
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Information
Systems School of Information Systems

6-2012

Mining input sanitization patterns for predicting SQL injection and Mining input sanitization patterns for predicting SQL injection and

cross site scripting vulnerabilities cross site scripting vulnerabilities

Lwin Khin SHAR
Singapore Management University, lkshar@smu.edu.sg

Hee Beng Kuan TAN
Nanyang Technological University

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Information Security Commons, and the Software Engineering Commons

Citation Citation
SHAR, Lwin Khin and TAN, Hee Beng Kuan. Mining input sanitization patterns for predicting SQL injection
and cross site scripting vulnerabilities. (2012). 2012 34th International Conference on Software
Engineering (ICSE): Zurich, June 2-9: Proceedings. 1293-1296. Research Collection School Of Information
Systems.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/4679

This Conference Proceeding Article is brought to you for free and open access by the School of Information
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in
Research Collection School Of Information Systems by an authorized administrator of Institutional Knowledge at
Singapore Management University. For more information, please email library@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4679&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4679&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4679&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:library@smu.edu.sg

Mining Input Sanitization Patterns for Predicting SQL Injection and Cross Site
Scripting Vulnerabilities

Lwin Khin Shar and Hee Beng Kuan Tan
School of Electrical and Electronic Engineering

Nanyang Technological University
Singapore 639798

{shar0035, ibktan}@ntu.edu.sg

Abstract—Static code attributes such as lines of code and
cyclomatic complexity have been shown to be useful indicators
of defects in software modules. As web applications adopt
input sanitization routines to prevent web security risks, static
code attributes that represent the characteristics of these
routines may be useful for predicting web application
vulnerabilities. In this paper, we classify various input
sanitization methods into different types and propose a set of
static code attributes that represent these types. Then we use
data mining methods to predict SQL injection and cross site
scripting vulnerabilities in web applications. Preliminary
experiments show that our proposed attributes are important
indicators of such vulnerabilities.

Keywords-defect prediction; data mining; static code
attributes; web security vulnerabilities; input sanitization

I. INTRODUCTION
In software defect prediction study, researchers correlate

software code attributes with defects. They built defect
prediction models by using classifiers that are trained using a
set of attributes measured from software modules with
known defect information [1]. Static code attributes such as
lines of code and McCabe’s code complexity attributes [2]
are widely used because they can be easily collected and are
proved to be capable of predicting defective software
modules with high probabilities and low false alarms [3, 4,
5]. However, one drawback of defect prediction approaches
is that there is no universal set of code attributes that works
on any application domain.

On the other hand, to address the growing risks of
security vulnerabilities in web applications, vulnerability
detection approaches based on static and dynamic analysis
techniques have been proposed. Static analysis approaches
[6, 7, 8] are relatively simple to implement, but are known to
produce too many false positives. Dynamic analysis
approaches [9, 10] provide more accuracy but require
potentially complex dynamic environments.

Web applications in general implement a variety of input
sanitization schemes to prevent security vulnerabilities such
as SQL injection (SQLI), cross site scripting (XSS), and path
traversal [11]. An application is vulnerable if the
implementation of input sanitization is inadequate or there is
no such method implemented. Consequently, the
characteristics of input sanitization implemented in a

program could be useful for predicting the program’s
vulnerability.

Hence, in this study, we classify various input
sanitization methods into different types and propose a set of
attributes that represent these types. By mining such attribute
data and vulnerability information from existing web
applications, we could train and build vulnerability
prediction models for newly developed web applications.
Though these prediction models may not identify the
vulnerabilities with the same accuracy as concolic execution
methods, such static code attributes can be easily collected
by using simple static analysis tools. With the availability of
data mining tools such as WEKA [12], our models are
practical. Therefore, they might provide an effective yet
cheaper way of finding vulnerabilities in web applications.

To validate this claim, we implemented a proof-of-
concept tool called PhpMinerI to extract the data of our
proposed attributes from PHP programs. We trained two
vulnerability prediction models, one for SQLI vulnerabilities
and another for XSS vulnerabilities, using the extracted data
and known vulnerability information. In our preliminary
studies, these models predicted over 85% of the
vulnerabilities present in different web applications.

