
A Proposal of Code Completion Problem for
Java Programming Learning Assistant System

Htoo Htoo Sandi Kyaw, Shwe Thinzar Aung, Hnin Aye Thant, and
Nobuo Funabiki

Abstract To enhance Java programming educations in schools, we have developed
a Web-based Java Programming Learning Assistant System (JPLAS) that provides
a variety of programming assignments to cover different learning stages. For the
first stage, JPLAS offers the element fill-in-blank problem where students study the
grammar and code reading through filling the blank elements, composed of reserved
words, identifiers, and control symbols, in a high-quality code. Unfortunately, it has
been observed that students can fill the blanks without reading the code carefully,
because the choice is limited for each blank. In this paper, we propose a code com-
pletion problem as a generalization of the element fill-in-blank problem. To solve
the drawback, it does not explicitly show blank locations in the code, which expects
students to carefully read the code to understand the grammar and code structure.
The correctness of the answer is verified through string matching of each statement
with the filled elements and the corresponding correct one. Besides, to encourage
students to study readable code writing, the correct statement satisfies the coding
rules including the spaces. For evaluations, we generated six code completion and
element fill-in-blank problems respectively, and asked ten students in two univer-
sities to solve them. Their solution results show that the code completion problem
is much harder than the element fill-in-blank problem, and requires far deeper code
reading and understanding of coding rules.

Department of Information Science, University of Technology, Yatanarpon Cyber City, Myanmar,
e-mail: htoohtoosandikyaw.hhsk@gmail.com
Department of Electrical and Communication Engineering, Okayama University, Okayama, Japan,
e-mail: funabiki@okayama-u.ac.jp

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Okayama University Scientific Achievement Repository

https://core.ac.uk/display/286035411?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 H. H. S. Kyaw et al.

1 Introduction

Recently, Java has been widely used in various practical application systems in so-
cieties and industries due to the high reliability, portability, and scalability. Java was
selected as the most popular programming language in 2015 [1]. Therefore, strong
demands have appeared from industries in expending Java programming educations.
Correspondingly, a plenty of universities and professional schools are currently of-
fering Java programming courses to meet this challenge. A typical Java program-
ming course consists of grammar instructions in the class and programming exer-
cises in computer operations.

To assist Java programming educations, we have developed a Web-based Java
Programming Learning Assistant System (JPLAS) [2]-[6]. In the JPLAS server, we
adopt Linux for the operating system, Tomcat for the Web application server, JSP
[7] and Java for application programs, and MySQL for database. Currently, JPLAS
provides the element fill-in-blank problem, the value trace problem, the statement
element fill-in-blank problem, and the code writing problem to support self-studies
of Java programming at various learning stages.

Among the four problems, the element fill-in-blank problem is designed for
novice students. In this problem, a high-quality Java code with several blank el-
ements is given to students. They are requested to fill the blanks that are shown
explicitly in the code by typing the correct ones. An element represents the least
unit in a code, and includes a reserved word, an identifier, and a control symbol. The
correctness of each answer from a student is verified through string matching with
the corresponding original element in the code. This original element must be the
unique grammatically correct answer for the blank to avoid confusions by novice
students. Thus, we proposed a graph-based blank element selection algorithm to se-
lect such elements as many as possible automatically. Besides, to let students answer
the problems in JPLAS even if the Internet is not available, we have implemented
the offline answering function. The hash function and the message authentication
technique are used here to avoid illegally copying answers among students.

Unfortunately, in the element fill-in-blank problem, students can know where
the blank elements exist, because they are shown in the code. Besides, each blank
usually has a limited choice of elements for the correct answer. As a result, they can
answer the problem without reading the code carefully to understand the grammar
and code structure. Actually, a big drop exits from the value trace problem, a small
variant of the element fill-in-blank problem, to the statement fill-in-blank problem
that requires some programing from scrach. It indicates that the element fill-in-blank
problem is not sufficient in improving the Java programming skill.

