[36] K. Ajlouni, M. Arnaout, Y. Qoussous, Congenital adrenal hyperplasia due to 11-beta-
hydroxylase deficiency with skeletal abnormalities, J. Endocrinol. Investig. 19
(1996) 316–319.

[37] J.L. Mullins, A. Peter, N. Wrobel, J.R. McNeilly, A.S. McNeilly, E.A.S. Al-Dujaili,
G.D. Brownstein, J.J. Mullins, J.C. Kenyon, Cyp11b1 null mouse, a model of con-
genital adrenal hyperplasia, J. Biol. Chem. 284 (2008) 3925–3934.

[38] K.O. Klein, Ron S. Newfield, Sandra G. Hassink, Bone maturation along the spec-
trum from normal weight to obesity: a complex interplay of sex, growth factors and
weight gain, J. Pediatr. Endocrinol. Metab. 29 (2016) 311–318.

[39] W. Li, Q. Liu, X. Deng, Y. Chen, S. Liu, M. Story, Association between obesity and
puberty timing: a systematic review and meta-analysis, Int. J. Environ. Res. Public
Health 14 (2017) 1–13, https://doi.org/10.3390/ijerph14101266.

[40] G. Saggese, G.I. Baroncelli, S. Bertelloni, Puberty and bone development, Best Pract.
Res. Endocrinol. Metab. 16 (2002) 53–64, https://doi.org/10.1053/beem.2002.
0180.

[41] S. Lum, V. Bountziouka, S. Harding, A. Wade, S. Lee, J. Stocks, Assessing pubertal
status in multi-ethnic primary schoolchildren, Acta Paediatr. 104 (2014) e45–e48.

O. Grgic, et al. Bone 132 (2020) 115180

6

https://doi.org/10.1136/archdischild-2014-306399
https://doi.org/10.1136/archdischild-2014-306399
http://refhub.elsevier.com/S8756-3282(19)30474-0/rf0115
http://refhub.elsevier.com/S8756-3282(19)30474-0/rf0115
http://refhub.elsevier.com/S8756-3282(19)30474-0/rf0120
http://refhub.elsevier.com/S8756-3282(19)30474-0/rf0120
http://refhub.elsevier.com/S8756-3282(19)30474-0/rf0120
https://doi.org/10.1259/0007-1285-67-801-848
https://doi.org/10.1259/0007-1285-67-801-848
https://doi.org/10.1067/mpd.2001.119446
https://doi.org/10.1067/mpd.2001.119446
https://doi.org/10.3945/ajcn.112.053611
https://doi.org/10.1001/jama.2014.732
https://doi.org/10.1016/j.bone.2014.09.002
http://refhub.elsevier.com/S8756-3282(19)30474-0/rf0150
http://refhub.elsevier.com/S8756-3282(19)30474-0/rf0150
http://refhub.elsevier.com/S8756-3282(19)30474-0/rf0150
https://doi.org/10.1203/01.PDR.0000182583.92130.08
https://doi.org/10.1016/S0960-0760(96)00219-1
https://doi.org/10.1016/S0960-0760(96)00219-1
http://refhub.elsevier.com/S8756-3282(19)30474-0/rf0165
http://refhub.elsevier.com/S8756-3282(19)30474-0/rf0165
http://refhub.elsevier.com/S8756-3282(19)30474-0/rf0165
http://refhub.elsevier.com/S8756-3282(19)30474-0/rf0165
http://refhub.elsevier.com/S8756-3282(19)30474-0/rf0165
http://refhub.elsevier.com/S8756-3282(19)30474-0/rf0170
http://refhub.elsevier.com/S8756-3282(19)30474-0/rf0170
http://refhub.elsevier.com/S8756-3282(19)30474-0/rf0170
http://refhub.elsevier.com/S8756-3282(19)30474-0/rf0170
http://refhub.elsevier.com/S8756-3282(19)30474-0/rf0175
http://refhub.elsevier.com/S8756-3282(19)30474-0/rf0175
http://refhub.elsevier.com/S8756-3282(19)30474-0/rf0175
http://refhub.elsevier.com/S8756-3282(19)30474-0/rf0180
http://refhub.elsevier.com/S8756-3282(19)30474-0/rf0180
http://refhub.elsevier.com/S8756-3282(19)30474-0/rf0180
http://refhub.elsevier.com/S8756-3282(19)30474-0/rf0185
http://refhub.elsevier.com/S8756-3282(19)30474-0/rf0185
http://refhub.elsevier.com/S8756-3282(19)30474-0/rf0185
https://doi.org/10.3390/ijerph14101266
https://doi.org/10.1053/beem.2002.0180
https://doi.org/10.1053/beem.2002.0180
http://refhub.elsevier.com/S8756-3282(19)30474-0/rf0200
http://refhub.elsevier.com/S8756-3282(19)30474-0/rf0200

	Skeletal maturation in relation to ethnic background in children of school age: The Generation R Study
	Introduction
	Methods
	Study population
	Demographic and anthropometric measurements
	Geographic ancestry
	Genetic ancestry
	Skeletal age
	Statistical analyses

	Results
	Discussion
	Conclusion
	mk:H1_12
	Acknowledgements
	mk:H1_15
	Funding sources

	References