II. CLASSIFICATION
The classification schemes are based on the control flow

graph (CFG) of a web application program. As our prototype
tool is targeted at PHP programs, we shall provide the
examples using PHP language. The sample PHP code in Fig.
1 is extracted from one of our test subjects.

A. Input and Sink Classification
Web application vulnerabilities, such as SQLI and XSS,

are mainly caused by the applications’ weakness in handling
user inputs properly. Typically, a web application program
accesses user inputs and propagates them via its program
variables for further processing of the application’s logics.
These processes may often include sensitive program
operations such as database updates, HTML outputs, and file
accesses. If the program variables propagating the inputs
tainted by attackers are not cleansed before being used in
those operations, security violations may occur. Therefore, in
security, it is important to first identify the sources from
which user inputs may be accessed.

Hence, according to different natures of input sources,
we classify the inputs into the following types:

978-1-4673-1067-3/12/$31.00 c© 2012 IEEE
ICSE 2012, Zurich, Switzerland
New Ideas and Emerging Results

1293

Figure 1. (a) Sample code from Yapig (simplified). (b) Data dependence
graph of sensitive sink node 12.

1) Client: Data submitted via HTML forms and URLs
(e.g., $_GET, $_POST).

2) File: Data accessed from external files such as cookies
and XML files (e.g., $_COOKIE, fgets()).

3) Database: Data retrieved from database (e.g.,
mysql_result()).

4) Persistent: Data accessed from persistent data objects
(e.g., $_SESSION).

5) Uninit: Variables which may not have been initialized
(e.g., $img_size at line 12 in Fig. 1a).

We call a node k in the CFG of a web program a sensitive
sink if the execution of k may lead to security attacks. For
this study, we use two types of sensitive sinks:
1) SQL: Database operations that are susceptible to SQLI

attacks (e.g., mysql_query()).
2) HTML: HTML output operations that are susceptible to

XSS attacks (e.g., print() and echo).

B. Input Sanitization Classification
By default, inputs to web application programs are

strings. As such, input sanitization operations performed in a
program are mainly based on string operations. Therefore,
our main objective is to classify the string operations that are
applied on inputs according to their potential effects on the
tainted-ness of the input values propagated.

For each sensitive sink k in a CFG of a web program, we
extract its data dependence graph DDGk from the CFG. This
graph contains the data flow information of all the variables
used in k. Fig. 1b shows the data dependence graph of the
sensitive sink node at line 12 in Fig. 1a.

A variety of preventive measures against security flaws
may be found in the nodes of DDGk. Different preventive
measures may serve different purposes and may have
different effects on the tainted-ness of an input. Therefore,
they should be categorized so that a type of preventive
measure can be represented with an attribute for data mining

purposes. Thereby, we classify input sanitization methods
into the following types:
1) Sanitization: functions designed to prevent specific

security issues (e.g., mysql_real_escape_string(),
htmlentities()). For this study, we use SQLI
sanitization functions and XSS sanitization functions.

2) Encoding: functions that encode arguments according to
specific encoding formats (e.g., convert_uuencode()).

3) Encryption: encryption or hashing functions designed to
ensure secure data transfer (e.g., crypt(), sha1()).

4) Replacement: string-based substring replacement
functions (e.g., str_replace()).

5) Regex-replacement: regular expression-based substring
replacement functions (e.g., preg_replace()). (a)

(b)

1 $MAX=999;
2 if ($MAX > 0) {
3 $sz_orig = getimagesize('photos/id.jpg');
4 $ratio=$sz_orig[1]/$sz_orig[0];
5 if ($sz_orig[0]> $MAX) {
6 if ($ratio>1) {
7 $height=$MAX;
8 $width=(int)($MAX/$ratio);
 }
 else {
9 $width=$MAX;
10 $height=(int) ($MAX*$ratio);
 }
11 $img_size=“style=‘width:$width;height:$height’”;
 }
 }
12 echo "<div $img_size>";

6) Numeric-conversion: functions that process arguments
and return numeric values (e.g., intval()) or numeric
type casting operations (e.g., $a = (int) $b/$c).

For each node n in DDGk, if n invokes a language-built-
in function or performs an assignment operation, we simply
check the function name or the operators used in n and
classify it into zero or more of the above types (PhpMinerI
handles over 300 PHP built-in functions for classification).