In this paper, we propose a code completion problem as a generalization of the
element fill-in-blank problem. To solve the drawback, it does not explicitly show
the locations of blank elements in the code, so that students need to find them in the
code and complete the whole statements. Then, it is expected that students carefully
read the code to understand the grammar and code structure. The correctness of the
student answer is verified through string matching of each answer statement with
the filled elements and the corresponding correct one in the original code. Besides,

Code completion problem for JPLAS 3

to encourage students to study readable code writing [8], the correct statement fol-
lows the coding rules including the spaces. For this purpose, the coding rule check
function [9] is applied for the original code for the problem before use.

For evaluations, we generated six code completion and element fill-in-blank
problems and asked ten students in our universities to solve them. Their solution
results show that this problem is much harder and requires far more code reading
than the previous one. Also, when we statistically test the two types of problems
by using t-test, the result shows that they are significantly different from each other
which confirms that the proposed code completion problem fills the gap between
the element fill-in-blank problem and statement fill-in-blank problem.

The rest of this paper is organized as follows: Section 2 reviews the previous
work. Section 3 presents the code completion problem generation. Section 4 shows
the evaluation results of the proposal. Finally, Section 5 concludes this paper with
some future works.

2 Previous Works

In this section, we review our previous works related to this paper.

2.1 Element Fill-in-blank Problem

The element fill-in-blank problem intends for a student to learn the Java grammar
and basic programming skills through code reading [6]. In this problem, a Java code
with several blank elements is shown to a student, where he/she needs to fill in the
blanks. This Java code should be of high-quality, most worth for code reading. An
element is defined as the least unit of a code, such as a reserved word, an identifier,
and a control symbol. A reserved word signifies a fixed sequence of characters that
has been defined in the Java grammar to represent a specific function, which should
be mastered first by the students. An identifier is a sequence of characters defined
in the code by the author to represent a variable, a class, or a method. A control
symbol in this paper indicates other grammar elements such as "." (dot), ":" (colon),
";" (semicolon) , "(,)"(bracket), "{, }" (curly bracket).

2.2 Blank Element Selection Algorithm

The blank element selection algorithm [6] uses the constraint graph that is generated
to describe the constraints in the blank element selection. It generates the fill-in-
blank problem through the following five steps:

4 H. H. S. Kyaw et al.

1. Vertex generation for constraint graph: each vertex represents a candidate ele-
ment for being blank.

2. Edge generation for constraint graph: an edge is generated between any pair of
two vertices or elements that should not be blanked at the same time.

3. Compatibility graph generation: by taking the complement of the constraint
graph, the compatibility graph is generated to represent the pairs of elements
that can be blanked simultaneously.

4. Clique extraction: a maximal clique of the compatibility graph is generated by
a simple greedy algorithm to find the maximal number of blank elements with
unique answers from the given Java code. This greedy algorithm repeats to: 1)
select the vertex that has the largest degree in the compatibility graph for the
clique, 2) remove this vertex and its non-adjacent vertices from the graph, until
the graph becomes null.

5. Fill-in-blank problem generation: the ratio between the number of blanks for
control symbols and that for other elements is controlled.

2.3 Coding Rules

Coding rules [9] represents a set of rules or conventions for producing high quality
source codes. By following coding rules, the uniformity of the code will be main-
tained, which enhances the readability, maintainability, and scalability. Coding rules
consist of naming rules, coding styles, and potential problems.

1. Naming Rules : Naming rules describe the rules for finding the naming errors
in the source code. Here, the Camel case [10] is adopted as the common Java
naming rule. For an identifier representing a variable, a method, or a method
argument, the top character should be a lower case, where the delimiter character
between two words should be an upper case. For an identifier representing a class,
both of them should be an upper case. For an identifier representing a constant,
any character should be an upper case. A full-spelling English word should be
used for an identifier name, whereas Japanese or Roman Japanese should not be
used.

2. Coding Styles : Coding styles indicate the rules for detecting the layout errors
in the source code. They include the position of an indent or a bracket, and the
existence of a blank space. By following coding styles, the layout of a source
code will become more consistent and readable.