It is clear that nodes in DDGk may also include ordinary
operations that may or may not serve any security purpose.
They may either propagate or un-taint the input data. There
may also be other types of preventive measures though we
have not observed them for the security purposes in the
context of SQLI and XSS. Furthermore, the function invoked
at n may also be a user-written function as input sanitization
is often customized to users’ needs. Consequently, we
classify the remaining nodes in DDGk that are not classified
as any of the above types into one or more of the following
types:
1) Propagate: functions or operations that may convert

arguments into different representations but return part
or whole of the original arguments (e.g., $a=$b,
substr(), explode()); functions that unquote or
decode arguments (e.g., html_entity_decode(),
urldecode(), stripslashes()).

2) Un-taint: functions or operations that return predefined
information (e.g., $a=‘text’), information derived from
configuration settings (e.g., localeconv()), or numeric
information derived from program operations (e.g.,
mysql_field_len()).

3) Custom: user-written or library functions.
4) Other: functions or operations that are not classified as

any of the above types.
As an illustration, in DDG12 shown in Fig. 1b, there is a

node that can be classified as Uninit as the variable
$img_size may not have been initialized at node 12. Node
7, 9, 11 can be classified as Propagate as they performs
simple assignment of a variable or contains string
concatenation operation. Nodes 4, 8, and 10 can be classified
as Numeric-conversion as they perform arithmetic and
numeric type casting operations. Node 3 can be classified as
Other as it invokes a PHP built-in function not classified as
any input sanitization type. Node 1 can be classified as Un-
taint as a predefined literal value is assigned to a variable.

1294

III. PRELIMINARY EXPERIMENTS

A. Data Collection
For data collection, we implemented a proof-of-concept

tool called PhpMinerI based on an open source PHP code
analysis tool called Pixy [6]. Since our method only requires
traditional data flow analysis, any other program analysis
tool could also be used. For each sensitive sink k in a given
PHP program, PhpMinerI classifies the nodes in its data
dependence graph DDGk (generated by Pixy) according to
their properties.

In total, there are 18 types, including sub-types, classified
in Section II. Each classification type is represented with an
attribute. From the nodes in DDGk, PhpMinerI counts the
number of nodes that correspond to each classification type
and assigns the number to the attribute which represents that
classification type. Therefore, each sensitive sink has one
attribute vector consisting of the data of 18 attributes plus the
target attribute—Vulnerable?. For example, the attribute
vector for sensitive sink node 12 in Fig. 1b is (1, 1, 3, 1, 1, 3,
…, vulnerable) in terms of (Uninit, HTML, Numeric-
conversion, Propagate, Un-taint, Other, …, Vulnerable?).

We collected such attribute vectors from three open
source PHP-based web applications from SourceForge
(sourceforge.net) to evaluate the usefulness of our proposed
prediction models. These benchmark applications have been
used in evaluating some vulnerability detection approaches
[6, 9]. Table I shows the information of the test subjects, the
summary of the data set collected and their vulnerability
information obtained from Pixy [6] and Ardilla [9].

B. Experimental Design
Different classification algorithms may produce different

performances [3, 4]. Therefore, in this study, we use three
different classifiers, C4.5/J48, Naïve Bayes (NB), and Multi-
Layer Perceptron (MLP), to cross-check the robustness of
the prediction models built with our proposed attributes.

C4.5/J48 is a decision tree-based classifier. Naïve Bayes
is a simple statistical-based classifier. Multi-Layer
Perceptron is an artificial neural network-based classifier.
These classifiers assign a given software module to a class of
the target attribute based on the training data. In our case, a
module is a sensitive sink and the classes of the target
attribute are ‘vulnerable’ and ‘not-vulnerable’. The details of
these classifiers are provided in data mining books such as
Witten and Frank [12].

The selected classifiers are implemented in an open
source data mining tool called WEKA [12]. The tool allows
us to simply supply the collected data set for training and
testing the three classifiers. Similar to Menzies et al. [3], we
used (M=10) * (N=10)-way cross validation on the training
data. The data is divided into 10 buckets. The classifier is
trained on 9 buckets and tested on the remaining bucket; this
is iterated 10 times without testing the same bucket twice.

We used three measures—probability of detection (pd),
probability of false alarm (pf), and precision (pr) to assess
the performance of learned classifiers. These measures can
be computed from the following contingency table:

 Actual-> Vulnerable Not-Vulnerable

Vulnerable True Positive (tp) False Positive (fp)

Predicted->
Not-Vulnerable False Negative (fn) True Negative (tn)

The pd (tp/(tp+fn)) measures how good our prediction model
is in finding actual vulnerable sinks. The pf (fp/(fp+tn))
measures false alarm rate. In an ideal situation, pd should be
close to 1 and pf should be close to 0, that is, the model
neither misses actual vulnerabilities nor throws false alarms.
The pr (tp/(tp+fp)) reports the probability that a predicted
vulnerable case is actually vulnerable.

C. Results
We ran WEKA on a Pentium 3.4GHz 4GBRAM PC.

Each classifier was run twice, one run was for the data set of
SQL sinks and another run was for the data set of HTML
sinks. Both C4.5/J48 and NB took less than a second to
complete each run whereas MLP took nearly 2 minutes to
complete each run. Results are shown in Table II.

In the experiments, we encountered a few cases that our
prediction models could not appropriately handle. For
example, see a case from the test subject Yapig:

1 if(!is_int((int)$phid))
 2 die;
 3 echo “<div>$phid</div>”;

Since our approach does not consider input validations
through predicates, the input condition check at line 1 will be
missed for data mining purposes. We also encountered cases
that check the validity of HTTP referrer before the rest of the
program operations is executed. For such cases, the mined
data may not be appropriate as the data dependence graph
used for data mining do not include predicate nodes. The
inclusion of control dependency analysis targeted as our
future work might handle such cases.

However, in general, our vulnerability prediction models
achieved promising results. The models achieved pd > 85
and pf < 22 which are better than pd > 70 and pf < 25
benchmarked by software defect prediction studies based on
traditional size and complexity metrics [3, 4, 5, 13]. The
result pr > 93 says that at least 9 out of 10 predicted
vulnerable cases are worth investigating for security audits.
Although we did not compare the results directly, these
results seem to be better than the results reported by static
analysis-based vulnerability detection approaches [6, 7],
which tend to report many false positive cases. Furthermore,
our manual inspections confirmed that our models predicted
all the vulnerabilities detected by a dynamic analysis-based
approach [9].

In summary, since the proposed attributes can also be
easily collected, our models are practical and they offer an
alternative and cheap way of detecting security
vulnerabilities in web applications.

D. Threats to Validity

First, the data sets used might be small. Second, they
might also be imbalanced as the test subjects are bench-
marked as vulnerable applications. Third, this preliminary
study only focused on SQLI and XSS vulnerabilities due to
the limited information available for other types of web
vulnerabilities. However, we believe that the proposed

1295

TABLE I. DATA SETS

Data Set Gecc-
BBLite 0.1

SchoolMate
1.5.4

Yapig
0.95b
(view.php)

Description A simple
bulletin
board

A tool for
school
administration

Image
gallery

LOC 338 8145 4748
#SQL sinks 9 189 0
%Vuln to SQLI 44.4% 80.4% 0
#HTML sinks 17 172 13
%Vuln to XSS 58.8% 80.2% 7.7%

TABLE II. RESULTS

 Measure (%)

Model

pd

pf

pr

NB 85.3 21.4 93.7

C4.5/J48 98.7 16.7 95.7

SQLIV Prediction

MLP 97.4 16.7 95.6

NB 87.9 9.4 96.3

C4.5/J48 98.7 11.3 96.1

XSSV Prediction

MLP 98.0 7.5 97.3

method can be applied to any input-related web
vulnerabilities. The best way to prove or refute our results is
to replicate and extend our experiments. Interested
researchers may request the data sets and the tool used in this
study through the authors’ emails.

IV. RELATED WORK
Vulnerability detection approaches such as [6, 7] track

the flow of tainted data and determine whether or not the
tainted data is referenced in sensitive program operations.
Such approaches are simple and relatively easy to be
adopted; however they have low precision as they do not
analyze the correctness of input sanitization operations. More
advanced approaches [8-10] applies techniques such as string
analysis and concolic execution to determine if the data has
been properly sanitized before used in sensitive program
operations. These techniques reduce false positives;
however, they are computationally expensive.