3. Potential Problems : Potential problems illustrate the rules for discovering the
portions in the source code that can pass the compilation but may induce func-
tional errors or bugs with high possibility. They include a dead code and overlap-
ping codes. A dead code represents the portion in the source code that is not ex-
ecuted at all, and overlapping codes represent the multiple portions in the source
code that have similar structure and functions to each other. By solving potential
problems, the code can not only improve the maintainability and scalability but
speed up the execution.

Code completion problem for JPLAS 5

2.4 Offline Answering Function for Element Fill-in-blank Problem

In this paper, we use the offline answering function for the element fill-in-blank prob-
lem [11], to ask students in Myanmar universities where the Internet connections are
not stable, to solve the generated problems.

1. The teacher accesses to the JPLAS server, selects the element fill-in-blank prob-
lems for the assignments, and download the set of the necessary files for them on
online.

2. The teacher distributes the assignment files to the students by using a file server
or USB memories.

3. Students install the files in their PCs, and answer the problems in the assignments
using Web browsers on offline, where the correctness of each answer is verified
instantly at the PCs using the JavaScript program.

4. Students submit their final answering results to the teacher by using a file server
or USB memories.

5. The teacher uploads the results from the students to the JPLAS server to manage
them.

3 Proposal of Code Completion Problem

In this section, we present the code completion problem and its generation proce-
dure.

3.1 Overview of Code Completion Problem

In a code completion problem, a Java source code with several missing elements is
shown to the students without specifying their existences. Then, each student needs
to find the locations of the missing elements in the code and fill the correct ones.
The correctness of each answer from a student is verified through string matching
with the corresponding original statement in the code. For studying readable code
writing, the code must satisfy the coding rules composed of naming rules, coding
styles, and potential problems.

The code completion problem is generated by a teacher through the following
steps:

1. Select a Java source code from the website or textbook that is worth of reading
to study the current topic.

2. Apply naming rules test in coding rule check function to the source code, and fix
the errors if found.

3. Apply coding styles test to the code, and fix the errors if found.
4. Apply potential problems test to the code, and fix the errors if found.

6 H. H. S. Kyaw et al.

5. Register each statement in the code as the correct answer unit in string matching.
6. Apply the blank element selection algorithm to select the blanks in the code.
7. Remove the selected blank elements from the source code for the problem code.

For the automatic execution of this procedure, we implemented the necessary pro-
grams by Java and the script by Bash.

3.2 Source Code Selection

To clarify the procedure, we explain the details by using the code for class Fibonac-
ciCalculator. This class generates Fibonacci series, 0,1,1,2,3,5,8,13,21,…, recur-
sively, such that each subsequent number becomes the sum of the previous two
numbers [12]. There are two base cases: Fibonacci(0) and Fibonacci(1).

3.3 Application of Coding Rule Check Function

The three tests in the coding rule check function are applied to the source code. code
1 shows the corrected code that is used for the problem.

code 1
1 import java.math.BigInteger;
2 /**
3 * FibonacciCalculator
4 * @author student
5 */
6 public class FibonacciCalculator {
7 private static final BigInteger TWO = BigInteger.valueOf(2);
8 /**
9 * recursive fibonacci method

10 * @param number : to calculate fibonacci
11 * @return BigInteger : returns the fibonacci result
12 */
13 public static BigInteger calculateFibonacci(BigInteger number) {
14 if (number.equals(BigInteger.ZERO) || number.equals(BigInteger.ONE))
15 return number;
16 else
17 return calculateFibonacci(number.subtract(BigInteger.ONE))
18 .add(calculateFibonacci(number.subtract(TWO)));
19 }
20 /**
21 * displays the fibonacci values from 0−40
22 * @param args used
23 * @return Nothing
24 */
25 public static void main(final String[] args) {
26 for (int counter = 0; counter <= 40; counter++)
27 System.out.println("Fibonacci of " + counter + " is: "
28 + calculateFibonacci(BigInteger.valueOf(counter)));
29 }
30 }

Code completion problem for JPLAS 7

3.4 Blank Element Selection and Removal

Then, the code which has passed the coding rule check function is applied to the
blank element selection algorithm [6] to select blank elements from the code. Fi-
nally, the specified blank elements are removed to generate the problem code for the
code completion problem. code 2 shows the generated one.

code 2
1 import java.math.BigInteger;
2 /**
3 * FibonacciCalculator
4 * @author student
5 */
6 public FibonacciCalculator {
7 private BigInteger TWO = BigInteger.valueOf(2);
8 /**
9 * recursive fibonacci method

10 * @param number : to calculate fibonacci
11 * @return BigInteger : returns the fibonacci result
12 */
13 public BigInteger calculateFibonacci(BigInteger number) {
14 if (number.equals(BigInteger.ZERO) || .equals(.ONE))
15 return number;
16
17 calculateFibonacci(numbersubtract(BigInteger.ONE))
18 .add(calculateFibonacci(number.subtract()));
19 }
20 /**
21 * displays the fibonacci values from 0−40
22 * @param args used
23 * @return Nothing
24 */
25 public void main(final [] args) {
26 (int counter = 0; counter <= 40;++)
27 .out.("Fibonacci of " + + " is: "
28 + (BigInteger.valueOf(counter)));
29 }
30 }

3.5 Correct Answer

The correct answer is given for each whole statement that includes the spaces or tabs
if there, so that the simple string matching can be used for correctness verification.
For example, for line 26 in code 2, the correct answer is given in code 3, which
includes two tabs before for, one space after for, and seven spaces inside of (). This
strict style intends students to follow the coding rules.

code 3
1 for (int counter = 0; counter <= 40; counter++)

8 H. H. S. Kyaw et al.

3.6 Problem Complexity Analysis

To mathematically analyze the solution difficulty difference between the element
fill-in-blank problem and the code completion problem, we compare the total num-
ber of answer selections for all the blanks, if the solution for any blank is selected
completely randomly for the problems that are generated from the same source code
by selecting the same blank elements. This analysis assumes the following nota-
tions:

• s: number of statements in the code
• n: number of blank elements at one statement
• m: number of candidate elements to fill in each blank

In the element fill-in-blank problem, the answer for a blank can be selected in-
dependently. Thus, the total number of selections to fill in all the blanks, Ne f , is
proportional to the number of blanks, which is given by O(m× n× s). In the code
completion problem, the answers for all the blanks at each statement must be se-
lected at the same time. Thus, all the possible combinations of candidates for each
statement must be considered, which is given by O(mn). As a result, the total num-
ber of selections to fill in all the blanks, Ncc, is O(mn × s).

In the above example code, if m = 50 is assumed, Ne f is 800 (= 50× 16), and
Ncc is 135,250 (= 50×5+502 ×4+503 ×1) where five statements have one blank,
four statements have two blanks, and one statement has three blanks.

4 Evaluation

In this section, we evaluate the code completion problem in JPLAS through appli-
cations to ten students in two universities who have studied Java programming for
more than one year.

4.1 Problem Assignments in Evaluation

In order to compare the solution performances by students between element fill-in-
blank and code completion problems, we generated six pairs of both problems such
that each pair has the similar difficulty with each other. The sources codes cover
variable, array, collection, recursive, and polymorphism. Then, these problems are
divided into two groups by selecting one problem for each of the six pairs, so that
each group consists of three element fill-in-blank and code completion problems.
Next, we asked ten students to solve them. These students are randomly divided
into two groups, and the five students in each group are assigned one group of six
problems.

Code completion problem for JPLAS 9

Table 1: Correct solution rates (%).

element code
fill-in-blank completion

ave. 96.6 81.6
SD 6.17 21.33

Table 2: T-test result.

item value
observation 10
test statistics 2.96721213028104

test critical two-tail 2.262157163
Alpha-level 0.05

P(T≤t) two-tail 0.015773669

4.2 Solution Results by Students

Table 1 shows the solution results by students for the problems. Here, the aver-
age and the standard deviation on the correct solution rate (%) for each student are
summarized. Clearly, the code completion problem exhibits the worse result than
the element fill-in-blank, although their original source codes have similar difficulty
and the same number of blanks is generated for the same source code.