By contrast, our work predicts vulnerabilities by using
data miners learned from code attributes representing the
characteristics of input sanitization code patterns. It requires
simple static analysis of data flow to collect the data of our
proposed attributes.

Defect prediction approaches [3, 4, 13, 14] investigated
the predictive performances of classifiers built with static
code attributes such as LOC counts, McCabe [2], and other
miscellaneous attributes. Their works can be summarized as
defect predictors which produce probability of detection >
70% and probability of false alarm < 25% are useful in
practice and much software engineering effort could be
saved by using defect predictors. However, Menzies et al.
[14] observed that information contents available from size
and code complexity attributes are limited. Motivated by this

fact, Zimmermann and Nagappan [5] proposed a set of
network dependency-based attributes for predicting defects
in binaries. Their model performed better than models built
from code complexity attributes.

The primary difference with current defect prediction
studies is that our work focuses on web security
vulnerabilities rather than general software defects. And our
work is to predict whether or not a particular program
statement is vulnerable whereas existing software defect
prediction models in general predict whether or not a
software module has defects.

V. CONCLUSION
In this paper, we first classified the types of inputs and

sinks that may cause security attacks. Then, we classified the
types of sanitization methods that are commonly applied to
inputs to avoid security issues. For each sensitive sink in a
web program, we collect the static code attributes that
characterize these classification schemes. Vulnerability
prediction models are then built using the collected data and
the vulnerability information of each sink. In our preliminary
studies, these models predicted over 85% of SQLI and XSS
vulnerabilities in different web applications. Our future work
is to conduct more comprehensive experiments on a larger
set of systems to further validate these results.

REFERENCES
[1] N. F. Schneidewind, “Methodology for validating software metrics,”

IEEE Trans. Softw. Eng., vol. 18(5), 1992, pp. 410-422.
[2] T. McCabe, “A complexity measure,” IEEE Trans. Softw. Eng., vol.

2(4), 1976, pp. 308–320.
[3] T. Menzies, J. Greenwald, and A. Frank, “Data mining static code

attributes to learn defect predictors,” IEEE Trans. Softw. Eng., vol.
33(1), 2007, pp. 2–13.

[4] S. Lessmann, B. Baesens, C. Mues, and S. Pietsch, “Benchmarking
classification models for software defect prediction: a proposed
framework and novel findings,” IEEE Trans. Softw. Eng., vol. 34(4),
2008, pp. 485-496.

[5] T. Zimmermann and N. Nagappan, “Predicting defect using network
analysis on dependency graphs,” In ICSE’08, 2008, pp. 531-540.

[6] N. Jovanovic, C. Kruegel, and E. Kirda, “Pixy: a static analysis tool
for detecting web application vulnerabilities,” In S&P’06, 2006, pp.
258-263.

[7] Y. Xie and A. Aiken, “Static detection of security vulnerabilities in
scripting languages,” In USENIX Security’06, 2006, pp. 179-192.

[8] G. Wassermann and Z. Su, “Static detection of cross-site scripting
vulnerabilities,” In ICSE’08, 2008, pp. 171-180.

[9] A. Kieżun, P. J. Guo, K. Jayaraman, and M. D. Ernst, “Automatic
creation of SQL injection and cross-site scripting attacks,” In
ICSE’09, 2009, pp. 199-209.

[10] M. Martin and M. S. Lam, “Automatic generation of XSS and SQL
injection attacks with goal-directed model checking,” In USENIX
Security’08, 2008, pp. 31-43.

[11] OWASP Top 10, 2010, http://www.owasp.org/
[12] I. H. Witten and E. Frank, Data Mining, 2nd ed., Morgan Kaufmann,

Los Altos, CA, 2005.
[13] T. Mende, “Replication of defect prediction studies: problems, pitfalls

and recommendations,” In PROMISE’10, 2010.
[14] T. Menzies, Z. Milton, B. Turhan, B. Cukic, Y. Jiang, and A. Bener,

“Defect prediction from static code features: current results,
limitations, new approaches,” Autom. Softw. Eng., vol. 17(4), 2010,
pp. 375-407.

1296

	Mining input sanitization patterns for predicting SQL injection and cross site scripting vulnerabilities
	Citation

	Mining input sanitization patterns for predicting SQL injection and cross site scripting vulnerabilities