Then, to confirm the abovementioned result statistically, we apply T-test that can
determine if the two sets of data are significantly different from one another. T-test
is one of statistical tests used for hypothesis testing. The null hypothesis is assumed
to show no difference between them. Then, it is decided to accept or reject this
null hypothesis. According to [13], there are two approaches to determine whether
the null hypothesis is accepted or rejected. In the critical value approach, if test
statistics is greater than critical value, the null hypothesis is rejected in favor of
the alternative hypothesis. In the P-value approach, if P-value is less than or equal
to Alpha-level, the null hypothesis is rejected. In this paper, to fully reject the null
hypothesis, we adopt both approaches.

Table 2 shows the T-test result for solution results. The null-hypothesis is as-
sumed that there is no difference between solution results of the element fill-in-
blank problem and those of the code completion problem. In Table 2, test statistics
is greater than test critical, which means the rejection of the null hypothesis. Also,
P-value is smaller than Alpha-level, which means the rejection of it. Therefore, it
is concluded that the solution result statistics of students are significantly differ-
ent between the two problems, and the code completion problem is harder than the
element fill-in-blank problem.

5 Conclusion

This paper proposed the code completion problem as a generalization of the ele-
ment fill-in-blank problem for Java Programming Learning Assistant System. This
problem does not explicitly show blank locations in the code, expecting students
to carefully read the code to understand grammar and code structure. The correct-

10 H. H. S. Kyaw et al.

ness of the answer is verified through string matching of the whole statement and
the corresponding correct one. For evaluations, six code completion and element
fill-in-blank problems using source codes for different topics were generated, and
ten students in two universities solved them. The comparison of solution results be-
tween two problems shows the new problem is far more difficult. In future works,
we will generate a variety of code complete problems using various codes and apply
them to students in Java programming courses to verify the effectiveness.

References

1. Cass, S.: The 2015 Top Ten Programming Languages, http://spectrum.ieee.org/
computing/software/the-2015-top-ten-programming-languages/
?utm_so

2. Funabiki, N., Matsushima, Y., Nakanishi, T., Amano, N.: A Java programming learning assis-
tant system using test-driven development method. Int. J. Comput. Sci. 40(1), 38-46 (2013)

3. Zaw, K. K., Funabiki, N., Kao, W.-C.: A proposal of value trace problem for algorithm code
reading in Java programming learning assistant system. Inf. Eng. Express. 1(3), 9-18 (2015)

4. Ishihara, N., Funabiki, N., Kao, W.-C.: A proposal of statement fill-in-blank problem using
program dependence graph in Java programming learning assistant system. Inf. Eng. Express.
1(3), 19-28 (2015)

5. Tana, Funabiki, N., Zaw, K. K., Ishihara, N., Matsumoto, S., Kao, W.-C.: A fill-in-blank prob-
lem workbook for Java programming learning assistant system. Int. J Web Inform. Sys. 13(2),
140-154 (2017)

6. Funabiki, N., Tana, Zaw, K. K., Ishihara, N. Kao, W.-C.: A graph-based blank element se-
lection algorithm for fill-in-blank problems in Java programming learning assistant system.
IAENG Int. J. Comput. Sci. 44(2), 247-260 (2017)

7. Murach J., Urban, M.: Murach’s Java servlets and JSP (3rd ed.). Mike Murach & Associates,
Inc. (2014)

8. Boswell D., Foucher, T.: The art of readable code. O ’Reilly (2011)
9. Funabiki, N., Ogawa, T., Ishihara, N., Kuribayashi, M., Kao, W.-C.: A proposal of coding rule

learning function in Java programming learning assistant system. In: Proc. CISIS, 561-566
(2016)

10. CamelCase definition, http://searchsoa.techtarget.com/definition/
CamelCase

11. Funabiki, N., Masaoka, H., Ishihara, N., Lai, I-W., Kao, W.-C.: Offline answering function
for fill-in-blank problems in Java programming learning assistant system. In: Proc. ICCE-TW.
324-325 (2016)

12. Deitel P. J., Deitel, H. M.: Java: How to Program, 9th Edition. Prentice Hall (2011)
13. Hypothesis Testing, https://onlinecourses.science.psu.edu/

statprogram/node/137

